

1 **Comment to Shreve & Delgado [2023] - “Trapdoor Fault Activation: A Step**
2 **Toward Caldera Collapse at Sierra Negra, Galapagos, Ecuador”**

4 **Peter C. LaFemina^{1,2}, Andrew F. Bell³, Patricia M. Gregg⁴, William W. Chadwick Jr⁵,**
5 **Dennis Geist⁶, Machel Higgins⁷**

6 ¹ Alfred Wegener Institute, Helmholtz Center for Polar & Marine Research, Bremerhaven,
7 Germany

8 ² Faculty of Geosciences, University of Bremen, Bremen, Germany

9 ³ School of Geosciences, University of Edinburgh, Edinburgh, Scotland

10 ⁴ Dept. of Earth Science & Environmental Change, University of Illinois Champaign Urbana,
11 Urbana, Illinois, 61801

12 ⁵ Oregon State University, CIMERS, Hatfield Marine Science Center, Newport, OR, 97365

13 ⁶ Geology Department, Colgate University, Hamilton NY 13346

14 ⁷ Institute of Environment, Florida International University, Miami, FL 33199

15 Corresponding author: Peter LaFemina (<mailto:peter.lafemina@awi.de>)

16

17 **Key Points:**

- 18 • The 2005-2018 eruptive cycle at Sierra Negra volcano resulted in ~2.0 m net
19 resurgence of the Sinuous Ridge – Trapdoor Fault system.
- 20 • Shreve & Delgado [2023] hypothesize the initiation of caldera collapse during the
21 2018 eruption because they focus on co-eruptive deformation, and not the entire
22 eruptive cycle.
- 23 • Resurgence of basaltic calderas is rare making the 2005 and 2018 Sierra Negra
24 resurgent events important to study.

25

26 **Abstract**

27
28 In their article entitled “*Trapdoor Fault Activation: A Step Toward Caldera Collapse at Sierra*
29 *Negra, Galapagos, Ecuador*” *Shreve and Delgado* [2023] examine co-eruptive deformation
30 during the 2018 eruption of Sierra Negra Volcano. One of their major conclusions is that the
31 2018 eruption, and specifically co-eruptive faulting, represents the initial stages of caldera
32 collapse. They reach this conclusion because they focus their analysis solely on co-eruptive
33 deformation, and do not investigate the total (net) deformation for the 2005 to 2018
34 eruption cycle. *Bell et al.* [2021c] investigated both the pre- and co-eruptive phases of the
35 2018 eruption and showed that net deformation was one of caldera resurgence, not
36 subsidence. In this comment, we demonstrate that the conclusion of collapse, or even
37 initiation of collapse, is attributable to not accounting for pre-eruptive deformation on the
38 intra-caldera Trapdoor Fault system and incorrectly assuming that the volcano-
39 tectonic dynamics of Sierra Negra mimic those of other basaltic calderas.

40
41 **Plain Language Summary**

42
43 Volcanoes deform before, during and after eruptive episodes. If one studies just one of these
44 periods, a complete understanding of the deformation history is missed and incorrect
45 conclusions can be drawn about an eruptive episode. In their article entitled “*Trapdoor Fault*
46 *Activation: A Step Toward Caldera Collapse at Sierra Negra, Galapagos, Ecuador*” *Shreve and*
47 *Delgado* [2023] examine only the co-eruptive deformation during the 2018 eruption of
48 Sierra Negra Volcano. Based on their analysis they conclude that the 2018 eruption, and
49 specifically co-eruptive faulting, represents the initial stages of caldera collapse. However,
50 this conclusion is only reached by not accounting for extensive pre-eruptive deformation
51 that occurred in the lead up to the eruption on 26 June 2018. In this comment, we
52 demonstrate that the conclusion of collapse or even initiation of collapse is attributable to
53 not including the entire eruptive episode and net deformation on the intra-caldera Trapdoor
54 Fault system in their analysis.

55
56 **1 Introduction**

57
58 Calderas form by mechanical collapse of a volcanic edifice on steeply dipping, caldera
59 bounding ring faults that penetrate toward the magmatic system (e.g., [Branney, 1995]).
60 Collapse is induced by the evacuation of magma from a crustal magma reservoir through
61 eruption or intrusion. After collapse, caldera systems may experience structural resurgence
62 characterized by the uplift of the caldera floor, hypothesized to be induced by intrusion of
63 new magma into the remnants of pre-caldera magmatic reservoirs [Marsh, 1984]. Structural
64 resurgence is typically associated with felsic systems where it occurs over protracted time
65 scales, thousands of years or longer, and results in permanent doming of the caldera floor
66 and/or uplift of faulted blocks >100 m above the caldera floor (e.g., [de Silva et al., 2015;
67 Galletto et al., 2017]). On the other hand, resurgence is relatively rare at basaltic calderas
68 [Acocella et al., 2024; Branney and Acocella, 2015; Galletto et al., 2017]. The three known
69 cases of resurgence observed at basaltic calderas include: 1) Siwi caldera, Vanuatu
70 [Brothelande et al., 2016; Métrich et al., 2011]; and 2) Alcedo [Galletto et al., 2019] and 3)
71 Sierra Negra calderas [Bell et al., 2021c; Galletto et al., 2019], Galapagos Islands, Ecuador.
72 Siwi caldera is basaltic to trachy-andesitic in composition, and resurgence is mechanically

73 similar to that observed at more felsic systems. Alcedo and Sierra Negra are basaltic ocean
74 island volcanoes and resurgence takes place on intra-caldera faults systems [Bell *et al.*,
75 2021c; Galletto *et al.*, 2019].

76
77 The 2005 to 2018 eruption cycle of Sierra Negra provides one of the first opportunities to
78 study the volcano-tectonic response of a basaltic caldera to pre- and co-eruptive
79 deformation, including resurgence [Bell *et al.*, 2021c; Chadwick *et al.*, 2006]. The eruption
80 cycle was monitored geodetically by a 10-station cGPS network, two tiltmeters, and multiple
81 SAR satellites, seismically by a 6-station permanent seismic network, a temporary
82 deployment of 9 seismometers, and global seismic networks, and using geologic and
83 geochemical observations. New observations of dynamic caldera processes included: 1) the
84 largest historically recorded pre-eruptive inflation (>6.5 m) and co-eruptive deflation (~8.5
85 m) without surface rupture or displacements on the ring fault system (i.e., elastic
86 deformation of the caldera floor/reservoir roof); 2) correlation of uplift (inflation) and
87 subsidence (deflation) rates with intra-caldera seismicity rates; 3) a reversal in slip polarity
88 on the intra-caldera Trapdoor Fault system (TDF) from uplift during pre-eruptive events to
89 subsidence during co-eruptive events; and 4) net uplift (resurgence) of ~2.0 m of the Sinuous
90 Ridge along the TDF (Table 1; Bell *et al.*, 2021a). The intra-caldera Sinuous Ridge has formed
91 over time by displacements on the TDF and has been vertically displaced higher than the
92 caldera rim, indicating that resurgence has been a dominant volcano-tectonic process for
93 over the past ~1000 years [Figure 1; [Bell *et al.*, 2021c; Reynolds *et al.*, 1995]]. These
94 observations are contrary to the analysis presented by Shreve and Delgado [2023] in which
95 caldera collapse or the initiation of collapse during the 2018 eruption was hypothesized.
96 Simply stated, the 2005 to 2018 magmatic cycle at Sierra Negra Volcano, Galapagos Islands
97 resulted in net uplift (resurgence) of the caldera, not caldera collapse.

98
99 Shreve and Delgado [2023] utilized remotely sensed data, including optical satellite imagery,
100 InSAR and cGPS, to estimate the volume of erupted products and to quantify deformation
101 during the *co-eruptive* phase of the 2018 eruption. Their findings are complementary to
102 existing observations (e.g., [Bell *et al.*, 2021c; Vasconez *et al.*, 2018]) and provide new
103 quantitative estimates of erupted volume and co-eruptive processes, mainly the magnitude
104 and location of the co-eruptive deflation source and displacements on the TDF due to the
105 earthquakes on 5 July 2018 M_w 5.1 and 22 July 2018 m_b 4.6 (Global Centroid Moment Tensor
106 Catalog (GCMT): [Dziewonski *et al.*, 1981; Ekström *et al.*, 2012]; National Earthquake
107 Information Center (NEIC): www.earthquakes.usgs.gov) (Table 1). Shreve and Delgado [2023]
108 presented daily and 5-minute cGPS time series solutions from stations within the caldera
109 (see Shreve and Delgado [2023] Figure 3a & Supplementary Materials; GPS analyses were
110 also provided by P. LaFemina and M. Higgins). The deformation observed in these time series
111 and specifically the co-seismic displacements for the 26 June 2018 M_w 5.3 pre-eruptive
112 earthquake were not accounted for during the analysis of displacements on the TDF,
113 however. By focusing solely on the co-eruptive period, the analysis presented in Shreve and
114 Delgado [2023] misses critical aspects of the volcano-tectonic response of the Sierra Negra
115 caldera during the 2005-2018 eruption cycle, mainly that of net uplift of the Sinuous Ridge
116 and therefore resurgence.

117
118 Shreve and Delgado [2023] concluded that Sierra Negra's caldera experienced ~-1.5 m of net
119 subsidence on the intra-caldera TDF due to the 2018 eruption and co-eruptive earthquakes.

120 Their approach to determining the magnitude of deformation first assumed that -2.0 m of
121 slip occurred on the TDF system, based on the difference between the observed 6.5 m of
122 pre-eruptive inflation and -8.5 m of co-eruptive deflation. They modeled the -8.5 m of co-
123 eruptive deflation as observed in InSAR interferograms assuming an elastic response to a
124 deflating sill located at ~2.0 km depth (e.g., [Bell *et al.*, 2021c; Chadwick *et al.*, 2006; Geist *et*
125 *al.*, 2008; Jonsson *et al.*, 2005; Yun *et al.*, 2006]). The residual displacements between the
126 best-fit magmatic deformation model and the InSAR observations suggest: 1) the -8.5 m of
127 subsidence was accommodated elastically; and 2) additional deformation on the TDF,
128 consistent with co-eruptive seismicity (e.g., [Bell *et al.*, 2021a; Bell *et al.*, 2021c]). The model
129 residuals located along the TDF, termed ‘faulting residuals’ in *Shreve and Delgado* [2023],
130 were then modeled to estimate co-seismic slip accompanying the co-eruptive earthquakes.
131 As an aside, the model residuals and therefore the estimates of co-seismic slip strongly
132 depend on the parameters of the magmatic source model, but no parameter uncertainties
133 for either the magmatic source or the faulting models were provided. Inversion of the model
134 residuals for slip on a vertical TDF resulted in downward displacements of -1.1 m for the 5
135 July 2018 event and -0.35 m for the 22 July 2018 event [*Shreve and Delgado*, 2023]. These
136 results are consistent with observed normal-faulting focal mechanisms presented in [Bell *et*
137 *al.*, 2021a; Bell *et al.*, 2021c], but are greater than the maximum observed displacements at
138 cGPS station GV06 of -0.57 m and -0.10 m, for the two events (Table 1). Based mainly on
139 these modeling results, which assume -2 m of caldera floor subsidence at the outset, and
140 additional estimates of minor co-seismic displacements on the northern and western
141 segments of the TDF, *Shreve and Delgado* [2023] suggest that the 2018 eruptive episode
142 resulted in ~-1.5 m of net motion on the TDF. The authors then interpret their derived net
143 subsidence as the initiation of caldera collapse at Sierra Negra. Furthermore, the authors
144 assume that the residual ~-0.5 m of displacement (i.e., difference between the -2.0 m of
145 assumed slip and the ~-1.5 m modeled slip) occurred via aseismic slip on the TDF. This
146 conclusion is reached despite its inconsistency with the cGPS time series.
147

148 It is our position that interpretation of deformation data during any eruptive episode, and
149 specifically the 2018 eruption of Sierra Negra, is likely to lead to incorrect conclusions
150 regarding the volcano-tectonic system, unless the entire eruptive cycle is considered. The
151 previous two eruptions of Sierra Negra occurred in 2005 and 1979. Space geodesy
152 measurements became available in the early 1990s, and a continuous GPS network was
153 established in 2000 [Chadwick *et al.*, 2006; Geist *et al.*, 2006]. This network allowed for
154 investigation of a complete eruptive cycle from the end of the 2005 eruption to the end of
155 the 2018 eruption (Figure 3), including pre-eruptive deformation on the TDF (Figure 4). In
156 the following, we first describe geophysical and geologic observations for the 2005 eruption
157 that indicate resurgence of the caldera along the Sinuous Ridge – TDF system. We then
158 describe the geophysical and geologic evidence as presented in Bell *et al.* [2021c] and Bell *et*
159 *al.* [2021a] that indicates the Sierra Negra caldera experienced net resurgence of ~2.0 m
160 along the Sinuous Ridge - TDF system during the 2018 eruptive event, not the ~-1.5 m
161 subsidence as suggested by *Shreve and Delgado* [2023]. Therefore, even partial initiation of
162 caldera collapse did not take place in 2018. Rather the caldera at Sierra Negra remains in an
163 era of protracted resurgence.
164

165 2 The 2005 to 2018 Eruption Cycles: Geodetic, Seismic & Geologic Evidence for Caldera 166 Resurgence

167

168 The 2005 eruption of Sierra Negra was preceded by >5 m of uplift at the center of the
169 caldera [Chadwick *et al.*, 2006; Geist *et al.*, 2008]. This is a minimum estimate, as geodetic
170 monitoring only began in 1992 (i.e., there are no observations from 1979-1992). Regional
171 and global seismic networks, as well as analyses of InSAR data, observed multiple M>4
172 earthquakes leading up to the eruption, including the 11 January 1998 M_w 5.0 (NEIC) with an
173 estimated 1.2 m of vertical displacement on the TDF [Amelung *et al.*, 2000], the 16 April
174 2005 M_b4.6 earthquake with ~0.84 m vertical displacement on the southern TDF [Jonsson,
175 2009] and a M_w5.5 earthquake approximately three hours before the onset of the 22
176 October 2005 eruption that displaced the southern TDF ~1.5 m (Figure 2; [Chadwick *et al.*,
177 2006; Geist *et al.*, 2008]). The central caldera floor subsided co-eruptively ~5 m as measured
178 at cGPS station GV02 and began to uplift immediately following the cessation of eruptive
179 activity (Figures 1 & 3; [Chadwick *et al.*, 2006; Geist *et al.*, 2008]). Uplift over the next 13-
180 years was not steady and occurred in four main phases, with phases two and three
181 separated by a brief period of deflation in 2012 (Figure 3). Short-term deflation events
182 within long-term inflation episodes also occurred before the 2005 eruption [Geist *et al.*,
183 2008] and indicate either a lull in the magma supply and degassing, or deep lateral intrusion.
184 The last phase of uplift before the 2018 eruption initiated in 2014, and in 2017 the rate
185 increased dramatically to >1 m/yr, correlated in time with the onset of enhanced seismicity
186 on the TDF [Bell *et al.*, 2021a; Bell *et al.*, 2021c].

187

188 A 9-station temporary seismic network was installed approximately 2 months before the
189 2018 eruption. This network and two local seismic stations allowed for enhanced detection
190 and analysis of seismicity at Sierra Negra during the 2018 eruption [Bell *et al.*, 2021a; Bell *et*
191 *al.*, 2021c]. Twenty-four M >4 earthquakes were recorded during the pre-eruptive (12) and
192 co-eruptive (12) phases of 2018 activity. All of these earthquakes were located on the TDF
193 and had focal mechanism solutions indicating reversal of slip directions between the two
194 phases of activity, as well as complex slip directions depending on the hypocentral location
195 of the earthquakes along the TDF [Bell *et al.*, 2021a; Bell *et al.*, 2021c; Sandanbata *et al.*,
196 2021]. Earthquakes with M >4 did not change the rate of inflation or deflation of the
197 magmatic system [Bell *et al.*, 2021c]. However, earthquakes with M >4 on the TDF changed
198 the state of stress on the TDF, as observed through a reduction in the number of
199 earthquakes [Bell *et al.*, 2021a; Bell *et al.*, 2021b]. The three largest of the 24 M >4 2018
200 earthquakes account for the majority of seismic moment release and observed co-seismic
201 displacements. These earthquakes are the: 1) pre-eruptive 26 June 2018 M_w 5.3, and 2) co-
202 eruptive 5 July 2018 M_w5.1 and 3) 22 July 2018 m_b4.6 earthquakes [Table 1; Bell *et al.*, 2021;
203 Sandanbatta *et al.*, 2021].

204

205 The rapid sequence of pre- and co-eruptive deformation, which included changes in the rate
206 and polarity of deformation, were well-detected by the cGPS network. The temporal aliasing
207 of InSAR observations; however, means that crucial details of the eruption cycle were missed
208 and/or difficult to retrieve through modeling of the volcanic system using InSAR data alone.
209 Specifically, pre-eruptive and co-eruptive deformation observed in the cGPS time series on
210 26 June 2018 included: 1) co-seismic displacements >1.0 m on the TDF (see below); 2) dike
211 migration from the sill to eruptive fissures displaced cGPS station GV03 >1.0 m vertically and
212 southward; and 3) rapid subsidence of the caldera floor correlated in time with intrusion
213 initiation and eruption onset (Figure 4; [Bell *et al.*, 2021c]). Shreve and Delgado [2023]

214 modeled the residuals (i.e., “faulting residuals”) from their elastic, magmatic source
215 deformation model of the InSAR data to estimate co-seismic displacements for the two
216 largest co-eruptive earthquakes. In contrast, *Bell et al.* [2021c] quantified co-seismic
217 displacements on the southern TDF using 30-sec kinematic position solutions for cGPS
218 stations located on and across the TDF (i.e., stations GV06 and GV09, and GV08,
219 respectively) (Figures 1 & 4; Table 1; [Bell et al., 2021c]). That is, they investigated the co-
220 seismic displacements directly with cGPS time series, and not through modeling of model
221 residuals. An illustrative example is the pre-eruptive 9:15 UTC 26 June 2018 M_w 5.3 (GCMT)
222 earthquake, which occurred on the southern segment of the TDF and had a reverse-faulting
223 focal mechanism. *Bell et al.* [2021c] estimated 1.83 m and 1.43 m of vertical co-seismic
224 displacements at stations GV09 and GV06 (these stations are located at the top of the inner-
225 most fault scarp of the TDF system) (Figure 1). Station GV08, located on the outer-most
226 block of the TDF fault system, was displaced downward -0.26 m. Therefore, the total throw
227 across the TDF system during the 26 June 2018 M_w 5.3 earthquake was 2.09 m and 1.69 m,
228 for the GV09-GV08 and GV06-GV08 station pairs (Table 1).

229
230 Seismicity during the co-eruptive phase was dominated by normal-faulting focal mechanism
231 solutions (i.e., downward displacement of the interior block), although some earthquakes
232 exhibited thrust and strike-slip mechanisms [Bell et al., 2021a]. The 5 July 2018 M_w 5.1 co-
233 eruptive earthquake was the second largest earthquake in the eruptive cycle. We estimated
234 -0.14 m and -0.71 m co-seismic displacements from 30-sec kinematic solutions at cGPS
235 stations GV09 and GV06, and 0.14 m at GV08, indicating a total throw of 0.0 m and -0.57 m
236 (Table 1). The 22 July 2018 m_b 4.6 earthquake displaced stations GV09 and GV06 an
237 estimated -0.08 m and -0.13 m, and GV08 0.03 m, indicating a total throw of -0.05 m and -
238 0.10 m (Table 1). The change in location of maximum displacement for both of these
239 earthquakes (i.e., toward the east and GV06) confirms more easterly epicentral locations
240 compared to the 26 June 2018 event (e.g., [Sandanbata et al., 2021]).

241
242 *Bell et al.* [2021c] estimated co-seismic displacements from the 30-sec kinematic solutions
243 for the three largest earthquakes, which indicate there was a net uplift of ~2.0 m at GV09
244 and 0.6 m at GV06 (Table 1) consistent with the kinematics of the TDF, whereby slip
245 decreases toward the hinge in the northeast caldera. Therefore, the co-seismic
246 displacements for the entire eruptive cycle (i.e., for the pre- and co-eruptive phases) clearly
247 show that net slip on the southern TDF was upward (i.e., uplift of the Sinuous Ridge and
248 resurgence of the caldera), not the -1.1 to -0.3 m subsidence as suggested by *Shreve and*
249 *Delgado* [2023] based on modeling of model residuals for *only* the co-eruptive period.
250 Furthermore, our results indicate that resurgence has been the dominant volcano-tectonic
251 process at Sierra Negra during the last two eruption cycles and has been located in the same
252 region of the caldera; the ~2.0 m of net uplift observed at GV09 in 2018 and the ~2.5 m
253 observed in 2005 were both located near the southwestern corner of the TDF (Figure 2;
254 [Chadwick et al., 2006]).

255

256 **3 Seismic Moment Release**

257

258 A simple test of the proposed hypothesis that caldera collapse was initiated during the 2018
259 eruption [*Shreve and Delgado*, 2023] is to compare the total seismic moment released
260 during the pre-eruptive and co-eruptive phases. The 26 June 2018 M_w 5.3 earthquake, which

261 uplifted the Sinuous Ridge, dominates the seismic moment release by approximately one
262 order of magnitude (Table 1; [Sandanbata *et al.*, 2021]). *Shreve and Delgado* [2023] suggest
263 that the ~2 m difference between the measured pre-eruption uplift of ~6.5 m and co-
264 eruptive subsidence of ~-8.5 m was accommodated by slip on the TDF and that any residual
265 between their modeled slip and this amount was accommodated by aseismic slip on the
266 TDF. There are several problems with this analysis. First, in their modeling of the co-eruptive
267 deflation, they solve for the total ~8.5 m of subsidence as elastic deformation, and thus 2 m
268 of potential slip are not available. Second, aseismic slip was not detected in the cGPS time
269 series. Finally, the estimated magnitude of aseismic slip presented by *Shreve and Delgado*
270 [2023] is low (i.e., ~0.1 m) and therefore net slip on the TDF would still be positive (i.e., uplift
271 of the Sinuous Ridge and resurgence).

272

273 **4 Geologic Evidence for Caldera Resurgence**

274

275 The Sierra Negra caldera formed by displacement on a vertical to inward dipping ring fault
276 system with secondary faults dipping outward (Figure 1; see [Acocella *et al.*, 2024; *Reynolds*
277 *et al.*, 1995]). The Sinuous Ridge formed by reactivation and repeated uplift on the
278 secondary faults (i.e., the TDF system) [Acocella *et al.*, 2024; *Reynolds et al.*, 1995]. The
279 caldera behaves elastically during pre-eruptive uplift and co-eruptive deflation phases, and
280 these phases of deformation stress the TDF leading to seismic failure (e.g., [Chadwick *et al.*,
281 2006; Gregg *et al.*, 2018]). [Bell *et al.*, 2021a; Bell *et al.*, 2021c] showed: 1) earthquakes on
282 the TDF do not change inflation or deflation rates of the magmatic reservoir; and 2) inelastic
283 deformation and seismicity were restricted to the TDF during pre-eruptive inflation and co-
284 eruptive deflation (see Figures 2, 3 & 5 of [Bell *et al.*, 2021c]). That is, no measurable
285 deformation or seismicity occurred along the caldera-bounding ring fault, and no surface
286 ruptures have been observed on the caldera ring fault during either the 2005 or 2018
287 eruptions. Furthermore, the last two eruptive cycles resulted in net uplift of the Sinuous
288 Ridge caused by co-seismic displacements on the TDF system, including ~2.5 m preceding
289 the 2005 eruption [Chadwick *et al.*, 2006] and ~2.0 m net displacement during the 2018
290 eruption (Table 1 and earlier discussion). Field observations of part of these co-seismic
291 displacements along the TDF faults can be seen in Figure 2, where segments of the surface
292 ruptures from the 10 October 2005 M_w5.5 and 26 June 2018 M_w5.3 events are shown.

293

294 Finally, *Shreve and Delgado* [2023] compare the 2018 eruption to the 2014 Bardarbunga,
295 Iceland and 2018 Ambrym, Vanuatu events. In the Bardarbunga case, they make the
296 assumption that all calderas with trapdoor faulting are created equal. The Trapdoor Fault
297 system at Sierra Negra is not the same as “trapdoor faulting” at Bardarbunga, Iceland.
298 Trapdoor faulting at Bardarbunga occurs along the caldera bounding ring fault, not on an
299 intra-caldera fault system [Gudmundsson *et al.*, 2016]; thus, it is simply asymmetric
300 subsidence of the caldera. Additionally, one should not expect the same style of deformation
301 at these two basaltic calderas, as they have dramatically different roof thickness to diameter
302 ratios, which dictates caldera deformation (i.e., 0.22-0.28 at Sierra Negra and 1.0-1.5 at
303 Bardarbunga; see *Holohan et al.* [2011] for a discussion). In the Ambrym case, the authors
304 suggest that because it has been hypothesized that the caldera formed incrementally (see
305 [Hamling *et al.*, 2019; *Shreve et al.*, 2021]), the caldera at Sierra Negra has also formed in
306 this manner. When and how the caldera at Sierra Negra formed is an open question. The

307 nearby Fernandina caldera collapsed >300 m in one, dramatic event in 1968 [Simkin and
308 Howard, 1970]. Could Sierra Negra also experience caldera collapse in this style?

309

310 **5 Conclusions**

311

312 Over the last two decades, detailed observations of basaltic caldera-forming eruptions have
313 led to new insights into the processes of caldera formation. However, detailed evidence of
314 caldera resurgence of a basaltic caldera system have only been observed at Sierra Negra
315 caldera [Acocella *et al.*, 2024; Bell *et al.*, 2021c; Chadwick *et al.*, 2006], whereby the inner
316 caldera has grown vertically along the 14 km long, C-shaped Sinuous Ridge created by near-
317 vertical displacements on the intra-caldera TDF. Repeated eruptive cycles with trapdoor
318 faulting earthquakes have generated the 150 m high Sinuous Ridge that now rises 50 m
319 above the southwestern caldera rim (Figure 1). In contrast to the process of caldera collapse,
320 which results from the evacuation of magma from a subsurface reservoir, resurgence at
321 Sierra Negra has happened during the pre-eruptive phase of multiple eruptive cycles. For
322 example, the last two eruptive cycles resulted in net uplift of the Sinuous Ridge – TDF
323 system, including ~2.5 m preceding the 2005 eruption [Chadwick *et al.*, 2006] and ~2.0 m
324 net displacement during the 2018 eruption. Inflation of the magma reservoir at 2 km depth
325 imparts stress on the TDF until the fault ruptures during the pre-eruptive phase of activity.
326 The larger magnitude (>M5) pre-eruptive earthquakes (e.g., the 2005 M_w 5.4 and 2018
327 M_w 5.3) change the state of stress on the volcano-tectonic system, opening pathways for
328 magma intrusion and eruption [Bell *et al.*, 2021c; Gregg *et al.*, 2018; Gregg *et al.*, 2022].
329 These observations highlight the interplay and dynamics of the magma-volcano-tectonic
330 system at Sierra Negra.

331

332 In an attempt to put their observations into the context of other recent caldera forming
333 events, Shreve and Delgado [2023] did not account for important observations presented in
334 [Bell *et al.*, 2021a; Bell *et al.*, 2021b; Bell *et al.*, 2021c]. By focusing on the co-eruptive
335 deformation and not including the pre-eruptive seismicity and deformation, the conclusions
336 of Shreve and Delgado [2023] regarding caldera collapse are incorrect. In the context of
337 recent, well-monitored basaltic caldera-forming eruptions (e.g., 2000 Miyakejima, Japan
338 [Geshi *et al.*, 2002], 2014 Bardarbunga, Iceland [Gudmundsson *et al.*, 2016], and 2018
339 Kilauea, USA [Neal *et al.*, 2019]), measurement of net caldera uplift (i.e., resurgence) at
340 Sierra Negra is in striking contrast. The rarity of resurgence at basaltic calderas makes the
341 2005 to 2018 eruption cycle an especially important event to study and understand.

342

343 **Acknowledgements**

344

345 The authors thank the Editor, Associate Editor and two reviewers for their thoughtful
346 comments. PCL (EAR-2122744), PMG (EAR 2122745), and AFB (NE/W007274/1) were
347 supported by an NSFGEO-NERC award to study Sierra Negra volcano.

348

349 **References**

350

351 Acocella, V., F. Galetto, F. Amelung, and S. Aguaiza (2024), Sierra Negra, Galápagos: A
352 resurgent-block basaltic caldera, *GSA Bulletin*, 137(3-4), 1703-1716, doi:10.1130/b37799.1.

353 Amelung, F., S. Jonsson, H. Zebker, and P. Segall (2000), Widespread uplift and 'trapdoor'
354 faulting on Galapagos volcanoes observed with radar interferometry, *Nature*, 407(6807),
355 993-996, doi:10.1038/35039604.

356 Bell, A. F., S. Hernandez, P. C. La Femina, and M. C. Ruiz (2021a), Uplift and Seismicity Driven
357 by Magmatic Inflation at Sierra Negra Volcano, Galapagos Islands, *Journal of Geophysical*
358 *Research-Solid Earth*, 126(7), doi:10.1029/2021jb022244.

359 Bell, A. F., S. Hernandez, J. McCloskey, M. Ruiz, P. C. LaFemina, C. J. Bean, and M. Mollhoff
360 (2021b), Dynamic earthquake triggering response tracks evolving unrest at Sierra Negra
361 volcano, Galapagos Islands, *Science Advances*, 7(39), doi:10.1126/sciadv.abh0894.

362 Bell, A. F., et al. (2021c), Caldera resurgence during the 2018 eruption of Sierra Negra
363 volcano, Galapagos Islands, *Nature Communications*, 12(1), doi:10.1038/s41467-021-21596-
364 4.

365 Branney, M. J. (1995), DOWNSAG AND EXTENSION AT CALDERAS - NEW PERSPECTIVES ON
366 COLLAPSE GEOMETRIES FROM ICE-MELT, MINING, AND VOLCANIC SUBSIDENCE, *Bulletin of*
367 *Volcanology*, 57(5), 303-318, doi:10.1007/bf00301290.

368 Branney, M. J., and V. Acocella (2015), Chapter 16 - Calderas, in *The Encyclopedia of*
369 *Volcanoes (Second Edition)*, edited by H. Sigurdsson, pp. 299-315, Academic Press,
370 doi:<https://doi.org/10.1016/B978-0-12-385938-9.00016-X>.

371 Brothelande, E., et al. (2016), Structure and evolution of an active resurgent dome
372 evidenced by geophysical investigations: The Yenkahe dome-Yasur volcano system (Siwi
373 caldera, Vanuatu), *Journal of Volcanology and Geothermal Research*, 322, 241-262,
374 doi:<https://doi.org/10.1016/j.volgeores.2015.08.021>.

375 Chadwick, W. W., D. J. Geist, S. Jonsson, M. Poland, D. J. Johnson, and C. M. Meertens (2006),
376 A volcano bursting at the seams: Inflation, faulting, and eruption at Sierra Negra volcano,
377 Galapagos, *Geology*, 34(12), 1025-1028, doi:10.1130/g22826a.1.

378 de Silva, S. L., A. E. Mucek, P. M. Gregg, and I. Pratomo (2015), Resurgent Toba—field,
379 chronologic, and model constraints on time scales and mechanisms of resurgence at large
380 calderas, *Frontiers in Earth Science*, 3, doi:10.3389/feart.2015.00025.

381 Dziewonski, A. M., T.-A. Chou, and J. H. Woodhouse (1981), Determination of earthquake
382 source parameters from waveform data for studies of global and regional seismicity, *Journal*
383 *of Geophysical Research: Solid Earth*, 86(B4), 2825-2852,
384 doi:<https://doi.org/10.1029/JB086iB04p02825>.

385 Ekström, G., M. Nettles, and A. M. Dziewoński (2012), The global CMT project 2004–2010:
386 Centroid-moment tensors for 13,017 earthquakes, *Physics of the Earth and Planetary*
387 *Interiors*, 200-201, 1-9, doi:<https://doi.org/10.1016/j.pepi.2012.04.002>.

388 Galetto, F., V. Acocella, and L. Caricchi (2017), Caldera resurgence driven by magma viscosity
389 contrasts, *Nature Communications*, 8, doi:10.1038/s41467-017-01632-y.

390 Galetto, F., M. Bagnardi, V. Acocella, and A. Hooper (2019), Noneruptive Unrest at the
391 Caldera of Alcedo Volcano (Galapagos Islands) Revealed by InSAR Data and Geodetic
392 Modeling, *Journal of Geophysical Research-Solid Earth*, 124(4), 3365-3381,
393 doi:10.1029/2018jb017103.

394 Geist, D., W. Chadwick, and D. Johnson (2006), Results from new GPS and gravity monitoring
395 networks at Fernandina and Sierra Negra Volcanoes, Galapagos, 2000-2002, *Journal of*
396 *Volcanology and Geothermal Research*, 150(1-3), 79-97,
397 doi:10.1016/j.jvolgeores.2005.07.003.

398 Geist, D., K. S. Harpp, T. R. Naumann, M. Poland, W. W. Chadwick, M. Hall, and E. Rader
399 (2008), The 2005 eruption of Sierra Negra volcano, Galapagos, Ecuador, *Bulletin of*
400 *Volcanology*, 70(6), 655-673, doi:10.1007/s00445-007-0160-3.

401 Geshi, N., T. Shimano, T. Chiba, and S. Nakada (2002), Caldera collapse during the 2000
402 eruption of Miyakejima Volcano, Japan, *Bulletin of Volcanology*, 64(1), 55-68,
403 doi:10.1007/s00445-001-0184-z.

404 Gregg, P. M., H. Le Mevel, Y. Zhan, J. Dufek, D. Geist, and W. W. Chadwick (2018), Stress
405 Triggering of the 2005 Eruption of Sierra Negra Volcano, Galapagos, *Geophysical Research*
406 *Letters*, 45(24), 13288-13297, doi:10.1029/2018gl080393.

407 Gregg, P. M., Z. Yan, F. Amelung, D. Geist, P. Mothes, S. Koric, and Y. J. Zhang (2022),
408 Forecasting mechanical failure and the 26 June 2018 eruption of Sierra Negra Volcano,
409 Galapagos, Ecuador, *Science Advances*, 8(22), doi:10.1126/sciadv.abm4261.

410 Gudmundsson, M. T., et al. (2016), Gradual caldera collapse at Bardarbunga volcano, Iceland,
411 regulated by lateral magma outflow, *Science*, 353(6296), doi:10.1126/science.aaf8988.

412 Hamling, I. J., S. Cevard, and E. Garaebiti (2019), Large-Scale Drainage of a Complex
413 Magmatic System: Observations From the 2018 Eruption of Ambrym Volcano, Vanuatu,
414 *Geophysical Research Letters*, 46(9), 4609-4617, doi:<https://doi.org/10.1029/2019GL082606>.

415 Holohan, E. P., M. P. J. Schöpfer, and J. J. Walsh (2011), Mechanical and geometric controls
416 on the structural evolution of pit crater and caldera subsidence, *Journal of Geophysical*
417 *Research-Solid Earth*, 116, doi:10.1029/2010jb008032.

418 Jonsson, S. (2009), Stress interaction between magma accumulation and trapdoor faulting
419 on Sierra Negra volcano, Galapagos, *Tectonophysics*, 471(1-2), 36-44,
420 doi:10.1016/j.tecto.2008.08.005.

421 Jonsson, S., H. Zebker, and F. Amelung (2005), On trapdoor faulting at Sierra Negra volcano,
422 Galapagos, *Journal of Volcanology and Geothermal Research*, 144(1-4), 59-71,
423 doi:10.1016/j.jvolgeores.2004.11.029.

424 Marsh, B. D. (1984), On the mechanics of caldera resurgence, *Journal of Geophysical*
425 *Research: Solid Earth*, 89(B10), 8245-8251, doi:<https://doi.org/10.1029/JB089iB10p08245>.

426 Métrich, N., et al. (2011), Magma and Volatile Supply to Post-collapse Volcanism and Block
427 Resurgence in Siwi Caldera (Tanna Island, Vanuatu Arc), *Journal of Petrology*, 52(6), 1077-
428 1105, doi:10.1093/petrology/egr019.

429 Neal, C. A., S. Brantley, L. Antolik, J. Babb, M. Burgess, K. Calles, M. Cappos, J. Chang, S.
430 Conway, and L. Desmither (2019), The 2018 rift eruption and summit collapse of Kīlauea
431 Volcano, *Science*, 363(6425), 367-374.

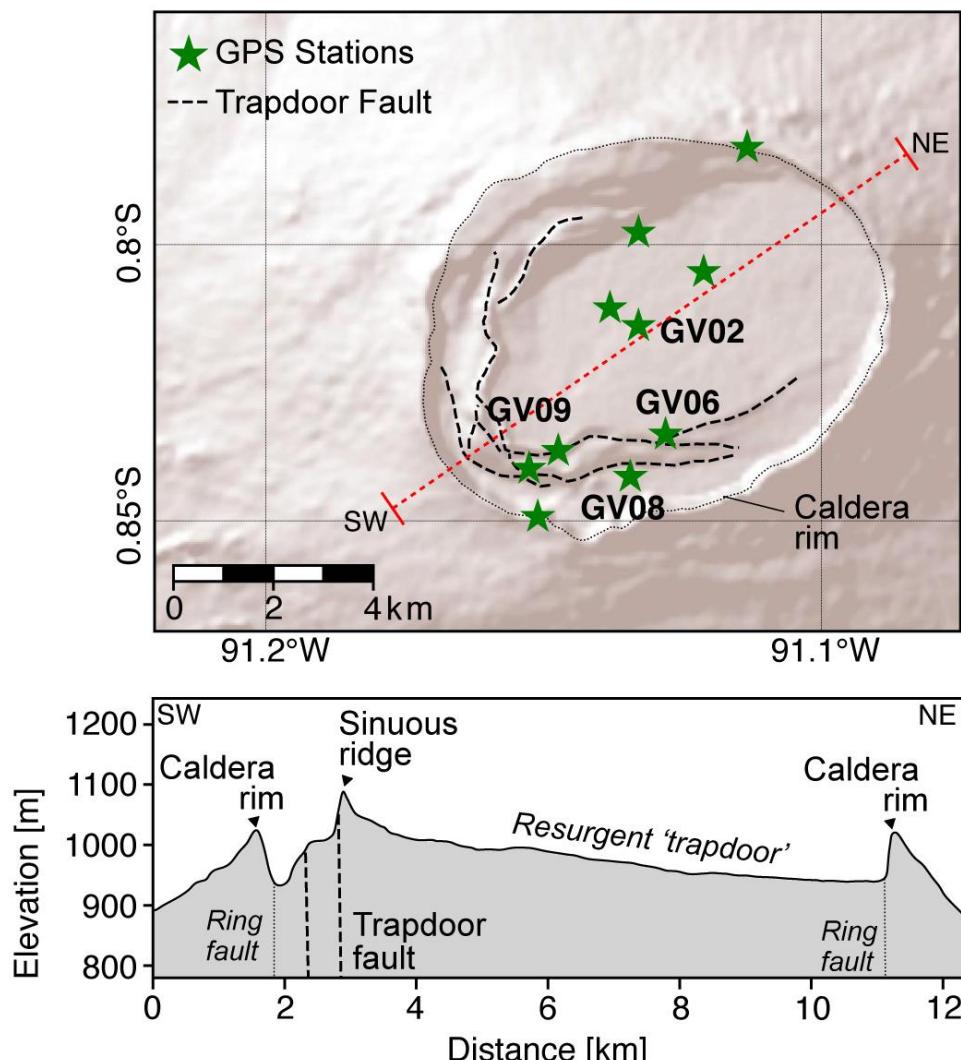
432 Reynolds, R. W., D. Geist, and M. D. Kurz (1995), PHYSICAL VOLCANOLOGY AND STRUCTURAL
433 DEVELOPMENT OF SIERRA-NEGRA VOLCANO, ISABELA-ISLAND, GALAPAGOS ARCHIPELAGO,
434 *Geological Society of America Bulletin*, 107(12), 1398-1410, doi:10.1130/0016-
435 7606(1995)107<1398:Pvasdo>2.3.Co;2.

436 Sandanbata, O., H. Kanamori, L. Rivera, Z. W. Zhan, S. Watada, and K. Satake (2021), Moment
437 Tensors of Ring-Faulting at Active Volcanoes: Insights Into Vertical-CLVD Earthquakes at the
438 Sierra Negra Caldera, Galapagos Islands, *Journal of Geophysical Research-Solid Earth*, 126(6),
439 doi:10.1029/2021jb021693.

440 Shreve, T., and F. Delgado (2023), Trapdoor Fault Activation: A Step Toward Caldera Collapse
441 at Sierra Negra, Galapagos, Ecuador, *Journal of Geophysical Research-Solid Earth*, 128(5),
442 doi:10.1029/2023jb026437.

443 Shreve, T., R. Grandin, D. Smittarello, V. Cayol, V. Pinel, M. Boichu, and Y. Morishita (2021),
444 What Triggers Caldera Ring-Fault Subsidence at Ambrym Volcano? Insights From the 2015
445 Dike Intrusion and Eruption, *Journal of Geophysical Research: Solid Earth*, 126(6),
446 e2020JB020277, doi:<https://doi.org/10.1029/2020JB020277>.

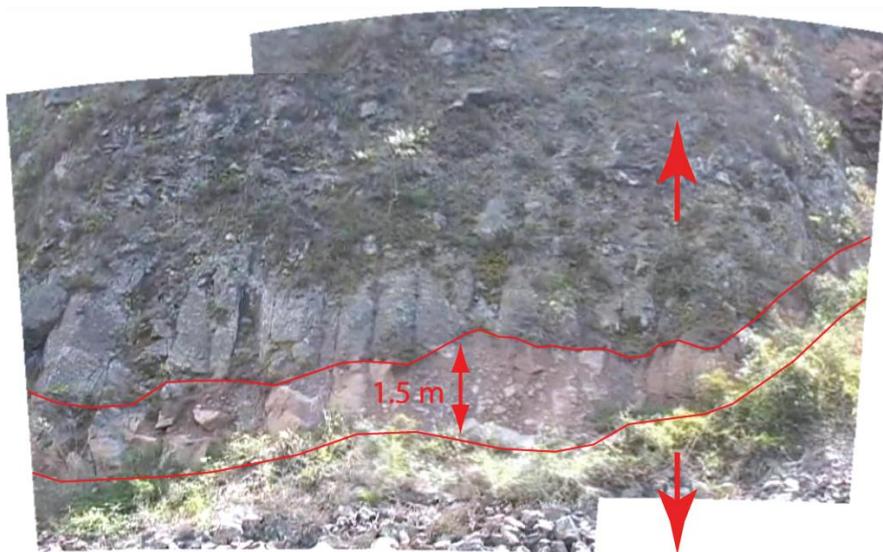
447 Simkin, T., and K. A. Howard (1970), Caldera Collapse in the Galápagos Islands, 1968: The
448 largest known collapse since 1912 followed a flank eruption and explosive volcanism within
449 the caldera, *Science*, 169(3944), 429-437.


450 Vasconez, F. J., P. Ramón, S. Hernandez, S. Hidalgo, B. Bernard, M. Ruiz, A. Alvarado, P. La
451 Femina, and G. Ruiz (2018), The different characteristics of the recent eruptions of
452 Fernandina and Sierra Negra volcanoes (Galápagos, Ecuador), *Volcanica*, 1(2), 127-133.

453 Yun, S., P. Segall, and H. Zebker (2006), Constraints on magma chamber geometry at Sierra
454 Negra Volcano, Galapagos Islands, based on InSAR observations, *Journal of Volcanology and*
455 *Geothermal Research*, 150(1-3), 232-243, doi:10.1016/j.jvolgeores.2005.07.009.

456

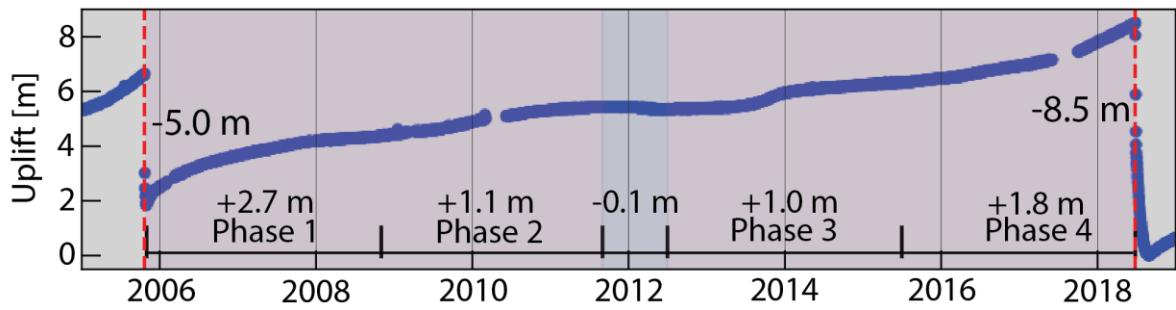
457 **Figures**


458

459

460 Figure 1. Top) Topographic map of Sierra Negra volcano indicating the Trapdoor Fault
461 system (black dashed lines), and the location of cGPS stations operating during the 2018
462 eruption (green stars). Red dashed line indicates the location of the topographic cross-
463 section shown in the bottom panel. Bottom) Topographic profile across the caldera showing
464 the ring fault and the Sinuous Ridge, formed by displacement on the steeply-dipping
465 Trapdoor Fault. Note the Sinuous Ridge rises ~50 m above the caldera rim. Figure modified
466 from Bell *et al.* [2021c].

467


468
469

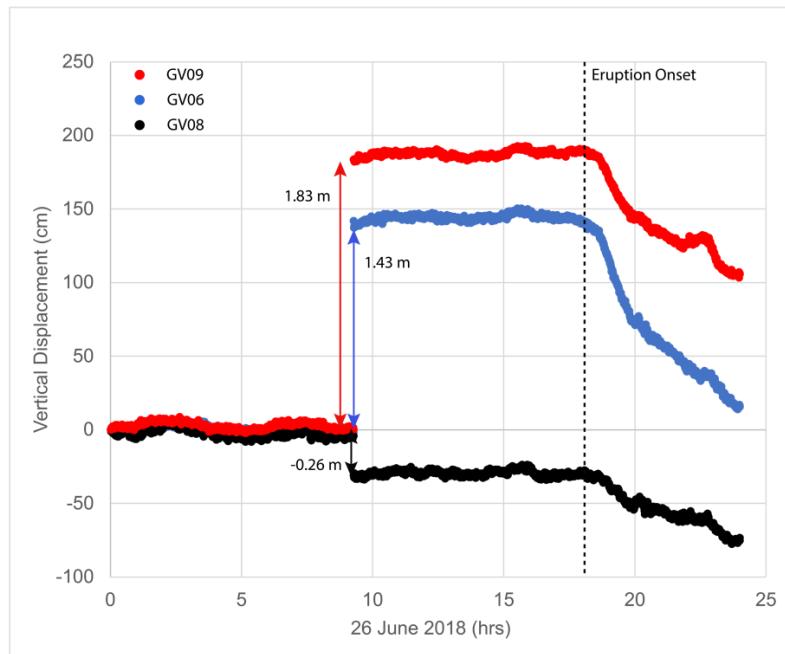
470 Figure 2. Photos of surface ruptures caused by co-seismic fault displacements for the 2005
471 (top) and 2018 (bottom) pre-eruptive earthquakes. In both cases, the pre-eruptive
472 earthquakes caused ~1.5 m of surface displacements along the TDF. Note cGPS observations
473 indicate >2.0 m net uplift for the 2018 event (See Figure 4). Photos from D. Geist and B.
474 Chadwick (top) and J. Galetzka (bottom).

475
476
477

478

479

480


481

482 Figure 3. Composite vertical component time series for stations GV02 and GV04 located
 483 near the center of Sierra Negra caldera. The stations are located ~400 m apart and capture
 484 the complete deformation cycle between the 2005 and 2018 eruptions. The time series are
 485 relative to GV01 and combined because GV02 malfunctioned in early 2012. Note the four
 486 phases of uplift and the period (~0.5 yrs) of minor deflation in 2012. Red dashed lines mark
 487 the 22 October 2005 and 26 June 2018 eruptions. The co-eruptive deflation signals are also
 488 shown.

489

490

491

492

493

494 Figure 4. High-rate (30 sec) time series of the vertical component for cGPS stations GV09,
495 GV08, and GV06 on June 26, 2018. The position time series captured the co-seismic
496 displacement across the TDF due to the M_w 5.3 earthquake at 9:15. Estimates of the co-
497 seismic displacement at each station are provided. The onset of the eruption is observed by
498 the onset of rapid deflation at all stations (vertical black dashed line). See Figure 1 for
499 station locations.

500

501

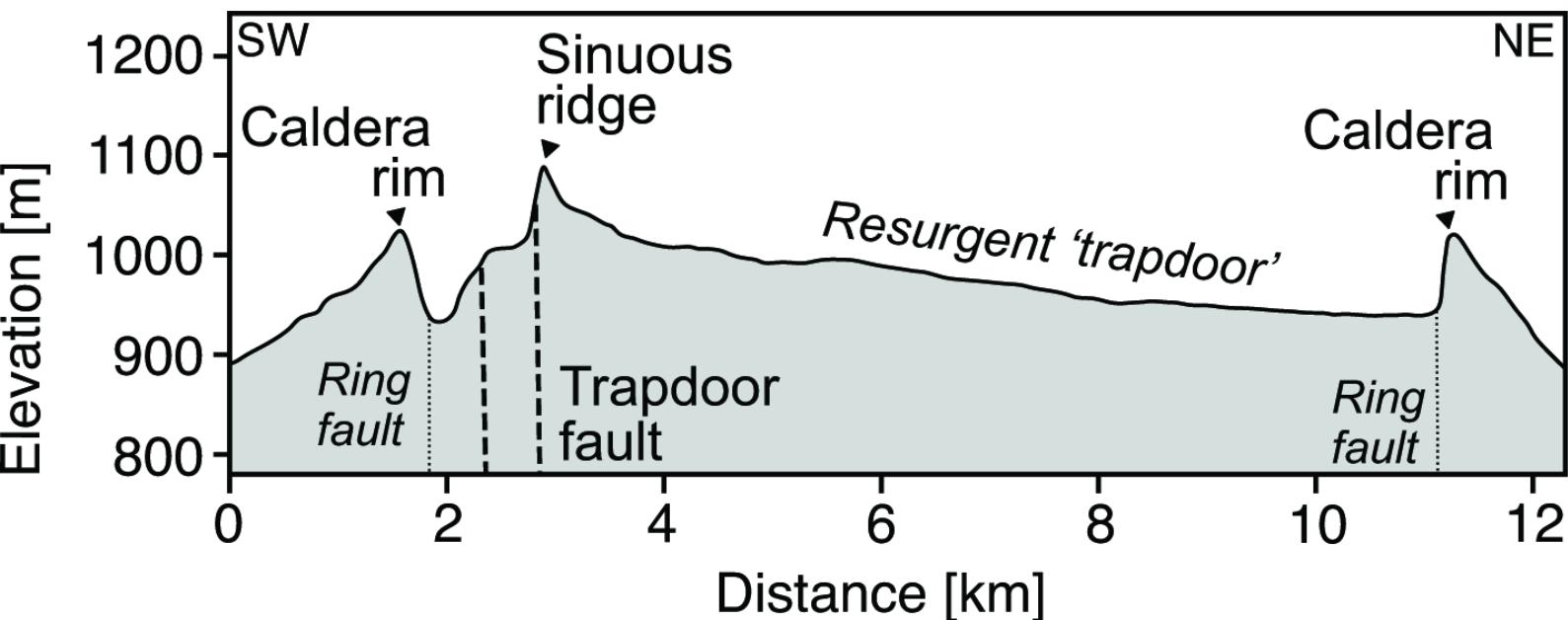
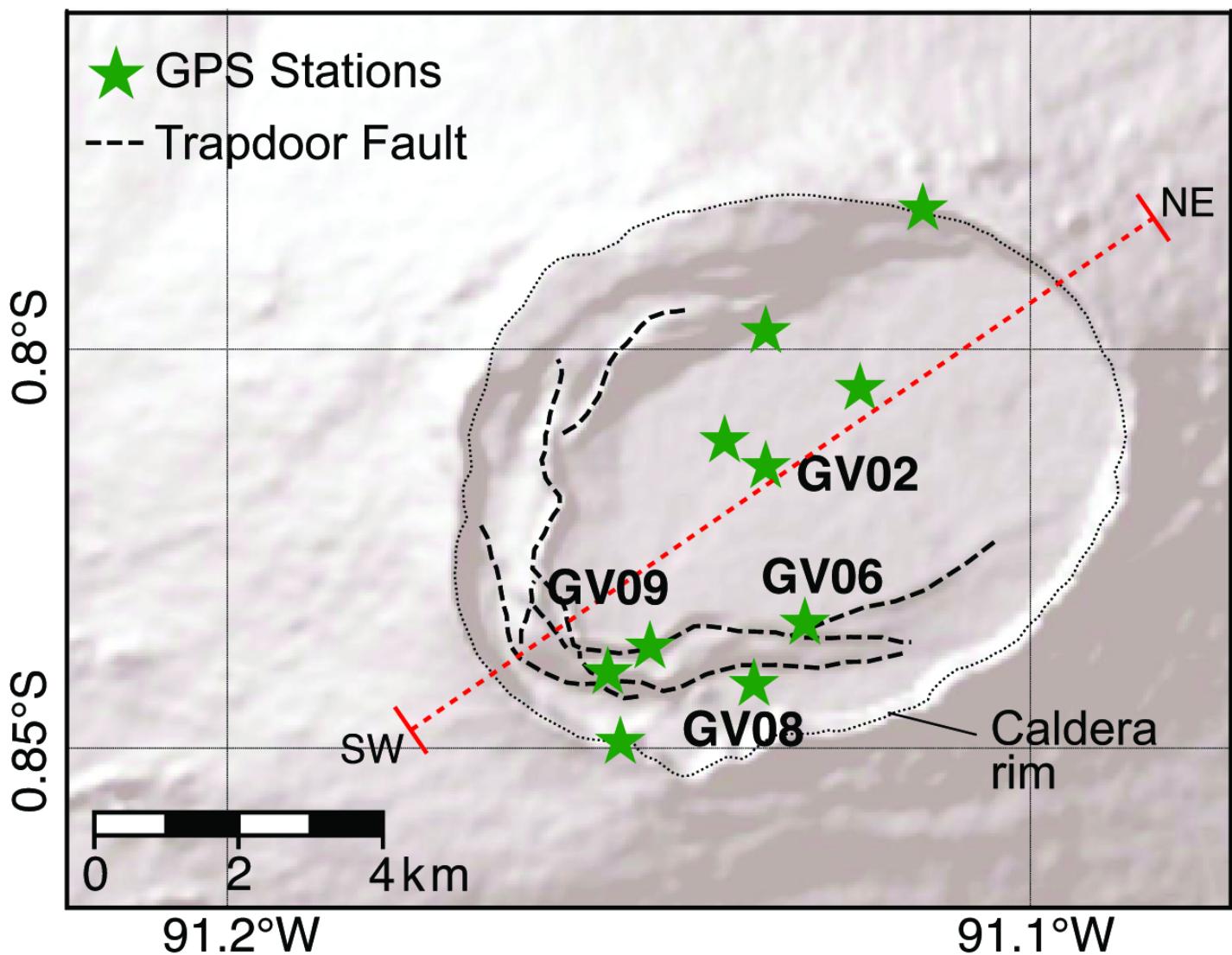
502

503 Table 1. $M_w > 4.5$ pre- and co-eruptive earthquakes at Sierra Negra volcano in 2018.

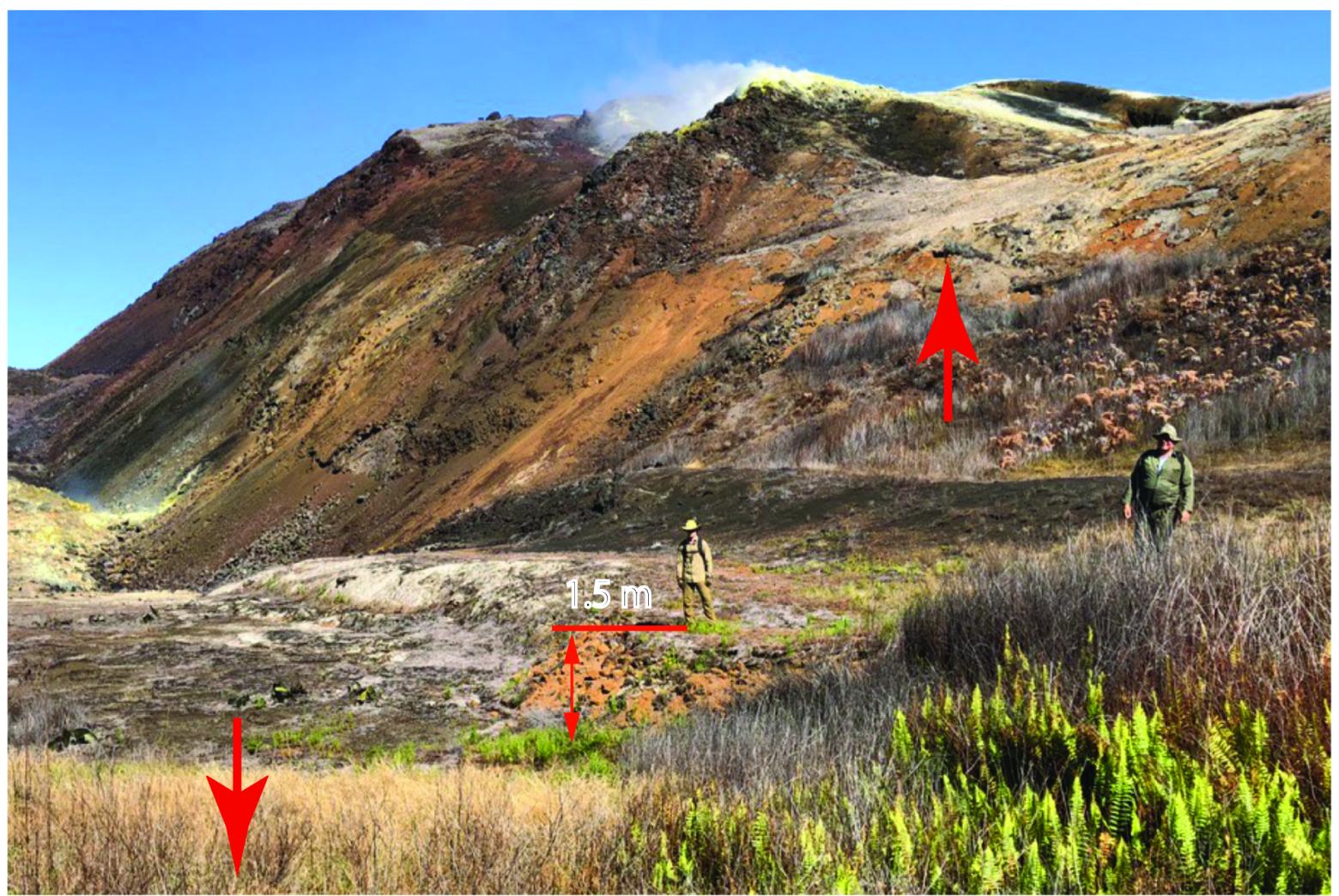
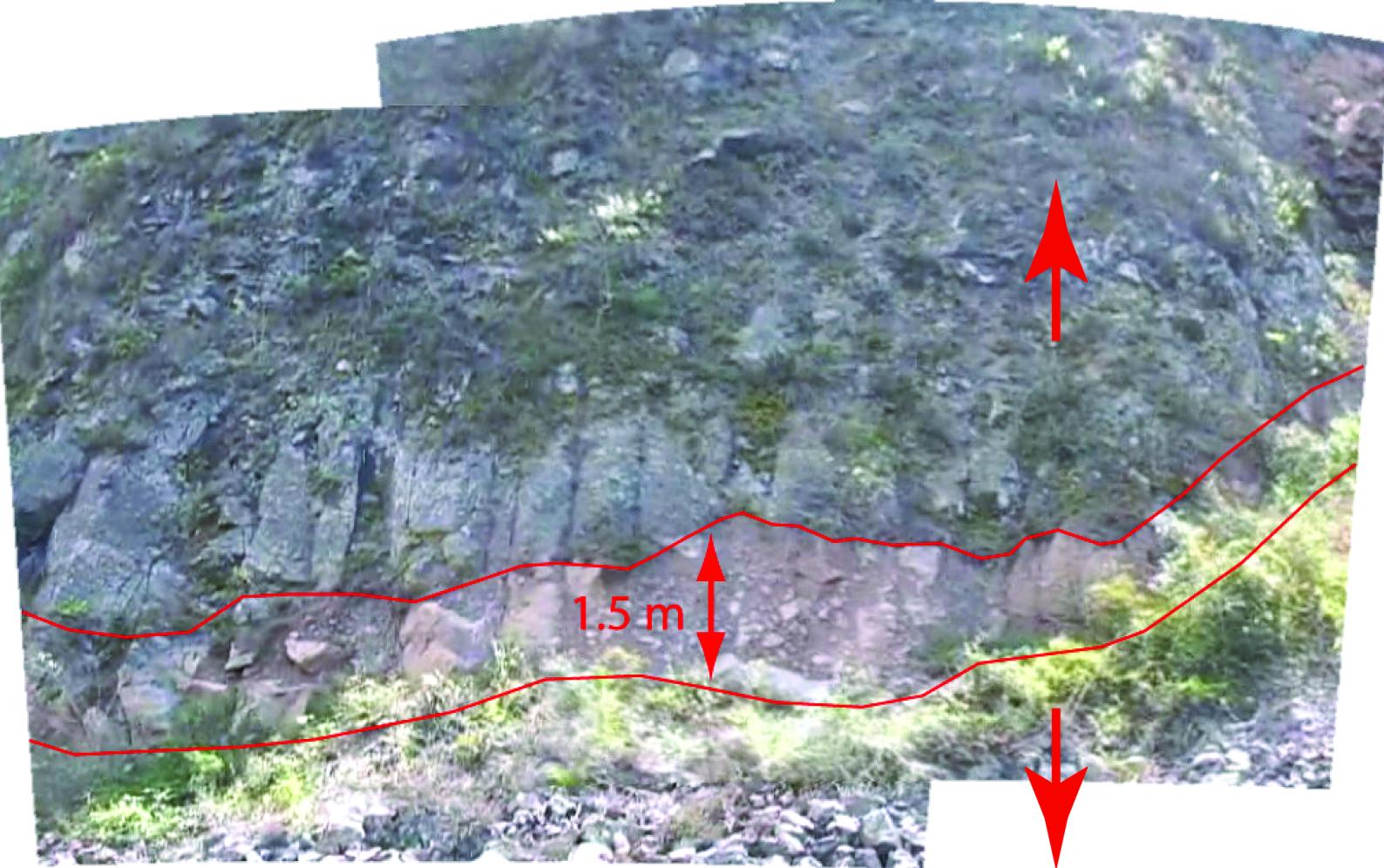
Date	Time	M_w	M_0 (dyne-cm) [‡]	Displacements (m) [†]			Total Throw (m)	
				GV09	GV06	GV08	GV09	GV06
26-06-2018	9:15:37 [‡]	5.3 [‡]	1.28e+24	1.83	1.43	-0.26	2.09	1.69
05-07-2018	0:30:28 [‡]	5.1 [‡]	4.76e+23	-0.14	-0.71	0.14	0.0	-0.57
22-07-2018	19:49:18 [*]	4.6 M_b [*]		-0.08	-0.13	0.03	-0.05	-0.10
Net Offset (m)				1.61	0.59	-0.09	2.04	1.02

504 * United States Geological Survey – National Earthquake Information Center

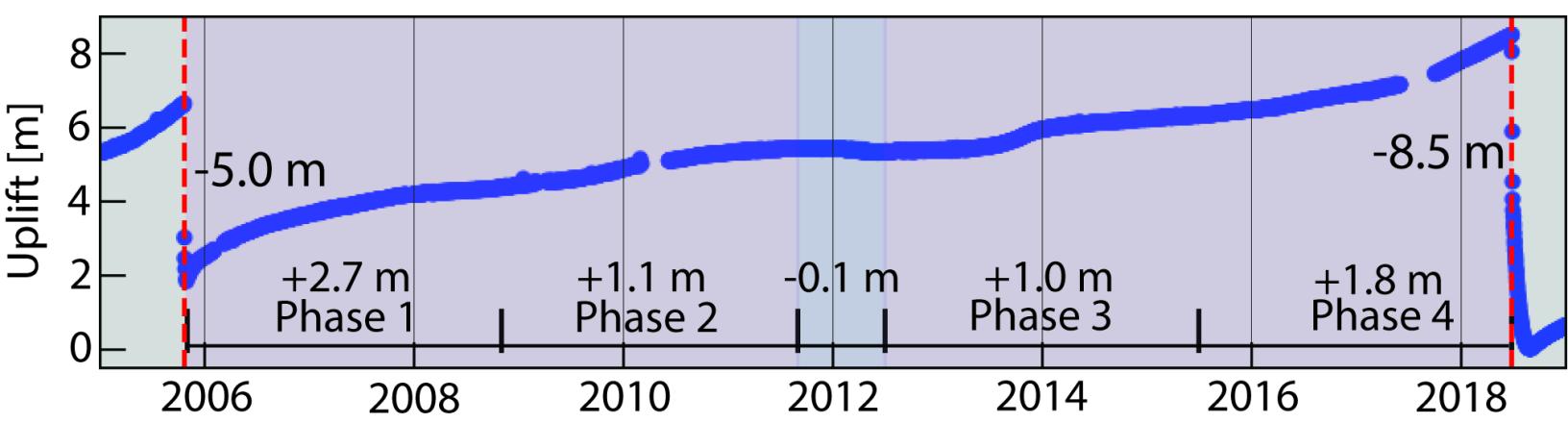
505 ‡ Global Centroid Moment Tensor catalog



506 † Displacements were estimated using 30-sec kinematic solutions of the cGPS data.

507 Total throw is the difference between GV09 and GV08, and GV06 and GV08, as these station
508 pairs cross the TDF fault scarps.



509

510


Figure 1.

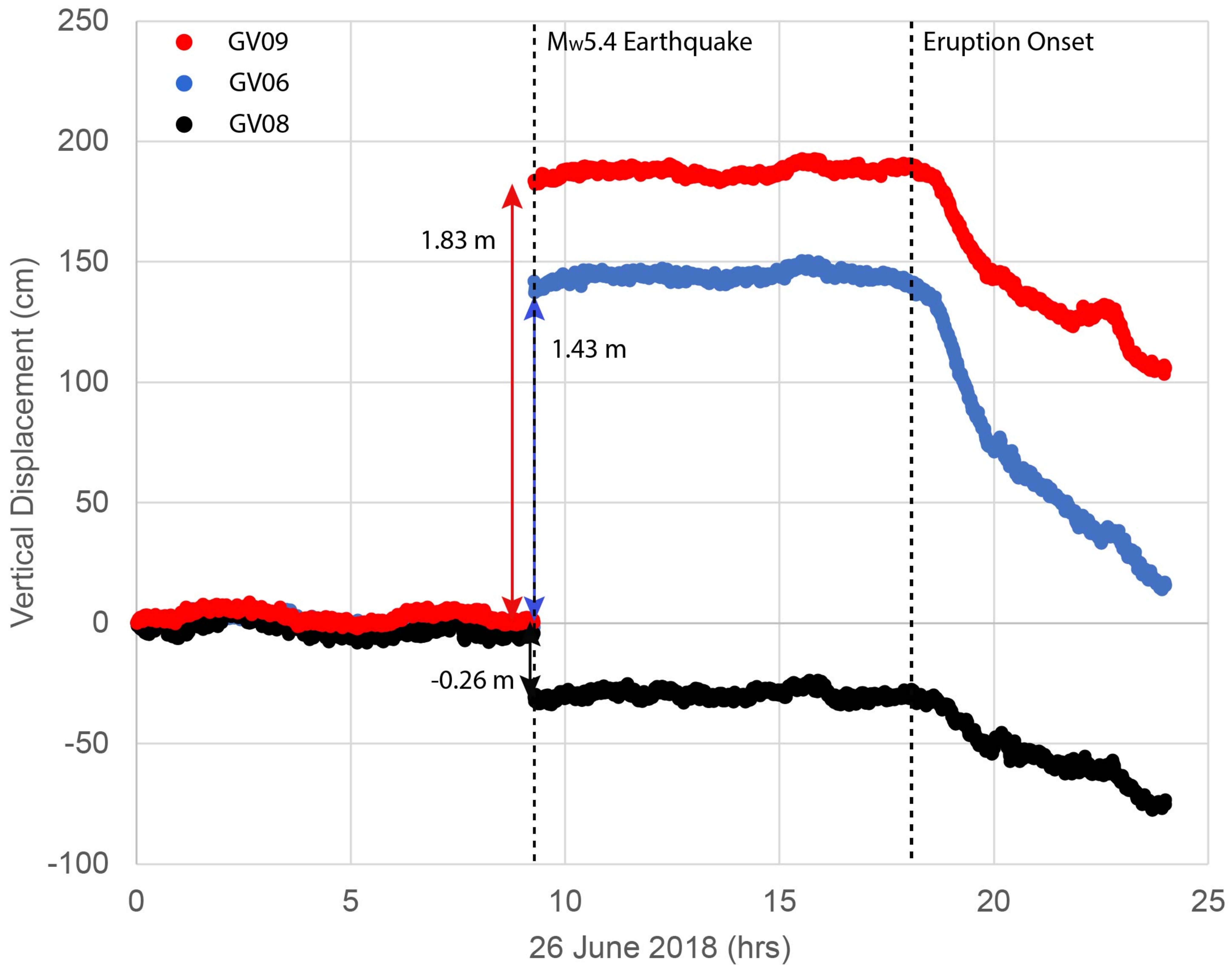

Figure 2.

Figure 3.

Figure 4.

