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Abstract— Multi-robot systems are becoming increasingly
prevalent in various real-world applications, such as manu-
facturing and warehouse logistics. These systems face complex
challenges in 1) task allocation due to factors like time-extended
tasks, and agent specialization, and 2) uncertainties in task
execution. Potential task failures can add further contingency
tasks to recover from the failure, thereby causing delays. This
paper addresses the problem of Multi-Robot Task Allocation
under Uncertainty by proposing a hierarchical approach that
decouples the problem into two levels. We use a low-level
optimization formulation to find the optimal solution for a
deterministic multi-robot task allocation problem with known
task outcomes. The higher-level search intelligently generates
more likely combinations of failures and calls the inner-level
search repeatedly to find the optimal task allocation sequence,
given the known outcomes. We validate our results in simulation
for a manufacturing domain and demonstrate that our method
can reduce the effect of potential delays from contingencies.
We show that our algorithm is computationally efficient while
improving average makespan compared to other baselines.

I. INTRODUCTION

Multi-robot systems are increasingly being deployed in real-
world applications, requiring effective agent task allocation
approaches. In manufacturing, teams of manipulators and
mobile robots accomplish complex assembly operations in
production lines and collaborative high-mix, low-volume
cells [1], [2]. In warehouse logistics, mobile robots are tasked
with retrieving and carrying different items while dynami-
cally accounting for new requests [3]. For such applications,
task allocation approaches must account for time-extended
tasks, complex task constraints, spatio-temporal constraints,
agent specialization, and availability [4]. In practice, multi-
robot task allocation (MRTA) can be difficult due to the
uncertainty associated with task execution and robot avail-
ability. Robot execution can lead to task failures. These
failures may also create new contingency tasks to address
the failure [5]. Furthermore, robots may fail tasks early
or become delayed in completing tasks. These challenges
require planning over time horizons and reasoning over
possible alternative futures.

A task allocation problem in multi-robot team settings in
the presence of such outcomes requires us to consider the
effect of two different combinatorial effects. The first effect
comes from many alternative ways of assigning robots to
tasks. The second effect comes from many different potential
outcomes due to uncertainties in task execution durations
and task execution failure possibilities. Conceptually, this
can be modeled as a joint problem involving planning under
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Fig. 1: (a) A representative example that motivates our apprﬁc‘h. An
8-robot fixtureless assembly cell is used in high-mix, low-volume
satellite manufacturing. Robots assemble sub-components such as
batteries in parallel. These parts must then be installed in certain
sequences. There is further uncertainty in task completion due to
the fixtureless nature of the cell and complex insertion tasks.(b) An
example of a contingency where an insertion task has failed.
uncertainty and coordinating multi-agent allocations (e.g., a
tree search with two different types of branching at each
level). While this joint formulation is conceptually easy to
understand and visualize, it is computationally intractable
when dealing with non-trivial problem sizes and real-world
constraints.

Prior work by Choudhury et al., [6] noted that to solve this
problem computationally efficiently, one can decouple the
problem and consider a two-level hierarchical approach. The
lower level reasons about uncertainty in the task completion
of an individual agent. The upper level then coordinates
task allocation between all agents. This method works well
when inefficiencies come from robots wasting time on failed
tasks and missing opportunities to complete other tasks (see
Section II for details).

However, for a different class of application domains,
if coordination does not consider the effect of uncertainty
on the team, inefficiencies can stem from possible bottle-
necks due to coupled agent constraints, task constraints,
and contingencies caused by failed tasks. There exists an
alternative way of constructing a two-level hierarchy to
address these problems. 1) The lower level coordinates
multi-agent decisions, and 2) the upper level reasons about
uncertainty in task completion. Our prior work has shown
a preliminary version of such an alternative: a one-step
lookahead algorithm with optimistic rollouts generated using
mixed integer programs, which we validated on a specialized
formulation for human-robot teams [?]. These rollouts were
augmented by sampling failure contingencies at the higher
level and executing more rollouts from these contingency
states. This approach enabled us to select task allocations
with good options to recover from failures.

Our previous work only considered how to recover from
task failures and selected solutions that had low recovery

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 16574

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:11:31 UTC from IEEE Xplore. Restrictions apply.



costs. In this paper, we extend the previous approach to
utilize the low-level search to consider how to mitigate the
impact of task failures and/or prevent the failures during task
allocations.

Consider a manipulator performing an insertion task. This
task can fail due to high uncertainty in the slot location (see
Figure 1). There are three ways to reason about this potential
contingency. If the task were to fail, the robot could plan to
attempt the task again by waiting for the mobile agent to
perform the high-resolution imaging to reduce uncertainty
(recovery). The robot can also consider doing the task earlier
or later when the mobile agent will more likely be available
to perform imaging (mitigation). Lastly, the task can be
assigned to a different robotic station that has close-up
imaging capability (prevention). Our key insight is that we
can quickly find good task allocations by decoupling the joint
problem and explicitly reasoning over task failure recovery,
mitigation, and prevention.

We propose a new method that takes inspiration from
hindsight optimization [7]. We use a low-level optimization
formulation to find the optimal solution for a determin-
istic multi-robot task allocation problem with known task
outcomes. The higher-level search intelligently generates
more likely combinations of failures and calls the inner-
level search repeatedly to find the optimal task allocation
sequence, given the outcomes were known. We merge these
task allocation sequences for different sampled futures to
create a search tree. Our main contributions are: (1) a
general formulation for multi-robot task allocation under
uncertainty, task constraints, and temporal constraints, (2) a
hierarchical algorithm that performs hindsight optimization
via MIP solvers and intelligent sampling of potential futures,
and (3) numerical studies that demonstrate the success of the
proposed method.

II. RELATED WORKS
Multi-Robot Task Allocation: Multi-robot task allocation
has been studied extensively across different fields, with
numerous works surveying problem variants and approaches
to solve them [4], [8]-[10]. From the taxonomy of Gerkey et
al., [11] the deterministic version of our problem is a ST-SR-
TA (Single-Task Robots, Single-Robot Tasks, Time-Extended
Assignment). Such problems require constructing a schedule
of tasks for each robot, making them NP-Hard. Korsah et
al. [12] has extended the previous taxonomy by explicitly
considering task constraint dependencies. Our problem can
be described as having CD (Complex Dependencies). Infor-
mally, for CD class of problems, the effective utilization of
an agent’s schedule depends on other agents’ schedules. The
uncertainty, coupled with task constraints inherently makes
our problem CD[ST-SR-TA]. Such problems are strongly
NP-Hard and, in general, have motivated research to develop
specialized methods to make the problem tractable [13]-[15].

Task Assignment and Scheduling: Multi-robot task al-
location is closely related to well-studied problems, such as
job shop scheduling [16], [17], vehicle routing [18]-[20], and
general operations research [21]. Closely related to our work,
job shop scheduling models will assign jobs to machines

to minimize the overall makespan for a set of durative
tasks while often considering resource constraints and task
constraints. These communities have driven advancements
in mixed integer linear programs and constraint program
solvers in order to solve these problems more efficiently.
The robotics community is now utilizing the idea that,
theoretically, robots can be considered machines or vehicles,
and tasks are jobs or nodes [4]. This has enabled researchers
to fully exploit mixed-integer linear programs for solving
complex robot task assignments and scheduling while con-
sidering temporal and spatial constraints [22]-[24] as well as
hierarchical task networks and precedence constraints [25]—
[30]. This body of work is the backbone for the lower level
of our method.

Multi-Agent Sequential Decision Making: Typically,
multi-agent sequential decision-making is mathematically
modeled as a Multi-Agent Markov Decision Process
(MMDP) [31]. Our problem is a centralized MMDP with full
knowledge and a shared objective. Typical Markov Decision
Process approaches are generally infeasible for solving an
MMDP due to the exponential joint action space and state
space. Research instead has delved toward reinforcement
learning techniques to learn the values of different states
and actions [32] and online planning approaches to explore
the reachable state space from a current state [33]. We build
upon recent work that has shown that the challenges of multi-
robot task allocation under uncertainty can be decoupled [6].
Specifically, the authors propose to compute individual agent
task allocation policies at the lower level and perform multi-
agent coordination at the upper level via conflict resolution
of agent task allocations. We observe that this method works
well for a class of domains where only robot-task assignment
coordination is required, and inefficiency stems from spatio-
temporal relationships coupled with uncertainty between
each agent and its tasks, which, if not effectively considered,
results in a robot’s wasted time. Our work is new in that we
show an alternative method to decouple the problem and its
strength on another class of problems.

III. MULTI-ROBOT TEAM TASK ALLOCATION UNDER
UNCERTAINTY PROBLEM FORMULATION

We present a general formulation for a multi-robot task
allocation under uncertainty (MRTAU). For the MRTA aspect
of the problem, there is a set of n agents A; € N and a set of
m tasks to be completed 7; € J. Each agent has a state s 4,
consisting of idle or busy. There exists a mapping denoting
each agent A; belongs to an agent type A*. Each task has
a state sg; consisting of available, inprogress, completed or
failed. Each task must be executed by an agent type, e.g., a
screwing task must be completed by a screwing robot. Lastly,
an agent executing an assigned task will incur a durative task
execution cost c¢(A;, Tj).

An MRTAU problem has a set of constraints ¢ € C.
First, we constrain the problem such that each task must
be executed by 1 agent, and each agent can only attempt
one task at a time. There also exists a set of ordering
constraints that dictate task dependencies. Such constraints
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may dictate partial task orderings or that specific tasks
cannot be performed concurrently. We use a hierarchical task
network to specify these constraints as formulated in [30],
where the leaf nodes are atomic tasks and all other nodes
specify ordering constraints for subassemblies.

For each agent type and task, there is a task model
describing the task’s uncertainty dynamics. An agent may fail
to complete a task during execution, e.g., an insertion robot
has broken an assembly part. The task success uncertainty
function P(A*,7;) is represented as Prob(A*completes 7;).
For each agent type and task, there is also a duration
model associated with how the task succeeds or fails, e.g.,
a screwing task attempted by the screwing robot may either
fail early in the process or succeed on time.

Lastly, if a task fails, new contingency tasks with associ-
ated constraints may need to be added to J. For example,
if a robot breaks a part, then the tasks “replace part” and
“retry operation” will be added to J. We represent this as
a contingency function that returns a new set of tasks and
hierarchical task network: I/ = Tcom(sfj). The contingency
function is domain/task-specific and would be engineered
beforehand.

The goal for solving this type of MRTAU problem is to

minimize the expected overall time or makespan to complete
all tasks. However, because the state and action space of the
problem will lead to an intractable state space, we formulate
an online planning approach where we interleave planning
and execution.
We first formally express the problem as a Multi-Agent
Markov Decision Process (MMDP), which is defined as
a tuple M = (N,S,A,T,C). We use the state and action
representation to form the nodes in the higher-level search
tree, as well as to store the transition function.

1) N={A,..., Ai}.

2) s €S is the state of the entire system consisting of

a factored representation of all task states and the
agents states s = ({s¢,...,5¢, },{54,---,54, }). Further-
more, each state is a decision epoch where a new task
becomes available for agents, or an agent finishes a
task and is ready for a new task assignment.

3) a € A is a joint action consisting of a set of agent
actions a = {ax,,...,ax, }. Each action is either a task
assignment a4 ; = A; <> T; or a no-operation action for
an agent a4, = No—Op.

4) T(s,a,s’) is the joint transition probability function.
Consider the joint action a = {a4,,a4,} where ay, =
A1 < 7 and a4, = Az <> ;. Then the joint transition
probability function is T(s,a,s’) = T (sg,au,,5%) *
T(s,an,,87)-

5) C(s;): Is the accumulated time taken to reach s; from
50-

Overview of Approach: We develop a hierarchical approach
inspired by hindsight optimization that minimizes the ex-
pected makespan for completing a set of tasks. At the low
level, we address the challenge of multi-agent coordination
by assuming deterministic dynamics and computing good
task assignments and schedules. At the high level, we

address the challenge of sequential decision-making under
uncertainty by sampling likely alternative failure states the
system can transition into when executing its task schedule
and compute new task allocation sequences that recover,
mitigate, and prevent these failures. Lastly, these sequences
are merged into a search tree, the cost accumulated at the
leaf nodes is backpropagated to the root, and the lowest cost
action is executed.

IV. LOW-LEVEL: DETERMINISTIC MULTI-ROBOT TASK
ALLOCATION

To decouple multi-agent coordination from decision-making
under uncertainty, we first develop a method to generate
a task assignment and schedule from an initial state to a
goal state. We do this by considering a simpler deferminized
problem My, where task allocation outcomes are determin-
istic. This allows us to solve a classical MRTA problem.
We formulate the low-level optimization as follows: given
the initial system state sg, we want to find the allocation
schedule 7, that minimizes the objective in Equation 1 while
assuming deterministic dynamics given by M.

minimize|C(s
inimize[C (s N
s.tceC

Essentially, we create M, by determinizing all task -
agent assignment outcomes, e.g., if an agent is assigned
to a task a A; = Aj < 7, then s’r, will result in com-
pleted, i.e., T(sfi,aﬁj,s’rj) = 1. We generate M, by first
determinizing each task-agent assignment outcome to have
a single outcome (completed or failed). If an outcome is
determinized to be failed, then the resulting contingency
tasks and constraints are added to the M. Lastly, we set the
task execution duration by an agent to be the expected task
duration for the specific determinized outcome.

Many methods have been proposed to solve determin-
istic MRTA problems. Recent successes in mixed integer
linear programming (MILP) and constraint programming
(CP) solvers motivated us to reformulate the problem into
a mathematical program. This enables us to use available
solvers to return solutions quickly. Specifically, we adopt a
constraint programming mathematical formulation based on
the flexible job shop problem. The goal of the solver P is to
find the best value for the binary agent-task decision variables
x,z; for i agents and j tasks and the integer task start times
tij that minimizes the task allocation cost while subject to
task and temporal constraints. More details regarding the
formulation can be found in the following prior work [34]—
[36]. Given an initial start state, the solver will return the
best decision variable values which gives us 7.

V. HIGH-LEVEL: SEQUENTIAL DECISION MAKING
UNDER UNCERTAINTY
At the high level, we sample potential failure states that can
occur and evaluate the effect of the failure by reasoning over
how the system can recover from, mitigate, and/or prevent
the failure. Consider that the low-level deterministic task
allocation 7, is a path sequence where nodes are states and

16576

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:11:31 UTC from IEEE Xplore. Restrictions apply.



1 Sampled State

Higher Layer

R:‘* > > > \
M e s’ \
P: > > > >

@ I
'
,
N 3

|
, \
4 P(s0, M)

Lower Layer

P (so, My)

\
1
.
,
,

\
\
\
—

(st MZ)

o)

3 Mitigation 4 Prevention
/ S el M N
y v
’1A1‘_’1'1 v Aot Aot Aot fAL o 15|\
1 |A 0 T3 | A, o1, A, o3 A, o1, Ao )
| )
H PN !
H 748 !
\ 73:S !
. '
i * i
; :
4 '
'

®
®&
@

,
\

[
P(s0, My) < AypT3

>
ks
@ -
Q
&

Fig. 2: Here is an illustrative example with two agents [A;,A;], three tasks 71,7, 73], and if 73 fails, a contingency task Ct3. Sampled
State: The algorithm first generates an initial optimistic state-action sequence (green) connected to so and samples alternative states (grey)
that could occur from this path. In this example, 73, assigned to A,, fails. Recovery: The algorithm first computes a recovery path (red)
from the failed task state s, where the contingency task is assigned to agent 1. Mitigation: Secondly, knowing the task failed in hindsight,
the algorithm next creates a new task outcome determinization M, and generates a new path from sy (blue). In this case, knowing 73
fails in hindsight, 73 is scheduled first so that the contingency task can be addressed earlier. Prevention: Lastly, the algorithm passes a
constraint into M preventing 73 from being assigned to A, and again generates a new path (yellow) that is connected to sg.

actions So., ,do:, 1. We then traverse the path and sample
other possible states that could occur for each state-action
pair (s;,a;). For each sampled state s;, we obtain a new task-
agent outcome determinization M/,, which we input into our
deterministic solver P. Given s; and M/, We propose three
mechanisms for reasoning over these potentially occurring
alternative states: how to 1) recover from these deviations,
2) mitigate the impact of task failures in hindsight, and 3)
prevent agent task failures in hindsight. We illustrate an
example of our method in Figure 2.

Reasoning Over Sampled States: We propose the following
three reasoning mechanisms when considering a sample
contingency state:

Recovery: Our method first considers the sampled alterna-

tive state s. as a deviation from the original deterministic

trajectory and generates an optimistic sequence from s; to
the horizon.

/! 0

[Si:daai:d]r <~ :Pr(siaMd)

2

Mitigation: Secondly, the method reasons over mitigating the
impact of task failures in the sampled state by computing a
new sequence from so given that the task failure outcomes
T; : failed of the sampled state were known in hindsight.
[0:1,, 5 A0:1,—1 | m Po(st, M) « 7; : failed

3)
Prevention: Lastly, we consider the effect of preventing the
agents from failing tasks by computing a deterministic plan
from so where the agent that executed the failed task is
prevented from that task assignment only A; <= 7; if there is
another agent alternative.

[SO:t;,yaO:th—l]p — :Pp(s;vMil) — .Aj > T; @)
For each sampled state, we call these deterministic planners
[Pr, P, Pp] to generate three sequences. These sequences are
then merged into a search tree.

VI. HINDSIGHT OPTIMIZATION SEARCH TREE

We use a method to create an online search tree for multi-
agent teams. This involves constructing a search tree using
system states s; and joint actions a; based on low-level
task schedules. An example of this can be seen in Figure
2. Our approach involves three main steps: 1) sampling
likely contingency states, 2) generating new state-action node
sequences using reasoning mechanisms, and 3) integrating
these sequences into the search tree. We then backpropagate
the expected cost to the first layer of potential actions
once the search is complete. The leaf nodes of the search
tree represent makespan values for specific futures. We use
Bellman backups, as shown in Equation 5, to backpropagate
values from the leaf nodes to the root node. Finally, we return
the lowest cost action using argminQ(so,ap).

ag€Ay
. Zs’ [T(Svavs/)c<s/)]
Cls) = 2161}‘1 Y. T(s,a,s) )

Algorithm 1 describes our approach. We first instantiate
the root of the search tree as the current state sy (line 5). The
algorithm first initializes the search tree by assuming all task
outcomes will be successfully completed: M, and generate
the first node sequence (line 6). It then merges the sequence
to the search tree and samples other possible contingency
states along the optimistic sequence that could occur (line
7). By doing this, we begin the search tree optimistically,
and as we evaluate contingency states and merge new node
sequences, we converge to the expected solution.

In Section V, we discussed how we use three mechanisms
to reason over the effect of a contingency on a sampled state.
Each mechanism generates a new node sequence, which
we then merge into the search tree (Line 13). Figure 2
shows that our algorithm finds alternative good actions to
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take at the current state by reasoning over how to prevent
and mitigate contingencies. Sampled contingencies from the
merged node sequences are stored in the associated action
containers (Line 13). Finally, the algorithm selects actions
to explore/exploit and evaluates a new contingency from the
selected action’s container. We repeat this process until the
search is terminated, at which point we backpropagate the
leaf node cost and return the lowest cost action (Line 14).

Algorithm 1

1: so: Current State
2: Open: Set of containers for each action in consideration;
each container has sampled contingency states

3: function PLAN(so, pe min)

4: oot < so

5: [s,a] < P,(s0) > Optimistic
6: Open < MERGE(root, [s,al,)

7: while Not Interrupted do

8: ag < SELECT-ACTION

9: s; < open|ay)

10: [s,a], < Pr(s) > Recovery
11: [s,a]m < Pm(s0) > Mitigation
12 [s,a]p < Pp(s0) > Prevention
13: Open <— MERGE(root, [s,ay, [s,a|m, [s,a]p)

14: BACKPROPOGATE-COST

return Lowest Cost Action

VII. RESULTS

Our proposed approach is primarily evaluated based on the
average makespan required to complete a set of assembly
tasks. To achieve this, we implement an OR-Tools CP-SAT
solver as the lower-level deterministic scheduler. The CP-
SAT solver solves a mixed integer program for scheduling,
which is similar to our prior work [?]. We use a Python
implementation on a machine with 32 GB RAM and an 8-
core 2.1 GHz CPU to conduct our numerical simulations.

A. Problem Setup

Assemblies
. Set
(X X

Assemble

Make
Subassemblies

Assemble
Subassemblies

Test Action

Fig. 3: Hierarchical task network used to represent an example
assembly inspired from a satellite assembly domain.

Our evaluation framework is inspired by a high-mix, low-
volume satellite assembly domain. Our planner must generate
task assignments for a robot cell, completing four identical
assemblies. Each assembly begins with four subassemblies

that can be completed in parallel. After completing these
subassemblies, they are integrated to form a full assembly
and undergo a functionality test. If the test is successful,
external component parts are added to the assembly and
tested again. However, if a failure occurs during the testing
phase, additional contingency tasks are added to the HTN.
The contingency task formulation is the following: first,
the assembly undergoes a rework process where the assem-
bly is disassembled, and the issue is resolved, and then
reassembly tasks are added to the task set. Each task can
be completed by 1-2 agent types, including a Testing Agent
responsible for evaluating assembly functionality, a Rework
Agent in charge of performing the rework task for failed
assemblies, three agents with unique task proficiencies, and
a human agent that can handle all tasks. The task durations
are randomly generated, ranging from 10 to 25 time units.
Lastly, we randomly choose 25% of tasks that may fail. We
generate success probabilities for those tasks to be between
0.80-0.90 when completed by a robot, else it is set to 0.95
if completed by a human agent. We generate three problem
formulation case studies of 30 tasks, 50 tasks, and 100 tasks.

B. Baselines
We implement and evaluate our method against three base-
line approaches.

1) Constraint Program Scheduler: A classical mixed in-
teger program to compute and execute a full schedule.
When the system state deviates from the schedule, we
rerun the scheduler to generate a new task assignment.
This is similar to optimistic replanning approaches
[37].

2) 1-Step Lookahead with Optimistic MILP Rollouts:
The formulation from our prior work [?]. We sample
states from possible actions that can be taken at the
current state and use MILP to generate state-action
trajectory rollouts.

3) MCTS: A centralized monte-carlo tree search using
the MMDP formulation to expand on states and ac-
tions.

All three baselines are online model-based planning ap-
proaches. The classical scheduler is a reactive approach that
performs sequential decision-making, but does not consider
the uncertainty of the problem. The 1-step lookahead method
is a more informed approach that considers the uncertainty of
the problem by sampling failure states. The MCTS approach
plans using the MMDP framework, and can quickly generate
estimates through random sampling, however, it can still
suffer from the large branching factor.

C. Scalability of the Lower Level

We first analyze how scalable the lower level is based on
the number of tasks in the task set and the level of constraint
in the hierarchical task network. To change the problem’s
level of constraint, we vary the number of subassemblies
that have sequential ordering constraints in the HTN. We
classify the resulting constraint level categories as low (6
constraint nodes), medium (12 constraint nodes), and high
(18 constraint nodes). Our goal is to determine the minimum
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computation time required to achieve a solution with a
makespan that is 95% of an optimal solution. However,
finding a provably optimal solution can be extremely time-
consuming. Therefore, we ran the solver for 10 minutes to
generate the optimal solution benchmark.

Constraint: Low Medium High

Warm Start: [ No [ Yes [ No [ Yes [ No Yes

40 Tasks 0.2s | 0.1s | 0.9s 0.25s | 0.1s 0.1s
70 Tasks 3.2s | 0.1s | 10.0s | 2.8s 1.4s 0.5s
120 Tasks 72s | 09s | 16.3s | 4.1s 10.8s | 3.2's

TABLE I: Computation time required to calculate a schedule that is
on average 95% of an optimal solution. The number of tasks chosen
is the worst-case number of tasks the lower level has to optimize
for the given case studies.

Table I shows the lower-level computation results for our
CP-SAT implementation. We clearly see that the required
computation time increases exponentially with the number of
tasks. Furthermore, the task set that is "medium” constrained
required the largest computation times. In contrast the "low”
and “high” constrained problems had lower computation
times because a highly constrained problem has a smaller
solution space to search in, while a lowly constrained prob-
lem is more amenable to linear relaxation techniques used
by the CP-SAT solver.

A useful feature of modern mathematical programming
and constraint programming solvers is their ability to use
a previous solution to warm-start future computations. Con-
sider the following, when we sample contingency states from
an initial trajectory of states and actions, we are identifying
deviations from that trajectory. Since these deviations may
not be extremely significant, we can use the decision variable
values from the previous solution to warm-start the next
search. To test this idea, we introduce a presolve step of 120
seconds for the initial solution. For all identified deviations,
we use the presolved solution as a starting point and measure
the average time needed to find 95% of the solution. Our
results show that warm-starting reduces computation time
for the lower level.

D. Makespan Evaluation

We tested our approach against three baselines on the “highly
constrained” assembly HTN. For all four approaches, we
interleave planning and execution such that the planner is
called each time the system is in a new state. To determine
the lower-level computation time limit, we referred to the
results in Table I. We further specified how many times
each lower-level mechanism could be called: 10 times for
the mitigation and prevention reasoning mechanisms and 30
times for the recovery reasoning mechanism. This was based
on initial experimentation, which showed our algorithm
worked well with these parameters. In total, the lower-level
deterministic scheduler was called 50 times. We calculated
the average planning time of our approach for each case
study, and we gave the same amount of planning time for
each baseline. The extremely large scenario space makes it
difficult to evaluate our approach via random simulation runs.

In order to enable a direct comparison of our method to
the baselines, we instead used predefined failure scenarios
to measure assembly makespans. For each case study, we
created 10 failure scenarios where we selected 1-8 tasks
that would fail. As stated in the problem setup, multiple
contingency tasks are added when a task fails, which causes
delays if the contingencies are not proactively managed.
Lastly, we also generate a scenario where no tasks fail.

Our approach performed as well as or better than the
benchmarks in all scenarios. Table II displays the average
makespan results for all four methods, as well as the per-
centage improvement our approach had in comparison to the
baselines. We observed that reactively planning consistently
underperformed in comparison to our approach, highlighting
the benefit of proactively managing contingencies in order to
improve makespan. Based on the characteristics of manufac-
turing assemblies, we expect improvement on the order of
15% for the makespan, which is a significant improvement
in industrial applications. For MCTS, We hypothesize the
method did not perform as well due to the long horizon
required for reasoning over possible contingency states and
the large branching factor. Finally, we see that our proposed
approach outperforms our previous work [?] in large case
studies, showing improvement in makespan when explicitly
considering both mitigation and prevention.

Average Makespan
# Tasks | R-MILP | MCTS | 1-Step | HO
30 368s 352s 341s 339s
50 461s 446s 427s 394s
100 726s 710s 670s 648s
Percentage Improvement over Baselines

# Tasks | R-MILP | MCTS | 1-Step

30 7.9% 3.7% 0.6%

50 14.5% 11.7% | 4.5%

100 12.0% 8.4% 5.2%

TABLE II: Average makespan and percentage improvement for
baselines in comparison to our hierarchical hindsight optimization-
based approach (HO).
VIII. CONCLUSIONS

We present a hierarchical approach for multi-robot task
allocation under uncertainty that decouples the task schedul-
ing and decision-making under uncertainty problem, which
we then solve using hindsight optimization. Our results
demonstrate that using constraint programming solvers to
solve a mixed integer program is an effective tool to quickly
compute low-level task schedules. Furthermore, we show
at a high level that our approach effectively reasons over
possible contingencies that may occur during task execution.
We effectively accomplish this via a framework for reason-
ing in hindsight on how the system can recover, mitigate,
and prevent contingencies. In practice, our approach shows
improvement in executed makespan for a complex assembly
domain in comparison to multiple baselines.
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