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Abstract— Multi-robot systems are becoming increasingly
prevalent in various real-world applications, such as manu-
facturing and warehouse logistics. These systems face complex
challenges in 1) task allocation due to factors like time-extended
tasks, and agent specialization, and 2) uncertainties in task
execution. Potential task failures can add further contingency
tasks to recover from the failure, thereby causing delays. This
paper addresses the problem of Multi-Robot Task Allocation
under Uncertainty by proposing a hierarchical approach that
decouples the problem into two levels. We use a low-level
optimization formulation to find the optimal solution for a
deterministic multi-robot task allocation problem with known
task outcomes. The higher-level search intelligently generates
more likely combinations of failures and calls the inner-level
search repeatedly to find the optimal task allocation sequence,
given the known outcomes. We validate our results in simulation
for a manufacturing domain and demonstrate that our method
can reduce the effect of potential delays from contingencies.
We show that our algorithm is computationally efficient while
improving average makespan compared to other baselines.

I. INTRODUCTION

Multi-robot systems are increasingly being deployed in real-

world applications, requiring effective agent task allocation

approaches. In manufacturing, teams of manipulators and

mobile robots accomplish complex assembly operations in

production lines and collaborative high-mix, low-volume

cells [1], [2]. In warehouse logistics, mobile robots are tasked

with retrieving and carrying different items while dynami-

cally accounting for new requests [3]. For such applications,

task allocation approaches must account for time-extended

tasks, complex task constraints, spatio-temporal constraints,

agent specialization, and availability [4]. In practice, multi-

robot task allocation (MRTA) can be difficult due to the

uncertainty associated with task execution and robot avail-

ability. Robot execution can lead to task failures. These

failures may also create new contingency tasks to address

the failure [5]. Furthermore, robots may fail tasks early

or become delayed in completing tasks. These challenges

require planning over time horizons and reasoning over

possible alternative futures.

A task allocation problem in multi-robot team settings in

the presence of such outcomes requires us to consider the

effect of two different combinatorial effects. The first effect

comes from many alternative ways of assigning robots to

tasks. The second effect comes from many different potential

outcomes due to uncertainties in task execution durations

and task execution failure possibilities. Conceptually, this

can be modeled as a joint problem involving planning under
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Fig. 1: (a) A representative example that motivates our approach. An
8-robot fixtureless assembly cell is used in high-mix, low-volume
satellite manufacturing. Robots assemble sub-components such as
batteries in parallel. These parts must then be installed in certain
sequences. There is further uncertainty in task completion due to
the fixtureless nature of the cell and complex insertion tasks.(b) An
example of a contingency where an insertion task has failed.

uncertainty and coordinating multi-agent allocations (e.g., a

tree search with two different types of branching at each

level). While this joint formulation is conceptually easy to

understand and visualize, it is computationally intractable

when dealing with non-trivial problem sizes and real-world

constraints.

Prior work by Choudhury et al., [6] noted that to solve this

problem computationally efficiently, one can decouple the

problem and consider a two-level hierarchical approach. The

lower level reasons about uncertainty in the task completion

of an individual agent. The upper level then coordinates

task allocation between all agents. This method works well

when inefficiencies come from robots wasting time on failed

tasks and missing opportunities to complete other tasks (see

Section II for details).

However, for a different class of application domains,

if coordination does not consider the effect of uncertainty

on the team, inefficiencies can stem from possible bottle-

necks due to coupled agent constraints, task constraints,

and contingencies caused by failed tasks. There exists an

alternative way of constructing a two-level hierarchy to

address these problems. 1) The lower level coordinates

multi-agent decisions, and 2) the upper level reasons about

uncertainty in task completion. Our prior work has shown

a preliminary version of such an alternative: a one-step

lookahead algorithm with optimistic rollouts generated using

mixed integer programs, which we validated on a specialized

formulation for human-robot teams [?]. These rollouts were

augmented by sampling failure contingencies at the higher

level and executing more rollouts from these contingency

states. This approach enabled us to select task allocations

with good options to recover from failures.

Our previous work only considered how to recover from

task failures and selected solutions that had low recovery

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:11:31 UTC from IEEE Xplore.  Restrictions apply. 



costs. In this paper, we extend the previous approach to

utilize the low-level search to consider how to mitigate the

impact of task failures and/or prevent the failures during task

allocations.

Consider a manipulator performing an insertion task. This

task can fail due to high uncertainty in the slot location (see

Figure 1). There are three ways to reason about this potential

contingency. If the task were to fail, the robot could plan to

attempt the task again by waiting for the mobile agent to

perform the high-resolution imaging to reduce uncertainty

(recovery). The robot can also consider doing the task earlier

or later when the mobile agent will more likely be available

to perform imaging (mitigation). Lastly, the task can be

assigned to a different robotic station that has close-up

imaging capability (prevention). Our key insight is that we

can quickly find good task allocations by decoupling the joint

problem and explicitly reasoning over task failure recovery,

mitigation, and prevention.

We propose a new method that takes inspiration from

hindsight optimization [7]. We use a low-level optimization

formulation to find the optimal solution for a determin-

istic multi-robot task allocation problem with known task

outcomes. The higher-level search intelligently generates

more likely combinations of failures and calls the inner-

level search repeatedly to find the optimal task allocation

sequence, given the outcomes were known. We merge these

task allocation sequences for different sampled futures to

create a search tree. Our main contributions are: (1) a

general formulation for multi-robot task allocation under

uncertainty, task constraints, and temporal constraints, (2) a

hierarchical algorithm that performs hindsight optimization

via MIP solvers and intelligent sampling of potential futures,

and (3) numerical studies that demonstrate the success of the

proposed method.

II. RELATED WORKS

Multi-Robot Task Allocation: Multi-robot task allocation

has been studied extensively across different fields, with

numerous works surveying problem variants and approaches

to solve them [4], [8]–[10]. From the taxonomy of Gerkey et

al., [11] the deterministic version of our problem is a ST-SR-

TA (Single-Task Robots, Single-Robot Tasks, Time-Extended

Assignment). Such problems require constructing a schedule

of tasks for each robot, making them NP-Hard. Korsah et

al. [12] has extended the previous taxonomy by explicitly

considering task constraint dependencies. Our problem can

be described as having CD (Complex Dependencies). Infor-

mally, for CD class of problems, the effective utilization of

an agent’s schedule depends on other agents’ schedules. The

uncertainty, coupled with task constraints inherently makes

our problem CD[ST-SR-TA]. Such problems are strongly

NP-Hard and, in general, have motivated research to develop

specialized methods to make the problem tractable [13]–[15].

Task Assignment and Scheduling: Multi-robot task al-

location is closely related to well-studied problems, such as

job shop scheduling [16], [17], vehicle routing [18]–[20], and

general operations research [21]. Closely related to our work,

job shop scheduling models will assign jobs to machines

to minimize the overall makespan for a set of durative

tasks while often considering resource constraints and task

constraints. These communities have driven advancements

in mixed integer linear programs and constraint program

solvers in order to solve these problems more efficiently.

The robotics community is now utilizing the idea that,

theoretically, robots can be considered machines or vehicles,

and tasks are jobs or nodes [4]. This has enabled researchers

to fully exploit mixed-integer linear programs for solving

complex robot task assignments and scheduling while con-

sidering temporal and spatial constraints [22]–[24] as well as

hierarchical task networks and precedence constraints [25]–

[30]. This body of work is the backbone for the lower level

of our method.

Multi-Agent Sequential Decision Making: Typically,

multi-agent sequential decision-making is mathematically

modeled as a Multi-Agent Markov Decision Process

(MMDP) [31]. Our problem is a centralized MMDP with full

knowledge and a shared objective. Typical Markov Decision

Process approaches are generally infeasible for solving an

MMDP due to the exponential joint action space and state

space. Research instead has delved toward reinforcement

learning techniques to learn the values of different states

and actions [32] and online planning approaches to explore

the reachable state space from a current state [33]. We build

upon recent work that has shown that the challenges of multi-

robot task allocation under uncertainty can be decoupled [6].

Specifically, the authors propose to compute individual agent

task allocation policies at the lower level and perform multi-

agent coordination at the upper level via conflict resolution

of agent task allocations. We observe that this method works

well for a class of domains where only robot-task assignment

coordination is required, and inefficiency stems from spatio-

temporal relationships coupled with uncertainty between

each agent and its tasks, which, if not effectively considered,

results in a robot’s wasted time. Our work is new in that we

show an alternative method to decouple the problem and its

strength on another class of problems.

III. MULTI-ROBOT TEAM TASK ALLOCATION UNDER

UNCERTAINTY PROBLEM FORMULATION

We present a general formulation for a multi-robot task

allocation under uncertainty (MRTAU). For the MRTA aspect

of the problem, there is a set of n agents Ai ∈N and a set of

m tasks to be completed τ j ∈ T. Each agent has a state sAi

consisting of idle or busy. There exists a mapping denoting

each agent Ai belongs to an agent type A
x. Each task has

a state sτ j
consisting of available, inprogress, completed or

failed. Each task must be executed by an agent type, e.g., a

screwing task must be completed by a screwing robot. Lastly,

an agent executing an assigned task will incur a durative task

execution cost ce(Ai,τ j).

An MRTAU problem has a set of constraints c ∈ C.

First, we constrain the problem such that each task must

be executed by 1 agent, and each agent can only attempt

one task at a time. There also exists a set of ordering

constraints that dictate task dependencies. Such constraints

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:11:31 UTC from IEEE Xplore.  Restrictions apply. 



may dictate partial task orderings or that specific tasks

cannot be performed concurrently. We use a hierarchical task

network to specify these constraints as formulated in [30],

where the leaf nodes are atomic tasks and all other nodes

specify ordering constraints for subassemblies.

For each agent type and task, there is a task model

describing the task’s uncertainty dynamics. An agent may fail

to complete a task during execution, e.g., an insertion robot

has broken an assembly part. The task success uncertainty

function P(Ax
,τ j) is represented as Prob(Ax completes τ j).

For each agent type and task, there is also a duration

model associated with how the task succeeds or fails, e.g.,

a screwing task attempted by the screwing robot may either

fail early in the process or succeed on time.

Lastly, if a task fails, new contingency tasks with associ-

ated constraints may need to be added to T. For example,

if a robot breaks a part, then the tasks ”replace part” and

”retry operation” will be added to T. We represent this as

a contingency function that returns a new set of tasks and

hierarchical task network: T′ = Tcont(sτ j
). The contingency

function is domain/task-specific and would be engineered

beforehand.

The goal for solving this type of MRTAU problem is to

minimize the expected overall time or makespan to complete

all tasks. However, because the state and action space of the

problem will lead to an intractable state space, we formulate

an online planning approach where we interleave planning

and execution.

We first formally express the problem as a Multi-Agent

Markov Decision Process (MMDP), which is defined as

a tuple M = (N,S,A,T,C). We use the state and action

representation to form the nodes in the higher-level search

tree, as well as to store the transition function.

1) N = {A1, ...,Ai}.
2) s ∈ S is the state of the entire system consisting of

a factored representation of all task states and the

agents states s = ({sτ1
...,sτm},{sA1

...,sAn
}). Further-

more, each state is a decision epoch where a new task

becomes available for agents, or an agent finishes a

task and is ready for a new task assignment.

3) a ∈ A is a joint action consisting of a set of agent

actions a = {aA1
, ...,aAn

}. Each action is either a task

assignment aA j
=Ai↔ τ j or a no-operation action for

an agent aAi
= No−Op.

4) T (s,a,s′) is the joint transition probability function.

Consider the joint action a = {aA1
,aA2
} where aA1

=
A1↔ τk and aA2

=A2↔ τl . Then the joint transition

probability function is T (s,a,s′) = T (sτk
,aA1

,s′
τk
) ∗

T (sτl
,aA2

,s′
τl
).

5) C(si): Is the accumulated time taken to reach si from

s0.

Overview of Approach: We develop a hierarchical approach

inspired by hindsight optimization that minimizes the ex-

pected makespan for completing a set of tasks. At the low

level, we address the challenge of multi-agent coordination

by assuming deterministic dynamics and computing good

task assignments and schedules. At the high level, we

address the challenge of sequential decision-making under

uncertainty by sampling likely alternative failure states the

system can transition into when executing its task schedule

and compute new task allocation sequences that recover,

mitigate, and prevent these failures. Lastly, these sequences

are merged into a search tree, the cost accumulated at the

leaf nodes is backpropagated to the root, and the lowest cost

action is executed.

IV. LOW-LEVEL: DETERMINISTIC MULTI-ROBOT TASK

ALLOCATION

To decouple multi-agent coordination from decision-making

under uncertainty, we first develop a method to generate

a task assignment and schedule from an initial state to a

goal state. We do this by considering a simpler determinized

problem Md , where task allocation outcomes are determin-

istic. This allows us to solve a classical MRTA problem.

We formulate the low-level optimization as follows: given

the initial system state s0, we want to find the allocation

schedule πd that minimizes the objective in Equation 1 while

assuming deterministic dynamics given by Md .

minimize
πd∈Πd

[C(sg)]

s.t c ∈ C

(1)

Essentially, we create Md by determinizing all task -

agent assignment outcomes, e.g., if an agent is assigned

to a task aA j
= A j ↔ τi, then s′

τ j
will result in com-

pleted, i.e., T (sτi
,aA j

,s′
τ j
) = 1. We generate Md by first

determinizing each task-agent assignment outcome to have

a single outcome (completed or f ailed). If an outcome is

determinized to be f ailed, then the resulting contingency

tasks and constraints are added to the Md . Lastly, we set the

task execution duration by an agent to be the expected task

duration for the specific determinized outcome.

Many methods have been proposed to solve determin-

istic MRTA problems. Recent successes in mixed integer

linear programming (MILP) and constraint programming

(CP) solvers motivated us to reformulate the problem into

a mathematical program. This enables us to use available

solvers to return solutions quickly. Specifically, we adopt a

constraint programming mathematical formulation based on

the flexible job shop problem. The goal of the solver P is to

find the best value for the binary agent-task decision variables

xAiτ j
for i agents and j tasks and the integer task start times

ts
τ j

that minimizes the task allocation cost while subject to

task and temporal constraints. More details regarding the

formulation can be found in the following prior work [34]–

[36]. Given an initial start state, the solver will return the

best decision variable values which gives us πd .

V. HIGH-LEVEL: SEQUENTIAL DECISION MAKING

UNDER UNCERTAINTY

At the high level, we sample potential failure states that can

occur and evaluate the effect of the failure by reasoning over

how the system can recover from, mitigate, and/or prevent

the failure. Consider that the low-level deterministic task

allocation πd is a path sequence where nodes are states and
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Fig. 2: Here is an illustrative example with two agents [A1,A2], three tasks [τ1,τ2,τ3], and if τ3 fails, a contingency task Cτ3. Sampled
State: The algorithm first generates an initial optimistic state-action sequence (green) connected to s0 and samples alternative states (grey)
that could occur from this path. In this example, τ3, assigned to A2, fails. Recovery: The algorithm first computes a recovery path (red)
from the failed task state s′i, where the contingency task is assigned to agent 1. Mitigation: Secondly, knowing the task failed in hindsight,
the algorithm next creates a new task outcome determinization Md and generates a new path from s0 (blue). In this case, knowing τ3

fails in hindsight, τ3 is scheduled first so that the contingency task can be addressed earlier. Prevention: Lastly, the algorithm passes a
constraint into M preventing τ3 from being assigned to A2 and again generates a new path (yellow) that is connected to s0.

actions s0:th ,a0:th−1. We then traverse the path and sample

other possible states that could occur for each state-action

pair (si,ai). For each sampled state s
′

i, we obtain a new task-

agent outcome determinization M
′
d , which we input into our

deterministic solver P. Given s
′

i and M
′
d , We propose three

mechanisms for reasoning over these potentially occurring

alternative states: how to 1) recover from these deviations,

2) mitigate the impact of task failures in hindsight, and 3)

prevent agent task failures in hindsight. We illustrate an

example of our method in Figure 2.

Reasoning Over Sampled States: We propose the following

three reasoning mechanisms when considering a sample

contingency state:

Recovery: Our method first considers the sampled alterna-

tive state s′i as a deviation from the original deterministic

trajectory and generates an optimistic sequence from si to

the horizon.

[si:d ,ai:d ]r← Pr(s
′
i,M

o
d) (2)

Mitigation: Secondly, the method reasons over mitigating the

impact of task failures in the sampled state by computing a

new sequence from s0 given that the task failure outcomes

τi : failed of the sampled state were known in hindsight.

[s0:th ,a0:th−1]m← Pm(s
′
i,M

′
d)← τi : failed (3)

Prevention: Lastly, we consider the effect of preventing the

agents from failing tasks by computing a deterministic plan

from s0 where the agent that executed the failed task is

prevented from that task assignment only A j ↮ τi if there is

another agent alternative.

[s0:th ,a0:th−1]p← Pp(s
′
i,M

′
d)←A j ↮ τi (4)

For each sampled state, we call these deterministic planners

[Pr,Pm,Pp] to generate three sequences. These sequences are

then merged into a search tree.

VI. HINDSIGHT OPTIMIZATION SEARCH TREE

We use a method to create an online search tree for multi-

agent teams. This involves constructing a search tree using

system states si and joint actions ai based on low-level

task schedules. An example of this can be seen in Figure

2. Our approach involves three main steps: 1) sampling

likely contingency states, 2) generating new state-action node

sequences using reasoning mechanisms, and 3) integrating

these sequences into the search tree. We then backpropagate

the expected cost to the first layer of potential actions

once the search is complete. The leaf nodes of the search

tree represent makespan values for specific futures. We use

Bellman backups, as shown in Equation 5, to backpropagate

values from the leaf nodes to the root node. Finally, we return

the lowest cost action using argmin
a0∈A0

Q(s0,a0).

C(s) = min
a∈A

[

∑s′ [T (s,a,s
′)C(s′)]

∑s T (s,a,s′)

]

(5)

Algorithm 1 describes our approach. We first instantiate

the root of the search tree as the current state s0 (line 5). The

algorithm first initializes the search tree by assuming all task

outcomes will be successfully completed: Mo
d and generate

the first node sequence (line 6). It then merges the sequence

to the search tree and samples other possible contingency

states along the optimistic sequence that could occur (line

7). By doing this, we begin the search tree optimistically,

and as we evaluate contingency states and merge new node

sequences, we converge to the expected solution.

In Section V, we discussed how we use three mechanisms

to reason over the effect of a contingency on a sampled state.

Each mechanism generates a new node sequence, which

we then merge into the search tree (Line 13). Figure 2

shows that our algorithm finds alternative good actions to

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:11:31 UTC from IEEE Xplore.  Restrictions apply. 



take at the current state by reasoning over how to prevent

and mitigate contingencies. Sampled contingencies from the

merged node sequences are stored in the associated action

containers (Line 13). Finally, the algorithm selects actions

to explore/exploit and evaluates a new contingency from the

selected action’s container. We repeat this process until the

search is terminated, at which point we backpropagate the

leaf node cost and return the lowest cost action (Line 14).

Algorithm 1

1: s0: Current State

2: Open: Set of containers for each action in consideration;

each container has sampled contingency states

3: function PLAN(s0, pc,min)

4: root← s0

5: [s,a]← Pr(s0) ▷ Optimistic

6: Open← MERGE(root, [s,a]r)
7: while Not Interrupted do

8: a0← SELECT-ACTION

9: si← open[a0]
10: [s,a]r← Pr(si) ▷ Recovery

11: [s,a]m← Pm(s0) ▷ Mitigation

12: [s,a]p← Pp(s0) ▷ Prevention

13: Open← MERGE(root, [s,a]r, [s,a]m, [s,a]p)

14: BACKPROPOGATE-COST

return Lowest Cost Action

VII. RESULTS

Our proposed approach is primarily evaluated based on the

average makespan required to complete a set of assembly

tasks. To achieve this, we implement an OR-Tools CP-SAT

solver as the lower-level deterministic scheduler. The CP-

SAT solver solves a mixed integer program for scheduling,

which is similar to our prior work [?]. We use a Python

implementation on a machine with 32 GB RAM and an 8-

core 2.1 GHz CPU to conduct our numerical simulations.

A. Problem Setup

Fig. 3: Hierarchical task network used to represent an example
assembly inspired from a satellite assembly domain.

Our evaluation framework is inspired by a high-mix, low-

volume satellite assembly domain. Our planner must generate

task assignments for a robot cell, completing four identical

assemblies. Each assembly begins with four subassemblies

that can be completed in parallel. After completing these

subassemblies, they are integrated to form a full assembly

and undergo a functionality test. If the test is successful,

external component parts are added to the assembly and

tested again. However, if a failure occurs during the testing

phase, additional contingency tasks are added to the HTN.

The contingency task formulation is the following: first,

the assembly undergoes a rework process where the assem-

bly is disassembled, and the issue is resolved, and then

reassembly tasks are added to the task set. Each task can

be completed by 1-2 agent types, including a Testing Agent

responsible for evaluating assembly functionality, a Rework

Agent in charge of performing the rework task for failed

assemblies, three agents with unique task proficiencies, and

a human agent that can handle all tasks. The task durations

are randomly generated, ranging from 10 to 25 time units.

Lastly, we randomly choose 25% of tasks that may fail. We

generate success probabilities for those tasks to be between

0.80-0.90 when completed by a robot, else it is set to 0.95

if completed by a human agent. We generate three problem

formulation case studies of 30 tasks, 50 tasks, and 100 tasks.

B. Baselines

We implement and evaluate our method against three base-

line approaches.

1) Constraint Program Scheduler: A classical mixed in-

teger program to compute and execute a full schedule.

When the system state deviates from the schedule, we

rerun the scheduler to generate a new task assignment.

This is similar to optimistic replanning approaches

[37].

2) 1-Step Lookahead with Optimistic MILP Rollouts:

The formulation from our prior work [?]. We sample

states from possible actions that can be taken at the

current state and use MILP to generate state-action

trajectory rollouts.

3) MCTS: A centralized monte-carlo tree search using

the MMDP formulation to expand on states and ac-

tions.

All three baselines are online model-based planning ap-

proaches. The classical scheduler is a reactive approach that

performs sequential decision-making, but does not consider

the uncertainty of the problem. The 1-step lookahead method

is a more informed approach that considers the uncertainty of

the problem by sampling failure states. The MCTS approach

plans using the MMDP framework, and can quickly generate

estimates through random sampling, however, it can still

suffer from the large branching factor.

C. Scalability of the Lower Level

We first analyze how scalable the lower level is based on

the number of tasks in the task set and the level of constraint

in the hierarchical task network. To change the problem’s

level of constraint, we vary the number of subassemblies

that have sequential ordering constraints in the HTN. We

classify the resulting constraint level categories as low (6

constraint nodes), medium (12 constraint nodes), and high

(18 constraint nodes). Our goal is to determine the minimum
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computation time required to achieve a solution with a

makespan that is 95% of an optimal solution. However,

finding a provably optimal solution can be extremely time-

consuming. Therefore, we ran the solver for 10 minutes to

generate the optimal solution benchmark.

Constraint: Low Medium High

Warm Start: No Yes No Yes No Yes

40 Tasks 0.2s 0.1s 0.9s 0.25s 0.1s 0.1s

70 Tasks 3.2s 0.1s 10.0s 2.8s 1.4s 0.5s

120 Tasks 7.2s 0.9s 16.3s 4.1s 10.8s 3.2 s

TABLE I: Computation time required to calculate a schedule that is
on average 95% of an optimal solution. The number of tasks chosen
is the worst-case number of tasks the lower level has to optimize
for the given case studies.

Table I shows the lower-level computation results for our

CP-SAT implementation. We clearly see that the required

computation time increases exponentially with the number of

tasks. Furthermore, the task set that is ”medium” constrained

required the largest computation times. In contrast the ”low”

and ”high” constrained problems had lower computation

times because a highly constrained problem has a smaller

solution space to search in, while a lowly constrained prob-

lem is more amenable to linear relaxation techniques used

by the CP-SAT solver.

A useful feature of modern mathematical programming

and constraint programming solvers is their ability to use

a previous solution to warm-start future computations. Con-

sider the following, when we sample contingency states from

an initial trajectory of states and actions, we are identifying

deviations from that trajectory. Since these deviations may

not be extremely significant, we can use the decision variable

values from the previous solution to warm-start the next

search. To test this idea, we introduce a presolve step of 120

seconds for the initial solution. For all identified deviations,

we use the presolved solution as a starting point and measure

the average time needed to find 95% of the solution. Our

results show that warm-starting reduces computation time

for the lower level.

D. Makespan Evaluation

We tested our approach against three baselines on the ”highly

constrained” assembly HTN. For all four approaches, we

interleave planning and execution such that the planner is

called each time the system is in a new state. To determine

the lower-level computation time limit, we referred to the

results in Table I. We further specified how many times

each lower-level mechanism could be called: 10 times for

the mitigation and prevention reasoning mechanisms and 30

times for the recovery reasoning mechanism. This was based

on initial experimentation, which showed our algorithm

worked well with these parameters. In total, the lower-level

deterministic scheduler was called 50 times. We calculated

the average planning time of our approach for each case

study, and we gave the same amount of planning time for

each baseline. The extremely large scenario space makes it

difficult to evaluate our approach via random simulation runs.

In order to enable a direct comparison of our method to

the baselines, we instead used predefined failure scenarios

to measure assembly makespans. For each case study, we

created 10 failure scenarios where we selected 1-8 tasks

that would fail. As stated in the problem setup, multiple

contingency tasks are added when a task fails, which causes

delays if the contingencies are not proactively managed.

Lastly, we also generate a scenario where no tasks fail.

Our approach performed as well as or better than the

benchmarks in all scenarios. Table II displays the average

makespan results for all four methods, as well as the per-

centage improvement our approach had in comparison to the

baselines. We observed that reactively planning consistently

underperformed in comparison to our approach, highlighting

the benefit of proactively managing contingencies in order to

improve makespan. Based on the characteristics of manufac-

turing assemblies, we expect improvement on the order of

15% for the makespan, which is a significant improvement

in industrial applications. For MCTS, We hypothesize the

method did not perform as well due to the long horizon

required for reasoning over possible contingency states and

the large branching factor. Finally, we see that our proposed

approach outperforms our previous work [?] in large case

studies, showing improvement in makespan when explicitly

considering both mitigation and prevention.

Average Makespan

# Tasks R-MILP MCTS 1-Step HO

30 368s 352s 341s 339s

50 461s 446s 427s 394s

100 726s 710s 670s 648s

Percentage Improvement over Baselines

# Tasks R-MILP MCTS 1-Step

30 7.9% 3.7% 0.6%

50 14.5% 11.7% 4.5%

100 12.0% 8.4% 5.2%

TABLE II: Average makespan and percentage improvement for
baselines in comparison to our hierarchical hindsight optimization-
based approach (HO).

VIII. CONCLUSIONS

We present a hierarchical approach for multi-robot task

allocation under uncertainty that decouples the task schedul-

ing and decision-making under uncertainty problem, which

we then solve using hindsight optimization. Our results

demonstrate that using constraint programming solvers to

solve a mixed integer program is an effective tool to quickly

compute low-level task schedules. Furthermore, we show

at a high level that our approach effectively reasons over

possible contingencies that may occur during task execution.

We effectively accomplish this via a framework for reason-

ing in hindsight on how the system can recover, mitigate,

and prevent contingencies. In practice, our approach shows

improvement in executed makespan for a complex assembly

domain in comparison to multiple baselines.
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