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Abstract— In this work, we address the challenge of incorpo-
rating human preferences into the task-scheduling process for
human-robot teams. Humans have various individual prefer-
ences that can be influenced by context and situational informa-
tion. Incorporating these preferences can lead to improved team
performance. Our main contribution is a framework that helps
elicit and incorporate preferences during task scheduling. We
achieve this by proposing 1) a constraint programming method
to generate a range of plans, 2) an intelligent approach for
selecting and presenting task schedules based on task features,
and 3) a preference incorporation method that uses large
language models to convert preferences into soft constraints.
Our results demonstrate that we can efficiently generate diverse
plans for preference elicitation and incorporate them into the
task-scheduling process. We evaluate our framework using an
assembly-inspired case study and show how it can effectively
incorporate complex and realistic preferences. Our implemen-
tation can be found at github.com/RROS-Lab/Human-Robot-
Preference-Planning.

I. INTRODUCTION

Humans exhibit a wide range of personalized preferences
when collaborating with robot teammates on tasks. These
preferences are often influenced by the cognitive and physical
demands associated with the tasks. For instance, a task that
is cognitively (or physically) challenging for one individual
may be relatively easy for another. Preferences therefore are
highly individualized. Some may opt to tackle challenging
tasks first and then proceed to easier ones, while others
might prefer the reverse. Additionally, humans may possess
contextual preferences based on situational awareness. For
example, they may prefer to defer certain tasks in antici-
pation of delayed material or tool arrivals. Similarly, they
may anticipate periods of unavailability and prefer to avoid
specific tasks during those times.

There have been many efforts for learning or eliciting
human preferences, such as learning a human preference
reward function from planning demonstrations or showing
humans potential plans, and actively soliciting a score/rank
of the plans. These methods are helpful when humans cannot
express their preferences but can require a significant amount
of feedback. However, preferences can be highly situational
and individualized and may not be able to be specified
beforehand. Instead, we explore a framework in which we
iteratively generate plans, elicit individualized preferences
from humans, and intelligently incorporate them.

To elicit human preferences, we first need to inform
humans of the possible planning space. We can naturally
pose this as a diverse planning problem where we show
humans a set of possible plans that are both high in quality
and diverse. We propose a constraint programming formu-
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Fig. 1: An example of a human multi-robot assembly cell for pro-
ducing all-terrain vehicles in high-mix low-volume has been devel-
oped in simulation. When coordinating all agents, task scheduling
methods must take into account human preferences, as well as
dynamic changes in task requirements and the environment.

lation for diverse planning designed to produce a set of
high-quality, diverse solutions. Humans naturally compare
different schedules based on specific features of interest.
However, showing an exhaustive list of all possible solutions
can lead to cognitive overload. To mitigate this, we aim to
identify and present a subset of diverse solutions within the
task feature space. This is accomplished by clustering the
solution set as a function of task features of interest.

The second problem is incorporating the preferences into
the constraint programming formulation. We propose to view
preferences as soft constraints which we must try to satisfy.
Using constraint programming enables us to propose very
expressive preferences using logic formalism; this allows
us to formulate complex preferences as soft constraints.
Incorporating the preferences during planning becomes a
problem of finding solutions that minimize the initial objec-
tives and the number of violated soft constraints. Converting
human preferences into mathematical soft constraints is now
practical with recent success in large language models.

Our key idea in this work is to couple these two per-
spectives as an iterative planning approach. We iteratively
generate diverse plans to present to the human in order to
elicit preferences.

1) We present a constraint programming formulation to
enable diverse plan generation for multi-robot task
scheduling in order to present planning options to the
human

2) We show a method for formulating human-specified
preferences as soft constraints and show that large
language models can convert preferences into soft
constraints

3) We present results that show the effectiveness of the
proposed iterative planning in a real-world case study.

II. RELATED WORKS
Planning with Preferences: There has been considerable
work in planning for complex domains while considering
preferences. This is useful, especially in human-robot collab-
oration. Experimentation has shown that human agents would
rather work with robots that account for their preferences

979-8-3503-5851-3/24/$31.00 ©2024 IEEE 3103

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:14:57 UTC from IEEE Xplore. Restrictions apply.



/ Plan Generation

Preference Elicitation \

Selected Plan

Diverse Plans

Diverse Planner

Plans for Presentation
Schedule 1

I s
Select Plan

Specify

{ Preference Incorporation \

LLM

k iterations

(N 4y

Problem
Input

CP-SAT k Plan
Planner Schedules Clustering

Plan
Embedding

Preferences

1 Constraints

PUTi < T;

Preferences

: I prefer... : '
b p: Pn?Sz; = taeadtine

Dp: I prefer...

Features
of Interest

i

Fig. 2: This is a system diagram illustrating the process of generating diverse plans, selecting and presenting them to the human for
preference elicitation, and incorporating preferences as soft constraints using large language models

[1], [2]. However, this can be challenging due to the large
number of preferences that may exist [3]. Preferences may
be very context-dependent and difficult to express as a static
model input [4], [5]. For instance, when planning for the
Mars Exploration Rover, multiple science and engineering
groups meet to generate the plan for the rover [6]. Meeting
all subteam preferences, as well as rover system constraints,
can be very challenging, and automated planning has the
potential to alleviate these challenges. The broad area of
preference-based planning has been extensively studied as
an extension of the classical planning problem. One well-
known method to plan with preferences is to formulate
them as soft constraints, where a preference incurs a cost
if it is not met [7]. Traditional planning techniques such as
MDP solving methods [8], [9], constraint satisfaction [10],
[11], and HTN planning methods [12] can then be adapted
to find the minimum cost solution. Many methods assume
that a preference model is specified. However, in many
cases, preferences need to be elicited from humans during
the planning process. Iterative planning or mixed-initiative
planning is an extension that involves allowing users to
naturally specify and utilize constraints during planning. This
approach includes generating multiple qualitatively different
plans and providing detailed explanations of those plans for
iteration. [7], [13]-[15]

Eliciting and Learning Preferences Eliciting preferences
as constraints are an integral part of iterative planning [16].
Iterative planning shares common goals with explainable
planning [17], [18], as explainable Al is used to explain
different aspects of the planning process so that humans
can understand the effect of enforcing different preferences.
Explainable Al in planning aims to provide frameworks to
explain why a planner came to or did not come to a specific
solution, why certain solutions are not feasible, as well as
why certain solutions are better than what the human would
intuitively do [17]. This is used to iteratively elicit prefer-
ences from the human user. Defining user preferences as con-
straints can often be challenging [19]. Therefore, new works

have investigated ways to learn preferences implicitly from
demonstrations. One approach involves clustering multiple-
user demonstrations using inverse reinforcement learning to
learn user preferences offline [1], [20], [21]. A new user
can then provide a demonstration that can be matched to a
dominant preference group, and the preference model can be
used in the planning process.

III. PROBLEM FORMULATION

We begin with the problem formulation for multi-robot
task scheduling with task ordering constraints. We base our
formulation on our prior work for contingency-aware task
allocation and scheduling [22]. We begin with a set of n
agents A; € N for which there is one human in the team
of agents. Furthermore, there is a set of m tasks 7; € T
that each has a processing time p;. Each task is designated
for a specific type of agent, and each agent has a subset
of tasks that they are responsible for. We take inspiration
from complex assembly tasks, where task ordering is critical.
To represent these constraints, we use a hierarchical task
network (HTN), which is a tree with a root node that
groups all the tasks, and leaf nodes that represent individual
tasks. Non-leaf nodes are subtask groups that can be further
broken down and specify ordering constraints. For instance,
some tasks must be executed sequentially, while others can
be executed concurrently. We use an HTN because it is
an expressive way to represent assembly task constraints.
However, during the planning process, we decompose the
HTN into P, a set of task precedence pairs (i, j) specifying
that 7; must precede 7;.

Our traditional objective is to find the best plan 7 from all
the possible plans IT that have low-cost C(x). Specifically,
for this application, we want to create a task schedule that
assigns start times for all tasks and minimizes the time it
takes to execute all tasks. However, we also want to consider
the preferences of the human partners. Our assumption is
that there are multiple candidate plans that fall within an
acceptable cost range, and the human’s preferred plan is one
that is within this cost range but maximizes the satisfaction of
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their preferences. To determine the human’s preferred plan,
we need to present them with k diverse plans, which they can
use to specify their preferences and choose their preferred
plan. Our objective is to find a subset of low-in-cost (high-
quality) and high-in-diversity metric D(I1;) (diverse) plans
IT; CII. This is illustrated in the following objective.

argmin

gmin Y Ac(m) — Bd(Il;) (1)

welly

We model preferences as constraints the plan must satisfy.
The human can then specify preferences as hard constraints,
such as tasks must be completed by a deadline, or soft
constraints, where there is an incurred penalty for an unmet
preference. The focus of this work is handling preferences
as soft constraints. A preference for a subset of tasks will
result in a set of soft constraints. We indicate the satisfaction
of each constraint with either a) booleans whose value is 1 if
the constraint hasn’t been met else 0, and b) slack variables,
which quantify to what degree the constraint hasn’t been met.
We then map how much the preference (set of constraints)
for a subset of tasks is being violated to a penalty term
A;; furthermore, some preferences may be more important
than others; we define a weight w;, which indicates the
importance of the preference. Overall, our objective becomes
determining Il;, which is of 1) high quality such that it
minimizes makespan and the degree of unmet preference
soft constraints and 2) of high diversity. Our objective then
becomes the following:

argmin

gmin Y [Ac(m)+ Y, widj(m)] —Bd(Iy)  (2)

nelly AjEA

A. Overview of Approach

In this work, we introduce a framework for integrating
human preferences into task scheduling for human-robot
collaboration as shown in Figure 2. Our approach is iterative,
consisting of three main stages: diverse plan generation
and preference elicitation and incorporation. Initially, we
generate a diverse set of high-quality task schedules using
a constraint programming formulation (Section IV). To ef-
ficiently elicit preferences, we present the human operator
with a representative subset of these schedules. This subset
is selected based on task features of interest and the diver-
sity of the schedules, which is determined through graph
embeddings and hierarchical clustering (Section V). The
operator provides feedback on these schedules, expressing
preferences that are then translated into soft constraints using
natural language processing techniques (Section VI). This
process iterates, with each step further refining the schedules
based on updated preferences until a satisfactory schedule is
identified.

IV. GENERATING DIVERSE PLANS VIA CONSTRAINT
PROGRAMMING
We need a diverse planning method that can handle the
combinatorial complexity of task scheduling to ensure that
the solutions generated are of high quality while efficiently
producing a diverse set of solutions. One can measure a solu-

tion set diversity as the distance between all of the solutions.
To find a set of k diverse and high-quality solutions, an
exact method would be to solve a planning problem with
k copies of decision variables and calculate values for all
variables that maximize both quality and how diverse the
plans are in comparison to each other. However, this leads
to an increase in computational complexity as the number of
decision variables and constraints increases with k. Instead,
we can use an iterative, greedy approach proposed by prior
research [23] to approximately solve the diverse planning
problem. This involves calling a classical planner for k
iterations and, in each iteration, finding one best solution that
maximizes both the quality and distance measure between
solutions found in previous iterations.

A. Constraint Programming Formulation

We explore solving a mathematical program using a
Constraint Programming-Satisfaction (CP-Sat) approach
as our classical planner of choice. CP-Sat solvers find
good solutions quickly and allow us to easily incorporate
complex human preferences as soft constraints using
predicate logic formalism. The input for our program is
the task set, an HTN, a set of plans II, that we found
from previous iterations, and an additional set of hard
and soft constraints {C,A} which the human can specify.
More details on formulating preferences as soft constraint
penalties are provided in Section VI. Our mathematical
constraint program is proposed below.

Input(7, HTN, I1,, A,C) :
P+ HIN

Minimize At+ Y wiA—B Y D(m,m) (3)

YVISIN me€ll,
subject to
sj > e, v(i,j)epr )
NoOverlap({o;li € T}), VkeN (3)
t=Max({e]i € T}) (6)
ceC (7
D(mm) =}, lsi—sul ®)

SiET,Sik EM

We first extract a set of precedence constraints P for task
pairs from the HTN. Equation 4 constrains task j to start
after task i for all of the precedence pairs. o;(s;, pi,e;) is
an interval variable for task i, which enforces s; + p; = e;
and is also sequencing variable used in the NoOverlap(.)
scheduling constraint. Equation 5 specifies that each agent’s
set of task interval variables o; cannot overlap. Equation 6
defines the makespan as the maximum of the task end times.
Equation 7 includes other human-given constraints that can
further constrain the planning space. Lastly, we quantify the
distance between the two plans as the Manhattan distance of
all task start times in both plans.

The objective of the task scheduling problem is to min-
imize the weighted sum of three terms: the makespan,
soft constraint violation penalties, and the negative sum of
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distance measures between the current plan and all plans
found in previous iterations. This is defined by Equation 1.

B. Generating Diverse Plans

We now describe our iterative diverse planner using Algo-
rithm 1. We begin the algorithm by first computing an initial
best plan 7, by minimizing just the schedule makespan (Line
4). This allows us to initialize I, (the set of best diverse
plans found in previous iterations) and Il4; (the set of all
encountered plans during solving process) with 7, and I,
respectively (Line 5,6). We also add a constraint that bounds
the makespan ¢ for the next planning iterations to be almost
suboptimal by a factor of o compared to the best makespan
found in the zeroth iteration (Line 7). The value of « is
provided by the user, and it ensures that the encountered
plans of the current iteration I, are of high quality. Finally,
we run the planner for k iterations (Line 8). In each iteration,
we find a plan that has a low makespan and is also at a
high distance from the plans found in the previous iterations
(Line 9). We then update I, with the best plan found in that
iteration and add all the plans found to IT,; (Line 10,11).
When showing the user the available options, we record all
plans found so that there is a good population of solutions
to select from.

Algorithm 1

1: IT,: Set of best diverse plans found in previous iterations
2: I1,: All encountered plans

3: function DIVERSEPLANGENERATION(7T,HTN,A,C)
4: a: Sub-optimality Factor

5: Ty, [jser <= PLANNER(T,HTN, A, C)

6: I1, + {ﬂb}

7: Iy < Tiger

8: C+CU{t < axtg}

9: while |IT,| <k do

10: 7y, [izer <— PLANNER(T,HTN,II;, A, C)

11: I, « I, U{m}

12: I < Mgy UlLiger

return Hb7 Hull

V. PLAN SELECTION AND PRESENTATION FOR
ELICITATION

It is crucial to present a diverse and representative subset
of potential task schedules to elicit preferences from a human
operator. Given a large solution space, directly presenting
all feasible schedules to the human operator can lead to
cognitive overload. To address this challenge, we propose a
methodology that leverages graph embeddings and hierarchi-
cal clustering to identify distinct schedules. By focusing on
task features of interest to the human operator, this approach
enables the selection of a diverse subset of schedules that are
likely to elicit meaningful preferences, thereby facilitating
more effective human-robot collaboration.

To capture the structural characteristics of each schedule,
we represent schedules as directed acyclic graphs where
nodes correspond to tasks and edges represent task orderings.
We model each node to have a vector of task features.

We then employ the graph2vec algorithm [24] to generate
embeddings for these schedule graphs. Graph2vec is partic-
ularly well-suited for this task as it is capable of capturing
substructural information, which is essential for representing
the human operator’s preferences related to specific task
features or sequences. The resulting embeddings serve as
a compact representation of each schedule, preserving the
essential structural information while enabling efficient com-
parison and clustering.

With the graph embeddings of the schedules obtained, we
apply hierarchical clustering to group similar schedules to-
gether. This clustering step aims to identify distinct schedule
clusters that represent the diverse solution space. By selecting
a representative schedule from each cluster, we can ensure
that the presented subset of schedules captures a wide range
of planning options, thereby facilitating the elicitation of
diverse and informative preferences from the human operator.
The hierarchical nature of the clustering algorithm allows
for flexibility in determining the granularity of the clusters,
enabling the selection of a subset of schedules that balances
diversity with the cognitive load on the human operator.

VI. PREFERENCE INCORPORATION

After receiving preferences expressed in natural language,
we incorporate them into the planning problem by converting
them into soft constraints for the mathematical program. We
propose a prescriptive approach for converting preferences
into associated decision variables and soft constraints, with
illustrative examples provided. Additionally, we show how
to integrate the approach with a large language model to
automatically generate soft constraints.

A. Converting Preferences to Soft Constraints

To incorporate preferences into our scheduling applica-
tion, we follow a four-step approach. Firstly, we extract
the relevant tasks based on preference. We assume that
all preferences for our scheduling application are based on
specifying soft constraints over a collection of disjoint sets
of tasks, where each set contains tasks that share a common
feature. For instance, for preference 1 “Tasks with feature A
should precede tasks with feature B”, we would extract two
task sets, 7, and Tj,.

Once we have collected the relevant tasks, we create
new indicator variables that indicate the satisfaction of each
constraint. There are two types of indicators: 1) boolean
variables, which are true if the constraint is satisfied, and
2) integer slack variables, which quantify the degree of
satisfaction. For instance, for the given preference, we use
boolean variables x;; to indicate whether task i € T, precedes
task j € Tp.

Next, we formulate the soft constraints. For the above
preference, the soft constraint would be s;+-p; <s; = x;; =1,
where s; and p; represent the start time and processing time
of task i, respectively. These constraints are often preference-
specific and generally require domain expertise for formula-
tion. However, we demonstrate that large language models
can be used to automate the generation of these constraints
from natural language preferences.
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Finally, we define a penalty term A associated with the
indicator variables. This penalty term is incorporated into
the objective function and is typically a sum, max, or min of
the indicator variables, depending on the nature of the pref-
erence. For the first preference, the penalty function is a sum
of the boolean variables A1 = Yc7, jer, wij - (1 —xi;), where
w;; represents the importance of the preference. We show
this methodology to two different preferences, including the
aforementioned preference, to demonstrate its versatility in
converting a wide range of preferences into soft constraints.
Preference 1: Tasks with feature A should precede tasks
with feature B

Variables of Interest:

e Let T, C T be the subset of task indices that have feature
A (tasks of type a).

o Let T, C T be the subset of task indices that have feature
B (tasks of type b).

New Variables:

o For each task i € T, and each task j € Tj, introduce a
binary variable x;; which is 1 if task i precedes task j,
and 0 otherwise.

o Weight term w;;

Soft Constraints:

« For each task i € T, and each task j € Tj,, create optional
precedence constraints using reified constraints:

sitpi<si=xijj=1, sj+pj<si=x;=0
VieT,, VjeT,
this constraint specifies that x;; is 1 if and only if tasks
i precedes tasks j.
Penalty Term:
o The penalty term is defined as:

Y wi(1-xy)

i€T,,jeT,

A =

Preference 2: Tasks with feature D should be completed as
early as possible
Variables of Interest:

o T; C T: The subset of task indices that have feature D.
New Variables:

o None is required; the end time variable implicitly can
be used as an integer indicator.

Soft Constraints:

« No constraints required

Penalty Term:

« Define the penalty term A, as the maximum end time
among tasks with feature D:

Ay = max{e;}
€Ty

« This term directly maps A to the maximum end time of
tasks with feature D, encouraging them to be completed
as early as possible.

B. Large-Language Models (LLMs) for Incorporating Pref-
erence Soft Constraints

We use LLM to convert human preference in natural
language to soft constraints in the code format. We use the
method outlined in [25], [26]. We use GPT-4 as our backbone
architecture to enable the model to consider enough example
constraints and instructions in the prompt to incorporate
humans’ natural language input.

In the prompt, we first inform LLM that it will perform
the assistive task of converting human natural language
to Pythonic code. We also provide LLM with predefined
function primitives to enable it to generate code that fits our
coding practice, similar to [25], [26]. We then give the model
initial example pairs of human preferences and correspond-
ing codes for reference. Defined primitives include:

« initialize: Takes task feature as variable and outputs task
sets that belong to the feature and indicator variables
created. It initializes the formulation of constraints by
fetching all the tasks belonging to the feature of interest.
Then, it creates the indicator variable.

o create_slack_variables: Takes variable name, lower
bound, and upper bound as input and creates and returns
a new integer variable to formulate slack variable.

« get_task _variables: Takes task_id as input and fetches
task variables such as start, end, and duration time.

« apply_constraint: Adds the soft constraint back to the
objective function.

Finally, during execution, we provide LLM with the
newly seen preference from humans, and LLM successfully
generates the soft constraint incorporated into the objective
function as a penalty term. An example of such a constraint
generation is shown in Fig. 3. In this example, humans
prompt LLM that tasks of type C should be done as close
to each other as possible.

VII. RESULTS
A. Problem Setup

We formulate an assembly task problem that requires a
team consisting of four robots and one human to complete.
The problem is based on the assembly of AT Vs and satellites,
which are typically high-mix and low-volume products. In
our previous work, we have examined this type of assembly
in detail [22], [27], [28]. Multiple subassemblies need to be
assembled to complete an assembly task. Each subassembly
requires a sequence of atomic tasks to be completed. These
subassemblies can be worked on simultaneously and then
must be assembled sequentially.

To represent this structure, we have created an HTN and
assigned various preference-related feature attributes to the
tasks. We randomly generated the atomic task duration, with
a range of 10-25 time units for each assembly task. We have
grouped four assembly tasks together, each containing the
same subassemblies and atomic tasks that can be performed
in parallel. Our main goal is to generate a final task schedule
that completes multiple assemblies simultaneously while also
taking into consideration various preferences related to the
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Quality Diversity
# Tasks # Constraints # Solutions Makespan Normalized L1
Iteration: 1 5 10 1 5 10 1 5 10
50 (low) 121 485 907 (198.42, 6.82)  (197.83, 5.03) (197.96, 5.37) (5.86, 3.87) (11.55,7.40) (1291, 8.16)
50 114 (med) 23 88 163 (266.04, 10.44) (274.375, 18.28) (277.35, 19.17) (3.29, 441) (8.68,520)  (9.23, 4.96)
314 (high) 17 87 155 (416.47, 18.36) (415.87, 19.95)  (415.31, 18.43) (3.66, 2.45) (3.50, 2.59)  (3.39, 2.54)
100 (low) 138 766 1475 (384.08, 1.02)  (386.44, 7.79) (385.62, 7.28) (8.27, 6.14)  (14.26, 6.71) (14.82, 6.33)
100 228 (med) 132 746 1587 (421.66, 24.79)  (423.80, 26.30)  (425.77, 24.17) (8.25,5.04) (11.19,3.85) (11.84, 3.86)
628 (high) 105 503 1103 (603.6, 20.39)  (606.49, 25.47)  (606.7, 24.52) (3.29,2.67) (8.51,5.04) (8.57, 4.80)
150 (low) 67 351 782 (577.79, 13.94)  (578.30, 12.41)  (578.93, 12.40) (4.30, 3.04) (12.31,5.27) (12.83, 4.56)
150 342 (med) 122 461 887 (632.67, 17.93) (626.47,42.32)  (625.76, 47.75) (7.33, 4.09) (12.73,4.93) (13.75, 4.39)
942 (high) 101 500 1014 (833.80, 28.81) (825.45, 28.55)  (821.29, 33.14) (4.98, 2.88) (10.07, 4.52) (10.82, 4.88)

TABLE I: Evaluation of diverse plan generation method on different problem inputs of varying task size and constraint level

def create_constraint(task_sets, indicator_variables
feature = ['C"]
# initialize
task_sets, indicator_variables = initialize(feature)
for 1in task_sets['C']:
for j in task_sets['C']:
ifi!=j:
# Define new variables
var_name diff = f"diff {i} {j}"
var_name_abs=f"abs {i} {j}"
diff ij = create_slack variable(var_name diff,
-100000, 100000)
diff ij abs = create_slack variable(var_name abs,
0, 100000)
# Create equations
task i end = get task variables(i)[2]
task j start = get task variables(j)[0]
# calculate the difference between the tasks
model. Add(diff ij == task j start - task i _end)
# take the absolute value of the difference
model. AddAbsEquality(diff ij abs, diff ij)
# Link the absolute difference variable
# to an indicator variable
indicator_variables[(i, j)] = diff ij abs
# Apply soft constraint
apply constraint()

Fig. 3: Example of LLM generated constraint program. In the code,
LLM successfully initializes the constraint generation and sets the
feature of interest ‘C’. Then, it successfully recognizes the need for
slack variables and generates them using the pre-defined function.
Finally, it adds absolute equality constraints between tasks to in-
corporate it back into the objective function in ‘apply_constraint().”

task. We will provide more details about these preferences
in the case study.

Our diverse plan generation generation algorithm was
implemented using OR-Tools CP-SAT solver [29]. We con-
ducted our experiments using a Python implementation on a
machine with 32 GB RAM and an 8-core 2.1 GHz CPU.

B. Characterization of Diverse Plan Generation

In practice, when generating diverse plans, we do not aim
to find the optimal solution in each iteration, but instead, we
approximate the solution and set a computation time limit (of
10 seconds for the following experiments) for each iteration
after the initialization step. We evaluate our diverse plan gen-
eration approach, where we vary how large and constrained
the problem is, and examine the number of solutions found,
the average makespan, and the diversity of the population of
solutions. To evaluate diversity, we calculate the L1 distance

for all pairs in the solution populations, which is the sum
of the absolute difference in tasks’ start times in a pair
of schedules. We calculate the average L1 distance for all
pairs in the solution population and normalize it with the
increase factor for task size (n-50 ) and the optimal makespan
(topt) * LiNorm = L1/(n*t,p). Lastly, we set a bound on a
feasible solution’s makespan to be within 20% of the optimal
makespan.

We found that the CP-SAT solver finds the optimal so-
lution to the problem for all 50, 100, and 150 tasks with
multiples of three different sequential constraint counts 50
(low), 114 (medium), and 314 (high) within 10 seconds.
After initialization, at iteration 1, we see a small number
of explored solutions which is due to the solver effectively
pruning the search space at the first iteration. However,
with an increase in the number of iterations, the solver
consistently finds a large number of solutions that are within
20% of the optimal solution. For almost all problem inputs,
we also see an increase in both the number of solutions
explored and the associated diversity score, indicating that
our approach can generate diverse solutions effectively. An
interesting observation is that the diversity scores in our
planning process have a higher standard deviation. We rea-
son that this is due to intermediate solutions from each
iteration being situated between the more diverse solutions,
contributing to a broader spread of diversity scores. Despite
being an incremental planning approach where we repeatedly
called the CP-SAT solver, we found that at least 95% of all
aggregated solutions were unique, indicating the approach
finds different, diverse solutions efficiently and there is no
wasted search. Additionally, we observe higher L1 distances
for problems with lower numbers of sequential constraints,
and we reason that having more parallel constraints leads to
higher chances of generating more diverse solutions.

C. Case Study

We have developed a case study where a team comprising
4 robots and 1 human is tasked with completing four
different assemblies, denoted by different colors (red, green,
orange, and blue). In this case study, we introduce two
important terms: human’s latent preferences”, which are the
preferences that the human operator has but are unknown
to the system, and “specified preferences”, which are the
preferences that the human operator has become aware of
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Fig. 4: We show representative schedules generated during the preference elicitation and incorporation process. We also visualize the
selected solutions for different latent preference spaces. We compare the selected solutions for our proposed plan selection approach and

2 baselines.

through the preference elicitation process. Our goal in this
case study is to elicit the human’s latent preferences as well
as determine a preferred schedule that implicitly balances
these preferences.

We have defined the following latent preferences for the
humans: (P1) the human prefers Assembly A (red) to be
finished as soon as possible, (P2) they want to delay tasks
that require a part that is low in stock (purple) and schedule
them for later when more parts will be delivered, and (P3)
they need to do inspection tasks (yellow), and they prefer to
group the tasks so that they can perform them all at once.
The preference soft constraint and penalty are defined in VI.

We simulated this case study in three steps and selected
schedules that satisfied the case study story. The schedules
in this case study showed that the preferred solution has
the following range of cost for each preference: [P1: (0)-
(425), P2: (-2300) - (-1700), P3: (5000)-(8000)]. We denote
this range as the preferred solution area in Figure 4 . We
now briefly describe the case study. We show generated
schedules and show where these solutions would lie in the
latent preference space if they were known as apriori. For
each step, we select 20 schedules to present to the human.

Initialization step: The system generates diverse solutions
that minimize assembly makespan. The human specifies
the following task features of interest: assembly type and
whether tasks involve low-stock parts or inspection. Then, the
system generates solution embeddings, clusters the solutions,

and selects 20 schedules to present to the human. A subset
of the generated schedules is shown in Figure 4a, and we
see that they are diverse with respect to the task features
of interest. The human notices that assembly A tasks (red)
can be prioritized and low-stock part tasks can be delayed
so preferences P1 (assembly A) and P2 (low stock) are
specified. This can be visually confirmed from Figure 4a,
and we can see plans presented by the system (blue squares)
lie within the latent preferred solution area.

Step 1: The system has generated another set of diverse
solutions, and a representative solution is shown in Figure 4b.
As we can see, assembly A’s makespan is minimized (this
is the case for all solutions), and the low-stock part tasks
are delayed as much as possible, resulting in an increase in
makespan up to the specified 20% suboptimal bound. The
user notices that the inspection tasks (yellow) are spread out
and would prefer to group them together. Therefore, they
specify preference P3 (inspection). In Figure 4e, we compare
the latent preference P3 with the previously specified prefer-
ence P2 (low stock). The cost range for P2 has significantly
reduced because the system would have tried to minimize
the cost. For P3, we see significant coverage in solutions,
indicating that humans would be informed of plans in the
latent solution area where their preference is either strongly
satisfied or strongly violated.

Step 2: In step 2 of the system, a new set of solutions is
generated that minimizes all specified preferences in addition
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to makespan. Figure 4f shows that preferences P2 and P3
are conflicting objectives, and the system has approximated
a pareto solution for those two preferences effectively. The
selected schedule is shown in Figure 4c. We can see that
all preferences have been met, and the chosen solution has
given priority to the inspection grouping preference over the
low-stock task preference.

D. Characterization of Preference Elicitation

We also briefly discuss the proposed preference elicitation
strategy in the context of the case study. In addition to our
solution clustering approach, we have compared it with two
other methods: 1) selecting the top 20 solutions based on
the predetermined cost (red cross) and 2) randomly selecting
solutions from a diverse solution population (green circle)
which is seen in Figures 4d, 4e, 4f. Here we show that
by only specifying task features of interest and intelligently
clustering the solutions, we were able to generate diverse so-
lutions that provided strong coverage of the latent preference
space much better than randomly selecting diverse plans or
presenting the best pre-defined low-cost plans.

VIII. CONCLUSION

We have developed a framework that incorporates human
preferences into task scheduling. Our approach involves an
iterative process where we generate high-quality and diverse
plans, then elicit preferences by intelligently selecting and
presenting a representative subset of plans based on task
features of interest, and finally incorporate these preferences
as soft constraints using a large-language model. Our results
show that our diverse plan generation method can efficiently
generate schedules that are both of high quality and diverse.
Further evaluation of our framework on an assembly-inspired
case study with multiple complex preferences shows that
the system can effectively select diverse schedules to elicit
multiple human preferences, incorporate them, and converge
to a preferred schedule that balances multiple preferences.
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