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Abstract— In this work, we address the challenge of incorpo-
rating human preferences into the task-scheduling process for
human-robot teams. Humans have various individual prefer-
ences that can be influenced by context and situational informa-
tion. Incorporating these preferences can lead to improved team
performance. Our main contribution is a framework that helps
elicit and incorporate preferences during task scheduling. We
achieve this by proposing 1) a constraint programming method
to generate a range of plans, 2) an intelligent approach for
selecting and presenting task schedules based on task features,
and 3) a preference incorporation method that uses large
language models to convert preferences into soft constraints.
Our results demonstrate that we can efficiently generate diverse
plans for preference elicitation and incorporate them into the
task-scheduling process. We evaluate our framework using an
assembly-inspired case study and show how it can effectively
incorporate complex and realistic preferences. Our implemen-
tation can be found at github.com/RROS-Lab/Human-Robot-
Preference-Planning.

I. INTRODUCTION

Humans exhibit a wide range of personalized preferences

when collaborating with robot teammates on tasks. These

preferences are often influenced by the cognitive and physical

demands associated with the tasks. For instance, a task that

is cognitively (or physically) challenging for one individual

may be relatively easy for another. Preferences therefore are

highly individualized. Some may opt to tackle challenging

tasks first and then proceed to easier ones, while others

might prefer the reverse. Additionally, humans may possess

contextual preferences based on situational awareness. For

example, they may prefer to defer certain tasks in antici-

pation of delayed material or tool arrivals. Similarly, they

may anticipate periods of unavailability and prefer to avoid

specific tasks during those times.

There have been many efforts for learning or eliciting

human preferences, such as learning a human preference

reward function from planning demonstrations or showing

humans potential plans, and actively soliciting a score/rank

of the plans. These methods are helpful when humans cannot

express their preferences but can require a significant amount

of feedback. However, preferences can be highly situational

and individualized and may not be able to be specified

beforehand. Instead, we explore a framework in which we

iteratively generate plans, elicit individualized preferences

from humans, and intelligently incorporate them.

To elicit human preferences, we first need to inform

humans of the possible planning space. We can naturally

pose this as a diverse planning problem where we show

humans a set of possible plans that are both high in quality

and diverse. We propose a constraint programming formu-
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Fig. 1: An example of a human multi-robot assembly cell for pro-
ducing all-terrain vehicles in high-mix low-volume has been devel-
oped in simulation. When coordinating all agents, task scheduling
methods must take into account human preferences, as well as
dynamic changes in task requirements and the environment.

lation for diverse planning designed to produce a set of

high-quality, diverse solutions. Humans naturally compare

different schedules based on specific features of interest.

However, showing an exhaustive list of all possible solutions

can lead to cognitive overload. To mitigate this, we aim to

identify and present a subset of diverse solutions within the

task feature space. This is accomplished by clustering the

solution set as a function of task features of interest.

The second problem is incorporating the preferences into

the constraint programming formulation. We propose to view

preferences as soft constraints which we must try to satisfy.

Using constraint programming enables us to propose very

expressive preferences using logic formalism; this allows

us to formulate complex preferences as soft constraints.

Incorporating the preferences during planning becomes a

problem of finding solutions that minimize the initial objec-

tives and the number of violated soft constraints. Converting

human preferences into mathematical soft constraints is now

practical with recent success in large language models.

Our key idea in this work is to couple these two per-

spectives as an iterative planning approach. We iteratively

generate diverse plans to present to the human in order to

elicit preferences.

1) We present a constraint programming formulation to

enable diverse plan generation for multi-robot task

scheduling in order to present planning options to the

human

2) We show a method for formulating human-specified

preferences as soft constraints and show that large

language models can convert preferences into soft

constraints

3) We present results that show the effectiveness of the

proposed iterative planning in a real-world case study.

II. RELATED WORKS

Planning with Preferences: There has been considerable

work in planning for complex domains while considering

preferences. This is useful, especially in human-robot collab-

oration. Experimentation has shown that human agents would

rather work with robots that account for their preferences
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Fig. 2: This is a system diagram illustrating the process of generating diverse plans, selecting and presenting them to the human for
preference elicitation, and incorporating preferences as soft constraints using large language models

[1], [2]. However, this can be challenging due to the large

number of preferences that may exist [3]. Preferences may

be very context-dependent and difficult to express as a static

model input [4], [5]. For instance, when planning for the

Mars Exploration Rover, multiple science and engineering

groups meet to generate the plan for the rover [6]. Meeting

all subteam preferences, as well as rover system constraints,

can be very challenging, and automated planning has the

potential to alleviate these challenges. The broad area of

preference-based planning has been extensively studied as

an extension of the classical planning problem. One well-

known method to plan with preferences is to formulate

them as soft constraints, where a preference incurs a cost

if it is not met [7]. Traditional planning techniques such as

MDP solving methods [8], [9], constraint satisfaction [10],

[11], and HTN planning methods [12] can then be adapted

to find the minimum cost solution. Many methods assume

that a preference model is specified. However, in many

cases, preferences need to be elicited from humans during

the planning process. Iterative planning or mixed-initiative

planning is an extension that involves allowing users to

naturally specify and utilize constraints during planning. This

approach includes generating multiple qualitatively different

plans and providing detailed explanations of those plans for

iteration. [7], [13]–[15]

Eliciting and Learning Preferences Eliciting preferences

as constraints are an integral part of iterative planning [16].

Iterative planning shares common goals with explainable

planning [17], [18], as explainable AI is used to explain

different aspects of the planning process so that humans

can understand the effect of enforcing different preferences.

Explainable AI in planning aims to provide frameworks to

explain why a planner came to or did not come to a specific

solution, why certain solutions are not feasible, as well as

why certain solutions are better than what the human would

intuitively do [17]. This is used to iteratively elicit prefer-

ences from the human user. Defining user preferences as con-

straints can often be challenging [19]. Therefore, new works

have investigated ways to learn preferences implicitly from

demonstrations. One approach involves clustering multiple-

user demonstrations using inverse reinforcement learning to

learn user preferences offline [1], [20], [21]. A new user

can then provide a demonstration that can be matched to a

dominant preference group, and the preference model can be

used in the planning process.

III. PROBLEM FORMULATION

We begin with the problem formulation for multi-robot

task scheduling with task ordering constraints. We base our

formulation on our prior work for contingency-aware task

allocation and scheduling [22]. We begin with a set of n

agents Ai ∈ N for which there is one human in the team

of agents. Furthermore, there is a set of m tasks τ j ∈ T

that each has a processing time p j. Each task is designated

for a specific type of agent, and each agent has a subset

of tasks that they are responsible for. We take inspiration

from complex assembly tasks, where task ordering is critical.

To represent these constraints, we use a hierarchical task

network (HTN), which is a tree with a root node that

groups all the tasks, and leaf nodes that represent individual

tasks. Non-leaf nodes are subtask groups that can be further

broken down and specify ordering constraints. For instance,

some tasks must be executed sequentially, while others can

be executed concurrently. We use an HTN because it is

an expressive way to represent assembly task constraints.

However, during the planning process, we decompose the

HTN into P, a set of task precedence pairs (i, j) specifying

that τi must precede τ j.

Our traditional objective is to find the best plan π from all

the possible plans Π that have low-cost C(π). Specifically,

for this application, we want to create a task schedule that

assigns start times for all tasks and minimizes the time it

takes to execute all tasks. However, we also want to consider

the preferences of the human partners. Our assumption is

that there are multiple candidate plans that fall within an

acceptable cost range, and the human’s preferred plan is one

that is within this cost range but maximizes the satisfaction of
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their preferences. To determine the human’s preferred plan,

we need to present them with k diverse plans, which they can

use to specify their preferences and choose their preferred

plan. Our objective is to find a subset of low-in-cost (high-

quality) and high-in-diversity metric D(Πd) (diverse) plans

Πk ⊆Π. This is illustrated in the following objective.

argmin
Πk⊆Π

∑
π∈Πk

Ac(π)−Bd(Πk) (1)

We model preferences as constraints the plan must satisfy.

The human can then specify preferences as hard constraints,

such as tasks must be completed by a deadline, or soft

constraints, where there is an incurred penalty for an unmet

preference. The focus of this work is handling preferences

as soft constraints. A preference for a subset of tasks will

result in a set of soft constraints. We indicate the satisfaction

of each constraint with either a) booleans whose value is 1 if

the constraint hasn’t been met else 0, and b) slack variables,

which quantify to what degree the constraint hasn’t been met.

We then map how much the preference (set of constraints)

for a subset of tasks is being violated to a penalty term

λi; furthermore, some preferences may be more important

than others; we define a weight wi, which indicates the

importance of the preference. Overall, our objective becomes

determining Πk, which is of 1) high quality such that it

minimizes makespan and the degree of unmet preference

soft constraints and 2) of high diversity. Our objective then

becomes the following:

argmin
Πk⊆Π

∑
π∈Πk

[Ac(π)+ ∑
λ j∈Λ

w jλ j(πk)]−Bd(Πk) (2)

A. Overview of Approach

In this work, we introduce a framework for integrating

human preferences into task scheduling for human-robot

collaboration as shown in Figure 2. Our approach is iterative,

consisting of three main stages: diverse plan generation

and preference elicitation and incorporation. Initially, we

generate a diverse set of high-quality task schedules using

a constraint programming formulation (Section IV). To ef-

ficiently elicit preferences, we present the human operator

with a representative subset of these schedules. This subset

is selected based on task features of interest and the diver-

sity of the schedules, which is determined through graph

embeddings and hierarchical clustering (Section V). The

operator provides feedback on these schedules, expressing

preferences that are then translated into soft constraints using

natural language processing techniques (Section VI). This

process iterates, with each step further refining the schedules

based on updated preferences until a satisfactory schedule is

identified.

IV. GENERATING DIVERSE PLANS VIA CONSTRAINT

PROGRAMMING

We need a diverse planning method that can handle the

combinatorial complexity of task scheduling to ensure that

the solutions generated are of high quality while efficiently

producing a diverse set of solutions. One can measure a solu-

tion set diversity as the distance between all of the solutions.

To find a set of k diverse and high-quality solutions, an

exact method would be to solve a planning problem with

k copies of decision variables and calculate values for all

variables that maximize both quality and how diverse the

plans are in comparison to each other. However, this leads

to an increase in computational complexity as the number of

decision variables and constraints increases with k. Instead,

we can use an iterative, greedy approach proposed by prior

research [23] to approximately solve the diverse planning

problem. This involves calling a classical planner for k

iterations and, in each iteration, finding one best solution that

maximizes both the quality and distance measure between

solutions found in previous iterations.

A. Constraint Programming Formulation

We explore solving a mathematical program using a

Constraint Programming-Satisfaction (CP-Sat) approach

as our classical planner of choice. CP-Sat solvers find

good solutions quickly and allow us to easily incorporate

complex human preferences as soft constraints using

predicate logic formalism. The input for our program is

the task set, an HTN, a set of plans Πp that we found

from previous iterations, and an additional set of hard

and soft constraints {C,Λ} which the human can specify.

More details on formulating preferences as soft constraint

penalties are provided in Section VI. Our mathematical

constraint program is proposed below.

Input(T,HTN,Πp,Λ,C) :

P← HTN

Minimize At + ∑
λl∈Λ

wlλl−B ∑
πk∈Πp

D(π,πk) (3)

subject to

s j ≥ ei, ∀(i, j) ∈ P (4)

NoOverlap({oi|i ∈ Tk}), ∀k ∈ N (5)

t = Max({ei|i ∈ T}) (6)

c ∈C (7)

D(π,πk) = ∑
si∈π,sik∈πk

|si− sik| (8)

We first extract a set of precedence constraints P for task

pairs from the HTN. Equation 4 constrains task j to start

after task i for all of the precedence pairs. oi(si, pi,ei) is

an interval variable for task i, which enforces si + pi = ei

and is also sequencing variable used in the NoOverlap(.)
scheduling constraint. Equation 5 specifies that each agent’s

set of task interval variables oi cannot overlap. Equation 6

defines the makespan as the maximum of the task end times.

Equation 7 includes other human-given constraints that can

further constrain the planning space. Lastly, we quantify the

distance between the two plans as the Manhattan distance of

all task start times in both plans.

The objective of the task scheduling problem is to min-

imize the weighted sum of three terms: the makespan,

soft constraint violation penalties, and the negative sum of
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distance measures between the current plan and all plans

found in previous iterations. This is defined by Equation 1.

B. Generating Diverse Plans

We now describe our iterative diverse planner using Algo-

rithm 1. We begin the algorithm by first computing an initial

best plan πb by minimizing just the schedule makespan (Line

4). This allows us to initialize Πb (the set of best diverse

plans found in previous iterations) and ΠAll (the set of all

encountered plans during solving process) with πb and Πiter

respectively (Line 5,6). We also add a constraint that bounds

the makespan t for the next planning iterations to be almost

suboptimal by a factor of α compared to the best makespan

found in the zeroth iteration (Line 7). The value of α is

provided by the user, and it ensures that the encountered

plans of the current iteration Πiter are of high quality. Finally,

we run the planner for k iterations (Line 8). In each iteration,

we find a plan that has a low makespan and is also at a

high distance from the plans found in the previous iterations

(Line 9). We then update Πb with the best plan found in that

iteration and add all the plans found to Πall (Line 10,11).

When showing the user the available options, we record all

plans found so that there is a good population of solutions

to select from.

Algorithm 1

1: Πb: Set of best diverse plans found in previous iterations

2: Πall : All encountered plans

3: function DIVERSEPLANGENERATION(T,HTN,Λ,C)

4: α: Sub-optimality Factor

5: πb,Πiter← PLANNER(T,HTN,Λ,C)

6: Πb←{πb}
7: Πall ←Πiter

8: C←C∪{t ≤ α ∗ tπb
}

9: while |Πp| ≤ k do

10: πb,Πiter← PLANNER(T,HTN,Πb,Λ,C)

11: Πb←Πb∪{πb}
12: Πall ←Πall ∪Πiter

return Πb,Πall

V. PLAN SELECTION AND PRESENTATION FOR

ELICITATION

It is crucial to present a diverse and representative subset

of potential task schedules to elicit preferences from a human

operator. Given a large solution space, directly presenting

all feasible schedules to the human operator can lead to

cognitive overload. To address this challenge, we propose a

methodology that leverages graph embeddings and hierarchi-

cal clustering to identify distinct schedules. By focusing on

task features of interest to the human operator, this approach

enables the selection of a diverse subset of schedules that are

likely to elicit meaningful preferences, thereby facilitating

more effective human-robot collaboration.

To capture the structural characteristics of each schedule,

we represent schedules as directed acyclic graphs where

nodes correspond to tasks and edges represent task orderings.

We model each node to have a vector of task features.

We then employ the graph2vec algorithm [24] to generate

embeddings for these schedule graphs. Graph2vec is partic-

ularly well-suited for this task as it is capable of capturing

substructural information, which is essential for representing

the human operator’s preferences related to specific task

features or sequences. The resulting embeddings serve as

a compact representation of each schedule, preserving the

essential structural information while enabling efficient com-

parison and clustering.

With the graph embeddings of the schedules obtained, we

apply hierarchical clustering to group similar schedules to-

gether. This clustering step aims to identify distinct schedule

clusters that represent the diverse solution space. By selecting

a representative schedule from each cluster, we can ensure

that the presented subset of schedules captures a wide range

of planning options, thereby facilitating the elicitation of

diverse and informative preferences from the human operator.

The hierarchical nature of the clustering algorithm allows

for flexibility in determining the granularity of the clusters,

enabling the selection of a subset of schedules that balances

diversity with the cognitive load on the human operator.

VI. PREFERENCE INCORPORATION

After receiving preferences expressed in natural language,

we incorporate them into the planning problem by converting

them into soft constraints for the mathematical program. We

propose a prescriptive approach for converting preferences

into associated decision variables and soft constraints, with

illustrative examples provided. Additionally, we show how

to integrate the approach with a large language model to

automatically generate soft constraints.

A. Converting Preferences to Soft Constraints

To incorporate preferences into our scheduling applica-

tion, we follow a four-step approach. Firstly, we extract

the relevant tasks based on preference. We assume that

all preferences for our scheduling application are based on

specifying soft constraints over a collection of disjoint sets

of tasks, where each set contains tasks that share a common

feature. For instance, for preference 1 ”Tasks with feature A

should precede tasks with feature B”, we would extract two

task sets, Ta and Tb.

Once we have collected the relevant tasks, we create

new indicator variables that indicate the satisfaction of each

constraint. There are two types of indicators: 1) boolean

variables, which are true if the constraint is satisfied, and

2) integer slack variables, which quantify the degree of

satisfaction. For instance, for the given preference, we use

boolean variables xi j to indicate whether task i∈ Ta precedes

task j ∈ Tb.

Next, we formulate the soft constraints. For the above

preference, the soft constraint would be si+ pi≤ s j⇒ xi j = 1,

where si and pi represent the start time and processing time

of task i, respectively. These constraints are often preference-

specific and generally require domain expertise for formula-

tion. However, we demonstrate that large language models

can be used to automate the generation of these constraints

from natural language preferences.
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Finally, we define a penalty term λ associated with the

indicator variables. This penalty term is incorporated into

the objective function and is typically a sum, max, or min of

the indicator variables, depending on the nature of the pref-

erence. For the first preference, the penalty function is a sum

of the boolean variables λ1 = ∑i∈Ta, j∈Tb
wi j · (1− xi j), where

wi j represents the importance of the preference. We show

this methodology to two different preferences, including the

aforementioned preference, to demonstrate its versatility in

converting a wide range of preferences into soft constraints.

Preference 1: Tasks with feature A should precede tasks

with feature B

Variables of Interest:

• Let Ta⊆ T be the subset of task indices that have feature

A (tasks of type a).

• Let Tb⊆ T be the subset of task indices that have feature

B (tasks of type b).

New Variables:

• For each task i ∈ Ta and each task j ∈ Tb, introduce a

binary variable xi j which is 1 if task i precedes task j,

and 0 otherwise.

• Weight term wi j

Soft Constraints:

• For each task i∈ Ta and each task j ∈ Tb, create optional

precedence constraints using reified constraints:

si + pi ≤ s j⇒ xi j = 1, s j + p j ≤ si⇒ xi j = 0

∀i ∈ Ta, ∀ j ∈ Tb

this constraint specifies that xi j is 1 if and only if tasks

i precedes tasks j.

Penalty Term:

• The penalty term is defined as:

λ1 = ∑
i∈Ta, j∈Tb

wi j · (1− xi j)

Preference 2: Tasks with feature D should be completed as

early as possible

Variables of Interest:

• Td ⊆ T : The subset of task indices that have feature D.

New Variables:

• None is required; the end time variable implicitly can

be used as an integer indicator.

Soft Constraints:

• No constraints required

Penalty Term:

• Define the penalty term λ2 as the maximum end time

among tasks with feature D:

λ2 = max
i∈Td

{ei}

• This term directly maps λ to the maximum end time of

tasks with feature D, encouraging them to be completed

as early as possible.

B. Large-Language Models (LLMs) for Incorporating Pref-

erence Soft Constraints

We use LLM to convert human preference in natural

language to soft constraints in the code format. We use the

method outlined in [25], [26]. We use GPT-4 as our backbone

architecture to enable the model to consider enough example

constraints and instructions in the prompt to incorporate

humans’ natural language input.

In the prompt, we first inform LLM that it will perform

the assistive task of converting human natural language

to Pythonic code. We also provide LLM with predefined

function primitives to enable it to generate code that fits our

coding practice, similar to [25], [26]. We then give the model

initial example pairs of human preferences and correspond-

ing codes for reference. Defined primitives include:

• initialize: Takes task feature as variable and outputs task

sets that belong to the feature and indicator variables

created. It initializes the formulation of constraints by

fetching all the tasks belonging to the feature of interest.

Then, it creates the indicator variable.

• create slack variables: Takes variable name, lower

bound, and upper bound as input and creates and returns

a new integer variable to formulate slack variable.

• get task variables: Takes task id as input and fetches

task variables such as start, end, and duration time.

• apply constraint: Adds the soft constraint back to the

objective function.

Finally, during execution, we provide LLM with the

newly seen preference from humans, and LLM successfully

generates the soft constraint incorporated into the objective

function as a penalty term. An example of such a constraint

generation is shown in Fig. 3. In this example, humans

prompt LLM that tasks of type C should be done as close

to each other as possible.

VII. RESULTS

A. Problem Setup

We formulate an assembly task problem that requires a

team consisting of four robots and one human to complete.

The problem is based on the assembly of ATVs and satellites,

which are typically high-mix and low-volume products. In

our previous work, we have examined this type of assembly

in detail [22], [27], [28]. Multiple subassemblies need to be

assembled to complete an assembly task. Each subassembly

requires a sequence of atomic tasks to be completed. These

subassemblies can be worked on simultaneously and then

must be assembled sequentially.

To represent this structure, we have created an HTN and

assigned various preference-related feature attributes to the

tasks. We randomly generated the atomic task duration, with

a range of 10-25 time units for each assembly task. We have

grouped four assembly tasks together, each containing the

same subassemblies and atomic tasks that can be performed

in parallel. Our main goal is to generate a final task schedule

that completes multiple assemblies simultaneously while also

taking into consideration various preferences related to the
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Quality Diversity

# Tasks # Constraints # Solutions Makespan Normalized L1

Iteration: 1 5 10 1 5 10 1 5 10

50

50 (low) 121 485 907 (198.42, 6.82) (197.83, 5.03) (197.96, 5.37) (5.86, 3.87) (11.55, 7.40) (12.91, 8.16)

114 (med) 23 88 163 (266.04, 10.44) (274.375, 18.28) (277.35, 19.17) (3.29, 4.41) (8.68, 5.20) (9.23, 4.96)

314 (high) 17 87 155 (416.47, 18.36) (415.87, 19.95) (415.31, 18.43) (3.66, 2.45) (3.50, 2.59) (3.39, 2.54)

100

100 (low) 138 766 1475 (384.08, 1.02) (386.44, 7.79) (385.62, 7.28) (8.27, 6.14) (14.26, 6.71) (14.82, 6.33)

228 (med) 132 746 1587 (421.66, 24.79) (423.80, 26.30) (425.77, 24.17) (8.25, 5.04) (11.19, 3.85) (11.84, 3.86)

628 (high) 105 503 1103 (603.6, 20.39) (606.49, 25.47) (606.7, 24.52) (3.29, 2.67) (8.51, 5.04) (8.57, 4.80)

150

150 (low) 67 351 782 (577.79, 13.94) (578.30, 12.41) (578.93, 12.40) (4.30, 3.04) (12.31, 5.27) (12.83, 4.56)

342 (med) 122 461 887 (632.67, 17.93) (626.47, 42.32) (625.76, 47.75) (7.33, 4.09) (12.73, 4.93) (13.75, 4.39)

942 (high) 101 500 1014 (833.86, 28.81) (825.45, 28.55) (821.29, 33.14) (4.98, 2.88) (10.07, 4.52) (10.82, 4.88)

TABLE I: Evaluation of diverse plan generation method on different problem inputs of varying task size and constraint level

Fig. 3: Example of LLM generated constraint program. In the code,
LLM successfully initializes the constraint generation and sets the
feature of interest ‘C’. Then, it successfully recognizes the need for
slack variables and generates them using the pre-defined function.
Finally, it adds absolute equality constraints between tasks to in-
corporate it back into the objective function in ‘apply constraint().’

task. We will provide more details about these preferences

in the case study.

Our diverse plan generation generation algorithm was

implemented using OR-Tools CP-SAT solver [29]. We con-

ducted our experiments using a Python implementation on a

machine with 32 GB RAM and an 8-core 2.1 GHz CPU.

B. Characterization of Diverse Plan Generation

In practice, when generating diverse plans, we do not aim

to find the optimal solution in each iteration, but instead, we

approximate the solution and set a computation time limit (of

10 seconds for the following experiments) for each iteration

after the initialization step. We evaluate our diverse plan gen-

eration approach, where we vary how large and constrained

the problem is, and examine the number of solutions found,

the average makespan, and the diversity of the population of

solutions. To evaluate diversity, we calculate the L1 distance

for all pairs in the solution populations, which is the sum

of the absolute difference in tasks’ start times in a pair

of schedules. We calculate the average L1 distance for all

pairs in the solution population and normalize it with the

increase factor for task size (n ·50 ) and the optimal makespan

(topt ) : L1,Norm = L1/(n ∗ topt). Lastly, we set a bound on a

feasible solution’s makespan to be within 20% of the optimal

makespan.

We found that the CP-SAT solver finds the optimal so-

lution to the problem for all 50, 100, and 150 tasks with

multiples of three different sequential constraint counts 50

(low), 114 (medium), and 314 (high) within 10 seconds.

After initialization, at iteration 1, we see a small number

of explored solutions which is due to the solver effectively

pruning the search space at the first iteration. However,

with an increase in the number of iterations, the solver

consistently finds a large number of solutions that are within

20% of the optimal solution. For almost all problem inputs,

we also see an increase in both the number of solutions

explored and the associated diversity score, indicating that

our approach can generate diverse solutions effectively. An

interesting observation is that the diversity scores in our

planning process have a higher standard deviation. We rea-

son that this is due to intermediate solutions from each

iteration being situated between the more diverse solutions,

contributing to a broader spread of diversity scores. Despite

being an incremental planning approach where we repeatedly

called the CP-SAT solver, we found that at least 95% of all

aggregated solutions were unique, indicating the approach

finds different, diverse solutions efficiently and there is no

wasted search. Additionally, we observe higher L1 distances

for problems with lower numbers of sequential constraints,

and we reason that having more parallel constraints leads to

higher chances of generating more diverse solutions.

C. Case Study

We have developed a case study where a team comprising

4 robots and 1 human is tasked with completing four

different assemblies, denoted by different colors (red, green,

orange, and blue). In this case study, we introduce two

important terms: human’s ”latent preferences”, which are the

preferences that the human operator has but are unknown

to the system, and ”specified preferences”, which are the

preferences that the human operator has become aware of
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(a) Diverse schedules generated at initialization (b) Example schedule generated at step 1 (c) Selected schedule generated at step 2

(d) Selected plans for two latent preferences (e) Selected plans for specified & latent preference (f) Selected plans for two specified preferences

Fig. 4: We show representative schedules generated during the preference elicitation and incorporation process. We also visualize the
selected solutions for different latent preference spaces. We compare the selected solutions for our proposed plan selection approach and
2 baselines.

through the preference elicitation process. Our goal in this

case study is to elicit the human’s latent preferences as well

as determine a preferred schedule that implicitly balances

these preferences.

We have defined the following latent preferences for the

humans: (P1) the human prefers Assembly A (red) to be

finished as soon as possible, (P2) they want to delay tasks

that require a part that is low in stock (purple) and schedule

them for later when more parts will be delivered, and (P3)

they need to do inspection tasks (yellow), and they prefer to

group the tasks so that they can perform them all at once.

The preference soft constraint and penalty are defined in VI.

We simulated this case study in three steps and selected

schedules that satisfied the case study story. The schedules

in this case study showed that the preferred solution has

the following range of cost for each preference: [P1: (0)-

(425), P2: (-2300) - (-1700), P3: (5000)-(8000)]. We denote

this range as the preferred solution area in Figure 4 . We

now briefly describe the case study. We show generated

schedules and show where these solutions would lie in the

latent preference space if they were known as apriori. For

each step, we select 20 schedules to present to the human.

Initialization step: The system generates diverse solutions

that minimize assembly makespan. The human specifies

the following task features of interest: assembly type and

whether tasks involve low-stock parts or inspection. Then, the

system generates solution embeddings, clusters the solutions,

and selects 20 schedules to present to the human. A subset

of the generated schedules is shown in Figure 4a, and we

see that they are diverse with respect to the task features

of interest. The human notices that assembly A tasks (red)

can be prioritized and low-stock part tasks can be delayed

so preferences P1 (assembly A) and P2 (low stock) are

specified. This can be visually confirmed from Figure 4a,

and we can see plans presented by the system (blue squares)

lie within the latent preferred solution area.

Step 1: The system has generated another set of diverse

solutions, and a representative solution is shown in Figure 4b.

As we can see, assembly A’s makespan is minimized (this

is the case for all solutions), and the low-stock part tasks

are delayed as much as possible, resulting in an increase in

makespan up to the specified 20% suboptimal bound. The

user notices that the inspection tasks (yellow) are spread out

and would prefer to group them together. Therefore, they

specify preference P3 (inspection). In Figure 4e, we compare

the latent preference P3 with the previously specified prefer-

ence P2 (low stock). The cost range for P2 has significantly

reduced because the system would have tried to minimize

the cost. For P3, we see significant coverage in solutions,

indicating that humans would be informed of plans in the

latent solution area where their preference is either strongly

satisfied or strongly violated.

Step 2: In step 2 of the system, a new set of solutions is

generated that minimizes all specified preferences in addition
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to makespan. Figure 4f shows that preferences P2 and P3

are conflicting objectives, and the system has approximated

a pareto solution for those two preferences effectively. The

selected schedule is shown in Figure 4c. We can see that

all preferences have been met, and the chosen solution has

given priority to the inspection grouping preference over the

low-stock task preference.

D. Characterization of Preference Elicitation
We also briefly discuss the proposed preference elicitation

strategy in the context of the case study. In addition to our

solution clustering approach, we have compared it with two

other methods: 1) selecting the top 20 solutions based on

the predetermined cost (red cross) and 2) randomly selecting

solutions from a diverse solution population (green circle)

which is seen in Figures 4d, 4e, 4f. Here we show that

by only specifying task features of interest and intelligently

clustering the solutions, we were able to generate diverse so-

lutions that provided strong coverage of the latent preference

space much better than randomly selecting diverse plans or

presenting the best pre-defined low-cost plans.

VIII. CONCLUSION

We have developed a framework that incorporates human

preferences into task scheduling. Our approach involves an

iterative process where we generate high-quality and diverse

plans, then elicit preferences by intelligently selecting and

presenting a representative subset of plans based on task

features of interest, and finally incorporate these preferences

as soft constraints using a large-language model. Our results

show that our diverse plan generation method can efficiently

generate schedules that are both of high quality and diverse.

Further evaluation of our framework on an assembly-inspired

case study with multiple complex preferences shows that

the system can effectively select diverse schedules to elicit

multiple human preferences, incorporate them, and converge

to a preferred schedule that balances multiple preferences.
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