13046

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Proactive Contingency-Aware Task Allocation and
Scheduling in Multi-Robot Multi-Human Cells
via Hindsight Optimization

Neel Dhanaraj", Student Member, IEEE, Heramb Nemlekar™, Member, IEEE,
Stefanos Nikolaidis*”, Member, IEEE, and Satyandra K. Gupta™, Fellow, IEEE

Abstract—Multi-robot systems are becoming more common
in various real-world applications, such as manufacturing and
warehouse logistics. However, task allocation and scheduling for
a multi-agent team face complex challenges due to the need to
simultaneously consider time-extended tasks, task constraints,
and uncertainties in execution. Potential task failures or contin-
gencies can add additional tasks to recover from the failures,
and reactively addressing contingencies can decrease teaming
efficiency. To efficiently and proactively consider contingencies,
this paper proposes treating the problem as a multi-robot task
allocation under uncertainty problem. We suggest a hierarchical
approach that divides the problem into two layers. We use
mathematical program formulation for the lower layer to find the
optimal solution for a deterministic multi-robot task allocation
problem with known task outcomes. The higher-layer search
intelligently generates more likely combinations of contingency
scenarios and calls the inner-level search repeatedly to find the
optimal task allocation sequence for the given scenario. We
validate our results in simulation for manufacturing applications
and demonstrate that our method can reduce the effect of
potential delays from contingencies.

Note to Practitioners—Automation engineers interested in deploy-
ing robotic cells in low-volume applications need to consider
contingency handling. When the occurrence of contingencies can
be characterized as probability distributions, it is often useful
to consider using a proactive approach for task allocation and
scheduling. To implement our algorithm, automation engineers
will need to develop a hierarchical task network specified by
domain experts that models task constraints and a task-agent
duration model, which may be generated from simulation envi-
ronments. Furthermore, they must identify tasks that can result
in contingencies and describe them with a probabilistic model.
This model can be generated from historical data and/or real-
world experiments. Lastly, for addressing the contingency, the
practitioner will need to specify a task procedure to recover from
a specific contingency type. To run the algorithm, we found that
repeatedly approximating the best proactive task allocation for a
fixed computation budget and dispatching the best tasks worked
well. The computation budget required to approximate the best
task allocation is directly affected by the number of contingency

Received 31 August 2024; revised 9 December 2024; accepted 2 February
2025. Date of publication 27 February 2025; date of current version 18 April
2025. This article was recommended for publication by Associate Editor Z.
Pei and Editor T. Nishi upon evaluation of the reviewers’ comments. This
work was supported by the National Science Foundation under Grant NRI
2024936. (Corresponding author: Neel Dhanaraj.)

Neel Dhanaraj, Stefanos Nikolaidis, and Satyandra K. Gupta are with
the Viterbi School of Engineering, University of Southern California, Los
Angeles, CA 90089 USA (e-mail: dhanaraj@usc.edu; nikolaid@usc.edu;
guptask@usc.edu).

Heramb Nemlekar is with the Department of Mechanical Engineering,
Virginia Tech, Blacksburg, VA 24060 USA (e-mail: hnemlekar @vt.edu).

Digital Object Identifier 10.1109/TASE.2025.3546281

scenarios that can be sampled. Therefore, the practitioner must
determine a suitable computational budget empirically based on
the number of contingencies that can occur.

Index Terms—Multi-robot systems, flexible manufacturing sys-
tems, adaptive scheduling, uncertainty, task analysis, robots,
multi-robot task allocation, proactive scheduling, contingency
management, hindsight optimization.

I. INTRODUCTION

ULTI-ROBOT systems are increasingly being con-

sidered for automating complex assembly operations
in high-mix, low-volume (HMLV) applications, which have
traditionally been carried out by human operators. Collabora-
tive robot assembly cells, such as those used in the robotic
assembly of satellites or ATVs (as shown in Figure 1), can
enhance human productivity by allowing robots to perform
repetitive tasks while humans handle high-value and fine
manipulation tasks [1], [2]. Examples of tasks executed by
robots in high-mix environments include material handling,
surface preparation, adhesive dispensing, screwing, insertion,
and inspection.

Multi-robot task allocation (MRTA) during robot assembly
can be challenging due to uncertainties in task execution, the
robots themselves, and the surrounding environment [3], [4],
[5]. These uncertainties can lead to contingencies that must be
addressed and recovered from [6], [7], and [8]. For example:

1) Screw Driving: Vision-guided screw driving may not
always be perfect. A robot may occasionally need to
make multiple attempts to successfully complete the
operation due to alignment issues or variability in the
screws or materials.

2) Adhesive Dispensing: Variations in the viscosity of the
adhesive can affect the success of dispensing, leading to
improper application and the need for correction.

3) Disassembly Operations: In refurbishing and recycling
contexts, disassembly tasks may fail due to the unpre-
dictable wear and tear of components, leading to
challenges.

4) Sensor Malfunction or Degradation: Even seemingly
simple tasks can fail if a sensor malfunctions, such as
a camera lens becoming obstructed by dust, resulting in
poor image quality and failed operations.

5) Deformation During Force-Application Operations:
Tasks involving the application of force, such as sanding,
can fail if the part deforms excessively during the

1558-3783 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

DHANARAJ et al.: PROACTIVE CONTINGENCY-AWARE TASK ALLOCATION AND SCHEDULING

(a) Satellite Assembly Cell

(b) ATV Assembly Factory

Fig. 1. Examples of robotic assembly cells that are used to motivate this work:
1) a simulation of an 8-robot featureless assembly cell intended for high-mix,
low-volume satellite manufacturing and 2) a micro-factory with ten robot
cells for all-terrain vehicle (ATV) assembly. Different stations have robots
that assemble various sub-assemblies, which must be installed in specific
sequences. However, the fixtureless nature of the cell and complex insertion
tasks create uncertainty in task execution. To minimize the occurrence of
failed tasks and wasted time due to bottlenecks, our planning approach must
consider the complex task constraints for assembling the satellites/ATVs while
managing uncertainty during policy generation.

operation, which may not be detectable until the failure
occurs.

In scenarios where failures are more likely, it is not effi-
cient to assign all challenging tasks to humans, nor should
contingencies be reactively managed, where the robotic cell
must wait for the human to address the issue. Instead, it is
preferable to 1) allow robots to attempt these tasks and, if a
failure occurs, the system can then take corrective actions;
and 2) plan over a time horizon to proactively consider
potential contingency scenarios during task allocation and
scheduling. This approach motivates the need for effective
dynamic task allocation methods for the human-robot team
in such applications to maintain teaming efficiency.

A task allocation and scheduling problem for multi-robot
team settings in the presence of contingencies requires us to
consider the effect of two different combinatorial effects. The
first effect comes from many alternative ways of allocating
robots to tasks. The second effect comes from many different
potential outcomes due to uncertainties in task execution
duration and task execution failure. Conceptually, this can
be modeled as a joint problem involving planning under
uncertainty and coordinating multi-agent allocations (e.g., a

13047

Fig. 2. An example of a contingency occurring during the assembly process.
The robot fails to insert the battery sub-assembly into the main assembly,
requiring additional contingency tasks to be executed.

tree search with two different types of branching at each level).
While this joint formulation is conceptually easy to understand
and visualize, it is computationally intractable when dealing
with non-trivial problem sizes and real-world constraints.

Choudhury et al. [9] proposed a computationally efficient
solution to address the MRTA under uncertainty problem by
decoupling the problem into a two-level hierarchical approach.
There are two ways to construct hierarchies: 1) Reason over
task uncertainty for each agent separately at the low level, and
then coordinate the agents at the high level (as proposed by
Choudhury et al. [9]) and 2) Allocate tasks to the agents and
then consider the effect of uncertainty on the entire team.

For applications with interlinked task constraints (such as
assembly tasks), we identified that if coordination does not
consider the effect of uncertainty on the team, inefficiencies
can stem from possible bottlenecks due to coupled agent
constraints, task constraints, and contingencies caused by
failed tasks. Therefore, we consider the second alternative of
constructing a two-level hierarchy. 1) The lower layer coordi-
nates multi-agent decisions, and 2) the high-level reasons for
uncertainty during team execution.

As a part of our exploratory work, we considered the
following decoupled approach, which is similar in spirit to the
previously mentioned hierarchy: a one-step lookahead algo-
rithm with optimistic rollouts generated using mixed integer
programs [10]. The method samples failure contingencies at a
higher level for each rollout and executes more deterministic
rollouts from these contingency states, thereby building a
search tree. This approach enabled us to select task allocations
with good options to recover from failures. Let us now
consider that not only can we reason on how to recover from
contingencies, but we can also reason about mitigating and
preventing contingencies.

We extended the initial exploratory work to investigate
our next insight, which is that, in addition to reasoning on
how to recover from contingencies, one can also explicitly
reason about how to mitigate and prevent them [11]. Consider
a scenario where a robotic manipulator is performing an
insertion task. However, this task may fail due to the high
uncertainty in the slot location, as shown in Figure 2. To plan
for such a contingency, there are three ways to reason about

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

13048

this contingency. Firstly, if the task fails, the robot can plan
to attempt the task again by waiting for the mobile agent to
perform high-resolution imaging to reduce uncertainty, which
we refer to as ‘recovery’. Secondly, the robot can consider
performing the task earlier or later when the mobile agent
is more likely to be available for imaging, which we call
‘mitigation’. Lastly, the task can be assigned to a different
robotic station that has close-up imaging capability, which we
refer to as ‘prevention’.

In this work, we present a hierarchical method that uses
constraint programming solvers and contingency scenario sam-
pling to generate task schedules using hindsight optimization.
This is done by explicitly reasoning how to recover, mitigate,
and prevent contingency scenarios in hindsight. This method
was first introduced in our second exploratory work [11]. Our
manuscript further extends exploratory work, and we present a
refined algorithm that includes an intelligent method for sam-
pling contingency scenarios using upper confidence bounds for
the higher level, as well as details of the mathematical program
used by the constraint programming solver for the lower level.
We also provide insights on the complexity of the proposed
approach, along with results for two contingency domains
and a discussion on the usefulness of proactive contingency
management in different assembly domains.

II. RELATED WORKS
A. Multi-Agent Task Allocation

Multi-agent task allocation has been extensively studied in
various fields of which many proposed centralized/exact as
well as decentralized/distributed approaches to solving allo-
cation problems that minimize objectives like task makespan,
energy consumption, and teaming efficiency under different
complex constraints such as spatial, ordering and time window
constraints [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21]. Several works have surveyed different problem variants
and approaches to solve them [22], [23], [24], [25]. Accord-
ing to Gerkey and Matari¢ taxonomy [26], the deterministic
version of our problem falls under the category of ST-SR-
TA (Single-Task Robots, Single-Robot Tasks, Time-Extended
Assignment). Such problems require constructing a sched-
ule of tasks for each robot, making them NP-hard. Korsah
et al. [27] extended the previous taxonomy by considering
explicit task constraint dependencies. Our problem can be
described as having CD (Complex Dependencies). In this class
of problems, the effective utilization of an agent’s schedule
depends on other agents’ schedules. Due to the uncertainty
and task constraints, our problem is CD[ST-SR-TA], which
is strongly NP-hard. For similar problems, researchers have
needed to develop specialized methods for the studied domains
in order to tackle such problems and make them tractable
[28], [29], [30].

B. Task Assignment and Scheduling

Multi-robot task allocation is a problem that is closely
related to well-studied problems in the fields of job shop
scheduling [31], [32], vehicle routing [33], [34], and general
operations research (OR) [35]. The closest problem to ours

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

is flexible job shop scheduling (FJSS), where operations are
assigned to machines and scheduled to minimize the over-
all time taken to complete tasks while taking into account
resource and task constraints. Researchers in these commu-
nities have made significant advancements in solving these
problems using mixed-integer linear programs, which rely on
solving continuous linear program relaxation as the foundation
of the search and constraint program solvers whose search
process relies on advanced constraint propagation techniques.
For robotics, robots can be considered as machines or vehicles
and tasks as jobs or nodes [22]. This concept has enabled
researchers to adapt state-of-the-art Operational research (OR)
methods to solve complex robot task assignments and schedul-
ing while considering temporal and spatial constraints [36],
[37]. Hierarchical task networks and precedence constraints
have also been used to represent complex assembly constraints
[38], [39], [40], [41], [42]. OR methods are effective for small
to medium-sized scheduling problems; however, they become
inefficient when applied to larger problems. In contrast, deep
reinforcement learning (DRL) methods have shown promise
in efficiently and approximately solving large task allocation
challenges. Previous studies have demonstrated the application
of DRL to address the flexible job shop scheduling problem
[43], [44]. These methods can learn priority dispatching rules,
making them particularly beneficial for dynamic scheduling
scenarios [45], [46].

C. Multi-Agent Sequential Decision Making Under
Uncertainty

Multi-agent sequential decision-making is usually modeled
as a Multi-Agent Markov Decision Process (MMDP). In our
case, we are dealing with a centralized MMDP that has full
knowledge and a shared objective. However, standard Markov
Decision Process approaches are not practical for solving an
MMDP due to the exponential joint action space and state
space. Consequently, researchers have turned to model-free
deep reinforcement learning (DRL) techniques [47], [48], as
well as model-based online planning approaches [49]. Deep
reinforcement learning has proven effective for managing
stochastic processing times and random task arrivals, as it
does not require explicit modeling of the environment. How-
ever, there are currently no existing DRL approaches that
proactively address the impact of failures and contingencies
since each type of failure may require a different contingency
model. Recent work has shown that the challenges of multi-
robot task allocation under uncertainty can be decoupled
for certain problems [9]. Specifically, the authors propose
computing individual agent task allocation policies at the lower
level and performing multi-agent coordination at the high-level
via conflict resolution of agent task allocations. This method
works well for a class of domains where only robot-task
assignment coordination is required, and inefficiency stems
from spatio-temporal relationships coupled with uncertainty
between each agent and its tasks, which can result in a robot’s
wasted time. Our work is new in that we present an alternative
method to decouple the problem and demonstrate its strength
on another class of problems.

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

DHANARAJ et al.: PROACTIVE CONTINGENCY-AWARE TASK ALLOCATION AND SCHEDULING

III. MULTI-ROBOT TEAM TASK ALLOCATION UNDER
UNCERTAINTY PROBLEM FORMULATION

A. Task Allocation Problem

We begin with the problem formulation for the multi-robot
task allocation problem. The problem involves a set of n agents
A; € N and a set of m tasks 7; € 7. Each agent can be either
idle, meaning they are available to be assigned a task, busy,
meaning they have been assigned a task: a4, = A; © 7
(agent i is assigned to task j), or unavailable. At any given
time, an agent can only be assigned to one task. Each task has
a specific subset of agents that can be assigned to it, denoted
by N € N. A task can either be available, in progress or
completed. The completed state is a set grouping that can be
further divided into sub-states, such as succeeded, succeeded
with delay, or failed. These sub-states are specific to the task’s
domain. Each task 7; must be completed by one agent .A; and
has a process time cost p;, that is dependent on which agent
was assigned to the task.

Our motivation for solving this problem comes from com-
plex assembly tasks that have task ordering constraints. To
represent these input constraints, we use a hierarchical task
network (HTN) representation [42]. The HTN has a root node
that encompasses the task set 7 and leaf nodes that represent
atomic tasks 7;. All other nodes are subtask groups that can
be further broken down into smaller tasks. The non-leaf nodes
further indicate a relationship for their child nodes. We use two
types of relationships: sequential nodes (—) and parallel nodes
(ID- A sequential node encodes precedence constraints and
indicates that its child nodes must be completed sequentially
from left to right. Parallel nodes indicate that there are no
constraints and that their child nodes can be executed concur-
rently.

B. Task Execution Uncertainty and Contingencies

Our main focus is to solve the problem of multi-robot
task allocation under uncertainty. We consider scenarios where
agents may fail their assigned tasks, which requires additional
recovery tasks, which we refer to as contingencies. We assume
prior knowledge of probability distributions for contingencies
to be known beforehand and are domain-dependent. This is
a reasonable assumption because the probability distributions
can be derived from historical data, expert knowledge, and
simulation model-based predictions.

In order to describe the uncertainty dynamics of a task
assigned to an agent, we use a task transition function
T(sypaa; s;‘_). This function returns the probability that a task
with initial state s, and task assignment a4, will transition
to a final completed state s7. This final state can either be
a succeeded or a task contingency state. For example, when
assembling a product, there is a probability a robot may fail
to insert a part and damage it, resulting in a contingency state.

In the event of a task contingency being observed, a separate
set of contingency tasks denoted as 7", may need to be
performed to rectify the issue. To continue the damaged part
example, additional contingency tasks like disabling the part,
acquiring a new one, and installing it into the assembly will
be included in the task set. We define a contingency function

13049

F(z;, T,HTN) — (77,HTN’) that gets triggered when a task
7; in the task set fails. It returns a new task set 7" = T U T
and a new hierarchical task network HTN’. The new HTN
specifies how to execute the contingency tasks to recover from
the failure.

C. Multi-Agent Markov Decision Process

We formally express the problem as a Multi-Agent Markov
Decision Process (MMDP), which is defined as a tuple M =
(N,S,A,T,C,s,). We use the state and action representation
to form the nodes in the higher-level search tree.

1) N={A,..., A}: Set of agents.

2) S:is the state space of the entire system where a state s €

S consists of a factored representation of all task states
and the agents states s = ({sg, ..., 87, }, {54, ...,54,})
Furthermore, each state is a decision epoch where a
new task becomes available for idle agents or an agent
finishes a task and is ready for a new task assignment.

3) A: is the action space available to the system at each
state where an action a € is a joint action consisting of
a set of agent actions a = {a4,,...,a4,}. Each action
is either a task assignment a4, = A; < 7; or a no-
operation action for an agent a4, = No — Op.

4) T(s,a,s’): is the transition probability function that
returns the probability that the state transitions from one
decision epoch to another.

5) C(s;): is the accumulated time taken to reach s; from s.

6) s, € S,: is a terminating goal state for the MDP where
all tasks in the task set have been completed.

D. Examples of Contingencies

We have gained experience in establishing an HMLV robot
assembly cell from our previous work [50]. This has helped
us identify different contingencies that can occur during oper-
ation. Some of these contingencies can only be managed
reactively, such as when a part is unavailable. Others can
be probabilistically modeled and proactively managed, such
as part insertions, screwing tasks, and robot failures. Based
on our prior implementation, we propose two broad types of
contingencies that we consider for our problem instantiation
and motivation. We first identified that an agent can complete
a task within a nominal duration or fail early, causing the
robot to be incapacitated. The robot can not execute more tasks
until a human agent performs a recovery task. We have also
identified a second type of contingency where tasks may fail,
which is detected later during a quality control testing step. To
recover from such failures, additional tasks are added to the
HTN and task set. For instance, during testing, the assembly is
detected to have been damaged earlier. Additional contingency
tasks of disassembling and reworking the parts, as well as
redoing the assembly operations, are added to the HTN and
task set.

E. Problem Statement

We aim to find a policy that efficiently assigns and schedules
tasks that minimize the expected time required to complete all

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

13050

1 Sampled State

‘ Higher Layer

|)

Ri » » » » |

M:' > > > » s’

Ps ‘\ > > > > /

\ Lower Layer /
P(s9, My) e,

! 1
:
! =~
: Do
,
2GR

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

3 Mitigation 4 Prevention
P, P B S Y
v
/ A \ Aot A om AL o1 (A o\
; A, o015 ! Ao, Ay o3 A, o1, Aot
' \
! \ : P
i ' 1 (TS !
! ! ' 73:S '
' | ! !
| guin | gk o :
V [Aye Ty Ao, ' '
\ LXIHC‘[J i L&l@cﬁ A o 15 V[Arom)
' ' \ '
\ ' \ '
\
\

[
@ P(s0, M) < AypT3

>
&
I
~
&
St

Fig. 3. Here is an illustrative example with two agents [A], A>], three tasks [7], 7, 73], and if 73 fails, a contingency task Ct3. Sampled State: The algorithm
first generates an initial optimistic state-action sequence (green) connected to sp and samples alternative states (grey) that could occur from this path. In this
example, 73, assigned to Ay, fails. Recovery: The algorithm first computes a recovery path (red) from the failed task state s;, where the contingency task
is assigned to agent 1. Mitigation: Secondly, knowing the task failed in hindsight, the algorithm next creates a new task outcome determinization M, and
generates a new path from so (blue). In this case, knowing 73 fails in hindsight, 73 is scheduled first so that the contingency task can be addressed earlier.
Prevention: Lastly, the algorithm passes a constraint into M, preventing 73 from being assigned to A and again generates a new path (yellow) that is
connected to sp. The algorithm repeatedly generates all three paths simultaneously to reason about each possible contingency.

tasks in the task set (makespan) and have the system terminate
at goal state s,. It is important to note that relying on a
single task allocation that is robust to small task duration
deviations, also known as robust scheduling problems, would
not be enough for our problem formulation. This work focuses
on dealing with contingencies that may cause significant
disruptions during the process. Therefore, we must determine
apolicy 7 : S — A, that gives efficient recourse at contingency
states so that we minimize the expected makespan of reaching
a goal state C(sg) from an initial state s9. Our objective
function becomes the following.

argmin E[C(s,)|s0, 7]
nell

(D

FE. Overview of Approach

We have developed a hierarchical approach to generate a
search tree, where the root node of the tree is the current
state, denoted as so, the terminating goal states are the leaf
nodes, and all other nodes are possible states and best actions
to take at the state that minimizes expected makespan. To
construct the tree, we first address the challenge of multi-
agent coordination at the low level. We assume deterministic
dynamics and compute good task assignments and schedules
using a constraint programming formulation. This schedule is
then converted into a sequence of states and actions based
on our MMDP formulation. The low level of our search is
discussed in Section IV.

In Section V, we propose the high level of our search,
where we address the challenge of sequential decision-making
under uncertainty by sampling likely alternative failure states
that the system can transition into when executing its task
schedule. We then compute new task allocation schedules that
recover, mitigate, and prevent these failures. We begin with a

schedule solution for the most likely task outcomes scenario.
By converting the schedule into a state-action sequence, we
then sample other scenarios that may occur. We use the
mitigation reasoning mechanism to determine how to schedule
tasks given the scenario was known in hindsight. We also use
the prevention mechanism to consider how a different agent
can complete the task by preventing the original agent from
failing the task. Lastly, the recovery reasoning method is used
to create a policy tree by generating recourse strategies if a
contingency were to occur.

In Section VI, we propose the hindsight optimization algo-
rithm that connects the low-level and high-level formulations.
The algorithm is designed to efficiently search through likely
and relevant determinized scenarios instead of exploring the
joint state and joint action space, which is computationally
expensive. We achieve this by using proposed contingency
sampling and reasoning mechanisms and solving these scenar-
ios in hindsight using a deterministic solver. The solutions of
all the sampled scenarios are then merged into a single policy
tree iteratively. Figure 3 provides an illustrative example of
the approach, and we describe the details of our methodology
in subsequent sections.

IV. LOW-LEVEL: DETERMINISTIC MULTI-ROBOT
TASK ALLOCATION

To decouple multi-agent coordination from decision-making
under uncertainty, we create a simpler determinized problem
M, where task allocation outcomes are deterministic. This
allows us to use a planner P(sy, M) to solve the classical
MRTA problem and return a task allocation and schedule
my. From the deterministic transition dynamics, the allocation
schedule will yield a sequence of states (decision epochs) and
actions (task assignments), with the trajectory terminating at

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

DHANARAJ et al.: PROACTIVE CONTINGENCY-AWARE TASK ALLOCATION AND SCHEDULING

a goal state: [So.q,do.q-1]1 < mq, where s; € S, The low-
level optimization problem becomes the following: given the
initial system state syg, we want to find the allocation n,
that minimizes the objective in Equation 2 while assuming
deterministic dynamics given by M,.

argmin [C(s,)|s,, 4]
€y

2

Essentially, we instantiate M, by determinizing all task-
agent assignment outcomes. For example, in the optimistic
case, if a task is assigned to an agent a4, = A; © 7;, then s
will result in succeeded, i.e., T(sy,aa4;, s,) =1. We mitlally
generate M, by first determinizing each task-agent assignment
outcome to be its most likely outcome. If a task outcome is
determinized as a contingency, then the resulting contingency
tasks and constraints are added to the task set and HTN of
M. Lastly, we set the task process time for an agent to be
the expected task duration for the determinized outcome.

A. Low-Level Constraint Programming Formulation

Various methods have been proposed to solve deterministic
MRTA problems. The recent advancements in mixed-integer
linear programming (MILP) and constraint programming (CP)
solvers motivate us to reformulate the problem as a mathemat-
ical program. References [51], [52], and [53], and use off the
shelf solvers to generate the solutions. Specifically, we chose a
constraint programming approach based on a flexible job shop
problem formulation. This decision is informed by the recent
success of the CP-SAT solver, which quickly returns high-
quality solutions and enables us to explicitly model constraints
without needing linearization techniques. The aim of solver P
is to find the best value for the binary agent-task assignment
decision variables and the integer task start times that minimize
the makespan while subject to task constraints. We extract
a problem instance from the determinized MDP and current
state so and present the mathematical program formulation
below.

Sets:

T Set of incomplete (unattempted and inprogress) tasks at sq
Teurr: Set of inprogress task assignments at s

N: Set of agents

Tx: Set of tasks that can be completed by agent k

N,: Set of agents that can process task i

P: Set of task precedence pairs (i, j) specifying 7; must precede
7j

Parameters:

pix: Processing time of task i executed by agent k, if the task
is inprogress then the processing time is the nominal process
time - the elapsed duration

Decision and Auxiliary Variables

1 if task iis assigned to agent k,
Xik = .
0 otherwise.
t]: Integer start time of task i
pi: Integer duration time of task i

t{: Integer end time of task i

13051

t}.: Integer start time of task i being completed by agent k
t5.: Integer end time of task i being completed by agent k

Minimize ¢ (3)
subjectto =1 +p;, VieT 4
Xig =1 > ti =t} +pix, Yi€T, VKEN (5)
t;>t, Y(i,j)eP (6)
t>1 YieT @)
(xig =D A(xjx =1
[+pi <)V E+p <))
Vi,jeTi, i#j, YkeN (8)
Y xu=1 VieT ©)
keN:,
5i=0, xip =1 VYU, k) € Teurr (10)
Xip=1->86=1), =13, VieT, VkeN
(11

The main objective of this constraint program is to deter-
mine the task assignments and their corresponding start times,
which will result in the minimum time required to complete
all tasks. This minimum time, referred to as the makespan,
is denoted by the variable ¢ and represents the time at which
the last task is completed. Equation (3) formally defines the
makespan as the objective to be minimized.

Equation (4) ensures that the end time #{ of each task i is
equal to its start time] plus the task’s processing time p;. This
ensures that the duration of each task is properly accounted for
in the schedule. Equation (5) specifies that if task 7 is assigned
to agent k (i.e., x;x = 1), then the end time te of the task-
agent pair equals the start time #;; plus the processmg time
pik- Equation (6) enforces precedence constraints, ensuring
that task j cannot start until task i is completed for all pairs of
tasks (i, j) € P with a sequential ordering constraint. Equation
(7) defines the makespan variable ¢ as greater than or equal to
the end time of every task, ensuring that ¢ captures the time
when the last task is completed.

Equation (8) ensures that each agent has non-overlapping
schedules by stipulating that if two tasks, i, and j, are assigned
to the same agent, k, their execution times must not overlap.
In other words, either task i must be completed before task
J begins, or task j must finish before task i starts. The use
of a CP-SAT approach allows for this disjunctive condition
to be defined explicitly. Equation (9) requires that each task
is assigned to exactly one agent, ensuring that no task is left
unassigned. Equation (10) states that the start times for in-
progress task assignments (i, k) equals zero and that task i is
assigned to an agent k. Finally, Equation 11 defines that if task
i is assigned to agent k, then the start time, duration, and end
time of the task will be equal to the corresponding start time,
duration, and end time of the task-agent pair.

B. Deterministic MRTA Planner

Our deterministic planning approach is illustrated in Algo-
rithm 1. The input is a start state sp and a determinized
problem instance M . From My, we extract the task-agent

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

13052

models, the process times, and the hierarchal task network
(Line 4), and from the start state, we extract the set of
incomplete tasks, current task assignments and the set of
agents (Line 5). Lastly, we extract the precedence constraint
pairs from the HTN (Line 6). These sets are inputted in a
constraint programming solver, which solves the constraint
program formulated in the prior section and returns task start
and end times as well as task assignments (Line 7). We then
convert the solution into a sequence of states and actions (Line
8). This is necessary for sampling other contingency states
from state-action pairs and constructing a search tree.

To extract the state-action trajectory, we first identify the set
of time steps (decision epochs) from ¢} and #;, where task(s)
finished, resulting in a new state and an opportunity to execute
an action. We first start with an empty sequence of actions. We
then iterate through each time step and extract the subset of
task assignments whose start time equals the time step. This
subset of task assignments is an action a;, which is appended
to the set of actions. If there is a time step with no associated
task assignment start time, we append a no-op action to the
sequence of actions. This gives us a sequence of actions [ag.].
Next, we iteratively apply these actions beginning with sy and
get the next deterministic states using the determinized MDP
M, transition function s, < T4(s;, a;). We do this until we
get the state action trajectory [so..t1,do.], where the last state
will be s,. In Section V, we will discuss how one can sample
states from the state-action trajectory.

Algorithm 1 Deterministic Planner
1: My: Determinized MDP
2: so: Initial state
3: function P(sy, My)
T Nejs pig, HTN = My
T, Teurrs N < 59
P «— HTN
t,‘s, tf? Xik < SolveCP(7x, Nij Piks T, Teurrs N, P)
[Siv+1,aiy] < ExtractTraj(t], £, xix, So, Ma)
return [s;,,a;,] >Return the state-action trajectory

R B SN

V. HIGH-LEVEL: SEQUENTIAL DECISION MAKING
UNDER UNCERTAINTY

At the high level, we want to sample other potential scenar-
ios that can occur and evaluate the effect of the contingency
by reasoning over how the system can recover from, mitigate,
and/or prevent the contingency. Consider that the low-level
deterministic task allocation 7, is a path sequence where nodes
are states and actions so.;41,do;. We then traverse the path
and sample other possible states (scenarios) that could occur
for each state-action pair (s;, ;). For each sampled state s7,
we obtain a new task-agent outcome determinization M/,
which we input into our deterministic solver P. Instead of
uniformly sampling scenarios from the scenario space, by
sampling scenarios from the state-action trajectory, we can
compute the path probability of the scenario state occurring
P(s;|s;) and use this probability to prioritize the evaluation of
scenarios that have a higher likelihood of occurring and are
closer in time to the initial statesg

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Given s; and M/, we propose three mechanisms for rea-
soning over these scenarios: how to 1) recover from these
deviations, 2) mitigate the impact of task failures in hindsight,
and 3) prevent agent task failures in hindsight. We illustrate
an example of our method in Figure 3.

Reasoning Over Sampled States: We propose the follow-
ing three reasoning mechanisms when considering a sample
contingency state:

Recovery: Our method first considers the sampled alter-
native state s; as a deviation from the original deterministic
trajectory and generates an optimistic sequence from s; to the
horizon.

[Sivt1, Gy — Pr(si, Mp) (12)

Mitigation: Secondly, the method reasons over mitigating the
impact of task failures in the sampled state by computing a
new sequence from sy given that the task failure outcomes
7; : failed of the sampled state were known in hindsight.

(i, M) My i failed (13)

[SO:t+1 5 aO:t]m —

Prevention: Lastly, we consider the effect of preventing
the agents from failing tasks by computing a deterministic
plan from sy where the agent that executed the failed task is
prevented from that task assignment only A; > 7; if there is
another agent alternative.

[S0:141, @0:]p — Pp(si, ML) MY Aje . (14)

For each sampled state, we call the deterministic planner P on
the three determinized problems [M, Z’,M{j] to generate
three sequences. These sequences are then merged into a

search tree.

VI. HINDSIGHT OPTIMIZATION ALGORITHM

We now propose the following method to create the search
tree, which is illustrated in Figure 4. Our method involves con-
structing a tree where the nodes v are system states s; and joint
actions a; based on low-level deterministic task schedules. Our
approach involves iteratively executing four main steps: 1)
selecting likely contingency states, 2) generating new state-
action trajectories using reasoning mechanisms, 3) integrating
these sequences into the search tree, and 4) backpropagating
the goal state node cost in the search tree. The last nodes of the
node trajectories are terminating goal states, with the cost of
the state being the makespan for that specific scenario. We use
bellman backups, as shown in Equation 15, to backpropagate
values to the root node. Finally, we return the lowest cost
action for a given state s; to get the task allocation.

> [T(s,a,5)C(s)]
Zx’ T(S, a, S')

Our approach is described in Algorithm 2. The first step is
to instantiate the root of the policy tree v,,, as the current
state syp (line 3). Next, the algorithm selects an unexplored
state for evaluation (line 5) and generates three determinized
problem inputs that reason over how to recover, mitigate,
and prevent task failures that occur in the selected state. In
practice, when the algorithm first starts, it will select the
root node, and we only generate the most-likely outcome

C(s) =r£1€if{1|: (15)

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

DHANARAJ et al.: PROACTIVE CONTINGENCY-AWARE TASK ALLOCATION AND SCHEDULING

13053

g Selection

g Integration Backpropagation
R M P
[]
| |
@ o o
|
00O (@) ©) @)

Fig. 4. This diagram illustrates the algorithm. The circular nodes represent states, while the square nodes represent actions. The darker the circle, the higher
the probability of that state occurring. Additionally, darker actions indicate more frequently visited actions. The algorithm begins by selecting a contingency
state based on less explored actions and higher path probability states. The next step involves generating state-action trajectories using the three reasoning
mechanisms as illustrated in Figure 3. These trajectories are then integrated into the search tree, and new contingency states are expanded. Finally, the cost

of reaching the goal states is backpropagated to the root node.

Algorithm 2 HINDSIGHT OPTIMIZATION
1: so: Current State

2: function HindsightOptimization(sg)

3 Vroot <= S0

4 while Exploration Computation Budget do

5: S; < SELECTNODE(V, ;)

6 M7, M2, M| — DETERMINIZE(s;)

7 [s,al, < Pr(si, M) >Recovery
8 [s,aln < Pulso, M) >Mitigation
9: [s,al, < Py(so, MZ) >Prevention
10: INTEGRATE

11: BACKPROPOGATE

12: while Exploitation Computation Budget do

13: S; ¢« SELECTNODE(V,00/)

14: [M]] < DETERMINIZE(s;)

15: [s,al, < P.(s;) >Recovery
16: INTEGRATE

17: BACKPROPOGATE

return Lowest Cost Action
18: function SELECTNODE(v)

19: if v is unselected then

20: return v

21: else if v is state then

22: v= argmin (C(v)-c h;\,l(vv(;))
v’ echildren(v)

23: return SELECTNODE(v)

24: else if v is action then

25: v = e leaves(v) argmax (P(vl))

26: return SELECTNODE(V)

determinization M/, from sy because we cannot reason about
task failure mitigation and prevention for already executed
tasks. For each determinization, we generate a schedule from
the deterministic planner, which is converted into a state-action
sequence (lines 7, 8, 9). The state-action sequences are then
integrated into the policy tree. During the integration step, if
new state-action pairs are added to the tree, we sample other
possible contingency states that could occur (line 10). Finally,
we backpropagate the value of the terminating goal state node
back to the root node (line 11). By executing this algorithm,

we start the search tree optimistically and, as we evaluate
contingency state scenarios and merge new node sequences,
we converge to the expected solution.

We will now explain how we select a contingency state to
evaluate, as mentioned in line 17. The algorithm begins with
the root node and continues selecting states and actions (nodes)
until we reach an unexplored contingency state. If the node is
a state, we choose an action using the upper confidence bound
heuristic. This helps in exploring new actions that may have
been recently added to the state node. If we are at an action
node, we select the state node that will lead to the unexplored
contingency state with the highest path probability. This node
selection procedure enables us to prioritize evaluating contin-
gency states that are more likely to occur.

We also observed that the prevention and mitigation mecha-
nisms work by exploring alternative task allocations, which is
essentially exploring the policy space. On the other hand, the
recovery mechanism provides coverage to help us converge to
the expected value of the policy tree. To make the search more
effective, we have divided it into two stages: exploration and
exploitation. During the exploration stage (Line 4), all three
mechanisms are called to explore different ways of executing
task schedules that may prevent and mitigate contingencies.
During the exploitation stage, only the recovery mechanism
provides sampling coverage for all possible ways of execut-
ing task schedules, and all potential paths converge to their
expected value.

A. Insights on Complexity

We now examine the number of times the algorithm calls
the recovery, mitigation, and prevention mechanisms to reason
over task contingencies by creating scenario determinizations.
The mechanisms produce new scenarios for evaluation, i.e.,
scenarios for if task 1 fails or if task 1 is not executed by
agent 1. Therefore, we can determine the number of times the
higher level calls the lower level via the reasoning mechanisms
by the number of possible scenarios there are to evaluate.

By characterizing the scenario space, we can show that the
algorithm terminates and examine how many lower-level calls
the algorithm makes if it is allowed to run to completion.
Suppose we have m tasks that can result in contingencies,

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

13054

each task can be executed with n agents, and each of those
tasks can result in / task states, no matter which agent executes
it. We can reason that the total number of times the prevention
and mitigation mechanism together is called is the number of
possible contingency scenarios to evaluate, which is simply
(n)™ — 1 (total number of scenarios minus one because the
first scenario is the initial trajectory where everything is
optimistically assumed to succeed).

Now let’s consider how many times the recovery mechanism
would be called. After initializing the search tree with the
optimistic schedule, which gives the state-action trajectory,
the recovery mechanism would be called for every possible
contingency scenario that results from the trajectory. This
means that for the initial trajectory, the recovery mechanism
would be called for ™ — 1 possible contingency scenarios.

The prevention and mitigation mechanisms are to explore
alternative ways to allocate and execute tasks and add alter-
native actions that the system can execute, as illustrated in
Figure 3. Essentially, a newly added action is a sub-tree policy
root. The recovery mechanism adds state-action trajectory
deviations and converges the value of the alternative action
(sub-tree root) from an optimistic value to its expected value.
The worst-case scenario for how many times the recovery
mechanism is called would be if, for every scenario in the
scenario space, there was a different unique state-action tra-
jectory to execute. This worst-case would mean the recovery
mechanism would be called (m" — 1) = (m % 0)" times.

Overall, we see that this algorithm will terminate after a
finite number of calls, showing that the algorithm is complete.
We also see that the number of calls to the lower level is
primarily affected by the number of tasks that can result
in a contingency. However, from our experiments, we find
that for the assembly domain, each lower-level call does not
always create a new state-action trajectory, but instead, for
many scenarios, the produced state-action trajectory solution
is merged into an existing sub-tree. Furthermore, due to the
sequential nature of each assembly, a good task allocation to
execute at the current state is generally found quickly after a
small number of mitigation/prevention calls. In domains where
there are many task contingencies that can occur and few
constraints, this method may not perform as well.

VII. RESULTS

Our primary evaluation of our proposed method is the aver-
age makespan required to complete a set of assembly tasks. We
also examine the scalability of our approach. We evaluate our
method via simulations against three other baselines on two
contingency task domains: 1) robots can become incapacitated,
and 2) robot task failures are detected during the testing stages.
We have implemented the low-level constraint programming
formulation using the OR-Tools CP-SAT solver. To conduct
numerical simulations, we use a Python implementation on a
machine with 32 GB RAM and an 8-core 2.1 GHz CPU.

A. Experimental Setup

1) Assembly Inspired Domain Problem Setup: We have
constructed a hierarchical task network template for an

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Assemblies
. Set
X X

Assemble
External Parts'

Make
Subassemblies

Assemble
Subassemblies

Test Action

Fig. 5. Hierarchical task network used to represent an example assembly
inspired from a satellite assembly domain.

assembly task inspired by the high-mix, low-volume satellite
assembly production domain. The details of the actual tasks as
well as contingencies that can occur can be found in [10], [54],
and [55]. The assembly begins with four subassemblies that
can be completed simultaneously. Once these subassemblies
are finished, they are merged to create a complete assembly
and then undergo testing. When the assembly passes the
functionality test, it is fitted with external parts, and a final
test action is performed. We assume the robotic cell can
accomplish multiple assemblies, so the final problem input
is a multi-assembly HTN, displayed in Figure 5. For the
atomic tasks, we randomly generate task durations ranging
from 10 to 25 time units and use a team of 5-6 agents to test
the system. Furthermore, each task can be completed by 1-2
agents (robot/human or robot and human). For this case study,
we assume that robots can perform tasks faster than humans.
Therefore, for all human tasks, we scale the duration by 1.5
times. We later provide domain-specific information on how
we define the task uncertainty dynamics and the task failure
contingency function for both domains.

2) Selection of Contingency Test Problems: We first iden-
tify attributes of problems where proactive contingency
management is useful. We conducted experiments on our
algorithm using various contingencies that may arise, building
on our prior work [10], [11]. Initially, we examined two
types of contingencies. The first is when the robot fails to
complete a task and must retry it. This contingency can be
modeled as a task that has the probability of either succeeding
with a nominal duration or with a large delay due to the
robot having to recover and try the task again. The second
contingency we examined is when a robot fails to complete a
task, and a contingency recovery task is added. In this case,
the contingency task is that the human must correct the error
and complete the task while the robot can be reallocated to
other tasks.

We found that proactive contingency management improved
makespan when planning for a single assembly, with a 5%
improvement in comparison to a reactive approach. This
is because assembly tasks are usually sequential in nature,
making them more susceptible to bottleneck effects from
delays due to contingencies. However, we found for problems
with two or more assemblies, the effect of proactive task
allocation becomes negligible. In other words, when multiple

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

DHANARAJ et al.: PROACTIVE CONTINGENCY-AWARE TASK ALLOCATION AND SCHEDULING

assemblies are considered concurrently, simply applying reac-
tive replanning when a large task delay occurs, or a task
fails yields similar average makespans to a proactive approach.
We conclude that proactive task allocation is only useful for
contingencies where global replanning, in hindsight, can yield
more useful task allocation strategies, and the aforementioned
contingencies only require local plan repairs. Therefore, we
investigated this approach in two contingency domains: 1) the
incapacitated robot domain and 2) the failure testing domain.
Both domains have an opportunity for global replanning.

3) Baselines: We implement and evaluate our method
against three baseline approaches.

1) Constraint Program Scheduler: A classical mixed
integer program to compute and execute a full schedule.
When the system state deviates from the schedule, we
rerun the scheduler to generate a new task assignment.
This is similar to optimistic replanning approaches [56].

2) MCTS: A centralized Monte-Carlo Tree search using
the MMDP formulation to expand on states and actions.

3) 1-Step Lookahead with Optimistic MILP Rollouts:
The formulation from our prior work [10]. We sample
states from possible actions that can be taken at the
current state and use MILP to generate state-action
trajectory rollouts.

All three baselines are online model-based planning
approaches. The classical scheduler is a reactive approach that
makes decisions one after the other, but it doesn’t factor in
the uncertainty of the problem. The 1-step lookahead method
is a more informed approach that takes into consideration
the uncertainty of the problem by sampling failure states.
The MCTS approach uses the MMDP framework to plan
and can quickly generate estimates by random sampling.
However, it may suffer from a large branching factor. We
considered including a model-free DRL baseline and adapted
the approach proposed in [43] but ultimately excluded it
due to its limitations on small-scale problems, where even
though the makespan quality underperforms compared to clas-
sical approaches like CP-SAT and MILP. Additionally, DRL
methods require significant adaptation to handle the model-
based uncertainty and dynamic job arrivals in our problem
formulation. Since our evaluation focuses on small to medium-
sized problem instances, where DRL’s scalability advantages
are less relevant, we prioritized baselines better aligned with
our objectives, such as online model-based planning under
uncertainty.

B. Scalability Analysis

We evaluated the scalability of the lower layer based on the
number of tasks in the task set and the level of constraint in
the hierarchical task network (HTN). We examined a multi-
assembly HTN, consisting of four HTNs as our case study. To
adjust the level of constraint, we vary the number of sequential
ordering constraints for the lowest subassemblies that have
atomic task leaf nodes. The resulting constraint level cate-
gories are divided into low (6 total constraint nodes), medium
(12 total constraint nodes), and high (18 total constraint
nodes). Lastly, we create different task sizes by randomly

13055

TABLE I

THIS TABLE PRESENTS THE COMPUTATION TIME REQUIRED TO CAL-
CULATE A SCHEDULE THAT IS, ON AVERAGE, 95% OF AN OPTIMAL
SOLUTION. THE NUMBER OF TASKS IN THE PROBLEM INPUT IS
THE WORST-CASE NUMBER OF TASKS THE LOWER LEVEL MAY
HAVE TO OPTIMIZE FOR GIVEN CONTINGENCIES

Constraint: Low Medium High

Warm Start: [No [Yes [No [Yes No | Yes

40 Tasks 0.2s | 0.1s | 0.9s 0.25s | 0.1s 0.1s
70 Tasks 3.2s | 0.1s 10.0s | 2.8s 1.4s 0.5s
120 Tasks 7.2s | 0.9s 16.3s | 4.1s 10.8s | 3.2's

removing atomic tasks. Our primary objective is to establish
a mapping between a problem input’s characteristics and the
minimum computation time needed to achieve a solution with
a makespan that is 95% of an optimal solution. However,
obtaining a provably optimal solution can require a significant
amount of time. Therefore, we ran the solver for 10 minutes
to establish the optimal solution benchmark. We use this
approach to create a mapping in our implementation for each
domain to determine the computation time for a selected
scenario for the low-level evaluations.

Table I displays the computation results for our implementa-
tion of CP-SAT. It is evident that the amount of time required
for computation increases exponentially with the number of
tasks. Interestingly, the “medium” constrained task set took
the longest time to compute. However, the “low” and “high”
constrained problems had lower computation times, as a highly
constrained problem has a smaller solution space to search
in, while a lowly constrained problem is more amenable
to linear relaxation techniques used by the CP-SAT solver.
This is consistent with job shop scheduling literature, where
computational complexity is a function of jobs, machines,
and precedence constraints. The scalability of our approach is
primarily limited by the complexity of the lower-level solver.
Qualitatively, our proposed method is suitable for ‘small’ and
’medium’-sized problems. For example, an instance similar
in size to a 10 x 10 Flexible Job Shop Scheduling Problem
instance, as referenced in [43], would take over an hour to
approximate a single solution. Consequently, such instances
are not feasible with our current method, as the computation
time increases significantly with the number of scenarios.

Modern mathematical programming and constraint pro-
gramming solvers have the useful feature of using a previous
solution to warm-start future computations. For instance, we
can use the decision variable values from the previous solution
to warm-start the next search when we sample contingency
states from an initial trajectory of states and actions. To test
this idea, we introduced a presolve step of 120 seconds for
the initial solution. We computed the schedules for all next
state transitions from sp, with the presolved solution as a
starting point, and measured the time needed to find 95%
of the solution. Our results show that warm-starting reduces
computation time for the lower level.

C. Results in Incapacitated Robot Scenario

We now consider our first contingency domain. We have
designed the domain for incapacitated robots, which becomes

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

13056

&
Recovery 7 «

Task S
Contingency
Tasks

(a) Incapacitated Contingency

(b) Failure Testing Contingency

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Make
Subassemblies

Assemble
External Parts

Assemble
Subassemblies

N
Contingency ™
Tasks -~

Fig. 6. This figure shows examples of how the hierarchical task network is modified when a contingency occurs for two different scenarios.

T E]

)

Fig. 7. Robot 1 fails a task (marked in red) and becomes incapacitated. Two
contingency tasks (marked in purple) are added to the task set. It can be seen
that reactively addressing the contingency creates a bottleneck as other agents
can not perform tasks due to sequential dependencies.

unavailable if a robot fails a task. This domain is based on real
assembly scenarios where a robot needs to be reset by a human
if it fails a task. To handle such a situation, we have defined
the contingency function where a recovery task is added to the
HTN and task set, which is to be done by the human agent
in case of a robot failure. Additionally, the robot can only
perform other tasks once the recovery task is completed. A
copy of the failed task is also added to the HTN, and the task
is set to be redone. Thus, two contingency tasks are added for a
task failure. The HTN modification procedure in Figure 6a. We
hypothesize that reactively considering this contingency can
lead to bottlenecks, requiring a proactive approach. Naively
allocating the tasks to the human to prevent task failures can
result in an overload of tasks, leading to a loss in efficiency.
Without proactively considering the contingency, the schedule
can have bottlenecks where no tasks are completed during
the recovery period, as shown in Figure 7. Finally, we have
defined a team of five agents for this domain: four robots and
one human. We have designated four tasks in a single assembly
that can only be executed by humans. The remaining tasks are
selected to be done by both humans and robots or specialized
by the robot. Lastly, we selected four tasks in the assembly
that can fail with a task failure probability of 0.10-0.20.

In our proposed assembly domain, we tested our approach
against three other methods. We performed interleaved

TABLE I

AVERAGE MAKESPAN AND STANDARD ERROR, AS WELL AS PERCENTAGE
IMPROVEMENT FOR BASELINES IN COMPARISON TO OUR HIERARCHI-
CAL HINDSIGHT OPTIMIZATION-BASED APPROACH (HO) FOR THE
INCAPACITATED DOMAIN

Average Makespan (seconds) & Standard Error
Tasks R-MILP MCTS 1-Step HO
26 (264, 7.98) (245, 3.77) | (237,3.56) | (231, 2.27)
52 (350, 11.09) | (343, 8.43 (332,7.59) (314, 5.68)
Percentage Improvement over Baselines
Tasks | R-MILP MCTS 1-Step
26 13.4% 5.7% 2.5%
52 10.2% 8.4% 5.4%

planning and execution by calling the planner each time the
system entered a new state. To determine the time limit for
lower-level computations, we referred to the results mentioned
in Table 1. Moreover, we specified the number of times each
lower-level mechanism could be called. For instance, the
mitigation and prevention reasoning mechanisms were called
20 times, while the recovery reasoning mechanism could be
called 40 times. These values were determined empirically,
and our algorithm performed well with these parameters.

We conducted an experiment where we increased the
number of assemblies being considered. This resulted in an
increase in the total number of tasks and contingency tasks
to be considered. We performed 30 numerical simulations to
estimate the average makespan and standard error, which are
reported in Table II. Our findings showed that we were able
to achieve a maximum improvement of around 10-13% in
average makespan for up to two assemblies (56 tasks). We
conducted an Analysis of Variance (ANOVA) test, which con-
firmed that these improvements were statistically significant,
with p = 0.0034. However, when the scheduler considered
three assemblies, we found that the opportunity for proac-
tive contingency management became negligible; that is, the
average makespan for the reactive and proactive approaches

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

DHANARAJ et al.: PROACTIVE CONTINGENCY-AWARE TASK ALLOCATION AND SCHEDULING

Reactive Contingency Management

ll
~ -l IHII L] II

Fig. 8. We show an example scheduling scenario with four assemblies
(blue, orange, yellow, green), and the blue line is where an assembly
finished. We show four tasks that have failed (marked in red). This requires
contingency tasks (marked in purple) to be executed. Reactively managing
contingencies results in a bottleneck being formed and causing unnecessary
delays. Proactively considering contingencies results reduces the effect of the
bottleneck.

was the same. This was due to the bottlenecks being negated
because more tasks were available to execute. In this domain,
for the two problem instances, we observed that reactive
planning consistently underperformed in comparison to our
approach, showing that proactive contingency management is
useful. Overall, our approach performed as well or better than
the benchmarks. The generated schedules showed that the best
policy balanced allocating tasks to the human to prevent task
failures while not overloading them with all tasks.

D. Results in Task Failure Testing Scenario

We are also interested in evaluating performance in a
domain where it is important to mitigate contingencies. We
design this assembly setup domain in the following way. After
completing the subassemblies, they are integrated to form a
full assembly and undergo a functionality test. If the test
is successful, external parts are added to the assembly and
undergo a second functionality test. However, if a failure
is detected during the testing phase, additional contingency
tasks are added to the HTN. The contingency task function
is the following: First, the assembly undergoes a rework
process where the assembly is disassembled, and the issue
is resolved. A rework agent must complete this rework task.
Finally, additional reassembly tasks are added to the task
set. This contingency function is visualized in Figure 6b.
Without proactively managing the contingency, the rework
tasks become a major bottleneck in Figure 8.

In this domain, each task can be completed by 1-2 agent
types, including a Testing Agent responsible for evaluating
assembly functionality, a Rework Agent in charge of perform-
ing the rework task for failed assemblies, three agents with
unique task proficiencies, and a human agent that can handle

13057

TABLE III

EXAMINING TASK SIZE: AVERAGE MAKESPAN AND PERCENTAGE
IMPROVEMENT FOR BASELINES IN COMPARISON TO OUR HIERARCHI-
CAL HINDSIGHT OPTIMIZATION-BASED APPROACH (HO) FOR THE
TASK TESTING DOMAIN

Average Makespan (seconds)
Tasks | R-MILP | MCTS | 1-Step | HO
30 368 352 341 339
50 461 446 427 394
100 726 710 670 648

Percentage Improvement over Baselines

Tasks | R-MILP | MCTS | 1-Step
30 7.9% 3.7% 0.6%
50 14.5% 11.7% | 4.5%
100 12.0% 8.4% 5.2%

all tasks. For this domain, we create a 4-assembly HTN (refer
to Figure 5) and randomly remove atomic task nodes to get
the following 3 case studies of 30 tasks, 50 tasks, and 100
tasks. Lastly, we increase the number of contingency tasks
and randomly choose 25% of tasks that may fail. We generate
success probabilities for those tasks to be between 0.80-0.90
when completed by a robot else; it is set to 0.95 if completed
by a human agent.

Empirically, we found the following search parameters to
work well: 10 calls for the mitigation and prevention reasoning
mechanisms and 30 calls for the recovery reasoning mecha-
nism based on initial experimentation. In total, the lower-level
deterministic scheduler was called 50 times. The large scenario
space for this domain made it difficult to evaluate our approach
via random simulation runs. In order to enable a direct
comparison of our method to the baselines, we instead used
predefined failure scenarios to measure assembly makespans.
For each case study, we created 10 failure scenarios where we
selected 1-8 tasks that would fail. As stated in the problem
setup, multiple contingency tasks are added when a task fails,
which causes delays if the contingencies are not proactively
managed. Lastly, we also generate a scenario where no tasks
fail.

In all scenarios, our method performed as well as or better
than the benchmarks. Table III shows the average makespan
results for all four methods, including the percentage improve-
ment our approach had compared to the baselines. We
observed that reactively planning consistently underperformed
compared to our approach. Furthermore, Figure 8 shows a
comparison between a reactive and proactive approach for a
specific scenario. We observed a simple behavior that emerged
where testing actions are completed as soon as possible so
that if a contingency is detected, agents can continue to work
on other assemblies while the contingency is resolved. This
highlights the benefit of proactively managing contingencies
to improve makespan.

E. Role of Recovery, Mitigation, and Prevention Components

We performed an ablation study to investigate the impact
of various components of our search algorithm. The results
showed that removing the recovery mechanism significantly

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

13058

diminished the algorithm’s performance. This outcome is
expected, as the recovery mechanism plays a role in covering
the possible scenario space when constructing the search tree
and ensuring that the cost of a task allocation action node
converges to the expected cost. Consequently, we examine
the impact of using just the mitigation mechanism or the
prevention mechanism with the recovery mechanisms.

We first examine the 26-task problem of the incapacitated
robot scenario. When we used only the mitigation reason-
ing mechanism, the average makespan quality was reduced
by 5.6%, while with only the prevention mechanism, the
makespan quality was reduced by only 1.9%. We next exam-
ined the 30 task problems for the task failure testing domain.
When only the mitigation reasoning mechanism was used,
the average makespan quality decreased by 1.8%. However,
when only the prevention mechanism was used, the makespan
quality decreased by 6.8%.

This indicates that the performance of the search compo-
nents is problem-domain dependent. We observe this in the
incapacitated robot domain, where the prevention mechanism
is more dominant for managing contingencies. In contrast,
the mitigation mechanism is more relevant in the task testing
domain. This is because, in the incapacitated domain, it is
more beneficial to prevent the incapacitation from happening,
but if it doesn’t happen, there are not many tasks added to fix
the contingency, so there is less opportunity to mitigate the
effect of contingency tasks. In sharp contrast, there are many
more contingency tasks added in the testing domain, meaning
there are more opportunities for mitigating its effect.

VIII. CONCLUSION

We have developed a new approach for multi-robot task
allocation that deals with uncertainty by decoupling the task
scheduling and decision-making under uncertainty problems.
Our results show that using constraint programming solvers
to solve a mixed integer program is an effective candidate for
creating low-level task schedules. Our proposed framework
is useful for addressing contingencies where contingency
tasks can cause significant delays. By reasoning in hindsight,
we can generate schedules that proactively recover, mitigate
and prevent contingencies. We tested this framework in two
domains and found that a proactive approach can significantly
improve makespan by 8-15%, which is significant for indus-
trial applications.

Limitations and Future Work: There are two main issues that
could limit the effectiveness of this approach. The first limi-
tation is that while we find constraint programming methods
suitable for solving the task allocation and scheduling problem,
this approach will become a computational bottleneck as we
consider very large task and agent sizes. We can improve
the performance of the lower-level solver by incorporating
domain-specific heuristics or priority dispatching rules to
compute the deterministic task allocation. Future work will
consider integrating deep reinforcement learning approaches
for approximating the lower-level solutions for large prob-
lems. Incorporating deep reinforcement learning directly or
hybridizing it with exact solving methods for the lower-level
solver will make this approach scalable to larger problem

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

sizes. The second limitation is as the number of tasks that
can fail increases, leading to more possible scenarios, the
number of contingencies that need to be sampled grows
exponentially, leading to a second computational bottleneck.
In the future, one could prioritize the evaluation of relevant
contingencies by learning a contingency selection heuristic,
such as evaluating the contingencies that may have a larger
delay effect first. Lastly, we also make simplifying assumptions
by ignoring task switch, setup time, and resource costs. Due
to these assumptions, we found that when we tested large task
sizes when a contingency happened, the makespan could be
unaffected by any bottlenecks due to the ability to immediately
switch to another assembly. However, the cost of addressing
the contingency is much higher due to the aforementioned
costs required to switch to a different assembly. Modeling
these costs can help further match the real-world scenario.

REFERENCES
[1] A. Peterson, “High-mix/low-volume manufacturers are a
sweet spot for collaborative robots,” NIST, Gaithersburg,
MD, USA, Tech. Rep., Jul. 2020. [Online]. Available:

https://www.nist.gov/blogs/manufacturing-innovation-blog/high-
mixlow-volume-manufacturers-are-sweet-spot-collaborative

[2] J. H. Kang, N. Dhanaraj, O. M. Manyar, S. Wadaskar, and S. K. Gupta,
“A task allocation and scheduling framework to facilitate efficient
human-robot collaboration in high-mix assembly applications,” in Proc.
Int. Manuf. Sci. Eng. Conf., vol. 88117, 2024, pp. 1-12.

[3] Z. Zhou, D. J. Lee, Y. Yoshinaga, S. Balakirsky, D. Guo, and Y. Zhao,
“Reactive task allocation and planning for quadrupedal and wheeled
robot teaming,” in Proc. IEEE 18th Int. Conf. Autom. Sci. Eng. (CASE),
Aug. 2022, pp. 2110-2117.

[4] F. Faruq, D. Parker, B. Laccrda, and N. Hawes, “Simultaneous task
allocation and planning under uncertainty,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Oct. 2018, pp. 3559-3564.

[S] S. Chen, Q. Nguyen, and S. K. Gupta, “A computationally efficient
approach to account for stochastic delays in multi-robot task allocation
in a proactive manner,” in Proc. IEEE 20th Int. Conf. Autom. Sci. Eng.
(CASE), Aug. 2024, pp. 3095-3102.

[6] S. Shriyam and S. K. Gupta, “Incorporation of contingency tasks in task
allocation for multirobot teams,” IEEE Trans. Autom. Sci. Eng., vol. 17,
no. 2, pp. 809-822, Apr. 2020.

[7]1 S. Shriyam and S. K. Gupta, “Incorporating potential contingency tasks
in multi-robot mission planning,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2018, pp. 3709-3715.

[8] S. Al-Hussaini, J. M. Gregory, and S. K. Gupta, “Generating task
reallocation suggestions to handle contingencies in human-supervised
multi-robot missions,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 1,
pp. 367-381, Jan. 2023.

[9] S. Choudhury, J. K. Gupta, M. J. Kochenderfer, D. Sadigh, and J. Bohg,
“Dynamic multi-robot task allocation under uncertainty and temporal
constraints,” Auton. Robots, vol. 46, no. 1, pp. 231-247, 2022.

[10] N. Dhanaraj, S. V. Narayan, S. Nikolaidis, and S. K. Gupta,
“Contingency-aware task assignment and scheduling for human-robot
teams,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2023,
pp. 5765-5771.

[11] N. Dhanaraj, J. H. Kang, A. Mukherjee, H. Nemlekar, S. Nikolaidis, and
S. K. Gupta, “Multi-robot task allocation under uncertainty via hindsight
optimization,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May
2024, pp. 16574-16580.

[12] M. Gombolay et al., “Human-machine collaborative optimization via
apprenticeship scheduling,” J. Artif. Intell. Res., vol. 63, pp. 1-49, Sep.
2018.

[13] G. Michalos, J. Spiliotopoulos, S. Makris, and G. Chryssolouris, “A
method for planning human robot shared tasks,” CIRP J. Manuf. Sci.
Technol., vol. 22, pp. 76-90, Aug. 2018.

[14] A. Roncone, O. Mangin, and B. Scassellati, “Transparent role assign-
ment and task allocation in human robot collaboration,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 1014-1021.

[15] W. Wang, R. Li, Z. M. Diekel, and Y. Jia, “Robot action planning by
online optimization in human-robot collaborative tasks,” Int. J. Intell.
Robot. Appl., vol. 2, no. 2, pp. 161-179, Jun. 2018.

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

DHANARAJ et al.: PROACTIVE CONTINGENCY-AWARE TASK ALLOCATION AND SCHEDULING

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]
[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

S. Wang, Y. Liu, Y. Qiu, S. Li, and J. Zhou, “An efficient distributed
task allocation method for maximizing task allocations of multirobot
systems,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 3, pp. 1-15, Jul.
2024.

D.-H. Lee, S. A. Zaheer, and J.-H. Kim, “A resource-oriented, decen-
tralized auction algorithm for multirobot task allocation,” IEEE Trans.
Autom. Sci. Eng., vol. 12, no. 4, pp. 1469-1481, Oct. 2015.

L. Luo, N. Chakraborty, and K. Sycara, “Distributed algorithms for
multirobot task assignment with task deadline constraints,” IEEE Trans.
Autom. Sci. Eng., vol. 12, no. 3, pp. 876-888, Jul. 2015.

M. Aggravi, G. Sirignano, P. R. Giordano, and C. Pacchierotti,
“Decentralized control of a heterogeneous human—robot team for explo-
ration and patrolling,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 4,
pp- 3109-3125, Oct. 2022.

X. Bai, A. Fielbaum, M. Kronmiiller, L. Knoedler, and J. Alonso-
Mora, “Group-based distributed auction algorithms for multi-robot
task assignment,” [EEE Trans. Autom. Sci. Eng., vol. 20, no. 2,
pp- 1292-1303, Apr. 2023.

L. Zhang, J. Zhao, E. Lamon, Y. Wang, and X. Hong, “Energy efficient
multi-robot task allocation constrained by time window and precedence,”
IEEE Trans. Autom. Sci. Eng., pp. 1-12, 2024.

H. Aziz, A. Pal, A. Pourmiri, F. Ramezani, and B. Sims, “Task allocation
using a team of robots,” Current Robot. Rep., vol. 3, no. 4, pp. 227-238,
Aug. 2022.

Y. Rizk, M. Awad, and E. W. Tunstel, “Cooperative heterogeneous multi-
robot systems: A survey,” ACM Comput. Surv., vol. 52, no. 2, pp. 1-31,
Apr. 2019.

Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of multi-
robot coordination,” Int. J. Adv. Robot. Syst., vol. 10, no. 12, p. 399,
Dec. 2013.

E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task
allocation problems with temporal and ordering constraints,” Robot.
Auto. Syst., vol. 90, pp. 55-70, Apr. 2017.

B. P. Gerkey and M. J. Matarié, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” Int. J. Robot. Res., vol. 23, no. 9,
pp. 939-954, Sep. 2004.

G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” Int. J. Robot. Res., vol. 32, no. 12,
pp. 1495-1512, Oct. 2013.

E. G. Jones, M. B. Dias, and A. Stentz, “Time-extended multi-robot
coordination for domains with intra-path constraints,” Auto. Robots,
vol. 30, no. 1, pp. 41-56, Jan. 2011.

B. Fu, W. Smith, D. M. Rizzo, M. Castanier, M. Ghaffari, and K. Barton,
“Robust task scheduling for heterogeneous robot teams under capability
uncertainty,” IEEE Trans. Robot., vol. 39, no. 2, pp. 1087-1105, Apr.
2023.

H. Wang, W. Chen, and J. Wang, “Coupled task scheduling for
heterogeneous multi-robot system of two robot types performing
complex-schedule order fulfillment tasks,” Robot. Auto. Syst., vol. 131,
Sep. 2020, Art. no. 103560.

M. L. Pinedo, Scheduling, vol. 29. Cham, Switzerland: Springer, 2012.
B. Calis and S. Bulkan, “A research survey: Review of Al solution
strategies of job shop scheduling problem,” J. Intell. Manuf., vol. 26,
no. 5, pp. 961-973, Oct. 2015.

H. C. Lau, M. Sim, and K. M. Teo, “Vehicle routing problem with time
windows and a limited number of vehicles,” Eur. J. Oper. Res., vol. 148,
no. 3, pp. 559-569, Aug. 2003.

J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and
D. Rus, “On-demand high-capacity ride-sharing via dynamic trip-vehicle
assignment,” Proc. Nat. Acad. Sci. USA, vol. 114, no. 3, pp. 462467,
Jan. 2017.

V. C. S. Wiers, “A review of the applicability of OR and Al scheduling
techniques in practice,” Omega, vol. 25, no. 2, pp. 145-153, Apr. 1997.
S. Li, D. Park, Y. Sung, J. A. Shah, and N. Roy, “Reactive task and
motion planning under temporal logic specifications,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2021, pp. 12618-12624.

M. C. Gombolay, R. J. Wilcox, and J. A. Shah, “Fast scheduling of robot
teams performing tasks with temporospatial constraints,” IEEE Trans.
Robot., vol. 34, no. 1, pp. 220-239, 2018.

Y. Cheng, L. Sun, C. Liu, and M. Tomizuka, “Towards efficient
human-robot collaboration with robust plan recognition and trajectory
prediction,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2602-2609,
Apr. 2020.

Y. Cheng, L. Sun, and M. Tomizuka, “Human-aware robot task planning
based on a hierarchical task model,” IEEE Robot. Autom. Lett., vol. 6,
no. 2, pp. 1136-1143, Apr. 2021.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

(541

[55]

[56]

13059

Y. Cheng and M. Tomizuka, “Long-term trajectory prediction of the
human hand and duration estimation of the human action,” IEEE Robot.
Autom. Lett., vol. 7, no. 1, pp. 247-254, Jan. 2022.

B. Hayes and B. Scassellati, “Autonomously constructing hierarchical
task networks for planning and human-robot collaboration,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2016, pp. 5469-5476.

J. Leu, Y. Cheng, C. Liu, and M. Tomizuka, “Robust task plan-
ning for assembly lines with human-robot collaboration,” 2022,
arXiv:2204.07936.

K. Lei et al., “A multi-action deep reinforcement learning framework
for flexible job-shop scheduling problem,” Expert Syst. Appl., vol. 205,
Nov. 2022, Art. no. 117796.

W. Song, X. Chen, Q. Li, and Z. Cao, “Flexible job-shop scheduling
via graph neural network and deep reinforcement learning,” IEEE Trans.
Ind. Informat., vol. 19, no. 2, pp. 1600-1610, Feb. 2023.

K. Lei, P. Guo, Y. Wang, J. Zhang, X. Y. Meng, and L. M. Qian, “Large-
scale dynamic scheduling for flexible job-shop with random arrivals
of new jobs by hierarchical reinforcement learning,” IEEE Trans. Ind.
Informat., vol. 20, no. 1, pp. 1007-1018, May 2023.

R. Liu, R. Piplani, and C. Toro, “Deep reinforcement learning for
dynamic scheduling of a flexible job shop,” Int. J. Prod. Res., vol. 60,
no. 13, pp. 4049-4069, 2022.

S. Ma, J. Ruan, Y. Du, R. Bucknall, and Y. Liu, “An end-to-end deep
reinforcement learning based modular task allocation framework for
autonomous mobile systems,” IEEE Trans. Autom. Sci. Eng., vol. 22,
pp. 1519-1533, 2025.

R. Bezerra et al., “Heterogeneous multi-robot task allocation for garment
transformable production using deep reinforcement learning,” in Proc.
IEEE 19th Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2023, pp. 1-8.

T. Vodopivec, S. Samothrakis, and B. Ster, “On Monte Carlo tree search
and reinforcement learning,” J. Artif. Intell. Res., vol. 60, pp. 881-936,
Dec. 2017.

N. Dhanaraj, R. Malhan, H. Nemlekar, S. Nikolaidis, and S. K. Gupta,
“Human-guided goal assignment to effectively manage workload for a
smart robotic assistant,” in Proc. 31st IEEE Int. Conf. Robot Human
Interact. Commun. (RO-MAN), Aug. 2022, pp. 1305-1312.

L. Meng, C. Zhang, Y. Ren, B. Zhang, and C. Lv, “Mixed-integer linear
programming and constraint programming formulations for solving
distributed flexible job shop scheduling problem,” Comput. Ind. Eng.,
vol. 142, Apr. 2020, Art. no. 106347.

A. Fekih, H. Hadda, I. Kacem, and A. B. Hadj-Alouane, “Mixed-integer
programming and constraint programming models for the flexible job
shop scheduling problem,” in Proc. Int. Conf. Artif. Intell. Ind. Appl.
Cham, Switzerland: Springer, Jan. 2023, pp. 110-122.

D. Miiller, M. G. Miiller, D. Kress, and E. Pesch, “An algorithm selec-
tion approach for the flexible job shop scheduling problem: Choosing
constraint programming solvers through machine learning,” Eur. J. Oper:
Res., vol. 302, no. 3, pp. 874-891, Nov. 2022.

N. Dhanaraj et al., “A human robot collaboration framework for assem-
bly tasks in high mix manufacturing applications,” in Proc. Int. Manuf.
Sci. Eng. Conf., vol. 87240, 2023, pp. 1-17.

J. H. Kang, N. Dhanaraj, S. Wadaskar, and S. K. Gupta, “Using large
language models to generate and apply contingency handling procedures
in collaborative assembly applications,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2024, pp. 15585-15592.

S. W. Yoon, A. Fern, and R. Givan, “FF-Replan: A baseline for
probabilistic planning,” in Proc. ICAPS, vol. 7, 2007, pp. 352-359.

Neel Dhanaraj (Student Member, IEEE) received
the B.S. and M.S. degrees in mechanical engineer-
ing from Worcester Polytechnic Institute, Worcester,
MA, USA. He is currently pursuing the Ph.D. degree
with the Viterbi School of Engineering, University of
Southern California, Los Angeles, CA, USA, under
the guidance of Prof. S. K. Gupta. His research inter-
ests include task allocation/scheduling and motion
planning for human-robot teams.

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Heramb Nemlekar (Member, IEEE) received the
M.S. degree in robotics engineering from Worcester
Polytechnic Institute, Worcester, MA, USA, in 2019,
and the Ph.D. degree in computer science from
the University of Southern California, Los Angeles,
CA, USA, in 2023. He is currently a Post-Doctoral
Associate with the Department of Mechanical Engi-
neering, Virginia Tech, Blacksburg, VA, USA. His
research interests include transfer learning of human
preferences, representation learning, and human-
robot co-adaptation.

Stefanos Nikolaidis (Member, IEEE) is currently
an Associate Professor of Computer Science and
the Fluor Early Career Chair of Engineering at
the University of Southern California, Los Angeles,
CA, USA. His current research interests include
robotics, human-robot interaction, quality diversity
optimization, and machine learning.

Satyandra K. Gupta (Fellow, IEEE) holds Smith
International Professorship at the Viterbi School
of Engineering, University of Southern Califor-
nia, and serves as the Director of the Center for
Advanced Manufacturing. He has published more
than 400 technical articles in journals, conference
proceedings, and edited books. His research inter-
ests include physics-informed artificial intelligence,
computational foundations for decision-making, and
human-centered automation. He is a fellow of Amer-
ican Society of Mechanical Engineers (ASME), the

Solid Modeling Association (SMA), and the Society of Manufacturing Engi-

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

