
13046 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Proactive Contingency-Aware Task Allocation and

Scheduling in Multi-Robot Multi-Human Cells

via Hindsight Optimization

Neel Dhanaraj , Student Member, IEEE, Heramb Nemlekar , Member, IEEE,

Stefanos Nikolaidis , Member, IEEE, and Satyandra K. Gupta , Fellow, IEEE

Abstract—Multi-robot systems are becoming more common
in various real-world applications, such as manufacturing and
warehouse logistics. However, task allocation and scheduling for
a multi-agent team face complex challenges due to the need to
simultaneously consider time-extended tasks, task constraints,
and uncertainties in execution. Potential task failures or contin-
gencies can add additional tasks to recover from the failures,
and reactively addressing contingencies can decrease teaming
efficiency. To efficiently and proactively consider contingencies,
this paper proposes treating the problem as a multi-robot task
allocation under uncertainty problem. We suggest a hierarchical
approach that divides the problem into two layers. We use
mathematical program formulation for the lower layer to find the
optimal solution for a deterministic multi-robot task allocation
problem with known task outcomes. The higher-layer search
intelligently generates more likely combinations of contingency
scenarios and calls the inner-level search repeatedly to find the
optimal task allocation sequence for the given scenario. We
validate our results in simulation for manufacturing applications
and demonstrate that our method can reduce the effect of
potential delays from contingencies.

Note to Practitioners—Automation engineers interested in deploy-
ing robotic cells in low-volume applications need to consider
contingency handling. When the occurrence of contingencies can
be characterized as probability distributions, it is often useful
to consider using a proactive approach for task allocation and
scheduling. To implement our algorithm, automation engineers
will need to develop a hierarchical task network specified by
domain experts that models task constraints and a task-agent
duration model, which may be generated from simulation envi-
ronments. Furthermore, they must identify tasks that can result
in contingencies and describe them with a probabilistic model.
This model can be generated from historical data and/or real-
world experiments. Lastly, for addressing the contingency, the
practitioner will need to specify a task procedure to recover from
a specific contingency type. To run the algorithm, we found that
repeatedly approximating the best proactive task allocation for a
fixed computation budget and dispatching the best tasks worked
well. The computation budget required to approximate the best
task allocation is directly affected by the number of contingency

Received 31 August 2024; revised 9 December 2024; accepted 2 February
2025. Date of publication 27 February 2025; date of current version 18 April
2025. This article was recommended for publication by Associate Editor Z.
Pei and Editor T. Nishi upon evaluation of the reviewers’ comments. This
work was supported by the National Science Foundation under Grant NRI
2024936. (Corresponding author: Neel Dhanaraj.)

Neel Dhanaraj, Stefanos Nikolaidis, and Satyandra K. Gupta are with
the Viterbi School of Engineering, University of Southern California, Los
Angeles, CA 90089 USA (e-mail: dhanaraj@usc.edu; nikolaid@usc.edu;
guptask@usc.edu).

Heramb Nemlekar is with the Department of Mechanical Engineering,
Virginia Tech, Blacksburg, VA 24060 USA (e-mail: hnemlekar@vt.edu).

Digital Object Identifier 10.1109/TASE.2025.3546281

scenarios that can be sampled. Therefore, the practitioner must
determine a suitable computational budget empirically based on
the number of contingencies that can occur.

Index Terms—Multi-robot systems, flexible manufacturing sys-
tems, adaptive scheduling, uncertainty, task analysis, robots,
multi-robot task allocation, proactive scheduling, contingency
management, hindsight optimization.

I. INTRODUCTION

MULTI-ROBOT systems are increasingly being con-

sidered for automating complex assembly operations

in high-mix, low-volume (HMLV) applications, which have

traditionally been carried out by human operators. Collabora-

tive robot assembly cells, such as those used in the robotic

assembly of satellites or ATVs (as shown in Figure 1), can

enhance human productivity by allowing robots to perform

repetitive tasks while humans handle high-value and fine

manipulation tasks [1], [2]. Examples of tasks executed by

robots in high-mix environments include material handling,

surface preparation, adhesive dispensing, screwing, insertion,

and inspection.

Multi-robot task allocation (MRTA) during robot assembly

can be challenging due to uncertainties in task execution, the

robots themselves, and the surrounding environment [3], [4],

[5]. These uncertainties can lead to contingencies that must be

addressed and recovered from [6], [7], and [8]. For example:

1) Screw Driving: Vision-guided screw driving may not

always be perfect. A robot may occasionally need to

make multiple attempts to successfully complete the

operation due to alignment issues or variability in the

screws or materials.

2) Adhesive Dispensing: Variations in the viscosity of the

adhesive can affect the success of dispensing, leading to

improper application and the need for correction.

3) Disassembly Operations: In refurbishing and recycling

contexts, disassembly tasks may fail due to the unpre-

dictable wear and tear of components, leading to

challenges.

4) Sensor Malfunction or Degradation: Even seemingly

simple tasks can fail if a sensor malfunctions, such as

a camera lens becoming obstructed by dust, resulting in

poor image quality and failed operations.

5) Deformation During Force-Application Operations:

Tasks involving the application of force, such as sanding,

can fail if the part deforms excessively during the

1558-3783 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

DHANARAJ et al.: PROACTIVE CONTINGENCY-AWARE TASK ALLOCATION AND SCHEDULING 13047

Fig. 1. Examples of robotic assembly cells that are used to motivate this work:
1) a simulation of an 8-robot featureless assembly cell intended for high-mix,
low-volume satellite manufacturing and 2) a micro-factory with ten robot
cells for all-terrain vehicle (ATV) assembly. Different stations have robots
that assemble various sub-assemblies, which must be installed in specific
sequences. However, the fixtureless nature of the cell and complex insertion
tasks create uncertainty in task execution. To minimize the occurrence of
failed tasks and wasted time due to bottlenecks, our planning approach must
consider the complex task constraints for assembling the satellites/ATVs while
managing uncertainty during policy generation.

operation, which may not be detectable until the failure

occurs.

In scenarios where failures are more likely, it is not effi-

cient to assign all challenging tasks to humans, nor should

contingencies be reactively managed, where the robotic cell

must wait for the human to address the issue. Instead, it is

preferable to 1) allow robots to attempt these tasks and, if a

failure occurs, the system can then take corrective actions;

and 2) plan over a time horizon to proactively consider

potential contingency scenarios during task allocation and

scheduling. This approach motivates the need for effective

dynamic task allocation methods for the human-robot team

in such applications to maintain teaming efficiency.

A task allocation and scheduling problem for multi-robot

team settings in the presence of contingencies requires us to

consider the effect of two different combinatorial effects. The

first effect comes from many alternative ways of allocating

robots to tasks. The second effect comes from many different

potential outcomes due to uncertainties in task execution

duration and task execution failure. Conceptually, this can

be modeled as a joint problem involving planning under

uncertainty and coordinating multi-agent allocations (e.g., a

Fig. 2. An example of a contingency occurring during the assembly process.
The robot fails to insert the battery sub-assembly into the main assembly,
requiring additional contingency tasks to be executed.

tree search with two different types of branching at each level).

While this joint formulation is conceptually easy to understand

and visualize, it is computationally intractable when dealing

with non-trivial problem sizes and real-world constraints.

Choudhury et al. [9] proposed a computationally efficient

solution to address the MRTA under uncertainty problem by

decoupling the problem into a two-level hierarchical approach.

There are two ways to construct hierarchies: 1) Reason over

task uncertainty for each agent separately at the low level, and

then coordinate the agents at the high level (as proposed by

Choudhury et al. [9]) and 2) Allocate tasks to the agents and

then consider the effect of uncertainty on the entire team.

For applications with interlinked task constraints (such as

assembly tasks), we identified that if coordination does not

consider the effect of uncertainty on the team, inefficiencies

can stem from possible bottlenecks due to coupled agent

constraints, task constraints, and contingencies caused by

failed tasks. Therefore, we consider the second alternative of

constructing a two-level hierarchy. 1) The lower layer coordi-

nates multi-agent decisions, and 2) the high-level reasons for

uncertainty during team execution.

As a part of our exploratory work, we considered the

following decoupled approach, which is similar in spirit to the

previously mentioned hierarchy: a one-step lookahead algo-

rithm with optimistic rollouts generated using mixed integer

programs [10]. The method samples failure contingencies at a

higher level for each rollout and executes more deterministic

rollouts from these contingency states, thereby building a

search tree. This approach enabled us to select task allocations

with good options to recover from failures. Let us now

consider that not only can we reason on how to recover from

contingencies, but we can also reason about mitigating and

preventing contingencies.

We extended the initial exploratory work to investigate

our next insight, which is that, in addition to reasoning on

how to recover from contingencies, one can also explicitly

reason about how to mitigate and prevent them [11]. Consider

a scenario where a robotic manipulator is performing an

insertion task. However, this task may fail due to the high

uncertainty in the slot location, as shown in Figure 2. To plan

for such a contingency, there are three ways to reason about

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

13048 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

this contingency. Firstly, if the task fails, the robot can plan

to attempt the task again by waiting for the mobile agent to

perform high-resolution imaging to reduce uncertainty, which

we refer to as ‘recovery’. Secondly, the robot can consider

performing the task earlier or later when the mobile agent

is more likely to be available for imaging, which we call

‘mitigation’. Lastly, the task can be assigned to a different

robotic station that has close-up imaging capability, which we

refer to as ‘prevention’.

In this work, we present a hierarchical method that uses

constraint programming solvers and contingency scenario sam-

pling to generate task schedules using hindsight optimization.

This is done by explicitly reasoning how to recover, mitigate,

and prevent contingency scenarios in hindsight. This method

was first introduced in our second exploratory work [11]. Our

manuscript further extends exploratory work, and we present a

refined algorithm that includes an intelligent method for sam-

pling contingency scenarios using upper confidence bounds for

the higher level, as well as details of the mathematical program

used by the constraint programming solver for the lower level.

We also provide insights on the complexity of the proposed

approach, along with results for two contingency domains

and a discussion on the usefulness of proactive contingency

management in different assembly domains.

II. RELATED WORKS

A. Multi-Agent Task Allocation

Multi-agent task allocation has been extensively studied in

various fields of which many proposed centralized/exact as

well as decentralized/distributed approaches to solving allo-

cation problems that minimize objectives like task makespan,

energy consumption, and teaming efficiency under different

complex constraints such as spatial, ordering and time window

constraints [12], [13], [14], [15], [16], [17], [18], [19], [20],

[21]. Several works have surveyed different problem variants

and approaches to solve them [22], [23], [24], [25]. Accord-

ing to Gerkey and Matarić taxonomy [26], the deterministic

version of our problem falls under the category of ST-SR-

TA (Single-Task Robots, Single-Robot Tasks, Time-Extended

Assignment). Such problems require constructing a sched-

ule of tasks for each robot, making them NP-hard. Korsah

et al. [27] extended the previous taxonomy by considering

explicit task constraint dependencies. Our problem can be

described as having CD (Complex Dependencies). In this class

of problems, the effective utilization of an agent’s schedule

depends on other agents’ schedules. Due to the uncertainty

and task constraints, our problem is CD[ST-SR-TA], which

is strongly NP-hard. For similar problems, researchers have

needed to develop specialized methods for the studied domains

in order to tackle such problems and make them tractable

[28], [29], [30].

B. Task Assignment and Scheduling

Multi-robot task allocation is a problem that is closely

related to well-studied problems in the fields of job shop

scheduling [31], [32], vehicle routing [33], [34], and general

operations research (OR) [35]. The closest problem to ours

is flexible job shop scheduling (FJSS), where operations are

assigned to machines and scheduled to minimize the over-

all time taken to complete tasks while taking into account

resource and task constraints. Researchers in these commu-

nities have made significant advancements in solving these

problems using mixed-integer linear programs, which rely on

solving continuous linear program relaxation as the foundation

of the search and constraint program solvers whose search

process relies on advanced constraint propagation techniques.

For robotics, robots can be considered as machines or vehicles

and tasks as jobs or nodes [22]. This concept has enabled

researchers to adapt state-of-the-art Operational research (OR)

methods to solve complex robot task assignments and schedul-

ing while considering temporal and spatial constraints [36],

[37]. Hierarchical task networks and precedence constraints

have also been used to represent complex assembly constraints

[38], [39], [40], [41], [42]. OR methods are effective for small

to medium-sized scheduling problems; however, they become

inefficient when applied to larger problems. In contrast, deep

reinforcement learning (DRL) methods have shown promise

in efficiently and approximately solving large task allocation

challenges. Previous studies have demonstrated the application

of DRL to address the flexible job shop scheduling problem

[43], [44]. These methods can learn priority dispatching rules,

making them particularly beneficial for dynamic scheduling

scenarios [45], [46].

C. Multi-Agent Sequential Decision Making Under

Uncertainty

Multi-agent sequential decision-making is usually modeled

as a Multi-Agent Markov Decision Process (MMDP). In our

case, we are dealing with a centralized MMDP that has full

knowledge and a shared objective. However, standard Markov

Decision Process approaches are not practical for solving an

MMDP due to the exponential joint action space and state

space. Consequently, researchers have turned to model-free

deep reinforcement learning (DRL) techniques [47], [48], as

well as model-based online planning approaches [49]. Deep

reinforcement learning has proven effective for managing

stochastic processing times and random task arrivals, as it

does not require explicit modeling of the environment. How-

ever, there are currently no existing DRL approaches that

proactively address the impact of failures and contingencies

since each type of failure may require a different contingency

model. Recent work has shown that the challenges of multi-

robot task allocation under uncertainty can be decoupled

for certain problems [9]. Specifically, the authors propose

computing individual agent task allocation policies at the lower

level and performing multi-agent coordination at the high-level

via conflict resolution of agent task allocations. This method

works well for a class of domains where only robot-task

assignment coordination is required, and inefficiency stems

from spatio-temporal relationships coupled with uncertainty

between each agent and its tasks, which can result in a robot’s

wasted time. Our work is new in that we present an alternative

method to decouple the problem and demonstrate its strength

on another class of problems.

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

DHANARAJ et al.: PROACTIVE CONTINGENCY-AWARE TASK ALLOCATION AND SCHEDULING 13049

III. MULTI-ROBOT TEAM TASK ALLOCATION UNDER

UNCERTAINTY PROBLEM FORMULATION

A. Task Allocation Problem

We begin with the problem formulation for the multi-robot

task allocation problem. The problem involves a set of n agents

Ai ∈ N and a set of m tasks τ j ∈ T . Each agent can be either

idle, meaning they are available to be assigned a task, busy,

meaning they have been assigned a task: aA j
= Ai ↔ τ j

(agent i is assigned to task j), or unavailable. At any given

time, an agent can only be assigned to one task. Each task has

a specific subset of agents that can be assigned to it, denoted

by Nτj
⊆ N. A task can either be available, in progress or

completed. The completed state is a set grouping that can be

further divided into sub-states, such as succeeded, succeeded

with delay, or failed. These sub-states are specific to the task’s

domain. Each task τ j must be completed by one agent Ak and

has a process time cost p j,k that is dependent on which agent

was assigned to the task.

Our motivation for solving this problem comes from com-

plex assembly tasks that have task ordering constraints. To

represent these input constraints, we use a hierarchical task

network (HTN) representation [42]. The HTN has a root node

that encompasses the task set T and leaf nodes that represent

atomic tasks τ j. All other nodes are subtask groups that can

be further broken down into smaller tasks. The non-leaf nodes

further indicate a relationship for their child nodes. We use two

types of relationships: sequential nodes (→) and parallel nodes

(‖). A sequential node encodes precedence constraints and

indicates that its child nodes must be completed sequentially

from left to right. Parallel nodes indicate that there are no

constraints and that their child nodes can be executed concur-

rently.

B. Task Execution Uncertainty and Contingencies

Our main focus is to solve the problem of multi-robot

task allocation under uncertainty. We consider scenarios where

agents may fail their assigned tasks, which requires additional

recovery tasks, which we refer to as contingencies. We assume

prior knowledge of probability distributions for contingencies

to be known beforehand and are domain-dependent. This is

a reasonable assumption because the probability distributions

can be derived from historical data, expert knowledge, and

simulation model-based predictions.

In order to describe the uncertainty dynamics of a task

assigned to an agent, we use a task transition function

T (sτi
, aA j
, s′
τi

). This function returns the probability that a task

with initial state sτi
and task assignment aA j

will transition

to a final completed state s′
τi

. This final state can either be

a succeeded or a task contingency state. For example, when

assembling a product, there is a probability a robot may fail

to insert a part and damage it, resulting in a contingency state.

In the event of a task contingency being observed, a separate

set of contingency tasks denoted as T cont
τi

, may need to be

performed to rectify the issue. To continue the damaged part

example, additional contingency tasks like disabling the part,

acquiring a new one, and installing it into the assembly will

be included in the task set. We define a contingency function

F(τi, T ,HTN) → (T ′,HTN′) that gets triggered when a task

τi in the task set fails. It returns a new task set T ′ = T ∪T cont
τi

and a new hierarchical task network HTN′. The new HTN

specifies how to execute the contingency tasks to recover from

the failure.

C. Multi-Agent Markov Decision Process

We formally express the problem as a Multi-Agent Markov

Decision Process (MMDP), which is defined as a tuple M =

(N, S , A,T,C, sg). We use the state and action representation

to form the nodes in the higher-level search tree.

1) N = {A1, . . . ,Ai}: Set of agents.

2) S: is the state space of the entire system where a state s ∈

S consists of a factored representation of all task states

and the agents states s = ({sτ1
. . . , sτm

}, {sA1
. . . , sAn

}).

Furthermore, each state is a decision epoch where a

new task becomes available for idle agents or an agent

finishes a task and is ready for a new task assignment.

3) A: is the action space available to the system at each

state where an action a ∈ is a joint action consisting of

a set of agent actions a = {aA1
, . . . , aAn

}. Each action

is either a task assignment aA j
= Ai ↔ τ j or a no-

operation action for an agent aAi
= No − Op.

4) T (s, a, s′): is the transition probability function that

returns the probability that the state transitions from one

decision epoch to another.

5) C(si): is the accumulated time taken to reach si from s0.

6) sg ∈ S g: is a terminating goal state for the MDP where

all tasks in the task set have been completed.

D. Examples of Contingencies

We have gained experience in establishing an HMLV robot

assembly cell from our previous work [50]. This has helped

us identify different contingencies that can occur during oper-

ation. Some of these contingencies can only be managed

reactively, such as when a part is unavailable. Others can

be probabilistically modeled and proactively managed, such

as part insertions, screwing tasks, and robot failures. Based

on our prior implementation, we propose two broad types of

contingencies that we consider for our problem instantiation

and motivation. We first identified that an agent can complete

a task within a nominal duration or fail early, causing the

robot to be incapacitated. The robot can not execute more tasks

until a human agent performs a recovery task. We have also

identified a second type of contingency where tasks may fail,

which is detected later during a quality control testing step. To

recover from such failures, additional tasks are added to the

HTN and task set. For instance, during testing, the assembly is

detected to have been damaged earlier. Additional contingency

tasks of disassembling and reworking the parts, as well as

redoing the assembly operations, are added to the HTN and

task set.

E. Problem Statement

We aim to find a policy that efficiently assigns and schedules

tasks that minimize the expected time required to complete all

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

13050 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Fig. 3. Here is an illustrative example with two agents [A1,A2], three tasks [τ1, τ2, τ3], and if τ3 fails, a contingency task Cτ3. Sampled State: The algorithm
first generates an initial optimistic state-action sequence (green) connected to s0 and samples alternative states (grey) that could occur from this path. In this
example, τ3, assigned to A2, fails. Recovery: The algorithm first computes a recovery path (red) from the failed task state s′i , where the contingency task
is assigned to agent 1. Mitigation: Secondly, knowing the task failed in hindsight, the algorithm next creates a new task outcome determinization Md and
generates a new path from s0 (blue). In this case, knowing τ3 fails in hindsight, τ3 is scheduled first so that the contingency task can be addressed earlier.
Prevention: Lastly, the algorithm passes a constraint into Md preventing τ3 from being assigned to A2 and again generates a new path (yellow) that is
connected to s0. The algorithm repeatedly generates all three paths simultaneously to reason about each possible contingency.

tasks in the task set (makespan) and have the system terminate

at goal state sg. It is important to note that relying on a

single task allocation that is robust to small task duration

deviations, also known as robust scheduling problems, would

not be enough for our problem formulation. This work focuses

on dealing with contingencies that may cause significant

disruptions during the process. Therefore, we must determine

a policy π : S → A, that gives efficient recourse at contingency

states so that we minimize the expected makespan of reaching

a goal state C(sg) from an initial state s0. Our objective

function becomes the following.

argmin
π∈Π

E[C(sg)|s0, π] (1)

F. Overview of Approach

We have developed a hierarchical approach to generate a

search tree, where the root node of the tree is the current

state, denoted as s0, the terminating goal states are the leaf

nodes, and all other nodes are possible states and best actions

to take at the state that minimizes expected makespan. To

construct the tree, we first address the challenge of multi-

agent coordination at the low level. We assume deterministic

dynamics and compute good task assignments and schedules

using a constraint programming formulation. This schedule is

then converted into a sequence of states and actions based

on our MMDP formulation. The low level of our search is

discussed in Section IV.

In Section V, we propose the high level of our search,

where we address the challenge of sequential decision-making

under uncertainty by sampling likely alternative failure states

that the system can transition into when executing its task

schedule. We then compute new task allocation schedules that

recover, mitigate, and prevent these failures. We begin with a

schedule solution for the most likely task outcomes scenario.

By converting the schedule into a state-action sequence, we

then sample other scenarios that may occur. We use the

mitigation reasoning mechanism to determine how to schedule

tasks given the scenario was known in hindsight. We also use

the prevention mechanism to consider how a different agent

can complete the task by preventing the original agent from

failing the task. Lastly, the recovery reasoning method is used

to create a policy tree by generating recourse strategies if a

contingency were to occur.

In Section VI, we propose the hindsight optimization algo-

rithm that connects the low-level and high-level formulations.

The algorithm is designed to efficiently search through likely

and relevant determinized scenarios instead of exploring the

joint state and joint action space, which is computationally

expensive. We achieve this by using proposed contingency

sampling and reasoning mechanisms and solving these scenar-

ios in hindsight using a deterministic solver. The solutions of

all the sampled scenarios are then merged into a single policy

tree iteratively. Figure 3 provides an illustrative example of

the approach, and we describe the details of our methodology

in subsequent sections.

IV. LOW-LEVEL: DETERMINISTIC MULTI-ROBOT

TASK ALLOCATION

To decouple multi-agent coordination from decision-making

under uncertainty, we create a simpler determinized problem

Md, where task allocation outcomes are deterministic. This

allows us to use a planner P(s0,Md) to solve the classical

MRTA problem and return a task allocation and schedule

πd. From the deterministic transition dynamics, the allocation

schedule will yield a sequence of states (decision epochs) and

actions (task assignments), with the trajectory terminating at

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

DHANARAJ et al.: PROACTIVE CONTINGENCY-AWARE TASK ALLOCATION AND SCHEDULING 13051

a goal state: [s0:d, a0:d−1] ← πd, where sd ∈ S g. The low-

level optimization problem becomes the following: given the

initial system state s0, we want to find the allocation πd

that minimizes the objective in Equation 2 while assuming

deterministic dynamics given by Md.

argmin
πd∈Πd

[C(sg)|so, πd] (2)

Essentially, we instantiate Md by determinizing all task-

agent assignment outcomes. For example, in the optimistic

case, if a task is assigned to an agent aA j
= A j ↔ τi, then s′

τ j

will result in succeeded, i.e., T (sτi
, aA j
, s′
τ j

) = 1. We initially

generate Md by first determinizing each task-agent assignment

outcome to be its most likely outcome. If a task outcome is

determinized as a contingency, then the resulting contingency

tasks and constraints are added to the task set and HTN of

Md. Lastly, we set the task process time for an agent to be

the expected task duration for the determinized outcome.

A. Low-Level Constraint Programming Formulation

Various methods have been proposed to solve deterministic

MRTA problems. The recent advancements in mixed-integer

linear programming (MILP) and constraint programming (CP)

solvers motivate us to reformulate the problem as a mathemat-

ical program. References [51], [52], and [53], and use off the

shelf solvers to generate the solutions. Specifically, we chose a

constraint programming approach based on a flexible job shop

problem formulation. This decision is informed by the recent

success of the CP-SAT solver, which quickly returns high-

quality solutions and enables us to explicitly model constraints

without needing linearization techniques. The aim of solver P

is to find the best value for the binary agent-task assignment

decision variables and the integer task start times that minimize

the makespan while subject to task constraints. We extract

a problem instance from the determinized MDP and current

state s0 and present the mathematical program formulation

below.

Sets:

T : Set of incomplete (unattempted and inprogress) tasks at s0

Tcurr: Set of inprogress task assignments at s0

N: Set of agents

Tk: Set of tasks that can be completed by agent k

Nτi
: Set of agents that can process task i

P: Set of task precedence pairs (i, j) specifying τi must precede

τ j

Parameters:

pi,k: Processing time of task i executed by agent k, if the task

is inprogress then the processing time is the nominal process

time - the elapsed duration

Decision and Auxiliary Variables

xi,k =

(

1 if task iis assigned to agent k,

0 otherwise.

ts
i : Integer start time of task i

pi: Integer duration time of task i

te
i : Integer end time of task i

ts
ik: Integer start time of task i being completed by agent k

te
ik: Integer end time of task i being completed by agent k

Minimize t (3)

subject to te
i = ts

i + pi, ∀i ∈ T (4)

xi,k = 1→ te
i,k = ts

i,k + pi,k, ∀i ∈ T , ∀k ∈ N (5)

ts
j ≥ te

i , ∀(i, j) ∈ P (6)

t ≥ te
i ∀i ∈ T (7)

(xi,k = 1) ∧ (x j,k = 1)

→
�

(ts
i + pi ≤ ts

j) ∨ (ts
j + p j ≤ ts

i)
�

∀i, j ∈ Tk, i , j, ∀k ∈ N (8)
X

k∈Nτi

xi,k = 1 ∀i ∈ T (9)

si = 0, xi,k = 1 ∀(i, k) ∈ Tcurr (10)

xi,k = 1→ ts
i = ts

ik, te
i = te

ik ∀i ∈ T , ∀k ∈ N

(11)

The main objective of this constraint program is to deter-

mine the task assignments and their corresponding start times,

which will result in the minimum time required to complete

all tasks. This minimum time, referred to as the makespan,

is denoted by the variable t and represents the time at which

the last task is completed. Equation (3) formally defines the

makespan as the objective to be minimized.

Equation (4) ensures that the end time te
i of each task i is

equal to its start time ts
i plus the task’s processing time pi. This

ensures that the duration of each task is properly accounted for

in the schedule. Equation (5) specifies that if task i is assigned

to agent k (i.e., xi,k = 1), then the end time te
i,k of the task-

agent pair equals the start time ts
i,k plus the processing time

pi,k. Equation (6) enforces precedence constraints, ensuring

that task j cannot start until task i is completed for all pairs of

tasks (i, j) ∈ P with a sequential ordering constraint. Equation

(7) defines the makespan variable t as greater than or equal to

the end time of every task, ensuring that t captures the time

when the last task is completed.

Equation (8) ensures that each agent has non-overlapping

schedules by stipulating that if two tasks, i, and j, are assigned

to the same agent, k, their execution times must not overlap.

In other words, either task i must be completed before task

j begins, or task j must finish before task i starts. The use

of a CP-SAT approach allows for this disjunctive condition

to be defined explicitly. Equation (9) requires that each task

is assigned to exactly one agent, ensuring that no task is left

unassigned. Equation (10) states that the start times for in-

progress task assignments (i, k) equals zero and that task i is

assigned to an agent k. Finally, Equation 11 defines that if task

i is assigned to agent k, then the start time, duration, and end

time of the task will be equal to the corresponding start time,

duration, and end time of the task-agent pair.

B. Deterministic MRTA Planner

Our deterministic planning approach is illustrated in Algo-

rithm 1. The input is a start state s0 and a determinized

problem instance Md. From Md, we extract the task-agent

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

13052 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

models, the process times, and the hierarchal task network

(Line 4), and from the start state, we extract the set of

incomplete tasks, current task assignments and the set of

agents (Line 5). Lastly, we extract the precedence constraint

pairs from the HTN (Line 6). These sets are inputted in a

constraint programming solver, which solves the constraint

program formulated in the prior section and returns task start

and end times as well as task assignments (Line 7). We then

convert the solution into a sequence of states and actions (Line

8). This is necessary for sampling other contingency states

from state-action pairs and constructing a search tree.

To extract the state-action trajectory, we first identify the set

of time steps (decision epochs) from ts
i and te

i , where task(s)

finished, resulting in a new state and an opportunity to execute

an action. We first start with an empty sequence of actions. We

then iterate through each time step and extract the subset of

task assignments whose start time equals the time step. This

subset of task assignments is an action ai, which is appended

to the set of actions. If there is a time step with no associated

task assignment start time, we append a no-op action to the

sequence of actions. This gives us a sequence of actions [a0:t].

Next, we iteratively apply these actions beginning with s0 and

get the next deterministic states using the determinized MDP

Md transition function si+1 ← Td(si, ai). We do this until we

get the state action trajectory [s0:t+1, a0:t], where the last state

will be sg. In Section V, we will discuss how one can sample

states from the state-action trajectory.

Algorithm 1 Deterministic Planner

1: Md: Determinized MDP

2: s0: Initial state

3: function P(s0,Md)

4: Tk,Nτ j
, pi,k,HTN←Md

5: T , Tcurr,N← s0

6: P← HTN

7: ts
i , t

e
i , xi,k ← SolveCP(Tk,Nτ j

, pi,k, T , Tcurr,N, P)

8: [si:t+1, ai:t]← ExtractTraj(ts
i , t

e
i , xi,k, s0,Md)

9: return [si:t+1, ai:t] .Return the state-action trajectory

V. HIGH-LEVEL: SEQUENTIAL DECISION MAKING

UNDER UNCERTAINTY

At the high level, we want to sample other potential scenar-

ios that can occur and evaluate the effect of the contingency

by reasoning over how the system can recover from, mitigate,

and/or prevent the contingency. Consider that the low-level

deterministic task allocation πd is a path sequence where nodes

are states and actions s0:t+1, a0:t. We then traverse the path

and sample other possible states (scenarios) that could occur

for each state-action pair (si, ai). For each sampled state s′i ,

we obtain a new task-agent outcome determinization M′
d,

which we input into our deterministic solver P . Instead of

uniformly sampling scenarios from the scenario space, by

sampling scenarios from the state-action trajectory, we can

compute the path probability of the scenario state occurring

P(s′i |si) and use this probability to prioritize the evaluation of

scenarios that have a higher likelihood of occurring and are

closer in time to the initial states0

Given s′i and M′
d, we propose three mechanisms for rea-

soning over these scenarios: how to 1) recover from these

deviations, 2) mitigate the impact of task failures in hindsight,

and 3) prevent agent task failures in hindsight. We illustrate

an example of our method in Figure 3.

Reasoning Over Sampled States: We propose the follow-

ing three reasoning mechanisms when considering a sample

contingency state:

Recovery: Our method first considers the sampled alter-

native state s′i as a deviation from the original deterministic

trajectory and generates an optimistic sequence from si to the

horizon.

[si:t+1, ai:t]r ← Pr(s′i ,M
r
d) (12)

Mitigation: Secondly, the method reasons over mitigating the

impact of task failures in the sampled state by computing a

new sequence from s0 given that the task failure outcomes

τi : failed of the sampled state were known in hindsight.

[s0:t+1, a0:t]m ← Pm(s′i ,M
m
d) M

m
d ← τi : failed (13)

Prevention: Lastly, we consider the effect of preventing

the agents from failing tasks by computing a deterministic

plan from s0 where the agent that executed the failed task is

prevented from that task assignment only A j = τi if there is

another agent alternative.

[s0:t+1, a0:t]p ← Pp(s′i ,M
p

d) M
p

d ← A j = τi (14)

For each sampled state, we call the deterministic planner P on

the three determinized problems [Mr
d,M

m
d ,M

p

d] to generate

three sequences. These sequences are then merged into a

search tree.

VI. HINDSIGHT OPTIMIZATION ALGORITHM

We now propose the following method to create the search

tree, which is illustrated in Figure 4. Our method involves con-

structing a tree where the nodes v are system states si and joint

actions ai based on low-level deterministic task schedules. Our

approach involves iteratively executing four main steps: 1)

selecting likely contingency states, 2) generating new state-

action trajectories using reasoning mechanisms, 3) integrating

these sequences into the search tree, and 4) backpropagating

the goal state node cost in the search tree. The last nodes of the

node trajectories are terminating goal states, with the cost of

the state being the makespan for that specific scenario. We use

bellman backups, as shown in Equation 15, to backpropagate

values to the root node. Finally, we return the lowest cost

action for a given state si to get the task allocation.

C(s) = min
a∈A

�
P

s′ [T (s, a, s′)C(s′)]
P

s′ T (s, a, s′)

�

(15)

Our approach is described in Algorithm 2. The first step is

to instantiate the root of the policy tree vroot as the current

state s0 (line 3). Next, the algorithm selects an unexplored

state for evaluation (line 5) and generates three determinized

problem inputs that reason over how to recover, mitigate,

and prevent task failures that occur in the selected state. In

practice, when the algorithm first starts, it will select the

root node, and we only generate the most-likely outcome

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

DHANARAJ et al.: PROACTIVE CONTINGENCY-AWARE TASK ALLOCATION AND SCHEDULING 13053

Fig. 4. This diagram illustrates the algorithm. The circular nodes represent states, while the square nodes represent actions. The darker the circle, the higher
the probability of that state occurring. Additionally, darker actions indicate more frequently visited actions. The algorithm begins by selecting a contingency
state based on less explored actions and higher path probability states. The next step involves generating state-action trajectories using the three reasoning
mechanisms as illustrated in Figure 3. These trajectories are then integrated into the search tree, and new contingency states are expanded. Finally, the cost
of reaching the goal states is backpropagated to the root node.

Algorithm 2 HINDSIGHT OPTIMIZATION

1: s0: Current State

2: function HindsightOptimization(s0)

3: vroot ← s0

4: while Exploration Computation Budget do

5: si ← SELECTNODE(vroot)

6: [Mr
d,M

m
d ,M

p

d]← DETERMINIZE(si)

7: [s, a]r ← Pr(si,M
r
d) .Recovery

8: [s, a]m ← Pm(s0,M
m
d) .Mitigation

9: [s, a]p ← Pp(s0,M
p

d) .Prevention

10: INTEGRATE

11: BACKPROPOGATE

12: while Exploitation Computation Budget do

13: si ← SELECTNODE(vroot)

14: [Mr
d]← DETERMINIZE(si)

15: [s, a]r ← Pr(si) .Recovery

16: INTEGRATE

17: BACKPROPOGATE

return Lowest Cost Action

18: function SELECTNODE(v)

19: if v is unselected then

20: return v

21: else if v is state then

22: v = argmin
v′∈children(v)

�

C(v) − c

q

ln N(v)

N(v′)

�

23: return SELECTNODE(v)

24: else if v is action then

25: vl = vl ∈ leaves(v) argmax
�

P(vl)
�

26: return SELECTNODE(v)

determinization Mr
d from s0 because we cannot reason about

task failure mitigation and prevention for already executed

tasks. For each determinization, we generate a schedule from

the deterministic planner, which is converted into a state-action

sequence (lines 7, 8, 9). The state-action sequences are then

integrated into the policy tree. During the integration step, if

new state-action pairs are added to the tree, we sample other

possible contingency states that could occur (line 10). Finally,

we backpropagate the value of the terminating goal state node

back to the root node (line 11). By executing this algorithm,

we start the search tree optimistically and, as we evaluate

contingency state scenarios and merge new node sequences,

we converge to the expected solution.

We will now explain how we select a contingency state to

evaluate, as mentioned in line 17. The algorithm begins with

the root node and continues selecting states and actions (nodes)

until we reach an unexplored contingency state. If the node is

a state, we choose an action using the upper confidence bound

heuristic. This helps in exploring new actions that may have

been recently added to the state node. If we are at an action

node, we select the state node that will lead to the unexplored

contingency state with the highest path probability. This node

selection procedure enables us to prioritize evaluating contin-

gency states that are more likely to occur.

We also observed that the prevention and mitigation mecha-

nisms work by exploring alternative task allocations, which is

essentially exploring the policy space. On the other hand, the

recovery mechanism provides coverage to help us converge to

the expected value of the policy tree. To make the search more

effective, we have divided it into two stages: exploration and

exploitation. During the exploration stage (Line 4), all three

mechanisms are called to explore different ways of executing

task schedules that may prevent and mitigate contingencies.

During the exploitation stage, only the recovery mechanism

provides sampling coverage for all possible ways of execut-

ing task schedules, and all potential paths converge to their

expected value.

A. Insights on Complexity

We now examine the number of times the algorithm calls

the recovery, mitigation, and prevention mechanisms to reason

over task contingencies by creating scenario determinizations.

The mechanisms produce new scenarios for evaluation, i.e.,

scenarios for if task 1 fails or if task 1 is not executed by

agent 1. Therefore, we can determine the number of times the

higher level calls the lower level via the reasoning mechanisms

by the number of possible scenarios there are to evaluate.

By characterizing the scenario space, we can show that the

algorithm terminates and examine how many lower-level calls

the algorithm makes if it is allowed to run to completion.

Suppose we have m tasks that can result in contingencies,

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

13054 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

each task can be executed with n agents, and each of those

tasks can result in l task states, no matter which agent executes

it. We can reason that the total number of times the prevention

and mitigation mechanism together is called is the number of

possible contingency scenarios to evaluate, which is simply

(nl)m − 1 (total number of scenarios minus one because the

first scenario is the initial trajectory where everything is

optimistically assumed to succeed).

Now let’s consider how many times the recovery mechanism

would be called. After initializing the search tree with the

optimistic schedule, which gives the state-action trajectory,

the recovery mechanism would be called for every possible

contingency scenario that results from the trajectory. This

means that for the initial trajectory, the recovery mechanism

would be called for nm − 1 possible contingency scenarios.

The prevention and mitigation mechanisms are to explore

alternative ways to allocate and execute tasks and add alter-

native actions that the system can execute, as illustrated in

Figure 3. Essentially, a newly added action is a sub-tree policy

root. The recovery mechanism adds state-action trajectory

deviations and converges the value of the alternative action

(sub-tree root) from an optimistic value to its expected value.

The worst-case scenario for how many times the recovery

mechanism is called would be if, for every scenario in the

scenario space, there was a different unique state-action tra-

jectory to execute. This worst-case would mean the recovery

mechanism would be called (mn − 1) ∗ (m ∗ o)n times.

Overall, we see that this algorithm will terminate after a

finite number of calls, showing that the algorithm is complete.

We also see that the number of calls to the lower level is

primarily affected by the number of tasks that can result

in a contingency. However, from our experiments, we find

that for the assembly domain, each lower-level call does not

always create a new state-action trajectory, but instead, for

many scenarios, the produced state-action trajectory solution

is merged into an existing sub-tree. Furthermore, due to the

sequential nature of each assembly, a good task allocation to

execute at the current state is generally found quickly after a

small number of mitigation/prevention calls. In domains where

there are many task contingencies that can occur and few

constraints, this method may not perform as well.

VII. RESULTS

Our primary evaluation of our proposed method is the aver-

age makespan required to complete a set of assembly tasks. We

also examine the scalability of our approach. We evaluate our

method via simulations against three other baselines on two

contingency task domains: 1) robots can become incapacitated,

and 2) robot task failures are detected during the testing stages.

We have implemented the low-level constraint programming

formulation using the OR-Tools CP-SAT solver. To conduct

numerical simulations, we use a Python implementation on a

machine with 32 GB RAM and an 8-core 2.1 GHz CPU.

A. Experimental Setup

1) Assembly Inspired Domain Problem Setup: We have

constructed a hierarchical task network template for an

Fig. 5. Hierarchical task network used to represent an example assembly
inspired from a satellite assembly domain.

assembly task inspired by the high-mix, low-volume satellite

assembly production domain. The details of the actual tasks as

well as contingencies that can occur can be found in [10], [54],

and [55]. The assembly begins with four subassemblies that

can be completed simultaneously. Once these subassemblies

are finished, they are merged to create a complete assembly

and then undergo testing. When the assembly passes the

functionality test, it is fitted with external parts, and a final

test action is performed. We assume the robotic cell can

accomplish multiple assemblies, so the final problem input

is a multi-assembly HTN, displayed in Figure 5. For the

atomic tasks, we randomly generate task durations ranging

from 10 to 25 time units and use a team of 5-6 agents to test

the system. Furthermore, each task can be completed by 1-2

agents (robot/human or robot and human). For this case study,

we assume that robots can perform tasks faster than humans.

Therefore, for all human tasks, we scale the duration by 1.5

times. We later provide domain-specific information on how

we define the task uncertainty dynamics and the task failure

contingency function for both domains.

2) Selection of Contingency Test Problems: We first iden-

tify attributes of problems where proactive contingency

management is useful. We conducted experiments on our

algorithm using various contingencies that may arise, building

on our prior work [10], [11]. Initially, we examined two

types of contingencies. The first is when the robot fails to

complete a task and must retry it. This contingency can be

modeled as a task that has the probability of either succeeding

with a nominal duration or with a large delay due to the

robot having to recover and try the task again. The second

contingency we examined is when a robot fails to complete a

task, and a contingency recovery task is added. In this case,

the contingency task is that the human must correct the error

and complete the task while the robot can be reallocated to

other tasks.

We found that proactive contingency management improved

makespan when planning for a single assembly, with a 5%

improvement in comparison to a reactive approach. This

is because assembly tasks are usually sequential in nature,

making them more susceptible to bottleneck effects from

delays due to contingencies. However, we found for problems

with two or more assemblies, the effect of proactive task

allocation becomes negligible. In other words, when multiple

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

DHANARAJ et al.: PROACTIVE CONTINGENCY-AWARE TASK ALLOCATION AND SCHEDULING 13055

assemblies are considered concurrently, simply applying reac-

tive replanning when a large task delay occurs, or a task

fails yields similar average makespans to a proactive approach.

We conclude that proactive task allocation is only useful for

contingencies where global replanning, in hindsight, can yield

more useful task allocation strategies, and the aforementioned

contingencies only require local plan repairs. Therefore, we

investigated this approach in two contingency domains: 1) the

incapacitated robot domain and 2) the failure testing domain.

Both domains have an opportunity for global replanning.

3) Baselines: We implement and evaluate our method

against three baseline approaches.

1) Constraint Program Scheduler: A classical mixed

integer program to compute and execute a full schedule.

When the system state deviates from the schedule, we

rerun the scheduler to generate a new task assignment.

This is similar to optimistic replanning approaches [56].

2) MCTS: A centralized Monte-Carlo Tree search using

the MMDP formulation to expand on states and actions.

3) 1-Step Lookahead with Optimistic MILP Rollouts:

The formulation from our prior work [10]. We sample

states from possible actions that can be taken at the

current state and use MILP to generate state-action

trajectory rollouts.

All three baselines are online model-based planning

approaches. The classical scheduler is a reactive approach that

makes decisions one after the other, but it doesn’t factor in

the uncertainty of the problem. The 1-step lookahead method

is a more informed approach that takes into consideration

the uncertainty of the problem by sampling failure states.

The MCTS approach uses the MMDP framework to plan

and can quickly generate estimates by random sampling.

However, it may suffer from a large branching factor. We

considered including a model-free DRL baseline and adapted

the approach proposed in [43] but ultimately excluded it

due to its limitations on small-scale problems, where even

though the makespan quality underperforms compared to clas-

sical approaches like CP-SAT and MILP. Additionally, DRL

methods require significant adaptation to handle the model-

based uncertainty and dynamic job arrivals in our problem

formulation. Since our evaluation focuses on small to medium-

sized problem instances, where DRL’s scalability advantages

are less relevant, we prioritized baselines better aligned with

our objectives, such as online model-based planning under

uncertainty.

B. Scalability Analysis

We evaluated the scalability of the lower layer based on the

number of tasks in the task set and the level of constraint in

the hierarchical task network (HTN). We examined a multi-

assembly HTN, consisting of four HTNs as our case study. To

adjust the level of constraint, we vary the number of sequential

ordering constraints for the lowest subassemblies that have

atomic task leaf nodes. The resulting constraint level cate-

gories are divided into low (6 total constraint nodes), medium

(12 total constraint nodes), and high (18 total constraint

nodes). Lastly, we create different task sizes by randomly

TABLE I

THIS TABLE PRESENTS THE COMPUTATION TIME REQUIRED TO CAL-

CULATE A SCHEDULE THAT IS, ON AVERAGE, 95% OF AN OPTIMAL

SOLUTION. THE NUMBER OF TASKS IN THE PROBLEM INPUT IS

THE WORST-CASE NUMBER OF TASKS THE LOWER LEVEL MAY

HAVE TO OPTIMIZE FOR GIVEN CONTINGENCIES

removing atomic tasks. Our primary objective is to establish

a mapping between a problem input’s characteristics and the

minimum computation time needed to achieve a solution with

a makespan that is 95% of an optimal solution. However,

obtaining a provably optimal solution can require a significant

amount of time. Therefore, we ran the solver for 10 minutes

to establish the optimal solution benchmark. We use this

approach to create a mapping in our implementation for each

domain to determine the computation time for a selected

scenario for the low-level evaluations.

Table I displays the computation results for our implementa-

tion of CP-SAT. It is evident that the amount of time required

for computation increases exponentially with the number of

tasks. Interestingly, the “medium” constrained task set took

the longest time to compute. However, the “low” and “high”

constrained problems had lower computation times, as a highly

constrained problem has a smaller solution space to search

in, while a lowly constrained problem is more amenable

to linear relaxation techniques used by the CP-SAT solver.

This is consistent with job shop scheduling literature, where

computational complexity is a function of jobs, machines,

and precedence constraints. The scalability of our approach is

primarily limited by the complexity of the lower-level solver.

Qualitatively, our proposed method is suitable for ‘small’ and

’medium’-sized problems. For example, an instance similar

in size to a 10 × 10 Flexible Job Shop Scheduling Problem

instance, as referenced in [43], would take over an hour to

approximate a single solution. Consequently, such instances

are not feasible with our current method, as the computation

time increases significantly with the number of scenarios.

Modern mathematical programming and constraint pro-

gramming solvers have the useful feature of using a previous

solution to warm-start future computations. For instance, we

can use the decision variable values from the previous solution

to warm-start the next search when we sample contingency

states from an initial trajectory of states and actions. To test

this idea, we introduced a presolve step of 120 seconds for

the initial solution. We computed the schedules for all next

state transitions from s0, with the presolved solution as a

starting point, and measured the time needed to find 95%

of the solution. Our results show that warm-starting reduces

computation time for the lower level.

C. Results in Incapacitated Robot Scenario

We now consider our first contingency domain. We have

designed the domain for incapacitated robots, which becomes

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

13056 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Fig. 6. This figure shows examples of how the hierarchical task network is modified when a contingency occurs for two different scenarios.

Fig. 7. Robot 1 fails a task (marked in red) and becomes incapacitated. Two
contingency tasks (marked in purple) are added to the task set. It can be seen
that reactively addressing the contingency creates a bottleneck as other agents
can not perform tasks due to sequential dependencies.

unavailable if a robot fails a task. This domain is based on real

assembly scenarios where a robot needs to be reset by a human

if it fails a task. To handle such a situation, we have defined

the contingency function where a recovery task is added to the

HTN and task set, which is to be done by the human agent

in case of a robot failure. Additionally, the robot can only

perform other tasks once the recovery task is completed. A

copy of the failed task is also added to the HTN, and the task

is set to be redone. Thus, two contingency tasks are added for a

task failure. The HTN modification procedure in Figure 6a. We

hypothesize that reactively considering this contingency can

lead to bottlenecks, requiring a proactive approach. Naively

allocating the tasks to the human to prevent task failures can

result in an overload of tasks, leading to a loss in efficiency.

Without proactively considering the contingency, the schedule

can have bottlenecks where no tasks are completed during

the recovery period, as shown in Figure 7. Finally, we have

defined a team of five agents for this domain: four robots and

one human. We have designated four tasks in a single assembly

that can only be executed by humans. The remaining tasks are

selected to be done by both humans and robots or specialized

by the robot. Lastly, we selected four tasks in the assembly

that can fail with a task failure probability of 0.10-0.20.

In our proposed assembly domain, we tested our approach

against three other methods. We performed interleaved

TABLE II

AVERAGE MAKESPAN AND STANDARD ERROR, AS WELL AS PERCENTAGE

IMPROVEMENT FOR BASELINES IN COMPARISON TO OUR HIERARCHI-

CAL HINDSIGHT OPTIMIZATION-BASED APPROACH (HO) FOR THE

INCAPACITATED DOMAIN

planning and execution by calling the planner each time the

system entered a new state. To determine the time limit for

lower-level computations, we referred to the results mentioned

in Table I. Moreover, we specified the number of times each

lower-level mechanism could be called. For instance, the

mitigation and prevention reasoning mechanisms were called

20 times, while the recovery reasoning mechanism could be

called 40 times. These values were determined empirically,

and our algorithm performed well with these parameters.

We conducted an experiment where we increased the

number of assemblies being considered. This resulted in an

increase in the total number of tasks and contingency tasks

to be considered. We performed 30 numerical simulations to

estimate the average makespan and standard error, which are

reported in Table II. Our findings showed that we were able

to achieve a maximum improvement of around 10-13% in

average makespan for up to two assemblies (56 tasks). We

conducted an Analysis of Variance (ANOVA) test, which con-

firmed that these improvements were statistically significant,

with p = 0.0034. However, when the scheduler considered

three assemblies, we found that the opportunity for proac-

tive contingency management became negligible; that is, the

average makespan for the reactive and proactive approaches

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

DHANARAJ et al.: PROACTIVE CONTINGENCY-AWARE TASK ALLOCATION AND SCHEDULING 13057

Fig. 8. We show an example scheduling scenario with four assemblies
(blue, orange, yellow, green), and the blue line is where an assembly
finished. We show four tasks that have failed (marked in red). This requires
contingency tasks (marked in purple) to be executed. Reactively managing
contingencies results in a bottleneck being formed and causing unnecessary
delays. Proactively considering contingencies results reduces the effect of the
bottleneck.

was the same. This was due to the bottlenecks being negated

because more tasks were available to execute. In this domain,

for the two problem instances, we observed that reactive

planning consistently underperformed in comparison to our

approach, showing that proactive contingency management is

useful. Overall, our approach performed as well or better than

the benchmarks. The generated schedules showed that the best

policy balanced allocating tasks to the human to prevent task

failures while not overloading them with all tasks.

D. Results in Task Failure Testing Scenario

We are also interested in evaluating performance in a

domain where it is important to mitigate contingencies. We

design this assembly setup domain in the following way. After

completing the subassemblies, they are integrated to form a

full assembly and undergo a functionality test. If the test

is successful, external parts are added to the assembly and

undergo a second functionality test. However, if a failure

is detected during the testing phase, additional contingency

tasks are added to the HTN. The contingency task function

is the following: First, the assembly undergoes a rework

process where the assembly is disassembled, and the issue

is resolved. A rework agent must complete this rework task.

Finally, additional reassembly tasks are added to the task

set. This contingency function is visualized in Figure 6b.

Without proactively managing the contingency, the rework

tasks become a major bottleneck in Figure 8.

In this domain, each task can be completed by 1-2 agent

types, including a Testing Agent responsible for evaluating

assembly functionality, a Rework Agent in charge of perform-

ing the rework task for failed assemblies, three agents with

unique task proficiencies, and a human agent that can handle

TABLE III

EXAMINING TASK SIZE: AVERAGE MAKESPAN AND PERCENTAGE

IMPROVEMENT FOR BASELINES IN COMPARISON TO OUR HIERARCHI-

CAL HINDSIGHT OPTIMIZATION-BASED APPROACH (HO) FOR THE

TASK TESTING DOMAIN

all tasks. For this domain, we create a 4-assembly HTN (refer

to Figure 5) and randomly remove atomic task nodes to get

the following 3 case studies of 30 tasks, 50 tasks, and 100

tasks. Lastly, we increase the number of contingency tasks

and randomly choose 25% of tasks that may fail. We generate

success probabilities for those tasks to be between 0.80-0.90

when completed by a robot else; it is set to 0.95 if completed

by a human agent.

Empirically, we found the following search parameters to

work well: 10 calls for the mitigation and prevention reasoning

mechanisms and 30 calls for the recovery reasoning mecha-

nism based on initial experimentation. In total, the lower-level

deterministic scheduler was called 50 times. The large scenario

space for this domain made it difficult to evaluate our approach

via random simulation runs. In order to enable a direct

comparison of our method to the baselines, we instead used

predefined failure scenarios to measure assembly makespans.

For each case study, we created 10 failure scenarios where we

selected 1-8 tasks that would fail. As stated in the problem

setup, multiple contingency tasks are added when a task fails,

which causes delays if the contingencies are not proactively

managed. Lastly, we also generate a scenario where no tasks

fail.

In all scenarios, our method performed as well as or better

than the benchmarks. Table III shows the average makespan

results for all four methods, including the percentage improve-

ment our approach had compared to the baselines. We

observed that reactively planning consistently underperformed

compared to our approach. Furthermore, Figure 8 shows a

comparison between a reactive and proactive approach for a

specific scenario. We observed a simple behavior that emerged

where testing actions are completed as soon as possible so

that if a contingency is detected, agents can continue to work

on other assemblies while the contingency is resolved. This

highlights the benefit of proactively managing contingencies

to improve makespan.

E. Role of Recovery, Mitigation, and Prevention Components

We performed an ablation study to investigate the impact

of various components of our search algorithm. The results

showed that removing the recovery mechanism significantly

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

13058 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

diminished the algorithm’s performance. This outcome is

expected, as the recovery mechanism plays a role in covering

the possible scenario space when constructing the search tree

and ensuring that the cost of a task allocation action node

converges to the expected cost. Consequently, we examine

the impact of using just the mitigation mechanism or the

prevention mechanism with the recovery mechanisms.

We first examine the 26-task problem of the incapacitated

robot scenario. When we used only the mitigation reason-

ing mechanism, the average makespan quality was reduced

by 5.6%, while with only the prevention mechanism, the

makespan quality was reduced by only 1.9%. We next exam-

ined the 30 task problems for the task failure testing domain.

When only the mitigation reasoning mechanism was used,

the average makespan quality decreased by 1.8%. However,

when only the prevention mechanism was used, the makespan

quality decreased by 6.8%.

This indicates that the performance of the search compo-

nents is problem-domain dependent. We observe this in the

incapacitated robot domain, where the prevention mechanism

is more dominant for managing contingencies. In contrast,

the mitigation mechanism is more relevant in the task testing

domain. This is because, in the incapacitated domain, it is

more beneficial to prevent the incapacitation from happening,

but if it doesn’t happen, there are not many tasks added to fix

the contingency, so there is less opportunity to mitigate the

effect of contingency tasks. In sharp contrast, there are many

more contingency tasks added in the testing domain, meaning

there are more opportunities for mitigating its effect.

VIII. CONCLUSION

We have developed a new approach for multi-robot task

allocation that deals with uncertainty by decoupling the task

scheduling and decision-making under uncertainty problems.

Our results show that using constraint programming solvers

to solve a mixed integer program is an effective candidate for

creating low-level task schedules. Our proposed framework

is useful for addressing contingencies where contingency

tasks can cause significant delays. By reasoning in hindsight,

we can generate schedules that proactively recover, mitigate

and prevent contingencies. We tested this framework in two

domains and found that a proactive approach can significantly

improve makespan by 8-15%, which is significant for indus-

trial applications.

Limitations and Future Work: There are two main issues that

could limit the effectiveness of this approach. The first limi-

tation is that while we find constraint programming methods

suitable for solving the task allocation and scheduling problem,

this approach will become a computational bottleneck as we

consider very large task and agent sizes. We can improve

the performance of the lower-level solver by incorporating

domain-specific heuristics or priority dispatching rules to

compute the deterministic task allocation. Future work will

consider integrating deep reinforcement learning approaches

for approximating the lower-level solutions for large prob-

lems. Incorporating deep reinforcement learning directly or

hybridizing it with exact solving methods for the lower-level

solver will make this approach scalable to larger problem

sizes. The second limitation is as the number of tasks that

can fail increases, leading to more possible scenarios, the

number of contingencies that need to be sampled grows

exponentially, leading to a second computational bottleneck.

In the future, one could prioritize the evaluation of relevant

contingencies by learning a contingency selection heuristic,

such as evaluating the contingencies that may have a larger

delay effect first. Lastly, we also make simplifying assumptions

by ignoring task switch, setup time, and resource costs. Due

to these assumptions, we found that when we tested large task

sizes when a contingency happened, the makespan could be

unaffected by any bottlenecks due to the ability to immediately

switch to another assembly. However, the cost of addressing

the contingency is much higher due to the aforementioned

costs required to switch to a different assembly. Modeling

these costs can help further match the real-world scenario.

REFERENCES

[1] A. Peterson, “High-mix/low-volume manufacturers are a
sweet spot for collaborative robots,” NIST, Gaithersburg,
MD, USA, Tech. Rep., Jul. 2020. [Online]. Available:
https://www.nist.gov/blogs/manufacturing-innovation-blog/high-
mixlow-volume-manufacturers-are-sweet-spot-collaborative

[2] J. H. Kang, N. Dhanaraj, O. M. Manyar, S. Wadaskar, and S. K. Gupta,
“A task allocation and scheduling framework to facilitate efficient
human–robot collaboration in high-mix assembly applications,” in Proc.

Int. Manuf. Sci. Eng. Conf., vol. 88117, 2024, pp. 1–12.
[3] Z. Zhou, D. J. Lee, Y. Yoshinaga, S. Balakirsky, D. Guo, and Y. Zhao,

“Reactive task allocation and planning for quadrupedal and wheeled
robot teaming,” in Proc. IEEE 18th Int. Conf. Autom. Sci. Eng. (CASE),
Aug. 2022, pp. 2110–2117.

[4] F. Faruq, D. Parker, B. Laccrda, and N. Hawes, “Simultaneous task
allocation and planning under uncertainty,” in Proc. IEEE/RSJ Int. Conf.

Intell. Robots Syst. (IROS), Oct. 2018, pp. 3559–3564.
[5] S. Chen, Q. Nguyen, and S. K. Gupta, “A computationally efficient

approach to account for stochastic delays in multi-robot task allocation
in a proactive manner,” in Proc. IEEE 20th Int. Conf. Autom. Sci. Eng.

(CASE), Aug. 2024, pp. 3095–3102.
[6] S. Shriyam and S. K. Gupta, “Incorporation of contingency tasks in task

allocation for multirobot teams,” IEEE Trans. Autom. Sci. Eng., vol. 17,
no. 2, pp. 809–822, Apr. 2020.

[7] S. Shriyam and S. K. Gupta, “Incorporating potential contingency tasks
in multi-robot mission planning,” in Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), May 2018, pp. 3709–3715.
[8] S. Al-Hussaini, J. M. Gregory, and S. K. Gupta, “Generating task

reallocation suggestions to handle contingencies in human-supervised
multi-robot missions,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 1,
pp. 367–381, Jan. 2023.

[9] S. Choudhury, J. K. Gupta, M. J. Kochenderfer, D. Sadigh, and J. Bohg,
“Dynamic multi-robot task allocation under uncertainty and temporal
constraints,” Auton. Robots, vol. 46, no. 1, pp. 231–247, 2022.

[10] N. Dhanaraj, S. V. Narayan, S. Nikolaidis, and S. K. Gupta,
“Contingency-aware task assignment and scheduling for human–robot
teams,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2023,
pp. 5765–5771.

[11] N. Dhanaraj, J. H. Kang, A. Mukherjee, H. Nemlekar, S. Nikolaidis, and
S. K. Gupta, “Multi-robot task allocation under uncertainty via hindsight
optimization,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May
2024, pp. 16574–16580.

[12] M. Gombolay et al., “Human-machine collaborative optimization via
apprenticeship scheduling,” J. Artif. Intell. Res., vol. 63, pp. 1–49, Sep.
2018.

[13] G. Michalos, J. Spiliotopoulos, S. Makris, and G. Chryssolouris, “A
method for planning human robot shared tasks,” CIRP J. Manuf. Sci.

Technol., vol. 22, pp. 76–90, Aug. 2018.
[14] A. Roncone, O. Mangin, and B. Scassellati, “Transparent role assign-

ment and task allocation in human robot collaboration,” in Proc. IEEE

Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 1014–1021.
[15] W. Wang, R. Li, Z. M. Diekel, and Y. Jia, “Robot action planning by

online optimization in human–robot collaborative tasks,” Int. J. Intell.

Robot. Appl., vol. 2, no. 2, pp. 161–179, Jun. 2018.

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

DHANARAJ et al.: PROACTIVE CONTINGENCY-AWARE TASK ALLOCATION AND SCHEDULING 13059

[16] S. Wang, Y. Liu, Y. Qiu, S. Li, and J. Zhou, “An efficient distributed
task allocation method for maximizing task allocations of multirobot
systems,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 3, pp. 1–15, Jul.
2024.

[17] D.-H. Lee, S. A. Zaheer, and J.-H. Kim, “A resource-oriented, decen-
tralized auction algorithm for multirobot task allocation,” IEEE Trans.

Autom. Sci. Eng., vol. 12, no. 4, pp. 1469–1481, Oct. 2015.

[18] L. Luo, N. Chakraborty, and K. Sycara, “Distributed algorithms for
multirobot task assignment with task deadline constraints,” IEEE Trans.

Autom. Sci. Eng., vol. 12, no. 3, pp. 876–888, Jul. 2015.

[19] M. Aggravi, G. Sirignano, P. R. Giordano, and C. Pacchierotti,
“Decentralized control of a heterogeneous human–robot team for explo-
ration and patrolling,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 4,
pp. 3109–3125, Oct. 2022.

[20] X. Bai, A. Fielbaum, M. Kronmüller, L. Knoedler, and J. Alonso-
Mora, “Group-based distributed auction algorithms for multi-robot
task assignment,” IEEE Trans. Autom. Sci. Eng., vol. 20, no. 2,
pp. 1292–1303, Apr. 2023.

[21] L. Zhang, J. Zhao, E. Lamon, Y. Wang, and X. Hong, “Energy efficient
multi-robot task allocation constrained by time window and precedence,”
IEEE Trans. Autom. Sci. Eng., pp. 1–12, 2024.

[22] H. Aziz, A. Pal, A. Pourmiri, F. Ramezani, and B. Sims, “Task allocation
using a team of robots,” Current Robot. Rep., vol. 3, no. 4, pp. 227–238,
Aug. 2022.

[23] Y. Rizk, M. Awad, and E. W. Tunstel, “Cooperative heterogeneous multi-
robot systems: A survey,” ACM Comput. Surv., vol. 52, no. 2, pp. 1–31,
Apr. 2019.

[24] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of multi-
robot coordination,” Int. J. Adv. Robot. Syst., vol. 10, no. 12, p. 399,
Dec. 2013.

[25] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task
allocation problems with temporal and ordering constraints,” Robot.

Auto. Syst., vol. 90, pp. 55–70, Apr. 2017.

[26] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” Int. J. Robot. Res., vol. 23, no. 9,
pp. 939–954, Sep. 2004.

[27] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” Int. J. Robot. Res., vol. 32, no. 12,
pp. 1495–1512, Oct. 2013.

[28] E. G. Jones, M. B. Dias, and A. Stentz, “Time-extended multi-robot
coordination for domains with intra-path constraints,” Auto. Robots,
vol. 30, no. 1, pp. 41–56, Jan. 2011.

[29] B. Fu, W. Smith, D. M. Rizzo, M. Castanier, M. Ghaffari, and K. Barton,
“Robust task scheduling for heterogeneous robot teams under capability
uncertainty,” IEEE Trans. Robot., vol. 39, no. 2, pp. 1087–1105, Apr.
2023.

[30] H. Wang, W. Chen, and J. Wang, “Coupled task scheduling for
heterogeneous multi-robot system of two robot types performing
complex-schedule order fulfillment tasks,” Robot. Auto. Syst., vol. 131,
Sep. 2020, Art. no. 103560.

[31] M. L. Pinedo, Scheduling, vol. 29. Cham, Switzerland: Springer, 2012.

[32] B. Çaliş and S. Bulkan, “A research survey: Review of AI solution
strategies of job shop scheduling problem,” J. Intell. Manuf., vol. 26,
no. 5, pp. 961–973, Oct. 2015.

[33] H. C. Lau, M. Sim, and K. M. Teo, “Vehicle routing problem with time
windows and a limited number of vehicles,” Eur. J. Oper. Res., vol. 148,
no. 3, pp. 559–569, Aug. 2003.

[34] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and
D. Rus, “On-demand high-capacity ride-sharing via dynamic trip-vehicle
assignment,” Proc. Nat. Acad. Sci. USA, vol. 114, no. 3, pp. 462–467,
Jan. 2017.

[35] V. C. S. Wiers, “A review of the applicability of OR and AI scheduling
techniques in practice,” Omega, vol. 25, no. 2, pp. 145–153, Apr. 1997.

[36] S. Li, D. Park, Y. Sung, J. A. Shah, and N. Roy, “Reactive task and
motion planning under temporal logic specifications,” in Proc. IEEE

Int. Conf. Robot. Autom. (ICRA), May 2021, pp. 12618–12624.

[37] M. C. Gombolay, R. J. Wilcox, and J. A. Shah, “Fast scheduling of robot
teams performing tasks with temporospatial constraints,” IEEE Trans.

Robot., vol. 34, no. 1, pp. 220–239, 2018.

[38] Y. Cheng, L. Sun, C. Liu, and M. Tomizuka, “Towards efficient
human–robot collaboration with robust plan recognition and trajectory
prediction,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2602–2609,
Apr. 2020.

[39] Y. Cheng, L. Sun, and M. Tomizuka, “Human-aware robot task planning
based on a hierarchical task model,” IEEE Robot. Autom. Lett., vol. 6,
no. 2, pp. 1136–1143, Apr. 2021.

[40] Y. Cheng and M. Tomizuka, “Long-term trajectory prediction of the
human hand and duration estimation of the human action,” IEEE Robot.

Autom. Lett., vol. 7, no. 1, pp. 247–254, Jan. 2022.
[41] B. Hayes and B. Scassellati, “Autonomously constructing hierarchical

task networks for planning and human–robot collaboration,” in Proc.

IEEE Int. Conf. Robot. Autom. (ICRA), May 2016, pp. 5469–5476.
[42] J. Leu, Y. Cheng, C. Liu, and M. Tomizuka, “Robust task plan-

ning for assembly lines with human–robot collaboration,” 2022,
arXiv:2204.07936.

[43] K. Lei et al., “A multi-action deep reinforcement learning framework
for flexible job-shop scheduling problem,” Expert Syst. Appl., vol. 205,
Nov. 2022, Art. no. 117796.

[44] W. Song, X. Chen, Q. Li, and Z. Cao, “Flexible job-shop scheduling
via graph neural network and deep reinforcement learning,” IEEE Trans.

Ind. Informat., vol. 19, no. 2, pp. 1600–1610, Feb. 2023.
[45] K. Lei, P. Guo, Y. Wang, J. Zhang, X. Y. Meng, and L. M. Qian, “Large-

scale dynamic scheduling for flexible job-shop with random arrivals
of new jobs by hierarchical reinforcement learning,” IEEE Trans. Ind.

Informat., vol. 20, no. 1, pp. 1007–1018, May 2023.
[46] R. Liu, R. Piplani, and C. Toro, “Deep reinforcement learning for

dynamic scheduling of a flexible job shop,” Int. J. Prod. Res., vol. 60,
no. 13, pp. 4049–4069, 2022.

[47] S. Ma, J. Ruan, Y. Du, R. Bucknall, and Y. Liu, “An end-to-end deep
reinforcement learning based modular task allocation framework for
autonomous mobile systems,” IEEE Trans. Autom. Sci. Eng., vol. 22,
pp. 1519–1533, 2025.

[48] R. Bezerra et al., “Heterogeneous multi-robot task allocation for garment
transformable production using deep reinforcement learning,” in Proc.

IEEE 19th Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2023, pp. 1–8.
[49] T. Vodopivec, S. Samothrakis, and B. Ster, “On Monte Carlo tree search

and reinforcement learning,” J. Artif. Intell. Res., vol. 60, pp. 881–936,
Dec. 2017.

[50] N. Dhanaraj, R. Malhan, H. Nemlekar, S. Nikolaidis, and S. K. Gupta,
“Human-guided goal assignment to effectively manage workload for a
smart robotic assistant,” in Proc. 31st IEEE Int. Conf. Robot Human

Interact. Commun. (RO-MAN), Aug. 2022, pp. 1305–1312.
[51] L. Meng, C. Zhang, Y. Ren, B. Zhang, and C. Lv, “Mixed-integer linear

programming and constraint programming formulations for solving
distributed flexible job shop scheduling problem,” Comput. Ind. Eng.,
vol. 142, Apr. 2020, Art. no. 106347.

[52] A. Fekih, H. Hadda, I. Kacem, and A. B. Hadj-Alouane, “Mixed-integer
programming and constraint programming models for the flexible job
shop scheduling problem,” in Proc. Int. Conf. Artif. Intell. Ind. Appl.

Cham, Switzerland: Springer, Jan. 2023, pp. 110–122.
[53] D. Müller, M. G. Müller, D. Kress, and E. Pesch, “An algorithm selec-

tion approach for the flexible job shop scheduling problem: Choosing
constraint programming solvers through machine learning,” Eur. J. Oper.

Res., vol. 302, no. 3, pp. 874–891, Nov. 2022.
[54] N. Dhanaraj et al., “A human robot collaboration framework for assem-

bly tasks in high mix manufacturing applications,” in Proc. Int. Manuf.

Sci. Eng. Conf., vol. 87240, 2023, pp. 1–17.
[55] J. H. Kang, N. Dhanaraj, S. Wadaskar, and S. K. Gupta, “Using large

language models to generate and apply contingency handling procedures
in collaborative assembly applications,” in Proc. IEEE Int. Conf. Robot.

Autom. (ICRA), May 2024, pp. 15585–15592.
[56] S. W. Yoon, A. Fern, and R. Givan, “FF-Replan: A baseline for

probabilistic planning,” in Proc. ICAPS, vol. 7, 2007, pp. 352–359.

Neel Dhanaraj (Student Member, IEEE) received
the B.S. and M.S. degrees in mechanical engineer-
ing from Worcester Polytechnic Institute, Worcester,
MA, USA. He is currently pursuing the Ph.D. degree
with the Viterbi School of Engineering, University of
Southern California, Los Angeles, CA, USA, under
the guidance of Prof. S. K. Gupta. His research inter-
ests include task allocation/scheduling and motion
planning for human-robot teams.

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

13060 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Heramb Nemlekar (Member, IEEE) received the
M.S. degree in robotics engineering from Worcester
Polytechnic Institute, Worcester, MA, USA, in 2019,
and the Ph.D. degree in computer science from
the University of Southern California, Los Angeles,
CA, USA, in 2023. He is currently a Post-Doctoral
Associate with the Department of Mechanical Engi-
neering, Virginia Tech, Blacksburg, VA, USA. His
research interests include transfer learning of human
preferences, representation learning, and human-
robot co-adaptation.

Stefanos Nikolaidis (Member, IEEE) is currently
an Associate Professor of Computer Science and
the Fluor Early Career Chair of Engineering at
the University of Southern California, Los Angeles,
CA, USA. His current research interests include
robotics, human-robot interaction, quality diversity
optimization, and machine learning.

Satyandra K. Gupta (Fellow, IEEE) holds Smith
International Professorship at the Viterbi School
of Engineering, University of Southern Califor-
nia, and serves as the Director of the Center for
Advanced Manufacturing. He has published more
than 400 technical articles in journals, conference
proceedings, and edited books. His research inter-
ests include physics-informed artificial intelligence,
computational foundations for decision-making, and
human-centered automation. He is a fellow of Amer-
ican Society of Mechanical Engineers (ASME), the

Solid Modeling Association (SMA), and the Society of Manufacturing Engi-
neers (SME).

Authorized licensed use limited to: University of Southern California. Downloaded on December 02,2025 at 16:01:46 UTC from IEEE Xplore. Restrictions apply.

