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Abstract
Information complexity is one of the most powerful techniques to prove information-theoretical
lower bounds, in which Shannon entropy plays a central role. Though Shannon entropy has some
convenient properties, such as the chain rule, it still has inherent limitations. One of the most
notable barriers is the square-root loss, which appears in the square-root gap between entropy gaps
and statistical distances, e.g., Pinsker’s inequality. To bypass this barrier, we introduce a new
method based on min-entropy analysis. Building on this new method, we prove the following results.

An Ω(𝑁
∑
𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 }/𝑘) randomized communication lower bound of the 𝑘-party set-intersection

problem where the 𝑖-th party holds a random set of size ≈ 𝑁 1−𝛼𝑖 .
A tight Ω(𝑛/𝑘) randomized lower bound of the 𝑘-party Tree Pointer Jumping problems, improving
an Ω(𝑛/𝑘2) lower bound by Chakrabarti, Cormode, and McGregor (STOC 08).
An Ω(𝑛/𝑘 +

√
𝑛) lower bound of the Chained Index problem, improving an Ω(𝑛/𝑘2) lower bound

by Cormode, Dark, and Konrad (ICALP 19).
Since these problems served as hard problems for numerous applications in streaming lower bounds
and cryptography, our new lower bounds directly improve these streaming lower bounds and
cryptography lower bounds.

On the technical side, min-entropy does not have nice properties such as the chain rule. To address
this issue, we enhance the structure-vs-pseudorandomness decomposition used by Göös, Pitassi, and
Watson (FOCS 17) and Yang and Zhang (STOC 24); both papers used this decomposition to prove
communication lower bounds. In this paper, we give a new breath to this method in the multi-party
setting, presenting a new toolkit for proving multi-party communication lower bounds.
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1 Introduction

Information complexity is one of the most powerful tools in proving communication complexity
lower bounds [17, 5, 6, 23, 40] and streaming lower bounds [5, 16, 2, 31, 3, 13, 37, 12]. The
idea of information complexity is to analyze the mutual information between the inputs
held by the communication parties and the communication transcript. The definition
of information complexity is similar to communication complexity, with information cost
replacing communication cost. For a protocol Π, a popular notion of information cost
is defined by IC(Π) def

= I(𝑿 ;Π(𝑿 , 𝒀 ) |𝒀 ) + I(𝒀 ;Π(𝑿 , 𝒀 ) |𝑿 ), where 𝑿 and 𝒀 are the input
distribution of Alice and Bob respectively and I is the mutual information. Intuitively, IC(Π)
captures the mutual information of the inputs and the communication transcript, which is
a lower bound of the communication cost. Besides this specific definition, there are many
different variants that are smartly designed for diverse applications. However, they all share
a similar idea: capture the information cost (usually by Shannon entropy) between the input
distribution and the transcript.

Despite a vast number of applications successfully given by the information complexity-
based approaches, this framework still has some inherent limitations. Indeed, some significant
barriers are not only associated with some specific variants of information cost notions, but
further deeply caused by the entropy itself. In this direction, one notable limitation is the
square-root loss barrier.

Square-root loss barrier

We first use a simple example to illustrate this phenomenon. Let 𝑰 be a random variable
that outputs 1 with probability 1/2 + 𝜀 and 0 with probability 1/2 − 𝜀. This is a biased coin
with a Θ(𝜀) statistical distance to the uniform distribution. However, on the other hand,
the entropy gap between them has only Θ(𝜀2). This square gap is not significant if 𝜀 is a
constant. However, the loss would become very large when it becomes very small. Beyond
this simple example, this is indeed a general gap between entropy loss and statistical distance.
For example, any result that applies Pinsker’s inequality has a good chance of creating this
gap.

▶ Lemma 1 (Pinsker’s inequality). If 𝑃 and 𝑄 are two distributions, then

𝐷𝑇𝑉 (𝑃,𝑄) ≤
√︂

1
2𝐷𝐾𝐿 (𝑃 ∥𝑄)

Here 𝐷𝑇𝑉 (𝑃,𝑄) is the total variation distance of 𝑃 and 𝑄 and 𝐷𝐾𝐿 (𝑃 ∥𝑄) is the KL-divergence.

This quadratic gap makes it difficult to get good bounds via entropy-based analysis
in many applications. For instance, proofs of multiparty unique-set disjointness [5], set
disjointness under product distribution [23, 40], the chained index problem [21], multi-party
pointer jumping problem [15], tree pointer jumping problem [16], pointer chasing problem [39],
among others, all meet the square-root loss comparing with the upper bounds.

Despite resolving the square-root loss for some specific problems, these efforts are ad-hoc
and use non-standard variants of Shannon entropy. Hence, it is hard to extend them for
broader applications. A natural question arises: Could we use any measurement other than
the Shannon entropy (or its close variants)?
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Now, we revisit the example above. For a random variable 𝑿 supported on {0, 1}𝑛 with
entropy H(𝑿 ) ≥ 𝑛−𝜀, we know the statistical distance between 𝑿 and the uniform distribution
is Θ(

√
𝜀) by Pinsker’s inequality. Furthermore, improving Pinsker’s inequality is hard as it is

tight in general. However, on the other hand, for a random variable 𝑿 with min-entropy
𝑛 − 𝜀, a simple calculation shows that the statistical distance between 𝑿 and the uniform
distribution is Θ(𝜀). In this paper, min-entropy is a good candidate for avoiding square root
loss in general settings.

Analysis of min-entropy via structure-vs-pseudorandomness

Though the min-entropy itself does not meet the square-root loss, there are other challenges
in analyzing it. One of the most significant challenges is that, unlike the Shannon entropy,
there is no chain rule for min-entropy, where a chain rule is an essential tool in entropy.

In order to overcome this issue, we adopt the structure-vs-pseudorandomness decom-
position to serve as the “chain rule” in min-entropy analysis. This approach has been
successfully applied in sunflower lemmas [36, 1] and query-to-communication lifting theorems
[29, 30, 35, 46, 38]. Though this approach has been successfully applied in several areas,
it has not been studied in multi-party settings. In this paper, we extend this approach to
the multi-party setting. Beyond the three problems studied in this paper, we believe the
min-entropy-based analysis could provide more applications to multi-party problems.

1.1 Our Results

Building on min-entropy analysis, we improve the lower bounds for three communication
problems: (1) Set Intersection [7], (2) Tree Pointer Jumping [16], and (3) Chained Index [21].

1.1.1 Set Intersection Problem

To show the advantages of our min-entropy approach, we consider the search version of
the set-disjointness problem, which is called the set-intersection problem. There are two
versions of the set-intersection problems. The first one requires the players to find the
whole intersection; the second one only asks the players to find one element from the
intersection. Together, the set-intersection problems have been studied in many papers
[34, 42, 11, 14, 41, 7, 45, 27, 26, 32, 9, 40]. In this paper, we focus on the second version.
The setting is: each player 𝑖 is assigned a subset 𝑆𝑖 of [𝑁 ], and the goal changes to finding
an element 𝑎 ∈ ⋂𝑘

𝑖=1 𝑆𝑖 .
We consider the communication complexity under product distribution here, and there are

two typical product distributions that have been widely studied before. One is the fixed-size
product distribution, where each player 𝑖 receives a uniformly random subset 𝑆𝑖 ⊆ [𝑁 ] with
|𝑆𝑖 | = 𝑛𝑖 . The other one is the Bernoulli product distribution, where each player 𝑖 receives
a random set 𝑆𝑖 sampled as follows: for each element 𝑎 ∈ [𝑁 ], 𝑎 ∈ 𝑆𝑖 independently with
probability 𝑚𝑖 . Babai, Frankl, and Simon [4] first proposed the communication complexity of
the set-disjointness problem under fixed-size product distribution where 𝑛𝑖 =

√
𝑁 , and gave

an Ω(
√
𝑁 ) lower bound. Their proof could also be adapted to the setting of Bernoulli product

distribution with 𝑚𝑖 = 𝑁
−1/2. Recently, this bound was extended to the 𝑘-party setting by a

recent paper by Dershowitz, Oshman, and Roth [23]. They showed that when 𝑘 ≤ log𝑁 /6,
the communication complexity under the Bernoulli product distribution, where 𝑚𝑖 = 𝑁

−1/𝑘 ,
is Ω(𝑁 1−1/𝑘/𝑘2). Both of these decision-version lower bounds gave various applications.

CCC 2025
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In the context of the set-intersection, lower bounds are less known, though it also provides
many applications. Bauer, Farshim, and Mazaheri [7] first gave a lower bound under Bernoulli
product distribution with applications to cryptography. To be more specific, they proved:

▶ Theorem 2 ([7]). For the 2-party set-intersection problem under Bernoulli product distribu-
tion, where 𝑚𝑖 = 𝑁

−𝛼𝑖 , 𝛼1 + 𝛼2 ≤ 1, its communication complexity is Ω
(
𝑁𝛼1+𝛼2+min{𝛼1,𝛼2 }−1) .

Note that this problem is exactly the search version of the set-disjointness problem considered
in [4, 23]. Compared to the set-disjointness problem, set-intersection could be studied in
a larger range of parameters, i.e., 𝛼1 + 𝛼2 < 1 − Ω(1), where the intersection could be very
large, i.e., as large as 𝑁 Ω (1) with high probability.

However, the theorem by [7] is far from tight and does not provide a non-trivial bound
when 𝛼1, 𝛼2 are small. One of the main obstacles here is that the size of the intersections is
large, but players only need to find one common element from many valid answers.

We consider the communication problem in [7], and extend it to the 𝑘-party setting.
Concretely, we assume that each player holds a (random) set 𝑆𝑖 of size |𝑆𝑖 | ≈ 𝑁 1−𝛼𝑖 with∑
𝑖 𝛼𝑖 ≤ 1, and prove the following results for set-intersection.

▶ Theorem 3. For the 𝑘-party set-intersection problem under Bernoulli product distribution,
where 𝑚𝑖 = 𝑁

−𝛼𝑖 ,
∑
𝑖 𝛼𝑖 ≤ 1 and 𝑘 ≤ 0.1 ·min{𝑁min𝑖 {𝛼𝑖 }/2, 𝑁 (1−max𝑖 {𝛼𝑖 })/3}1:

1. the communication complexity is Ω
(
𝑁

∑
𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 }/𝑘

)
to achieve a constant accuracy;

2. there exists a protocol that solves this problem under the distribution mentioned above
with a constant accuracy and uses 𝑂

(
𝑘 log𝑁 · 𝑁

∑
𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 } ) communication cost.

Note that this theorem establishes the first non-trivial lower bound when 2𝛼1 + 𝛼2 ≤ 1 (we
assume 𝛼1 ≤ 𝛼2 here). Actually, it implies that Θ̃

(
𝑁

∑
𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 } ) is tight (up to logarithmic

factors when 𝑘 < log𝑁 ) for the distributional-version of set-intersection considered in [7].
Also, our bound is similar to [23] when 𝛼1 = · · · = 𝛼𝑘 = 1/𝑘, where they proved a lower bound
of Ω(𝑁 1−1/𝑘/𝑘2) for 𝑘 ≤ log𝑁 /6. Similar to the two-party setting, our result significantly
strengthens theirs when the size of the intersection is large.

1.1.2 Tree Pointer Jumping Problem
The Tree Pointer Jumping problem is a communication problem introduced by Chakrabarti,
Cormode, and McGregor [16] with applications in streaming lower bounds. For 𝑡, 𝑘 ≥ 2, we
consider a complete 𝑘-level 𝑡-ary tree 𝑇 rooted at 𝑣1. The 𝑘-party Tree Pointer Jumping
problem, denoted by TPJ𝑘,𝑡 (𝜙), takes as an input a function 𝜙 : 𝑉 (𝑇 ) → [𝑡] with 𝜙 (𝑣) ∈ {0, 1}
if 𝑣 is a leaf of 𝑇 , where 𝑉 (𝑇 ) is the set of nodes of 𝑇 . We use F to denote the set of all
valid functions 𝜙 here. For each input 𝜙 , we define the functions 𝑔𝜙 by,

𝑔𝜙 (𝑣) =
{

the 𝜙 (𝑣)-th child of 𝑣 if 𝑣 is not an internal node;
𝜙 (𝑣) if 𝑣 is a leaf.

The output of 𝑇𝑃 𝐽𝑘,𝑡 (𝜙) is defined by 𝑇𝑃 𝐽𝑘,𝑡 (𝜙) := 𝑔𝜙 (𝑔𝜙 (· · ·𝑔𝜙 (𝑣1) · · · )). In the com-
munication setting, the input 𝜙 is distributed to 𝑘 players. The problem is described as
follows:

1 We assume all the distributions considered in this paper satisfy this constraint.
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Player 𝑖 receives the labels of the 𝑖-th level nodes, i.e., the first player receives
𝜙 (𝑣1),. . . , and the last player receives the labels of the leaves.
In each round, players send messages in reverse order: from the last player to the
first player. The cost of this round is the total number of bits sent by all players.
Players could communicate (𝑘 − 1) rounds, and the first player outputs the answer.

The goal of the players is to compute 𝑇𝑃 𝐽𝑘,𝑡 (𝜙) while minimizing the maximum cost of
each round. For any (𝑟 − 1)-round protocol Π, we use 𝑅max (Π) to denote the maximum
communication cost in all rounds. In this direction, [16] first proved the following lower
bound.

▶ Theorem 4 ([16]). For any (𝑘 − 1)-round protocol Π with Pr𝜙∼Unif (F) [Π(𝜙) =𝑇𝑃 𝐽𝑘,𝑡 (𝜙)] ≥
2/3, we have that 𝑅max (Π) = Ω(𝑡/𝑘2).

Chakrabarti, Cormode, and McGregor [16] first used Theorem 4 to improve multi-pass
streaming lower bound for median finding. Later on, Chakrabarti and Wirth [18] used this
theorem to show a pass/approximation trade-off for the SET-COVER in the semi-streaming
setting. In this paper, we improve the lower bound from Theorem 4 based on min-entropy
analysis.

▶ Theorem 5. For any (𝑘 − 1)-round protocol Π with Pr𝜙∼Unif (F) [Π(𝜙) =𝑇𝑃 𝐽𝑘,𝑡 (𝜙)] ≥ 2/3,
we have that 𝑅max (Π) = Ω(𝑡/𝑘).

As corollaries, our improved lower bounds can be directly used to improve the applications
given by [16] and [18]. Since this paper is a merged version of [44] and [33], we omit the proof
of Theorem 5. Readers can refer to [33] for the complete proof and further applications.

1.1.3 Chained Index Problem
The Chained Index problem, introduced by Cormode, Dark, and Konrad [21], is another
useful tool with many applications in streaming lower bounds [21, 24, 25, 10, 22]. For this
problem, we consider the following communication setting.

There are 𝑘 players. Each player 𝑖 receives an input 𝑧𝑖 = (𝜎𝑖 , 𝑥𝑖 ) ∈ [𝑛] × {0, 1}𝑛
It is promised that 𝑥1 (𝜎2) = · · · = 𝑥𝑘−1 (𝜎𝑘 ). Here 𝑥𝑖 (𝜎𝑖+1) is the 𝜎𝑖+1-th coordinate
of 𝑥𝑖 .
Their goal is to compute 𝑥𝑖 (𝜎𝑖+1) through a one-way communication from the first
player to the last player, where the last player should output the answer.

We say that a one-way protocol solves the Chained Index problem if for every input
(𝑧1, . . . , 𝑧𝑘 ), the last player always outputs the correct answer with probability 2/3. The
communication cost of this protocol is the total communication bits of all players. Using
tools from information complexity, Cormode, Dark, and Konrad proved the following lower
bounds for the Chained Index problem.

▶ Theorem 6 ([21]). Any one-way communication protocol that solves the Chained Index
problem has randomized communication complexity Ω(𝑛/𝑘2).

CCC 2025
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Since it has been introduced, many streaming lower bounds [21, 24, 25, 10, 22] were built
on Theorem 6. Interested readers can find detailed discussions in the papers mentioned
above. Theorem 6 was obtained by direct entropy-based analysis. In this paper, we improve
this lower bound.

▶ Theorem 7. Any one-way communication protocol that solves the Chained Index problem
has randomized communication complexity Ω(𝑛/𝑘 +

√
𝑛).

1.2 Proof Outline
In this section, we give a brief overview to our proof technique and we use the set-intersection
problem for illustration. The proofs for chained index problem is similar in spirit.

Instead of considering Bernoulli distributions, we consider the following product distribu-
tion to simplify our presentation:

Each player 𝑖 independently and uniformly samples 𝑐𝑁 1−𝛼𝑖 elements from [𝑁 ] (may have
duplicates), where 𝑐 equals (1 + 2/𝑘) here.

Thus, each player 𝑖 receives a vector in [𝑁 ]𝑐𝑁 1−𝛼𝑖 and gets its set 𝑆𝑖 ⊆ [𝑁 ] by removing the
duplicate elements in the vector. In general, for any 𝐼 ⊆ [𝑐𝑁 1−𝛼𝑖 ] and 𝛽 ∈ [𝑁 ]𝐼 , we consider
𝛽 as a subset of [𝑁 ] in a similar way. We prove the lower bound under this distribution, and
then reductions are established in Section 3.3 to prove our main theorem.

It is well known that a deterministic protocol Π partitions the input domain into 2 |Π |
rectangles by step-by-step communication. The crucial idea of our proof is to further partition
these leaf rectangles in the protocol tree into many structured rectangles. A structured
rectangle 𝑅 = 𝑋1 ×𝑋2 × · · · ×𝑋𝑘 satisfies that: for each 𝑖, 𝑋𝑖 is fixed on some coordinates and
pseudorandom on the remaining coordinates. The formal definition is given below.

▶ Definition 8 (Structured rectangles). Assuming 𝑅 = 𝑋1 × 𝑋2 × · · · × 𝑋𝑘 , where each 𝑋𝑖 is a
subset of [𝑁 ]𝑐𝑁 1−𝛼𝑖 , is a rectangle. We say 𝑅 is a structured rectangle if there exist subsets of
coordinates 𝐽1, 𝐽2, · · · , 𝐽𝑘 with 𝐽𝑖 ⊆ [𝑐𝑁 1−𝛼𝑖 ] satisfying that

For each 𝑖, there exists a 𝛽𝑖 ∈ [𝑁 ] 𝐽
𝑐
𝑖 such that ∀𝑥𝑖 ∈ 𝑋𝑖 , 𝑥𝑖 (𝐽𝑐𝑖 ) = 𝛽𝑖 . Here, 𝐽𝑐𝑖 is the

complement of 𝐽𝑖 defined by 𝐽𝑐𝑖 := [𝑐𝑁 1−𝛼𝑖 ] − 𝐽𝑖 and 𝑥𝑖 (𝐽𝑐𝑖 ) ∈ [𝑁 ] 𝐽
𝑐
𝑖 is the values of 𝑥𝑖 on

𝐽𝑐𝑖 .
For each 𝑖, 𝑋𝑖 has a high block-wise min-entropy (see definitions in Section 2) on the
coordinates 𝐽𝑖 .

The notion of structured rectangle has also been widely used in query-to-communication
lifting theorems [30, 19, 35].

In the decomposition, we recursively (starting from the root to the leaves) decompose
all rectangles in the protocol tree, i.e., for a node (which is also a rectangle), we decompose
it based on the decomposition of its ancestors. This is the key step compared to existing
decomposition (pre-sampling techniques) in cryptography, which may lead to new applications.
The formal process of this decomposition is referred to Section 3.

After the decomposition process, each leaf has been partitioned into many structured
rectangles. For a structured rectangle 𝑅 = 𝑋1 × 𝑋2 × · · · × 𝑋𝑘 associated with 𝐽1, . . . , 𝐽𝑘 and
𝛽𝑖 ∈ [𝑁 ] 𝐽

𝑐
𝑖 for 𝑖 ∈ [𝑘], we say that:

1. 𝑅 is bad if ∩𝑖𝛽𝑖 ≠ ∅.
2. 𝑅 is good if ∩𝑖𝛽𝑖 = ∅. We also call good structured rectangles as pseudorandom rectangles.
Then, our proof consists of the following two parts.

If the communication complexity of Π is small, the total size of bad structured rectangles
is small compared to the size of the input domain (formalized by Lemma 17);
On the other hand, we show that players can not find a common intersection from
pseudorandom rectangles (formalized by Lemma 18).
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Combining the two parts, we are able to prove the main theorem. We defer the detailed
proofs to Section 3.

Comparison with existing methods

Similar questions have been widely studied in several recent papers [7, 32, 23, 40]. All of these
papers used standard known techniques in communication complexity such as information
complexity.

These papers achieved tight bounds for set-disjointness (decision version), or set-intersec-
tion enumeration (finding whole intersections). However, all of their bounds for search
problems are sub-optimal whenever the size of the set intersection (the solution space for the
search problem) is large. By contrast, our method follows the structure-vs-pseudorandomness
approach by Yang and Zhang [46], which was inspired by lifting theorems [30, 19, 35].
In [46], authors first introduced the techniques in proving query-to-communication lifting
theorems directly to a communication setting without gadgets and proved the communication
complexity lower bound for the collision problem in a two-party setting.

Compared to [46], we further extend their approach in two aspects: 1) we generalize this
method into the multi-party setting; 2) we adopt it to prove communication lower bounds
for search problems with many solutions. To the best of our knowledge, existing lower-bound
methods could not address communication problems in these two settings. We believe these
two settings could provide many applications.

1.3 Subsequent works and future directions

A late work by Sundaresan [43] further improved the lower bound of the Chained Index
problem to Ω(𝑛 − 𝑘 log𝑛) via a reduction to a variant called the biased index problem.

Göös et al. [28] investigated quantum-classical separations in the communication model.
To be more specific, they exhibit a total search problem whose communication complexity
in the quantum simultaneous message passing model is exponentially smaller than in the
classical two-way randomized model, which they call the Bipartite NullCodeword problem.
To establish classical lower bounds, they employed a structure-vs-randomness approach, akin
to the techniques used in [46] and this paper.

Another notable result was demonstrated by Mao, Yang, and Zhang in [38], where they
improved the lower bound for a classical communication problem known as the 𝑘-step pointer
chasing problem by the structure-vs-randomness approach.

In [8], Beame and Whitmeyer established near-optimal lower bounds for the 𝑘-party
collision-finding problem of the strong bit pigeonhole principle which implies the tree-like
semantic cutting-planes refutation lower bounds in proof complexity. However, their lower
bounds only hold for the strong bit pigeonhole principle, they left lower bounds for the weak
bit pigeonhole principle as an open question.

Paper organization

In Section 2, we give preliminaries. Section 3 shows an almost tight bound for the Set
Intersection problem. In Section 4, we prove an improved lower bound for the Chained Index
problem.
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2 Preliminary

Definitions for set intersection problem

To begin with, we formally define the product distributions for set intersection problem
adopted in this paper. For fixed parameters: 𝑘 is the number of parties, 𝑁 is the size of the
domain, and 𝛼𝑖 ∈ (0, 1) are parameters indicating the size of each player’s set. We consider
the following three types of hardness distributions in this paper (two of them have appeared
in Section 1):
1. Each player 𝑖 independently and uniformly samples 𝑐𝑁 1−𝛼𝑖 elements from [𝑁 ] (may have

duplicates), where 𝑐 equals (1 + 2/𝑘).
2. Each player 𝑖 independently and uniformly samples 𝑐𝑖𝑁 1−𝛼𝑖 distinct elements from [𝑁 ],

where 1 − 1/𝑘 ≤ 𝑐𝑖 ≤ 1 + 1/𝑘.
3. Each player 𝑖 independently samples its set 𝑆𝑖 with that every element 𝑎 ∈ [𝑁 ] is contained

in 𝑆𝑖 with probability 𝑁 −𝛼𝑖 .
We assume that

∑
𝑖 𝛼𝑖 ≤ 1, otherwise the existence of intersections can be not guaranteed.

Furthermore, if
∑
𝑖 𝛼𝑖 ≤ 1 −𝐶 holds for some constant 𝐶 > 0, the common intersection of all

players could be very large (≈ 𝑁𝐶).
The hardness distribution 3 is the Bernoulli product distribution with wide applications.

Previous papers have mainly focused on this distribution. We prove the lower bound under
distribution 1, and use two simple reductions to get the lower bound results for the hardness
distributions 2 and 3. We refer to the two reductions to Section 3.3. In what follows, our
discussion mainly focuses on distribution 1.

For a distribution 𝐷 and a communication protocol Π, we define the accuracy of Π

on 𝐷 by:

AccΠ (𝐷) := Pr
𝑆1,· · · ,𝑆𝑘∼𝐷

[
Π(𝑆1, · · · , 𝑆𝑘 ) ∈

𝑘⋂
𝑖=1

𝑆𝑖

]
.

For simplicity, we define this accuracy notion, which does not take the cases when sets
are disjoint into consideration, differently from [7] in which they also consider the accuracy
of distinguishing disjoint cases, namely, they define

Acc′Π (𝐷) := Pr
𝑆1,· · · ,𝑆𝑘∼𝐷

[
Π(𝑆1, · · · , 𝑆𝑘 ) ∈

𝑘⋂
𝑖=1

𝑆𝑖 or Π(𝑆1, · · · , 𝑆𝑘 ) =
𝑘⋂
𝑖=1

𝑆𝑖 = ∅
]
.

Since we aim to establish lower bounds for those protocols achieving AccΠ (𝐷) = Ω(1), we
only consider the range of 𝛼1, . . . , 𝛼𝑘 with2

Pr
𝑆1,· · · ,𝑆𝑘∼𝐷

[ 𝑘⋂
𝑖=1

𝑆𝑖 ≠ ∅
]
> 1/2.

In this paper, our lower bound result shows that achieving AccΠ (𝐷) > 𝜖, where epsilon
is a constant less than 1/2, requires large amounts of communication. This also implies
a non-trivial hardness result to achieve Acc′Π (𝐷) > 𝜖 + 1/2 since the disjoint cases could

contribute at most 1/2 to Acc′Π (𝐷) when Pr𝑆1,· · · ,𝑆𝑘∼𝐷

[ ⋂𝑘
𝑖=1 𝑆𝑖 ≠ ∅

]
> 1/2 holds. Hence, our

results also imply hardness results under the [7] setting.

2 Pr𝑆1,· · · ,𝑆𝑘∼𝐷

[ ⋂𝑘
𝑖=1 𝑆𝑖 ≠ ∅

]
> 1/2 is guaranteed by the definitions of hardness distribution 3 when∑

𝑖 𝛼𝑖 ≤ 1.
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Next, we introduce some useful notions in communication complexity. In a 𝑘-party
communication problem, where each party holds an input 𝑥𝑖 from a domain Δ𝑖 , a rectangle
is defined by 𝑅 := 𝑋1 × 𝑋2 × · · · × 𝑋𝑘 (𝑋𝑖 ⊆ Δ𝑖).

For a set 𝑋𝑖 ⊆ Δ𝑖 , we denote 𝑿𝑖 as the uniform distribution on 𝑋𝑖 . In the set-intersection
problem (particularly hard distribution 1), we consider the cases that each input is in
Δ𝑖 = [𝑁 ]𝑀𝑖 where 𝑀𝑖 = 𝑐𝑁

1−𝛼𝑖 , and an instance 𝑥𝑖 ∈ [𝑁 ]𝑀𝑖 can be transformed into a subset
of [𝑁 ] by removing duplicate elements. Also, for two instances 𝑥𝑖 ∈ [𝑁 ]𝑀𝑖 , 𝑥 𝑗 ∈ [𝑁 ]𝑀𝑗 , we
define 𝑥𝑖 ∩ 𝑥 𝑗 by the intersection of the two subsets of [𝑁 ] deduced from 𝑥𝑖 and 𝑥 𝑗 .

For a set of coordinates 𝐽𝑖 ⊆ [𝑀𝑖 ], we use 𝑿𝑖 (𝐽𝑖 ) to denote marginal distribution of 𝑿𝑖
on 𝐽𝑖 . For an instance 𝑥𝑖 ∈ [𝑁 ]𝑀𝑖 and a set of coordinates 𝐽𝑖 ⊆ [𝑀𝑖 ], define 𝑥𝑖 (𝐽𝑖 ) to be an
instance in [𝑁 ] 𝐽𝑖 by projecting 𝑥𝑖 on 𝐽𝑖 .

Structure-vs-pseudorandomness decomposition

We use capital letters 𝑋 to denote a set and bold symbols like 𝑹 to denote random variables.
For a set 𝑋 , we use 𝑿 to denote the random variable uniformly distributed over the set 𝑋 .
We introduce the formal definition of min-entropy.

▶ Definition 9 (Min-entropy). For a random variable 𝑿 taking value on Δ, its min-entropy
is defined as follows:

𝐻∞ (𝑿 ) = min
𝑥∈Δ

(
log 1

Pr[𝑿 = 𝑥]

)
.

A useful concept adopted in this paper is the dense notion used in lifting theorems [30, 35].

▶ Definition 10 (Density function). We define the one-side density function for a random
variable 𝑿 on its support [𝑁 ] 𝐽 as:

D(𝑿 ) := |𝐽 | log𝑁 − 𝐻∞ (𝑿 ).

Note that D(𝑿 ) ≥ 0 always holds by definitions and D(𝑿 ) = 0 when 𝑿 is a uniform
distribution.

The density function is also known as the entropy deficiency in lifting theorem papers,
and we design the 𝑘-side density function in order to extend the two-party results to the
𝑘-party setting.

▶ Definition 11 (𝑘-side density function). For a structured rectangle 𝑅 = 𝑋1 × 𝑋2 × · · · × 𝑋𝑘 ,
where each 𝑋𝑖 is subset of [𝑁 ]𝑀𝑖 and associated with a set 𝐽𝑖 ⊆ [𝑀𝑖 ], we define its 𝑘-side
density function as:

D(𝑅) =D
(
𝑿1 (𝐽1)

)
+ D

(
𝑿2 (𝐽2)

)
+ · · · + D

(
𝑿𝑘 (𝐽𝑘 )

)
.

In structure-vs-pseudorandomness decomposition, one of the most important notions, which
captures the pseudorandomness, is the block-wise density.

▶ Definition 12 (Block-wise density [29]). For 𝛾 > 0. A random variable 𝑿 supported on
[𝑁 ]𝑛 is said to be 𝛾-dense if for all nonempty 𝐼 ⊆ [𝑛], we have that H∞ (𝑿 (𝐼 )) ≥ 𝛾 · |𝐼 | · log𝑁 ,
here 𝑿 (𝐼 ) is the marginal distribution of 𝑿 on the set 𝐼 .
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The definition of 𝛾-dense measures the pseudorandomness of a random variable. In our proof,
a typical choice of 𝛾 = 1 − 1

10𝑘 log𝑁 for set intersection and 𝛾 = 1 − 2𝜖
𝑘

for the Chain Index
problem.3

The following lemma tells us that a random variable could be decomposed by a combination
of random variables with dense properties by fixing some positions:

▶ Lemma 13 (Density-restoring partition [30]). Let 𝑋 be a subset of [𝑁 ]𝑀 and 𝐽 be a subset
of [𝑀], and there exists an 𝛽 ∈ 𝑁 𝐽 𝑐 such that ∀𝑥 ∈ 𝑋, 𝑥 (𝐽𝑐 ) = 𝛽. Then, there exists a partition
of 𝑋 :

𝑋 := 𝑋 1 ∪ 𝑋 2 ∪ · · · ∪ 𝑋 𝑟

such that every 𝑋 𝑖 is associated with a set 𝐼𝑖 ⊆ 𝐽 and a value 𝜏𝑖 ∈ [𝑁 ]𝐼𝑖 . Then, they satisfy
the following properties:
1. ∀𝑥 ∈ 𝑋 𝑖 , 𝑥 (𝐼𝑖 ) = 𝜏𝑖 ;
2. 𝑿 𝑖 (𝐽 − 𝐼𝑖 ) is 𝛾-dense;
3. 𝐷

(
𝑿 𝑖 (𝐽 − 𝐼𝑖 )

)
≤ 𝐷

(
𝑿 (𝐽 )

)
− (1 − 𝛾) |𝐼𝑖 | log𝑁 + 𝛿𝑖 .

Here, we define 𝛿𝑖 := log( |𝑋 |/| ∪𝑗≥𝑖 𝑋 𝑗 |).

We also use the following simple version of Lemma 13 for some proofs.

▶ Proposition 14. Let 𝑍1, . . . , 𝑍𝑇 be a partition of the set 𝑍 . Then

𝑇∑︁
𝑖=1

|𝑍𝑖 |
|𝑍 | · log |𝑍𝑖 | ≥ log |𝑍 | − log𝑇 .

For dense random variables, we also have the following useful lemma.

▶ Lemma 15. If 𝑿1,𝑿2, · · · ,𝑿ℓ are ℓ < 𝑘 independent
(
1 − 1

10𝑘 log𝑁
)
-dense random variables

and each 𝑿𝑖 takes value from [𝑁 ] 𝐽𝑖 with |𝐽𝑖 | ≤ 𝑐 ·𝑁 1−𝛼𝑖 , where 𝑐 is a constant and 𝑁𝛼𝑖 = 𝜔 (𝑘),
then for any element 𝑎 ∈ [𝑁 ], it holds

Pr
[
𝑎 ∈

ℓ⋂
𝑖=1

𝑿𝑖

]
≤ 𝑒𝑐ℓ

𝑁
∑

𝑖 𝛼𝑖
,

here 𝑒 ≈ 2.7 denotes the Euler’s number.

Proof. We know that all 𝑿𝑖 ’s are independent. Thus, we first bound the probability that
Pr[𝑎 ∈ 𝑿𝑖 ]. Assuming that 𝐽𝑖 = ( 𝑗1, 𝑗2, · · · , 𝑗 | 𝐽𝑖 | ), we have the following argument

Pr[𝑎 ∈ 𝑿𝑖 ] = Pr[𝑎 ∈
| 𝐽𝑖 |⋃
𝑞=1

𝑿𝑖 ( 𝑗𝑞)] ≤
| 𝐽𝑖 |∑︁
𝑞=1

Pr[𝑎 ∈ 𝑿𝑖 ( 𝑗𝑞)] ≤
𝑐 (1 + 1/𝑘)

𝑁𝛼𝑖
,

where the last inequality comes from the definition of (1 − 1
10𝑘 log𝑁 )-dense. Hence, we know

that

Pr[𝑎 ∈ ∩𝑖𝑿𝑖 ] =
∏
𝑖

Pr[𝑎 ∈ 𝑿𝑖 ] ≤ 𝑐ℓ (1 + 1/𝑘)ℓ · 1
𝑁

∑
𝑖 𝛼𝑖
≤ 𝑐ℓ 𝑒

𝑁
∑

𝑖 𝛼𝑖
. ◀

3 𝛾 = 0.9 in previous structure-vs-pseudorandomness decomposition [30, 20, 19, 35].
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3 Lower Bounds for Set Intersection

In this section, we prove the communication lower bound for the hardness distribution 1
(where each player 𝑖 gets 𝑐𝑁𝛼𝑖 independent and uniform samples from [𝑁 ]). Then, in Section
3.3, we use reductions to obtain lower bounds for hardness distributions 2 and 3. Formally,
we prove that:

▶ Theorem 16. If a communication protocol Π solves 𝑘-party set-intersection problem under
the hardness distribution 1 with accuracy bigger than 0.1, the communication complexity

CC(Π) is Ω

(
𝑁

∑
𝑖 𝛼𝑖 −max𝑖 {𝛼𝑖 }

𝑘

)
.

3.1 The Decomposition and Sampling Process
The key idea of this proof, as we introduce in Section 1, is to decompose rectangles (nodes4)
of the protocol tree into structured rectangles and analyze the accuracy of the protocol could
achieve in those decomposed structured rectangles. We design a decomposition and sampling
process in this section to

decompose the rectangles of the protocol tree into structured rectangles;
sample a decomposed rectangle with respect to its size.

We define the root rectangle of the protocol tree to be 𝑅root, which contains all valid inputs.
𝑅root is also a structured rectangle by definitions. We start from 𝑅root and begin our
decomposition and sampling process, which uses a random walk on the protocol tree from
the root 𝑅root to a leaf, and do the decomposition along the path. See Algorithm 1 for the
formal decomposition process.

We use 𝑅cur to denote the current rectangle of the decomposition and sampling process. It
begins with 𝑅cur = 𝑅root, and at each step 𝑅cur is partitioned into two subrectangles 𝑅0, 𝑅1 by
the protocol. Then, we replace 𝑅cur with 𝑅0 or 𝑅1 with probability |𝑅0 |/|𝑅cur | or |𝑅1 |/|𝑅cur |
(which also equals to |𝑋 0 |/|𝑋 cur

𝑖 | or |𝑋 1 |/|𝑋 cur
𝑖 | as we defined in Algorithm 1), and reach a

new rectangle. After reaching the new rectangle, the structured property of 𝑅cur may get
destroyed, and our decomposition works here to maintain the structured property. We use
the density-restoring partition (Lemma 13) to further decompose the current rectangle 𝑅cur

into 𝑟 subrectangles 𝑅cur = 𝑅1 ∪ 𝑅2 ∪ · · · ∪ 𝑅𝑟 , and each 𝑅 𝑗 is a structured rectangle. Again,
we choose 𝑅 𝑗 to be our next rectangle with probability |𝑅 𝑗 |/|𝑅cur |, and do the process above
recursively until reaching a leaf rectangle. As shown in the decomposition and sampling
process, we eventually sample a structured rectangle in the leaf level with respect to its size.

Note that at some point of the random walk, the current rectangle 𝑅cur may not exist
on the protocol tree since we do the density-restoring partition to further decompose the
rectangles. However, every 𝑅cur that potentially appears in the random walk must be fully
contained in a rectangle of the protocol tree. Thus, the protocol Π also partitions 𝑅cur into
two sub-rectangles if 𝑅cur is not in the leaf level of the protocol tree.

Note that the output 𝑅cur of the process above is a random variable over rectangles.
We define 𝑹leaf to be the random variables over decomposed structured rectangles in the
leaf level (not leaf rectangles of the protocol tree, but sub-rectangles of those leaves after
decomposition) sampled by the process above, and 𝑹leaf is associated with random sets 𝑱 leaf

𝑖 s.
For convenience, we define the support of 𝑹leaf to be Rleaf. One may see the two important
properties of the decomposition and sampling process:

4 Note that a node of the protocol tree is a rectangle.
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Algorithm 1 The decomposition and sampling process.

Input: A rectangle 𝑅root = 𝑋1 × 𝑋2 × · · · × 𝑋𝑘 , where each 𝑋𝑖 equals [𝑁 ]𝑐𝑁 1−𝛼𝑖 .
Output: A rectangle 𝑅cur = 𝑋 cur

1 × 𝑋 cur
2 × · · · × 𝑋 cur

𝑘
, and 𝑘 sets 𝐽1, 𝐽2, · · · , 𝐽𝑘 .

1 for each 𝑖, 𝐽𝑖 ← [𝑐𝑁 1−𝛼𝑖 ];
2 𝑅cur ← 𝑅root;
3 while 𝑅cur is not in a leaf level 5 do
4 without loss of generality, we assume it is player 𝑖’s turn to speak;
5 𝑋 cur

𝑖 is partitioned by: 𝑋 cur
𝑖 = 𝑋 0 ∪ 𝑋 1, and 𝑅cur is thus partitioned by:

𝑅cur = 𝑅0 ∪ 𝑅1;
6 toss a ( |𝑋

0 |
|𝑋 cur

𝑖
| ,
|𝑋1 |
|𝑋 cur

𝑖
| ) biased coin 𝑐;

7 if 𝑐 = 0:
8 𝑋 cur

𝑖 ← 𝑋 0;
9 𝑅cur ← 𝑅0;

10 if 𝑐 = 1:
11 𝑋 cur

𝑖 ← 𝑋 1;
12 𝑅cur ← 𝑅1;
13 if 𝑿cur

𝑖 (𝐽𝑖 ) is (1 − 1
10𝑘 log𝑁 )-dense:

14 continue;
15 else:
16 decompose 𝑋 cur

𝑖 by Lemma 13 with 𝐽 = 𝐽𝑖 , get 𝑋 1, · · · , 𝑋 𝑟 , 𝐼1, · · · , 𝐼𝑟 ;
17 𝑅cur is thus decomposed by 𝑅cur = 𝑅1 ∪ · · · ∪ 𝑅𝑟 ;
18 sample a random element 𝒋 ∈ [𝑟 ]: 𝒋 w.p. |𝑋 𝑗 |/|𝑋 cur

𝑖 | equals 𝑗 for each 𝑗 ;
19 𝑋 cur

𝑖 ← 𝑋 𝒋, 𝐽𝑖 ← 𝐽𝑖\𝐼𝒋 ;
20 𝑅cur ← 𝑋 cur

1 × 𝑋 cur
2 × · · · × 𝑋 cur

𝑘
;

Every rectangle 𝑅 ∈ Rleaf is a structured rectangle;
For a rectangle 𝑅 = 𝑋1 × 𝑋2 × · · · × 𝑋𝑘 ∈ Rleaf, we have that

Pr[𝑹leaf = 𝑅] =
∏
𝑖

|𝑋𝑖 |
𝑁 𝑐𝑁

1−𝛼𝑖
=

|𝑅 |
𝑁 𝑐

∑
𝑖 𝑁

1−𝛼𝑖
.

The verification of the two properties is straightforward from the definition of our decom-
position and sampling process. The first statement offers a structured property that makes
it easier to analyze the rectangles. The second statement tells us that the probability that
𝑹leaf = 𝑅 equals the probability that the input lies in 𝑅. This is crucial in later bounding the
accuracy of Π.

Next, we bound the accuracy of Π. For every structured rectangle 𝑅 = 𝑋1 ×𝑋2 × · · · ×𝑋𝑘 ∈
Rleaf associated with 𝐽1, 𝐽2, · · · , 𝐽𝑘 , we define 𝐽𝑐𝑖 as [𝑐𝑁 1−𝛼𝑖 ] − 𝐽𝑖 , namely the fixed parts of 𝑋𝑖 .
Hence, for each 𝑋𝑖 , it holds ∀𝑥 ∈ 𝑋𝑖 , 𝑥 (𝐽𝑐𝑖 ) = 𝛽𝑖 since 𝑅 is a structured rectangle. We can then
divide all the rectangles in Rleaf into two types:
1. 𝑅 is a bad structured rectangle if ∩𝑖𝛽𝑖 ≠ ∅;
2. 𝑅 is a good structured rectangle if ∩𝑖𝛽𝑖 = ∅.
Assume 𝑅 is a bad structured rectangle. Then, there exists a universal common element 𝑎6

such that 𝑎 ∈ ∩𝑖𝑥𝑖 for any possible instance (𝑥1, 𝑥2, · · · , 𝑥𝑘 ) in 𝑅. The protocol is thus able to

6 We can choose any element that lies in ∩𝑖𝛽𝑖 here.
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achieve perfect correctness by outputting 𝑎 when the input lies in 𝑅. Hence, we need to show
with a low probability that 𝑹leaf is a bad rectangle, namely the probability that the input
lies in bad rectangles is small. To be more specific, we prove the following lemma:

▶ Lemma 17. If CC(Π) ≤ 0.0001𝑁
∑

𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 }/𝑘, it holds that Pr𝑅∼𝑹leaf [𝑅 is bad] ≤ 0.05.

For those good structured rectangles, we show the following facts: For a good structured
rectangle, the protocol Π cannot achieve high accuracy since there is no intersection on the
fixed parts, while the other parts are dense. Formally, we prove the following lemma:

▶ Lemma 18. For a good structured rectangle 𝑅 = 𝑋1 × 𝑋2 × · · · × 𝑋𝑘 , it holds that for any
𝑎 ∈ [𝑁 ],

Pr[𝑎 ∈ ∩𝑖𝑿𝑖 ] ≤ 0.05.

Combining the three lemmas above, we can easily prove Theorem 16.

Proof of Theorem 16. We prove the theorem by showing that communication protocol Π
with CC(Π) ≤ 0.0001𝑁

∑
𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 }/𝑘 can achieve at most 0.1 accuracy.

It is well known that a communication protocol Π partitions the whole input domain into
several leaf rectangles and assigns an answer to each leaf rectangle. With our decomposition
and sampling process, original leaf rectangles are further decomposed into the two types of
structured rectangles mentioned above. The accuracy of Π comes from the following two
parts:
1. The probability Pr[𝑹leaf is bad] = 𝑝1.
2. The probability that the protocol outputs the correct answer in a good structured rectangle

is 𝑝2.
From Lemma 17 and 18, we know that 𝑝1 ≤ 0.05, 𝑝2 ≤ 0.05. By a union bound, the total
accuracy is thus no more than 𝑝1 + 𝑝2 ≤ 0.1 as desired. ◀

It suffices to prove the two important lemmas above.

3.2 Proofs of Technical Lemmas
We first prove Lemma 17 by the following round-by-round analysis.

Proof of Lemma 17. Recall the decomposition process from line 4 to line 12. In each
communication round, player 𝑖 sends one bit, and partitions 𝑋 cur

𝑖 into two parts 𝑋 0, 𝑋1.
Then, 𝑋 cur

𝑖 is replaced by 𝑋 0 (or 𝑋 1) with probability |𝑋0 |
|𝑋 cur

𝑖
| (or |𝑋1 |

|𝑋 cur
𝑖
| ). In this process,

the density function D(𝑿cur
𝑖 (𝐽𝑖 )) would increase since the size of |𝑋 cur

𝑖 | decreases. This
contributes to the density function with an increment of:

log( |𝑋
cur
𝑖 |
|𝑋0 | ) with probability |𝑋 0 |/|𝑋 cur

𝑖 |;

log( |𝑋
cur
𝑖 |
|𝑋1 | ) with probability |𝑋 1 |/|𝑋 cur

𝑖 |.
Thus, in expectation, the density function of 𝑅cur = 𝑋 cur

1 ×𝑋 cur
2 × · · · ×𝑋 cur

𝑘
after partitioning

will increase

|𝑋 0 |
|𝑋 cur
𝑖
| log

( |𝑋 cur
𝑖 |
|𝑋 0 |

)
+ |𝑋

1 |
|𝑋 cur
𝑖
| log

( |𝑋 cur
𝑖 |
|𝑋 1 |

)
≤ 1, (1)

where |𝑋 cur
𝑖 | denotes the size of 𝑋 cur

𝑖 before partitioning. Furthermore, if 𝑿cur
𝑖 (𝐽𝑖 ) is no longer

(1 − 1
10𝑘 log𝑛 )-dense, we partition 𝑋 cur

𝑖 by Lemma 13 and get 𝑋 cur
𝑖 = 𝑋 1 ∪ 𝑋 2 ∪ · · · ∪ 𝑋 𝑟 and
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𝐼1∪𝐼2∪· · ·∪𝐼𝑟 with 𝑋 𝑗 (𝐼 𝑗 ) = 𝜏 𝑗 for all 𝑗 . We use Lemma 13, where we take 𝛾 = 1−1/(10𝑘 log𝑁 ),
and get:

D(𝑿 𝑗 (𝐽𝑖 − 𝐼𝑖 )) ≤ D(𝑿cur
𝑖 (𝐽𝑖 )) − (1 − 𝛾) |𝐼 𝑗 | log𝑁 + 𝛾 𝑗 =D(𝑿cur

𝑖 (𝐽𝑖 )) −
|𝐼 𝑗 |
10𝑘 + 𝛿 𝑗 . (2)

Recall that 𝛿 𝑗 := log( |𝑋 cur
𝑖 |/| ∪𝑝≥ 𝑗 𝑋𝑝 |) here. In the decomposition process, 𝑋 cur

𝑖 is replaced
with 𝑋 𝑗 with probability |𝑋 𝑗 |/|𝑋 cur

𝑖 |. Hence, taking the expectation in one communication
round, we have

𝔼[𝛿 𝑗 ] =
∑︁
𝑗

|𝑋 𝑗 |
|𝑋 cur
𝑖
| log( |𝑋 cur

𝑖 |/| ∪𝑝≥ 𝑗 𝑋𝑝 |) ≤
∫ 1

0
log 1

1 − 𝑥 𝑑𝑥 = 1. (3)

Thus, combining (1), (2) and (3) and taking expectations, we know that after CC(Π) rounds
of communication (where each round communicates exact one bit message), it holds:

𝔼𝑅∼𝑹leaf [D(𝑅)] ≤ 2 · CC(Π) −
𝔼𝐽1∼𝑱 leaf

1 ,· · · ,𝐽𝑘∼𝑱 leaf
𝑘

[ ∑𝑘
𝑗=1 |𝐽𝑐𝑗 |

]
10𝑘 .

Here, the 2 ·CC(Π) comes from (1) and (3). We know that 𝔼𝑅∼𝑹leaf [D(𝑅)] ≥ 0 from definitions.
Hence, we have

𝑘∑︁
𝑗=1

𝔼𝐽𝑗∼𝑱 leaf
𝑗
[|𝐽𝑐𝑗 |] ≤ 20𝑘 · CC(Π). (4)

We can bound the probability that the bad structured rectangle appears round by round.
At each round of communication, if we choose 𝑋 𝑗 to replace 𝑋 cur

𝑖 , then we will fix |𝐼 𝑗 | more
positions for 𝑋 cur

𝑖 . We then consider the probability that this new fixed part contributes to
forming a bad structured rectangle with future fixed positions.

Let 𝑅 𝑗 = 𝑋 cur
1 × 𝑋 cur

2 × · · ·𝑋 𝑗 · · · × 𝑋 cur
𝑘

, for any 𝑥 = (𝑥cur
1 , 𝑥cur

2 , · · · , 𝑥 𝑗 , · · · , 𝑥cur
𝑘
) ∈ 𝑅 𝑗 , we

label it as a error term if ∃𝑎 ∈ 𝜏 𝑗 , 𝑎 ∈
⋂
𝑝≠𝑖 𝑥

cur
𝑝 (𝐽𝑝 ) 7. By Lemma 15, for any 𝑎 ∈ 𝜏 𝑗 ,

Pr[𝑎 ∈
⋂
𝑝≠𝑖

𝑿cur
𝑝 (𝐽𝑝 )] ≤

𝑒𝑐𝑘−1

𝑁
(∑𝑘

𝑝=1 𝛼𝑝 )−𝛼𝑖

By a union bound, the probability that error terms appear in 𝑅 𝑗 is

Pr[∃𝑎 ∈ 𝜏 𝑗 , 𝑎 ∈
⋂
𝑝≠𝑖

𝑿cur
𝑝 (𝐽𝑝 )] ≤

|𝐼 𝑗 | · 𝑒𝑐𝑘−1

𝑁
(∑𝑘

𝑝=1 𝛼𝑝 )−𝛼𝑖

Also, we know that the total number of fixed elements equals
∑𝑘
𝑖=1 |𝐽𝑐𝑖 |, which is identical to

the summation of |𝐼 𝑗 | of every step, thus, the average probability of error terms at the end of
the decomposition process is at most

𝑒𝑐𝑘−1

𝑁 (
∑

𝑖 𝛼𝑖 )−max𝑖 {𝛼𝑖 }
·
𝑘∑︁
𝑖=1

𝔼𝐽𝑖∼𝑱 leaf
𝑖

[
|𝐽𝑐𝑖 |

]
.

7 𝜏 𝑗 is a fixed subset of [𝑁 ] with size at most |𝐼 𝑗 | since 𝑋 𝑗 is fixed on 𝐼 𝑗 . Input 𝑥 may be labeled many
times during the decomposition process.
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We note that for any 𝑅 ∈ Rleaf, if 𝑅 is bad, then all instances 𝑥 ∈ 𝑅 have been labeled as an
error term in the decomposition process, together with (4), we have

Pr
𝑅∼𝑹leaf

[𝑅 is bad] ≤ 𝑒𝑐𝑘−1

𝑁 (
∑

𝑖 𝛼𝑖 )−max𝑖 {𝛼𝑖 }
·
𝑘∑︁
𝑖=1

𝔼𝐽𝑖∼𝑱 leaf
𝑖

[
|𝐽𝑐𝑖 |

]
≤ 0.05.

The last inequality holds since 𝑐 = (1 + 2/𝑘) and CC(Π) ≤ 0.0001𝑁
∑

𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 }/𝑘. ◀

Next, we show that in the good structured rectangles, the protocol Π cannot achieve large
accuracy in finding the common element. This also comes from the structured properties of
the rectangles:

Proof of Lemma 18. Notice that we consider the rectangle 𝑅 = 𝑋1 ×𝑋2 × · · · ×𝑋𝑘 associated
with 𝐽1, 𝐽2, · · · 𝐽𝑘 that has no common elements on fixed parts 𝐽𝑐𝑖 . Thus, for any element
𝑎 ∈ [𝑁 ], there exists at least a party 𝑖 which does not contain 𝑎 on its fixed part. Thus, we
use Lemma 15 for 𝑿𝑖 (𝐽𝑖 ) with ℓ = 1, and get

Pr[𝑎 ∈ 𝑿𝑖 ] = Pr[𝑎 ∈ 𝑿𝑖 (𝐽𝑖 )] ≤ 𝑐𝑒/𝑁𝛼𝑖 = 𝑜 (1). ◀

3.3 Lower Bounds for Other Hardness Distributions
In this section, we first establish a reduction from Bernoulli hardness distribution (hardness
distribution 3) to hardness distribution 2 by the following lemma:

▶ Lemma 19. If a communication protocol Π that solves set-intersection under hardness
distribution 3 with accuracy 𝜖, there exists parameters 𝑐1, · · · , 𝑐𝑘 with each 1−1/𝑘 ≤ 𝑐𝑖 ≤ 1+1/𝑘
for hardness distribution 2 so that Π can find set intersection under this distribution with
accuracy 𝜖−2𝑘 exp(−𝑁 1−max𝑖 {𝛼𝑖 }

3𝑘2 ), which is bigger than 𝜖−0.01 when 𝑁 1−max𝑖 {𝛼𝑖 } ≥ 100𝑘2 log𝑘.

Proof. We first use Chernoff bound to bound the probability of the size of set 𝑆𝑖 of each player
𝑖 exceeding (1 + 1/𝑘) · 𝑁 1−𝛼𝑖 or less than (1 − 1/𝑘) · 𝑁 1−𝛼𝑖 under the hardness distribution 3:

Pr[| |𝑆𝑖 | − 𝑁 1−𝛼𝑖 | > 1/𝑘 · 𝑁 1−𝛼𝑖 ] ≤ 2 exp
(
− 𝑁

1−𝛼𝑖

3𝑘2

)
.

We use 𝐴 to denote the event that ∃𝑖, | |𝑋𝑖 | − 𝑁 1−𝛼𝑖 | > 1/𝑘 · 𝑁 1−𝛼𝑖 . Then, by a union bound,
we know that:

Pr[𝐴] ≤ 2𝑘 · exp
(
− 𝑁

1−max𝑖 {𝛼𝑖 }

3𝑘2

)
.

Then, condition on ¬𝐴, we have the success probability of Π in finding set intersection under

hardness distribution 3 is bigger than 𝜖 − 2𝑘 · exp
(
− 𝑁 1−max𝑖 {𝛼𝑖 }

3𝑘2

)
. Furthermore, condition on

¬𝐴, the hardness distribution 3 can be represented by a combination of product distributions:∑︁
𝑐1,𝑐2,· · · ,𝑐𝑘

𝜎 (𝑐1, 𝑐2, · · · , 𝑐𝑘 )𝐷𝑐1,𝑐2,· · · ,𝑐𝑘 ,

where 𝐷𝑐1,𝑐2,· · · ,𝑐𝑘 denotes the hardness distribution 2 with parameters 𝑐1, 𝑐2, · · · , 𝑐𝑘 . Then,
the lemma follows from an averaging argument. ◀

It suffices to construct a reduction from hardness distribution 2 to hardness distribution 1.
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▶ Lemma 20. If there exists a communication protocol Π with communication complexity 𝐶
which solves set-intersection under hardness distribution 2 with accuracy 𝜖, there exists a
communication protocol Π′ with communication complexity 𝐶 which solves set-intersection
under hardness distribution 1 with accuracy 𝜖 − 0.05 when 𝑘2𝑁 −min𝑖 {𝛼𝑖 } ≤ 1

100 holds.

Proof. We construct the communication protocol Π′ as follows:
1. For each player 𝑖, remove the duplicate elements of its input and get a 𝑆𝑖 ⊆ [𝑁 ].
2. Randomly sample 𝑐𝑖𝑁 1−𝛼𝑖 elements from 𝑆𝑖 , Π′ fail if |𝑌𝑖 | < 𝑐𝑖𝑁 1−𝛼𝑖 .
3. Run the communication protocol Π on 𝑌𝑖s to find intersection.
We know that the successful probability of Π′ under hardness distribution 1 is bigger than

𝜖 − Pr[Π′ fail at step 2] .

It suffices to bound Pr[Π′ fail at step 2]. From the union bound, we have:

Pr[Π′ fail at step 2] ≤ 𝑘 · Pr[|𝑆𝑖 | < 𝑐𝑖𝑁 1−𝛼𝑖 ]
≤ 𝑘 · Pr[#repeated elements in 𝑆𝑖 > (𝑐 − 𝑐𝑖 )𝑁 1−𝛼𝑖 ] .

We know that

𝔼[#repeated elements] = 𝑐𝑁 1−𝛼𝑖
(
1 − (1 − 1/𝑁 )𝑐𝑁 1−𝛼𝑖 −1

)
≤ 𝑐2𝑁 1−2𝛼𝑖 .

From Markov’s Inequality, we have

Pr[#repeated elements > (𝑐−𝑐𝑖 )𝑁 1−𝛼𝑖 ] ≤ 𝔼[#repeated elements]/(𝑐−𝑐𝑖 )𝑁 1−𝛼𝑖 ≤ 𝑘𝑐2𝑁 −𝛼𝑖 .

If 𝑘𝑁 −𝛼𝑖 ≤ 1
100𝑘 holds, which is guaranteed by the constraints, Pr[Π′ fail at step 2] ≤ 0.05

also holds. This concludes the lemma. ◀

3.4 Efficient Protocols for the Hardness Distribution
In this section, we first explain an efficient protocol for the hardness distribution 3, where we
use 𝐷3 to denote the distribution, showing that our lower bound result is almost tight for
this distribution. Also, this protocol can be easily extended to some more general product
distributions sharing "similarities" with the Bernoulli product distribution. Formally, we
prove:

▶ Theorem 21. There is a protocol Π, which solves the hardness distribution 3, with
AccΠ (𝐷3) ≥ 0.1 and

CC(Π) =𝑂 (𝑁
∑

𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 } log𝑁 ) .

Furthermore, this protocol can be extended to more general distributions. Let 𝐷 be any
distribution that satisfies the following properties:
1. each party holds a set of size Θ(𝑁 1−𝛼𝑖 );
2. the size of intersecting part of all parties is Ω(𝑁 1−∑𝑖 𝛼𝑖 );
there exists a protocol Π′ with 𝑂 (𝑘 log𝑁 · 𝑁

∑
𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 }) communication cost that achieves

Ω(1) accuracy under 𝐷.

Proof. To begin with, we first propose an efficient protocol to solve 𝐷3. Without loss of
generality, we assume 𝛼1 ≥ 𝛼2 ≥ · · · ≥ 𝛼𝑘 and each party 𝑖 gets a subset 𝑆𝑖 ⊆ [𝑁 ]. Then, the
communication protocol Π proceeds as follows:
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1. The first party uniformly and randomly picks min{|𝑆1 |, 𝑁
∑

𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 }} elements from 𝑆1
and sends them, denoted by 𝑀1, to the second party.

2. The second party receives the message 𝑀1 from the first one, and sends 𝑀2 :=𝑀1
⋂
𝑆2 to

the third party.
3. The process goes on, and the last party computes 𝑀𝑘−1

⋂
𝑆𝑘 . If it is not empty, the last

party outputs any element in it. Otherwise, the protocol fails.
Then, we bound AccΠ (𝐷3) and its communication complexity to show Π is highly efficient.
From the definitions, we know that

AccΠ (𝐷3) = Pr[𝑀1 ∩ 𝑆2 ∩ · · · ∩ 𝑆𝑘 ≠ ∅] .

Also, we have that

Pr[𝑀1 ∩ 𝑆2 ∩ · · · ∩ 𝑆𝑘 ≠ ∅||𝑀1 | =𝑚] = 1 −
(
1 − 1

𝑁
∑

𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 }

)𝑚
≥ 𝑚

𝑒 · 𝑁
∑

𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 }
.

The last inequality holds since 𝑚 ≤ 𝑁
∑

𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 } . From Chernoff bound, we know that the
probability that Pr

[
|𝑀1 | ≤ 𝑁

∑
𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 }/2

]
≤ 𝑒−𝑁 1−𝛼1/12 ≤ 𝑒−10𝑘3 . The last inequality is

from the constraint of 𝑘 ≤ 0.1 ·min{𝑁min𝑖 {𝛼𝑖 }/2, 𝑁 (1−max𝑖 {𝛼𝑖 })/3}. Furthermore, when

|𝑀1 | ≥ 𝑁
∑

𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 }/2,

it holds that

Pr[𝑀1 ∩ 𝑆2 ∩ · · · ∩ 𝑆𝑘 ≠ ∅||𝑀1 | =𝑚] ≥
1
2𝑒 .

Combining the facts above, we have AccΠ (𝐷3) ≥ 1
2𝑒
(
1 − 𝑒−10𝑘3 ) ≥ 0.1.

On the other hand, we bound the communication complexity by bounding the expected
size of |𝑀𝑖 |. 𝔼[|𝑀1 |] ≤ 𝑁

∑
𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 } log𝑁 holds from definitions. Furthermore, we have

𝔼[|𝑀𝑖 |] ≤ 𝔼[|𝑀𝑖−1 |] · 𝑁 −𝛼𝑖 .

Then, 𝔼[∑𝑖 𝑀𝑖 ] ≤ 𝑂 (𝑁
∑

𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 } log𝑛) follows by 𝑁 −𝛼𝑖 ≤ 𝑁min𝑖 {𝛼𝑖 } ≤ 1/2. This concludes
the first statement.

Next, we slightly change the protocol above to match the second statement. The protocol
Π′ proceeds as follows:
1. The first party uniformly and randomly picks Θ(𝑁

∑
𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 }) elements from 𝑆1 and

sends them, denoted by 𝑀1, to the second party.
2. The second party receives the message 𝑀1 from the first one, and sends 𝑀2 :=𝑀1

⋂
𝑆2 to

the third party.
3. The process goes on, and the last party computes 𝑀𝑘−1

⋂
𝑆𝑘 . If it is not empty, the last

party outputs any element in it.

Obviously, the communication complexity of this protocol Π′ is 𝑂 (𝑘 log𝑛 ·𝑁
∑

𝑖 𝛼𝑖−max𝑖 {𝛼𝑖 }).
Also, we know the accuracy is bigger than

Ω

(
1 − (1 − Ω(𝑁 1−∑𝑖 𝛼𝑖 )

|𝑆1 |
)Θ(𝑁

∑
𝑖 𝛼𝑖 −max𝑖 {𝛼𝑖 } )

)
= Ω(1). ◀

Thus, our lower bounds show that those trivial protocols are nearly optimal.
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4 Lower Bounds for Chained Index

Recall that in the Chained Index problem, the player 𝑖 receives an input 𝑧𝑖 = (𝜎𝑖 , 𝑥𝑖 ) ∈
[𝑛] × {0, 1}𝑛. The players aim to compute 𝑥𝑘−1 (𝜎𝑘 ) through a one-way communication. In
this section, we show an improved lower bound for the Chained Index problem. In light of
Yao’s principle, we consider the following hard distribution.

The distribution 𝜒𝑘 .

1. Uniformly sample 𝜎1, ..., 𝜎𝑘 ∈ [𝑛].
2. Sample (𝑥1, . . . , 𝑥𝑘 ) ∼ ({0, 1}𝑛)𝑘 conditioned on 𝑥1 (𝜎2) = · · · = 𝑥𝑘−1 (𝜎𝑘 ).
3. Output 𝑧 = (𝑧1, . . . , 𝑧𝑘 ) where 𝑧𝑖 = (𝜎𝑖 , 𝑥𝑖 ) for every 𝑖 ∈ [𝑘].

For a subset 𝑅 ⊆ ([𝑛] × {0, 1}𝑛)𝑘 , define the weight of 𝑅 under 𝜒𝑘 as

𝜒𝑘 (𝑅)
def
= Pr

𝑧∼𝜒𝑘
[𝑧 ∈ 𝑅] = #{((𝜎1, 𝑥1), . . . , (𝜎𝑘 , 𝑥𝑘 )) ∈ 𝑅 : 𝑥1 (𝜎2) = · · · = 𝑥𝑘−1 (𝜎𝑘 )}

𝑛𝑘 · 2(𝑘−1) (𝑛−1)+𝑛+1 .

We prove the following lower bound. We say a one-way 𝑘-party protocol has signature
(𝐶1, . . . ,𝐶𝑘 ) if, for each 𝑖 ∈ [𝑘], the 𝑖-th party sends at most 𝐶𝑖 bits (on all inputs).
▶ Theorem 22. Let 𝜀 ∈ (0, 1/4] be a constant. Let Π be a protocol for the 𝑘-party chained
index problem with signature (𝐶1, . . . ,𝐶𝑘 ). If Π has 2𝜀 advantage, i.e.,

Pr
𝑧=(𝜎1,𝑥1,...,𝜎𝑘 ,𝑥𝑘 )∼𝜒𝑘

[Π(𝑧) = 𝑥𝑘−1 (𝜎𝑘 )] ≥
1
2 + 2𝜀.

Then
∑𝑘
𝑡=1𝐶𝑡 ≥ max

{ 1
32𝜀

2𝑛/𝑘, 1
8𝜀
√
𝑛
}
= Ω(𝑛/𝑘 +

√
𝑛).

We use a decomposition and sampling process DS, as shown in Algorithm 2, in our
analysis. DS takes as input a protocol Π, and samples a rectangle 𝑅 that is contained in Π𝑣
for some leaf node 𝑣 . Our proof proceeds in two steps:
1. Section 4.1 shows that the accuracy of Π is captured by a quantity called average fixed

size, which is a natural quantity that arises in the running of DS.
2. Section 4.2 proves that the average fixed size can be bounded from above by 𝑂 (𝑘 ·CC(Π)).

Consequently, if Π enjoys high accuracy, we get a lower bound of CC(Π).
We first recall some basic definitions.

𝒌-party one-way protocols

A deterministic 𝑘-party one-way communication protocol Π is specified by a rooted binary
tree. For every internal vertex 𝑣 ,

it has 2 children, denoted by Π(𝑣, 0) and Π(𝑣, 1);
𝑣 is owned by some party – we denote the owner by owner(𝑣) ∈ [𝑘];
every leaf node specifies an output.

Starting from the root, the owner of the current node cur partitions its input space into two
parts 𝑋0 and 𝑋1, and sets the current node to Π(cur, 𝑏) if its input belongs to 𝑋𝑏 .

The communication complexity of Π, denoted by CC(Π), is the depth of the tree. On
a path from root to some leaf, each time the owner switches, we call it a new round; in a
one-way protocol, the label of the owner is non-decreasing.
▶ Fact 23. The set of all inputs that lead to an internal vertex 𝑣 is a rectangle, denoted by
Π𝑣 = 𝑋1 × · · · × 𝑋𝑘 .
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Normalized protocols

We normalized a protocol Π as follows so as to make it defined on all inputs, including those
not in supp(𝜒𝑘 ). For the 𝑖-th party, given input (𝜎𝑖 , 𝑥𝑖 ) ∈ [𝑛] × {0, 1}𝑛 and previous transcripts
trans, output 0 if the input is invalid, i.e., given trans, there is no input in supp(𝜒𝑘 ) matches
𝑥𝑖 . Otherwise, the 𝑖-th party outputs 1 and proceeds as Π. Clearly, by normalizing, we
communicate 𝑘 more bits.

Algorithm 2 Decomposition and Sampling Process DS.

Input: A protocol Π
Output: A rectangle 𝑅 = ({𝜎1} × 𝑋1) × · · · × ({𝜎𝑘 } × 𝑋𝑘 ) and 𝑘 sets 𝐽1, . . . , 𝐽𝑘 ⊆ [𝑛].

1 for 𝑖 ∈ [𝑘] do
2 𝑋𝑖 := {0, 1}𝑛 , 𝐽𝑖 := [𝑛]. // Initialization

3 Sample 𝜎1 ∼ [𝑛].
4 𝑣 := root of Π, 𝑅 := ({𝜎1} × {0, 1}𝑛) × ([𝑛] × {0, 1}𝑛)𝑘−1, bad := False.
5 while 𝑣 is not a leaf node do
6 𝑖 := owner(𝑣), 𝑢0 := Π(𝑣, 0), 𝑢1 := Π(𝑣, 1).
7 //Loop invariant: (1) 𝑅 ⊆ Π𝑣; (2) 𝑿𝑖 (𝐽𝑖 ) is 𝛾-dense.
8 𝑋𝑖 is partitioned into 𝑋𝑖 = 𝑋 0 ∪ 𝑋 1 according to Π.
9 Sample 𝒃 such that Pr [𝒃 = 𝑏] = 𝜒𝑘 (𝑅𝑏 )

𝜒𝑘 (𝑅) where
𝑅𝑏 = ({𝜎1} × 𝑋1) × · · · ({𝜎𝑖 } × 𝑋𝑏) × ([𝑛] × {0, 1}𝑛)𝑘−𝑖 for 𝑏 ∈ {0, 1}.

10 //𝑅 is always a shorthand for
({𝜎1} × 𝑋1) × · · · × ({𝜎𝑖 } × 𝑋𝑖 ) × ([𝑛] × {0, 1}𝑛)𝑘−𝑖

11 Update 𝑋𝑖 := 𝑋𝒃 .

12 Let 𝑋𝑖 = 𝑋 1 ∪ · · · ∪ 𝑋𝑚 be the decomposition of 𝑋𝑖 promised by Lemma 13 with
associated sets 𝐼1, . . . , 𝐼𝑚 ⊆ 𝐽𝑖 . // Invoking Lemma 13 with
𝛾 = 1 − 2𝜀

𝑘
, 𝐽 = 𝐽𝑖 , 𝑁 = 2.

13 Sample 𝒋 ∈ [𝑚] such that Pr [𝒋′ = 𝑗] = 𝜒𝑘 (𝑅 𝑗 )
𝜒𝑘 (𝑅) where

𝑅 𝑗 = ({𝜎1} × 𝑋1) × · · · × ({𝜎𝑖 } × 𝑋 𝑗 ) × ([𝑛] × {0, 1}𝑛)𝑘−𝑖 for 𝑗 ∈ [𝑚].
14 Update 𝑋𝑖 := 𝑋 𝒋, 𝐽𝑖 := 𝐽𝑖 \ 𝐼𝒋 .
15 if owner(𝑢𝒃 ) ≠ 𝑖 then
16 Sample 𝜎𝑖+1 ∈ [𝑛] such that Pr [𝜎𝑖+1 = 𝜌] = 𝜒𝑘 (𝑅𝜌 )

𝜒𝑘 (𝑅) where
𝑅𝜌 = ({𝜎1} × 𝑋1) × · · · × ({𝜎𝑖 } × 𝑋𝑖 ) × ({𝜌} × {0, 1}𝑛) × ([𝑛] × {0, 1}𝑛)𝑘−𝑖−1 for
𝜌 ∈ [𝑛].

17 if 𝜎𝑖+1 ∉ 𝐽𝑖 then bad := True;
18 Output 𝑅 = ({𝜎1} × 𝑋1) × · · · × ({𝜎𝑘 } × 𝑋𝑘 ), 𝐽1, . . . , 𝐽𝑘 .

▶ Lemma 24 (Loop invariant). After each iteration in algorithm 2,
𝑅 ⊆ Π𝑣;
for all 𝑖 ∈ [𝑘], 𝑿𝑖 (𝐽𝑖 ) is 𝛾-dense;
for all 𝑖 ∈ [𝑘], there exists 𝛼𝑖 ∈ {0, 1} 𝐽𝑖 such that 𝑥 (𝐽𝑖 ) = 𝛼𝑖 for all 𝑥 ∈ 𝑋𝑖 .

Proof. The first item is true because every time 𝑣 is updated, 𝑅 is updated accordingly to a
sub-rectangle of Π𝑣 and updating 𝑅 into its sub-rectangles does not violate this condition.

Since we applied density restoring partition at the end of each iteration, the second and
the third items are guaranteed by Lemma 13 and the way that 𝑋𝑖 , 𝐽𝑖 are updated. ◀
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4.1 Relating Accuracy and Average Fixed Size
As shown in Lemma 24, during the execution of DS(Π), for every 𝑖 ∈ [𝑘], the set 𝑋𝑖 is “fixed”
on 𝐽𝑖 in the sense that all strings in 𝑋𝑖 share the same value on coordinates in 𝐽𝑖 . So we
call the expected size of |𝐽𝑖 | average fixed size. However, in order to relate the accuracy of
Π to average fixed size, we need to consider the expectation of |𝐽𝑖 | in a slightly different
distribution.

▶ Definition 25 (Average fixed size). Let U𝑘 denote the uniform distribution over the input
space ( [𝑛] × {0, 1}𝑛)𝑘 . Let 𝑡 ∈ [𝑘] and consider the following process, denoted by Unif𝑡 (Π):
1. run DS(Π) until the 𝑡-th round;
2. continue running DS with 𝜒𝑘 replaced by U𝑘 in the execution of Line 9, Line 13, and

Line 16;
3. upon entering the (𝑡 + 1)-th round (i.e., until Line 17 is reached with 𝑖 = 𝑡), return 𝐽𝑡 .

The average fixed size of the 𝑡-th party is defined as E𝐽𝑡∼Unif𝑡 (Π)
[
|𝐽𝑡 |

]
.

▶ Lemma 26 (Relating accuracy and average fixed size). Assume that 𝛾 ≥ log
[
1 +

( 1−2𝜀
1+2𝜀

)1/𝑘 ].
Then

Pr
𝑧=(𝜎1,𝑥1,...,𝜎𝑘 ,𝑥𝑘 )∼𝜒𝑘

[Π(𝑧) = 𝑥𝑘−1 (𝜎𝑘 )] ≤
1
2 + 𝜀 +

2
𝑛
·
𝑘∑︁
𝑡=1

E
𝐽𝑡∼Unif𝑡 (Π)

[
|𝐽𝑡 |

]
.

▶ Remark 27. 𝛾 def
= 1 − 2𝜀

𝑘
satisfies the condition. Indeed,

log
[
1 +

(
1 − 2𝜀
1 + 2𝜀

)1/𝑘
]
≤
(
1 − 2𝜀
1 + 2𝜀

)1/𝑘
≤ 1 − 1

𝑘
· 4𝜀

1 + 2𝜀 ≤ 1 − 2𝜀
𝑘
,

where the first inequality is by log(1 + 𝑥) ≤ 𝑥 , and the second is by (1 − 𝑥)𝑟 ≤ 1 − 𝑟𝑥 for
𝑥 ∈ (−1, 0) and 𝑟 ∈ (0, 1).

The proof of the lemma is obtained through the following two lemmas. The first lemma
readily says that conditioned on the flag bad is not raised, Π has little advantage in the
rectangle 𝑅 output by DS(Π). The second lemma shows the probability that the flag is raised
is bounded in terms of the average fixed size.

▶ Lemma 28. If DS(Π) outputs (𝑅, 𝐽1, . . . , 𝐽𝑘 ) and bad = False in the end, then

Pr
𝑧=(𝜌1,𝑥1,...,𝜌𝑘 ,𝑥𝑘 )∼𝑅

[Π(𝑧) = 𝑥𝑘−1 (𝜌𝑘 ) |𝑥1 (𝜌2) = · · · = 𝑥𝑘−1 (𝜌𝑘 )] ≤
1
2 + 𝜀.

▶ Lemma 29. PrDS(Π) [bad = True] ≤ 2
𝑛
·∑𝑘

𝑡=1 E𝐽𝑡∼Unif𝑡 (Π)
[
|𝐽𝑡 |

]
.

Next, we first prove Lemma 26 using the above two lemmas.

Proof of Lemma 26. Note that in the running of DS(Π), we first sample 𝜎1, . . . , 𝜎𝑘 ∼ [𝑛]
and then always update 𝑅 to a randomly chosen rectangle; the probability of each rectangle
being chosen is proportional to its weight under 𝜒𝑘 . Consequently,

Pr
𝑧=(𝜎1,𝑥1,...,𝜎𝑘 ,𝑥𝑘 )∼𝜒𝑘

[Π(𝑧) = 𝑥𝑘−1 (𝜎𝑘 )]

= Pr
(𝑅,𝐽1,...,𝐽𝑘 )∼DS(Π)
(𝜎1,𝑥1,...,𝜎𝑘 ,𝑥𝑘 )∼𝑅

[Π(𝑧) = 𝑥𝑘−1 (𝜎𝑘 ) | 𝑥1 (𝜎2) = · · · = 𝑥𝑘−1 (𝜎𝑘 )]

≤ Pr
DS(Π)

[bad = True] + Pr
(𝑅,𝐽1,...,𝐽𝑘 )∼DS(Π)
𝑧=(𝜎1,𝑥1,...,𝜎𝑘 ,𝑥𝑘 )∼𝑅

[Π(𝑧) = 𝑥𝑘−1 (𝜎𝑘 ) |𝑥1 (𝜎2) = · · · = 𝑥𝑘−1 (𝜎𝑘 ) ∧ bad = False]

≤ 1
2 + 𝜀 +

2
𝑛
·
𝑘∑︁
𝑡=1

E
𝐽𝑡∼Unif𝑡 (Π)

[
|𝐽𝑡 |

]
.

where the last step is by Lemma 28 and Lemma 29. ◀
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It remains to prove the two lemmas.

Proof of Lemma 28. Say 𝑅 = ({𝜎1} ×𝑋1) × · · · × ({𝜎𝑘 } ×𝑋𝑘 ). Since bad = False in the end,
we have 𝜎𝑖+1 ∈ 𝐽𝑖 for all 𝑖 ∈ [𝑘 − 1]. By Lemma 24, we have H∞ (𝑿𝑖 (𝜎𝑖+1)) ≥ 𝛾 for all 𝑖. Since
𝑅 is contained in some leaf node of Π, Π output the same answer in 𝑅, say 𝑏∗ ∈ {0, 1}. Note
that for 𝑏 ∈ {0, 1},

Pr
𝑧=(𝜌1,𝑥1,...,𝜌𝑘 ,𝑥𝑘 )∼𝑅

[𝑥1 (𝜌2) = · · · = 𝑥𝑘−1 (𝜌𝑘 ) = 𝑏] =
∏

𝑖∈[𝑘−1]
Pr
𝑥𝑖∼𝑋𝑖

[𝑥𝑖 (𝜎𝑖+1) = 𝑏] ,

since we must have 𝜌𝑖 = 𝜎𝑖 . Write 𝑝𝑖
def
= Pr𝑥𝑖∼𝑋 𝑖

[
𝑥𝑖 (𝜎𝑖 ) = 𝑏∗

]
. Then we have

Pr
𝑧=(𝜌1,𝑥1,...,𝜌𝑘 ,𝑥𝑘 )∼𝑅

[Π(𝑧) = 𝑥𝑘−1 (𝜌𝑘 ) |𝑥1 (𝜌2) = · · · = 𝑥𝑘−1 (𝜌𝑘 )]

= Pr
𝑧=(𝜌1,𝑥1,...,𝜌𝑘 ,𝑥𝑘 )∼𝑅

[𝑥1 (𝜌2) = · · · = 𝑥𝑘−1 (𝜌𝑘 ) = 𝑏∗ |𝑥1 (𝜌2) = · · · = 𝑥𝑘−1 (𝜌𝑘 )]

= Pr
𝑧=(𝜌1,𝑥1,...,𝜌𝑘 ,𝑥𝑘 )∼𝑅

[𝑥1 (𝜎2) = · · · = 𝑥𝑘−1 (𝜎𝑘 ) = 𝑏∗] / Pr
𝑧=(𝜌1,𝑥1,...,𝜌𝑘 ,𝑥𝑘 )∼𝑅

[𝑥1 (𝜎2) = · · · = 𝑥𝑘−1 (𝜎𝑘 )]

=

∏
𝑖∈[𝑘 ] 𝑝𝑖∏

𝑖∈[𝑘 ] 𝑝𝑖 +
∏
𝑖∈[𝑘 ] (1 − 𝑝𝑖 )

=
1

1 +∏𝑖∈[𝑘 ] (1/𝑝𝑖 − 1) .

Since H∞ (𝑿𝑖 (𝜎𝑖+1)) ≥ 𝛾 for all 𝑖, we have 𝑝𝑖 ∈ [1 − 2−𝛾 , 2−𝛾 ], which implies
1

1 +∏𝑖∈[𝑘 ] (1/𝑝𝑖 − 1) ≤
1

1 + (2𝛾 − 1)𝑘
.

Since we assumed 𝛾 ≥ log
[
1 +

( 1−2𝜀
1+2𝜀

)1/𝑘 ] , it holds that 1
1+(2𝛾 −1)𝑘 ≤

1
2 + 𝜀, concluding the

proof. ◀

Proof of Lemma 29. Let B𝑡 denote the event that the flag bad is raised when 𝑖 = 𝑡 (i.e.,
when the 𝑖-th round ends) for the first time. Clearly, Pr [bad = True] = ∑𝑘−1

𝑡=1 Pr [B𝑡 ] . It
suffices to show Pr [B𝑡 ] ≤ E𝐽𝑡∼Unif𝑡 (Π)

[
|𝐽𝑡 |

]
. for each 𝑡 .

Fix 𝑡 ∈ [𝑘 − 1] and the random coins coin used for the first (𝑡 − 1) rounds, i.e., until Line
17 is reached with 𝑖 = 𝑡 − 1). Let 𝑅𝑡−1 = ({𝜎1} × 𝑋1 × · · · × ({𝜎𝑡 } × {0, 1}𝑛) × ([𝑛] × {0, 1}𝑛)𝑘−𝑡
be the value of rectangle 𝑅 when running DS(Π) using coin until the 𝑡-th round begins. The
core of our proof is to compare the process with one that runs under uniform weight instead
of the weight under 𝜒𝑘 ; this is why we can deal with the promise.

Let Real𝑡 be the process that runs DS(Π) until the 𝑡-th round begins with coin, then run
the 𝑡-th round with fresh random coins.
Let Unif𝑡 (Π; coin) be the process that runs DS(Π) until the 𝑡-th round begins with coin,
then runs the 𝑡-th round with 𝜒𝑘 replaced by U𝑘 .

Note that during the execution of Real𝑡 and Unif𝑡 , the partitions are the same, and the
only difference is that when choosing 𝒃, 𝒋, 𝜎𝑡+1, the probabilities are different. Let 𝑋𝑡 , 𝐽̂𝑡 , 𝜎𝑡+1
be a possible value of 𝑋𝑡 , 𝐽𝑡 , 𝜎𝑡+1 at the end of the 𝑡-th round. In Real𝑡 we update 𝑅 according
to 𝜒𝑘 , and thus the probability that 𝑋𝑡 = 𝑋𝑡 , 𝜎𝑡+1 = 𝜎𝑡+1 in the end of Real𝑡 equals

𝑝 (𝑋𝑡 , 𝜎𝑡+1) =
𝜒𝑘 (({𝜎1} × 𝑋1) × · · · × ({𝜎𝑡 } × 𝑋𝑡 ) × ({𝜎𝑡+1} × {0, 1}𝑛) × ([𝑛] × {0, 1}𝑛)𝑘−𝑡−1)

𝜒𝑘 (𝑅𝑡−1)
.

Similarly, the probability that 𝑋𝑡 = 𝑋𝑡 , 𝜎𝑡+1 = 𝜎𝑡+1 in the end of Unif𝑡 (Π, coin) equals

𝑞(𝑋𝑡 , 𝜎𝑡+1) =
U𝑘 (({𝜎1} × 𝑋1) × · · · × ({𝜎𝑡 } × 𝑋𝑡 ) × ({𝜎𝑡+1} × {0, 1}𝑛) × ([𝑛] × {0, 1}𝑛)𝑘−𝑡−1)

U𝑘 (𝑅𝑡−1)

=
|𝑋𝑡 |
𝑛2𝑛 .
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The next claim reveals a connection between the two probabilities, whose proof is by direct
calculation and is deferred to the appendix.

▷ Claim 30. For all possible value 𝑋𝑡 , 𝜎𝑡+1, 𝑝 (𝑋𝑡 , 𝜎𝑡+1) ≤ 2𝑞(𝑋𝑡 , 𝜎𝑡+1).

Since 𝐽𝑡 is determined by the value of 𝑋𝑡 and the event B𝑡 is determined by 𝑋𝑡 and 𝜎𝑡+1,
the above claim implies that PrReal𝑡 [B𝑡 ] ≤ 2 PrUnif𝑡 (Π;coin) [B𝑡 ] . Note that in Unif𝑡 (Π; coin),
𝜎𝑡+1 is chosen uniformly at random, and thus

Pr
Unif𝑡 (Π;coin)

[B𝑡 ] ≤ E
𝐽𝑡∼Unif𝑡 (Π;coin)

[
|𝐽𝑡 |

]
/𝑛.

Taking expectation over coin we get Pr [B𝑡 ] ≤ 2
𝑛
· E𝐽𝑡∼Unif𝑡 (Π)

[
|𝐽 𝑡 |

]
, as desired. ◀

4.2 Average Fixed Size is Bounded by Communication
Now that the accuracy of a protocol Π is bounded from above by the average fixed size
(i.e.,

∑𝑘
𝑡=1 E𝐽𝑡∼Unif𝑡 (Π)

[
|𝐽𝑡 |

]
), in what follows we show that the average fixed size is at most

𝑂 (𝑘 · CC(Π)). Formally, we prove that

▶ Lemma 31. Assume that Π is a normalized protocol with signature (𝐶1, . . . ,𝐶𝑘 ). Then

𝑘∑︁
𝑡=1

E
𝐽𝑡∼Unif𝑡 (Π)

[
|𝐽𝑡 |

]
≤ 2

1 − 𝛾 ·
∑︁
𝑡 ∈[𝑘 ]

𝐶𝑡 .

Proof. The proof strategy is similar to the proof of Lemma 29. Fix 𝑡 ∈ [𝑘 − 1] and consider
E𝐽𝑡∼Unift (Π)

[
|𝐽 𝑡 |

]
. Fix the random coins coin used for the first (𝑡 − 1) rounds (i.e., until Line

17 is reached with 𝑖 = 𝑡 − 1). Let Real𝑡 and Unif𝑡 (Π; coin) be defined as in the proof of
Lemma 29. Moreover, let 𝑐𝑡 denote the number of bits sent by the 𝑡-th party, i.e., the number
of iterations in the 𝑡-th round. By a standard density increment argument, we have

▷ Claim 32. E𝐽𝑡∼Unif𝑡 (Π;coin)
[
|𝐽𝑡 |

]
≤ 2

1−𝛾 EUnif𝑡 (Π;coin) [𝒄𝑡 ] ≤ 2
1−𝛾𝐶𝑡 .

Averaging over coin, we have

E
𝐽𝑡∼Unift (Π)

[
|𝐽𝑡 |

]
= E

coin,𝐽𝑡∼Unif𝑡 (Π;coin)

[
|𝐽𝑡 |

]
≤ 2

1 − 𝛾𝐶𝑡 ,

where the second inequality follows from Claim 32. By summing up all 𝑡 ’s, we get the desired
result. ◀

It remains to prove Claim 32.

Proof of Claim 32. We shall prove this lemma by a density increment argument. That is, we
study the change of the density function 𝐷∞ (𝑿𝑡 (𝐽𝑡 )) . in each iteration. Let 𝝓ℓ be the value
of 𝐷∞ (𝑿𝑡 (𝐽𝑡 )) at the end of the ℓ-th iteration.

We fix the random coins used for the first (ℓ − 1) iterations and consider the updates in
the current iteration.
1. First, 𝑋𝑡 is partitioned into 𝑋𝑡 = 𝑋 0 ∪ 𝑋 1 according to Π. Then, 𝑋𝑡 is updated to 𝑋𝑏

with probability |𝑋𝑏 |
|𝑋 | . Consequently, 𝐷∞ (𝑿𝒕 (𝐽𝑡 )) will increase as |𝑋𝑡 | shrinks, and in

expectation (over the random choice of 𝒃) the increment is∑︁
𝑏∈{0,1}

|𝑋𝑏 |
|𝑋𝑡 |

log
(
|𝑋𝑡 |
|𝑋𝑏 |

)
≤ 1. (5)
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2. Next, we further partition 𝑋𝑡 according to Lemma 13. Say 𝑋 is partitioned into 𝑋𝑡 =
𝑋 1 ∪ · · · ∪ 𝑋𝑚 and let 𝐼1, . . . , 𝐼𝑚 be the index sets promised by Lemma 13; and for all
𝑗 ∈ [𝑚] we have

𝐷∞ (𝑿 𝑗 (𝐽𝑡 \ 𝐼 𝑗 )) ≤ 𝐷∞ (𝑿𝑡 (𝐽𝑡 )) − (1 − 𝛾) |𝐼 𝑗 | + 𝛿 𝑗 ,

where 𝛿 𝑗 = log( |𝑋𝑡 |/| ∪𝑣≥ 𝑗 𝑋 𝑣 |). With probability 𝑝 𝑗
def
= |𝑋 𝑗 |/|𝑋𝑡 |, we update 𝑋𝑡 := 𝑋 𝑗

and 𝐽𝑡 := 𝐽𝑡 \ 𝐼 𝑗 . Therefore, taking expectation over the random choice of 𝒋, the density
function will decrease by

𝐷∞ (𝑿𝒕 (𝐽𝑡 )) − E
𝑗∼𝒋

[
𝐷∞ (𝑿 𝑗

𝒕 (𝐽𝑡 \ 𝐼 𝑗 ))
]
≥ E
𝑗∼𝒋

[
(1 − 𝛾) · |𝐼 𝑗 | − 𝛿 𝑗

]
. (6)

Note that 𝛿 𝑗
def
= log 1∑

𝑣≥ 𝑗 𝑝𝑣
and thus

E
𝑗∼𝒋

[
𝛿 𝑗
]
=

𝑚∑︁
𝑗=1

𝑝 𝑗 log 1∑
𝑣≥ 𝑗 𝑝𝑣

≤
∫ 1

0
log 1

1 − 𝑥 d𝑥 ≤ 1. (7)

Let Fℓ−1 be the 𝜎-algebra generated by the random coins used for the first (ℓ−1) iterations.
Let 𝜷ℓ be the increment of |𝐽𝑡 | in the ℓ-th iteration. Observe that 𝜷ℓ = |𝐼𝒋 | by definition.
By Equation (6) and Equation (7), taking expectation over random choice of 𝒋, 𝐷∞ (𝑿𝑡 (𝐽𝑡 ))
decrease by at least (1 − 𝛾) · E [𝜷ℓ | Fℓ−1] − 1 due to the density restoring partition. Then

E [𝝓ℓ − 𝝓ℓ−1] = E [E [𝝓ℓ − 𝝓ℓ−1 | Fℓ−1]] ≤ E [1 − ((1 − 𝛾) · 𝜷ℓ − 1)] . (8)

In the beginning, 𝝓0 = 𝐷∞ ({0, 1}𝑛) = 0. Since the density function is always non-negative by
definition, we have 𝝓𝒄𝑡 ≥ 0 and thus E

[
𝝓𝒄𝑡 − 𝝓0

]
≥ 0. On the other hand, by telescoping,

E
[
𝝓𝒄𝑡 − 𝝓0

]
= E

[
𝒄𝑡∑︁
ℓ=1
(𝝓ℓ − 𝝓ℓ−1)

]
≤ E

[
𝒄𝑡∑︁
ℓ=1
(𝜷ℓ + 2)

]
,

where the inequality follows from Equation (8). Observe that
∑𝒄𝑡
𝑡=1 𝜷𝑡 = |𝑱𝑡 | by definition. We

conclude that

E
[
|𝑱𝑡 |

]
= E

[
𝒄𝑡∑︁
ℓ=1

𝜷ℓ

]
≤ 2 E [𝒄𝑡 ]

1 − 𝛾 ≤ 2𝐶𝑡
1 − 𝛾 ,

as desired. ◁

4.3 Putting Things Together
Now we are prepared to prove Theorem 22.

Proof of Theorem 22. We first normalize Π so as to make it accept all inputs in ( [𝑛] ×
{0, 1}𝑛)𝑘 . Denoted by Π′ the normalized protocol, then Π′ has signature (𝐶1 + 1, . . . ,𝐶𝑘 + 1).

Set 𝛾 = 1− 2𝜀
𝑘

. One can check that 𝛾 satisfies the requirement in Lemma 26. By Lemma 26
and Lemma 31, we have

Accuracy(Π′) def
= Pr

𝑧=(𝜎1,𝑥1,...,𝜎𝑘 ,𝑥𝑘 )∼𝜒𝑘
[Π′ (𝑧) = 𝑥𝑘−1 (𝜎𝑘 )] ≤

1
2 + 𝜀 +

4
𝑛
· 𝑘2𝜀 · 2

𝑘∑︁
𝑡=1
(𝐶𝑡 + 1). (9)
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Since Π′,Π have the same output on valid inputs and we assumed Accuracy(Π) ≥ 1
2 + 2𝜀, we

get Accuracy(Π′) ≥ 1
2 + 2𝜀. Combining with Equation (9) and rearranging, we have

𝑘∑︁
𝑡=1

𝐶𝑡 ≥
𝜀2𝑛

4𝑘 − 𝑘. (10)

The above lower bound is vacuous when 𝑘 = 𝜔 (
√
𝑛). Next, we strengthen the lower bound

to Ω(𝑛/𝑘 +
√
𝑛) via simple reductions. Consider two cases.

Case 1: 𝑘 ≤ 𝜀
√
𝑛/4. Equation (10) implies that

𝑘∑︁
𝑡=1

𝐶𝑡 ≥
𝜀2𝑛

4𝑘 − 𝑘 ≥
𝜀2𝑛

4𝑘 −
𝜀2𝑛

16𝑘 >
𝜀2𝑛

8𝑘 ≥
𝜀
√
𝑛

2 .

Case 2: 𝑘 > 𝜀
√
𝑛/4. Let T def

= {𝑡 ∈ [𝑘] : 𝐶𝑡 ≥ 1} be the set of talking parties. If |T | ≥
𝜀
√
𝑛/8 ≥ 𝜀2𝑛

32𝑘 , we are done. Otherwise, we construct a protocol Π̂ for ChainInd𝑘 ′ where
𝑘 ′

def
= 2|T | ≤ 𝜀

√
𝑛/4, described below.

Say the talking parties are 𝑃𝑖1 , . . . , 𝑃𝑖𝑘′/2 . Let 𝑃 ′2𝑗−1 emulate 𝑃𝑖 𝑗 , and 𝑃2𝑗 emulate
𝑃𝑖 𝑗+1, . . . 𝑃𝑖 𝑗+1−1 by doing nothing. Note that on receiving an input sampled from 𝜇𝑘 ′ ,
the parties 𝑃 ′2𝑗 can imagine they are given inputs for all 𝑃𝑖 𝑗+1, . . . 𝑃𝑖 𝑗+1−1 from 𝜇𝑘 . Since
𝑃𝑖 𝑗+1, . . . 𝑃𝑖 𝑗+1−1 never talks, 𝑃 ′2𝑗 perfect emulate 𝑃𝑖 𝑗+1, . . . 𝑃𝑖 𝑗+1−1 them by doing nothing.
In sum,

Pr
𝑧∼𝜒𝑘′

[
Π̂(𝑧) = ChainInd𝑘 ′ (𝑧)

]
= Pr
𝑧∼𝜒𝑘
[Π(𝑧) = ChainInd𝑘 (𝑧)] ≥

1
2 + 2𝜀.

Observe that Π̂ has signature (𝐶𝑖1 , 0,𝐶𝑖2 , 0, . . . ,𝐶𝑖𝑘′/2 , 0). Applying Equation (10) to Π̂,
we get

𝑘∑︁
𝑖=1

𝐶𝑖 =

𝑘 ′∑︁
𝑡=1

𝐶𝑖𝑡 ≥
𝜀2𝑛

4𝑘 ′ − 𝑘
′ ≥ 𝜀
√
𝑛

2 ≥ 𝜀
2𝑛

8𝑘 .

Therefore, we conclude that
∑𝑘
𝑖=1𝐶𝑖 ≥ max

{ 1
32𝜀

2𝑛/𝑘, 1
8𝜀
√
𝑛
}
, regardless of the value of 𝑘. ◀
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A Proof of Claim 30

▷ Claim 33 (Claim 30 restated). Let 𝑡 ≤ 𝑘. Let 𝜎1, . . . , 𝜎𝑡+1 ∈ [𝑛], 𝑋1, . . . , 𝑋𝑡 ⊆ {0, 1}𝑛. For
ℓ ∈ {𝑡, 𝑡 + 1}, define

𝑅ℓ
def
= ({𝜎1} × 𝑋1) × · · · × ({𝜎ℓ−1} × 𝑋ℓ−1) × ({𝜎ℓ } × {0, 1}𝑛) × ([𝑛] × {0, 1}𝑛)𝑘−ℓ .

Then
𝜒𝑘 (𝑅𝑡+1)
𝜒𝑘 (𝑅𝑡 )

≤ 2U𝑘 (𝑅𝑡+1)
U𝑘 (𝑅𝑡 )

.

Proof of Claim 30. To start with, observe that

U𝑘 (𝑅𝑡+1)
U𝑘 (𝑅𝑡 )

=
|𝑅𝑡+1 |
|𝑅𝑡 |

=
|𝑋𝑡 |
𝑛2𝑛 . (11)

We claim that for ℓ ∈ {𝑡, 𝑡 + 1},

𝜒𝑘 (𝑅ℓ ) =
# {(𝑥1, . . . , 𝑥ℓ−1) ∈ 𝑋1 × · · · × 𝑋ℓ−1 : 𝑥1 (𝜎2) = · · · = 𝑥ℓ−1 (𝜎ℓ )}

𝑛ℓ · 2(𝑛−1)ℓ+1 . (12)
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Then we have

𝜒𝑘 (𝑅𝑡+1) =
# {(𝑥1, . . . , 𝑥𝑡 ) ∈ 𝑋1 × · · · × 𝑋𝑡 : 𝑥1 (𝜎2) = · · · = 𝑥𝑡 (𝜎𝑡+1)}

𝑛𝑡+1 · 2(𝑛−1) (𝑡+1)+1

≤ # {(𝑥1, . . . , 𝑥𝑡−1) ∈ 𝑋1 × · · · × 𝑋𝑡−1 : 𝑥1 (𝜎2) = · · · = 𝑥𝑡−1 (𝜎𝑡 )} · |𝑋𝑡 |
𝑛𝑡+1 · 2(𝑛−1) (𝑡+1)+1

= 𝜒𝑘 (𝑅𝑡 ) ·
|𝑋𝑡 |
𝑛2𝑛−1 .

where the first and the third equality is from Equation (12). Combining with Equation (11)
we have the desired result.

It remains to show Equation (12). Suppose that ((𝜌1, 𝑥1), . . . , (𝜌𝑘 , 𝑥𝑘 )) ∈ 𝑅ℓ satisfies
𝑥1 (𝜌2) = · · · = 𝑥𝑘−1 (𝜌𝑘 ). Then we 𝜌1 = 𝜎1, . . . , 𝜌ℓ = 𝜎ℓ and

𝑥1 (𝜎2) = · · · = 𝑥ℓ−1 (𝜎ℓ ) = 𝑏 for some 𝑏 ∈ {0, 1}.

For every 𝜌ℓ+1, . . . , 𝜌𝑘 ∈ [𝑛], there exists exactly 2(𝑛−1) possible values for each 𝑥 𝑗 with
ℓ ≤ 𝑗 ≤ 𝑘 − 1 (with one bit fixed to be 𝑏) and 2𝑛 possible values for 𝑥𝑘 (which is not used at
all). Therefore,

𝜒𝑘 (𝑅ℓ ) =
# {((𝜌1, 𝑥1), . . . , (𝜌𝑘 , 𝑥𝑘 )) ∈ 𝑅𝑡+1 : 𝑥1 (𝜌2) = · · · = 𝑥𝑘−1 (𝜌𝑘 )}

𝑛𝑘 · 2(𝑛−1) (𝑘−1)+𝑛+1

=
𝑛𝑘−ℓ · 2(𝑛−1) · (𝑘−1−ℓ )+𝑛 ·# {(𝑥1, . . . , 𝑥ℓ−1) ∈ 𝑋1 × · · · × 𝑋ℓ−1 : 𝑥1 (𝜎2) = · · · = 𝑥ℓ−1 (𝜎ℓ )}

𝑛𝑘 · 2(𝑛−1) (𝑘−1)+𝑛+1

=
# {(𝑥1, . . . , 𝑥ℓ−1) ∈ 𝑋1 × · · · × 𝑋ℓ−1 : 𝑥1 (𝜎2) = · · · = 𝑥ℓ−1 (𝜎ℓ )}

𝑛ℓ · 2(𝑛−1)ℓ+1 ,

which is exactly what we wanted. ◁

B Proof of Lemma 13

The following lemma and proof are from Lemma 5 in [30].

▶ Lemma 34 (Lemma 13 restated). Let 𝛾 ∈ (0, 1). Let 𝑋 be a subset of [𝑛]𝑀 and 𝐽 ⊆ [𝑀].
Suppose that there exists an 𝛽 ∈ [𝑛] 𝐽 such that ∀𝑥 ∈ 𝑋, 𝑥 (𝐽 ) = 𝛽. Then, there exists a partition
𝑋 = 𝑋 1 ∪ 𝑋 2 ∪ · · · ∪ 𝑋 𝑟 and every 𝑋 𝑖 is associated with a set 𝐼𝑖 ⊆ 𝐽 and a value 𝛼𝑖 ∈ {0, 1}𝐼𝑖
that satisfy the following properties.
1. ∀𝑥 ∈ 𝑋 𝑖 , 𝑥 (𝐼𝑖 ) = 𝛼𝑖 ;
2. 𝑿 𝑖 (𝐽 \ 𝐼𝑖 ) is 𝛾-dense;
3. 𝐷∞

(
𝑿 𝑖 (𝐽 \ 𝐼𝑖 )

)
≤ 𝐷∞ (𝑿 (𝐽 )) − (1 − 𝛾) log𝑛 · |𝐼𝑖 | + 𝛿𝑖 , where 𝛿𝑖

def
= log( |𝑋 |/| ∪𝑗≥𝑖 𝑋 𝑗 |).

Proof. We prove it by a greedy algorithm as follows.
Item 1 is guaranteed by the construction of 𝑋 𝑖 and 𝐼𝑖 .
We prove Item 2 by contradiction. Assume towards contradiction that 𝑿 𝑖 (𝐽 \ 𝐼𝑖 ) is not

𝛾-dense for some 𝑖. By definition, there is a nonempty set 𝐾 ⊆ 𝐽 \ 𝐼𝑖 and 𝛽 ∈ [𝑛]𝐾 violating
the min-entropy condition, namely, Pr [𝑿 (𝐾) = 𝛽] > 𝑛−𝛾 |𝐾 | . Write 𝑋 ≥𝑖 def

= ∪𝑗≥𝑖𝑋 𝑖 . Then

Pr
[
𝑿 ≥𝑖 (𝐼𝑖 ∪ 𝐾) = (𝛼𝑖 , 𝛽)

]
= Pr

[
𝑿 ≥𝑖 (𝐼𝑖 ) = 𝛼𝑖

]
· Pr

[
𝑿 𝑖 (𝐾) = 𝛽

]
> 𝑛−𝛾 |𝐼𝑖 | · 𝑛−𝛾 |𝐾 | = 𝑛−𝛾 |𝐼𝑖∪𝐾 | ,

where the first equality holds as (𝑿 ≥𝑖 |𝑿 ≥𝑖 (𝐼𝑖 ) = 𝛼𝑖 ) = 𝑿 𝑖 . However, this means at moment
that 𝐼𝑖 is chosen, the set 𝐼𝑖 ∪ 𝐾 ⊆ 𝐽 also violates the min-entropy condition (witnessed by
(𝛼𝑖 , 𝛽)), contradicting the maximality of 𝐼𝑖 .
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Algorithm 3 Greedy Algorithm.

Input: 𝑋 ⊆ [𝑛]𝑀
Output: A partition 𝑋 = 𝑋 1 ∪ 𝑋 2 ∪ · · · ∪ 𝑋𝑚

1 Initialize 𝑖 := 1.
2 while 𝑋 ≠ ∅ do
3 Let 𝐼 ⊆ 𝐽 be a maximal subset (possibly 𝐼 = ∅) such that H∞ (𝑿 (𝐼 )) < 𝛾 |𝐼 | log𝑛

and let 𝛼𝑖 ∈ [𝑛]𝐼 be a witness of this fact, i.e., Pr[𝑿 (𝐼 ) = 𝛼𝑖 ] > 𝑛−𝛾 |𝐼 | .
4 𝑋 𝑖 := {𝑥 ∈ 𝑋 : 𝑥 (𝐼 ) = 𝛼𝑖 } and 𝐼𝑖 := 𝐼 .
5 Update 𝑋 := 𝑋 \ 𝑋 𝑖 , 𝐽 := 𝐽 \ 𝐼𝑖 , and 𝑖 := 𝑖 + 1.

Finally, Item 3 is proved by straightforward calculation:

𝐷∞ (𝑿 𝑖 (𝐽 \ 𝐼𝑖 )) = |𝐽 \ 𝐼𝑖 | log𝑛 − log |𝑋 𝑖 |

≤ (|𝐽 | log𝑛 − |𝐼𝑖 | log𝑛) − log
(��𝑋 ≥𝑖 �� · 𝑛−𝛾 |𝐼𝑖 | )

= ( |𝐽 | log𝑛 − log |𝑋 |) − (1 − 𝛾) |𝐼𝑖 | · log𝑛 + log
(
|𝑋 |
|𝑋 ≥𝑖 |

)
= 𝐷∞

(
𝑿 (𝐽 )

)
− (1 − 𝛾) |𝐼𝑖 | log𝑛 + 𝛿𝑖 . ◀
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