

Altered defense patterns upon retrotransposition highlights the potential for rapid adaptation by transposable elements

Emma S.T. Aller^{a,b}, Christa Kanstrup^{a,b}, Pascal Hunziker^{a,c}, Daniel J. Kliebenstein^{a,d}, Meike Burow^{a,b}

^a DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark

^b Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark

^c Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany

^d Department of Plant Sciences, University of California, Davis, Davis, CA, USA

Address correspondence to Meike Burow, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark, e-mail: mbu@plen.ku.dk

1 **Abstract**

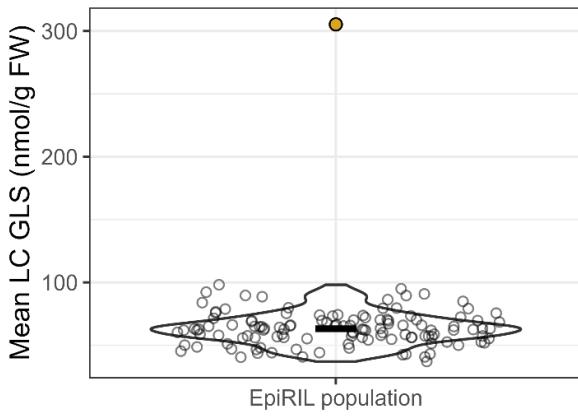
2 Transposable elements can be activated in response to environmental changes and lead to
3 changes in DNA sequence. Their target sites of insertions have previously been thought to be
4 random, but this theory has lately been contradicted. For instance, mobilization is favored
5 towards genes involved in regulatory processes. This makes them interesting as potential
6 players in rapid responses required under stressful environmental conditions. In this paper, we
7 report the in-depth characterization of an *Arabidopsis thaliana* Col-0-based line whose altered
8 DNA methylation pattern made it vulnerable for transposable element movement. We
9 identified a transposable element retrotransposition into a transporter of glucosinolate defense
10 compounds. As a consequence of this transposable element movement, the plants showed
11 tissue-specific changes in glucosinolate profiles and levels accompanied by rewiring of
12 glucosinolate- and defense-related transcriptional changes. As this single transposable element
13 had strong impact on the plants' resistance to insect herbivory, our findings highlight the
14 potential for transposable elements to play a role in plant adaptation.

15 **Introduction**

16 In the mid-20th century, Barbara McClintock made the revolutionary discovery of mobile
17 DNA, proving that genomic sequences are not necessarily stationary, but can relocate
18 (McClintock, 1950). Such transposable elements (TEs) act either by a cut-and-paste
19 mechanism (DNA transposons) or copying via an RNA-intermediate (retrotransposons) and
20 they provide extensive genetic variation across kingdoms (Ross et al., 2021; Stuart et al., 2016;
21 Wells and Feschotte, 2020; Wicker et al., 2007). Silencing of TEs is controlled by epigenetic
22 factors, including DNA methylation (Fan et al., 2022; Matzke and Mosher, 2014; Slotkin and
23 Martienssen, 2007; Tsukahara et al., 2009). TEs were long thought to move randomly, but
24 recent studies have shown that insertions might not merely be a provider of random genetic
25 variation. Recently, TEs have been proposed to play a role in adaptation based on their potential
26 for rapid mutagenesis (Lu et al., 2021; Michael Thieme et al., 2022; Roquis et al., 2021).
27 Changes in environmental conditions can induce global changes in DNA methylation patterns
28 that act in controlling TE movement (Dowen et al., 2012; Van Dooren et al., 2020; Wojtyla et
29 al., 2020). The Copia TE superfamily has shown to over-accumulate in genes which function
30 in gene regulation making them potential players in adaptation (Lisch, 2013; Negi et al., 2016;
31 Quadrana et al., 2019, 2016; Slotkin and Martienssen, 2007).

32 Studying effects of DNA methylation on trait variation is inherently challenged by the
33 confounding effect of associated DNA sequence variation (Johannes et al., 2009, 2008). To
34 overcome this issue, an epigenetic Quantitative Trait Loci (epiQTL) mapping population has
35 been generated using a *decrease in DNA methylation I* (*ddm1*)-mutant in *Arabidopsis thaliana*,
36 which is characterized by demethylation at 70% of all methylated cytosines and low levels of
37 DNA methylations due to the mutant's deficiency in chromatin remodeling (Vongs et al.,
38 1993). The *ddm1* mutant allele was subsequently removed by backcrossing to Col-0 wild type
39 (WT) and seeds from a single plant were propagated for several generations to produce lines
40 with variation in DNA methylation patterns (Johannes et al., 2009). Part of the methylome in
41 these epigenetic Recombinant Inbred Lines (epiRILs) are 126 stable Differential Methylated
42 Regions (DMRs) that allow for mapping epiQTL (Colomé-Tatché et al., 2012; Cortijo et al.,
43 2014). These epiRILs have been widely used to assess the impact of epigenetic variation on
44 the plasticity of a vast number of traits covering plant morphology, development and defense
45 chemistry (Aller et al., 2018; Cortijo et al., 2014; Furci et al., 2019; Johannes et al., 2009;
46 Kooke et al., 2015; Latzel et al., 2012; Roux et al., 2011; Zhang et al., 2013). As TE movements
47 in epiRILs are well known to occur and can be accounted for, the same epiRIL population
48 made it feasible to compare the relative impact of TE movement and DNA methylation
49 variation on a given trait (Cortijo et al., 2014; Johannes et al., 2009; Quadrana et al., 2019).
50 In a previously conducted epiQTL mapping using the *ddm1*-derived population, we identified
51 epiRIL573 as strong outlier for the leaf accumulation of glucosinolate (GLS) defense
52 compounds and removed it from the data set prior to further analysis (Aller et al., 2018). In this
53 study, we focus on the outlier and localize a retrotransposition of the Copia type LTR
54 transposon family *ATCOPIA13* to the gene encoding GLS transporter 2 (*GTR2*, ATNPF2.11,
55 *At5g62680*). We assess the phenotypic and transcriptomic consequences of this
56 retrotransposition event. In-depth characterization of epiRIL573 revealed regulatory networks
57 involved in feedback regulation of GLS in roots and highlights the potential of TE
58 retrotransposition as a mechanism enabling rapid adaptation.

59 **Results**


60 **A recessive causal allele is associated with high LC GLS levels in epiRIL573**

61 In a previous study (Aller et al., 2018), we analyzed the phenotypic response of GLS in
62 relation to DNA methylations using a *ddm1*-derived epiRIL population (Johannes et al., 2009).
63 GLS are defense-related compounds almost exclusively found in the order Brassicales and have

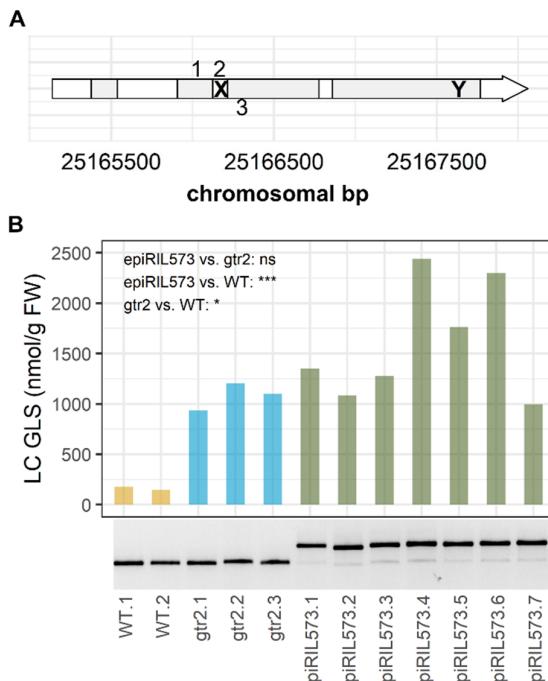
64 been extensively studied as a model system for specialized metabolites (Andersen et al., 2013;
65 Jensen et al., 2014; Jeschke et al., 2019; Kliebenstein et al., 2001; Nintemann et al., 2018). *A.
66 thaliana* contains up to 40 different GLS that are classified based on their chemical structure.
67 Indole GLS are tryptophan-derived, whereas aliphatic GLS are methionine-derived and have
68 side chains consisting of three to eight carbon atoms. Aliphatic GLS can be further subdivided
69 into short chain aliphatic GLS (SC GLS) and long chain aliphatic GLS (LC GLS) dependent
70 on the length of side chain (Jensen et al., 2014).

71 EpiRIL573 was identified as an extreme outlier for LC GLS. The line accumulated >9 SD
72 higher levels in rosette leaves compared to the epiRIL population mean (Figure 1). It seemed
73 unlikely that this phenotype arose from stable methylation patterns alone, as the individual
74 DMRs in epiRIL573 are not unique to this line, but no other epiRIL showed a similarly
75 pronounced GLS phenotype. Instead, we hypothesized a genetic cause for the markedly higher
76 accumulation of LC GLS.

77

78

79 **Figure 1: LC GLS levels in epiRIL573 compared to rest of population.** Violin plot showing
80 distribution of mean LC GLS levels/ epiRIL. Transparent points show the individual epiRIL mean level
81 and the black line mark the population mean (excluding epiRIL573). EpiRIL573 is colored yellow. 122
82 epiRILs and four Col-0 WT lines were measured. Analysis was done on rosette tissue of 22-23-day old
83 plants. $n_{\text{epiRIL/WT}} = 12-18$.


84 To address the possibility that one or more genetic alterations in epiRIL573 caused the GLS
85 phenotype, we first tested for Mendelian segregation. We backcrossed epiRIL573 to Col-0 WT
86 (epiRIL602) and analyzed LC GLS levels in rosette leaves of the F1 and F2 generations. F1
87 plants derived from reciprocal crosses accumulated LC GLS to the same levels as the parental
88 Col-0 WT (epiRIL602), which excluded a dominant mutation as explanation for the epiRIL573
89 phenotype (Supplemental Figure S1A) (Aller et al., 2018). Of 259 F2 plants analyzed, 19,7%

90 segregated with the epiRIL573 phenotype (Supplemental Figure S1C) supporting segregation
91 of one major-effect recessive allele and potentially one or more minor-effect loci in epiRIL573
92 correlating with its GLS phenotype (chi-square test : $X^2= 3,9$, df= 1, p-value= 0.05). No
93 apparent morphological rosette traits co-segregated with the LC GLS phenotype (Supplemental
94 Figure S1D).

95 **A retrotransposition into a GLS transporter correlates with the epiRIL573 phenotype**

96 To identify the major-effect mutation underlying the epiRIL573 GLS phenotype, we
97 performed bulk genome sequencing on 16 of the segregating F2 plants, eleven of which had
98 the epiRIL573 LC GLS phenotype and five the WT phenotype (Supplemental Figure S2A).
99 Surveying known GLS loci for genetic alterations revealed an insertion of the Copia type LTR
100 transposon family *ATCOPIA13* (*AT2G13940*) in after the second exon of *GLS transporter 2*
101 (*GTR2*, *AT5G62680*) (Nour-Eldin et al., 2012) (Supplemental Figure S2B).

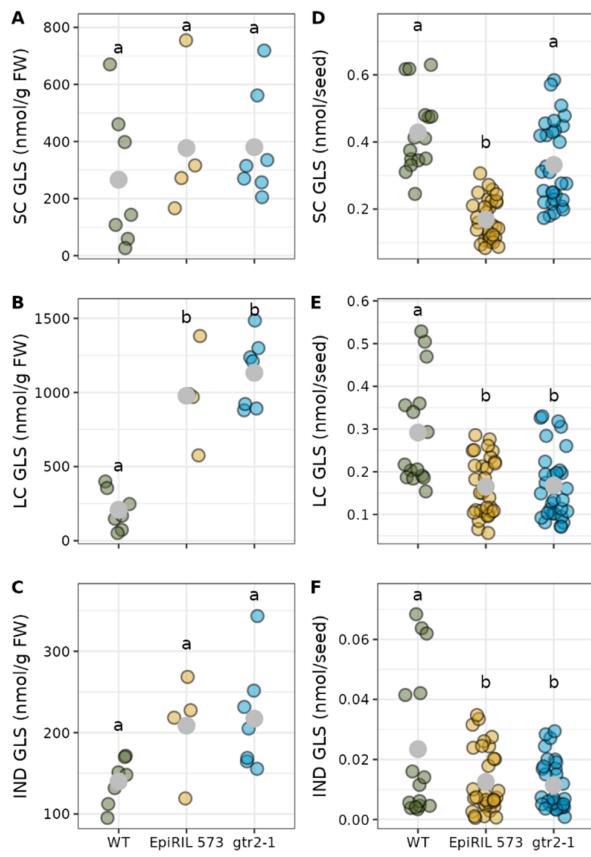
102 We further validated the *GTR2* TE-insertion by genotyping a region spanning the TE
103 insertion in epiRIL573 and compared to a T-DNA mutant *gtr2-1* line (Figure 2B) (Nour-Eldin
104 et al., 2012). All tested epiRIL573 plants carried the TE insertion, which was absent from Col-
105 0 WT *GTR2* as well as in *gtr2-1* (Figure 2B). We additionally genotyped F2 segregants which
106 showed that the LC GLS phenotype co-segregated with the TE insertion (Supplemental Figure
107 S3).

108

109 **Figure 2: Amplification of TE insertion.** A) Model showing the *GTR2* gene (*At5g62680*) and its
110 position on chromosome 5 (reverse strand), exons are colored grey. "X" represents site of TE
111 (*At2g13940*) insertion in epiRIL573. "Y" represents site of T-DNA insertion in *gtr2-1* SAIL mutant line.
112 Numbers show primer annealing sites. B) Plot shows LC GLS levels in the three genotypes. Significant
113 differences were assessed using a games-Howell adjusted post hoc test on the model LC ~Genotype.
114 The gel in the lower panel shows the amplicons obtained using primer combination 1+2 (amplification
115 of ~690 bp in presence of the TE insertion) and primer combination 1+3 (amplification of 467 bp in the
116 absence of TE insertion). PCR samples were pooled before gel electrophoresis.

117 TE mobility is activated upon mutation in the *DDM1* gene with continued activation after
118 restoration of WT *DDM1* (Kato et al., 2004). As the epiRIL population was generated using
119 the *ddm1-2* mutant, epiRIL573 potentially carries additional genetic rearrangements. To
120 identify other potential retrotranspositions, we performed a global TE search on epiRIL573
121 using publically available epiRIL genome sequencing data (Supplemental Figure S4A)
122 (Quadrana et al., 2019). We filtered for homozygous TEs in epiRIL573 and identified one
123 additional TE movement besides the retrotransposition into *GTR2*. A TE from the DNA
124 transposon VANDAL21 family, *AT2TE42810* has moved into *ATSYTF* (*AT3G18370*) in
125 epiRIL573. *AT3G18370* encodes a C2 domain-containing protein putatively associated with
126 leaf formation (Huercano et al., 2022). To test whether this TE insertion was connected to the
127 LC GLS phenotype, we did an additional global TE search in our segregating F2 plants grouped
128 by their phenotypic segregation (Supplemental Figure S4B). We could not detect the insertion
129 into *ATSYTF* in plants with WT phenotype. In F2 plants with the epiRIL573 phenotype, we did
130 detect the insertion. However, the allele frequency was 0,63 and the insertion did not co-
131 segregate with the LC GLS phenotype. This points to the insertion into *ATSYTF* having no
132 apparent impact on GLS accumulation in epiRIL573.

133 To test for phenotypic rescue upon reintroducing WT *GTR2*, we complemented epiRIL573
134 and *gtr2-1* with WT *GTR2* (Supplemental Figure S5). It was recently found that successful
135 complementation partly relies on the length of the putative promoter included (Sanden et al.,
136 Accepted for publication). Here, we used a ~2kb native promoter and a ~8kb native promoter
137 driving expression of *GTR2* CDS and gene, respectively. T1 transformants were confirmed by
138 genotyping and analyzed for GLS. For both constructs, epiRIL573 showed a partly rescued
139 phenotype upon complementation, which was more pronounced using the 8kb promoter
140 (Supplemental Figure S5B). *gtr2-1* also showed a partial rescue, but not to the same degree as
141 for epiRIL573. The partial complementation suggests that neither construct comprised all
142 regulatory sequence elements to fully restore *GTR2* expression levels. Nevertheless, as this is


143 the case for both epiRIL573 and *gtr2-1*, the observed complementation supported that the GLS
144 phenotype of epiRIL573 is associated with the disruption of *GTR2*.

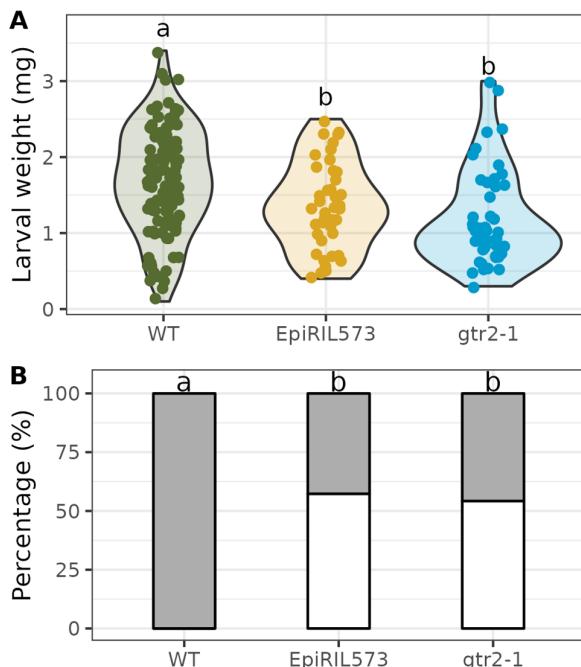
145 **EpiRIL573 phenotypically mimics *gtr2-1***

146 *GTR2* is a plasma membrane-localized H⁺/GLS symporter, which mediates the uptake of
147 GLS from the apoplast (Madsen et al., 2014; Nour-Eldin et al., 2012). Retrotransposition of
148 *ATCOPIA13* into the second intron of the *GTR2* gene (Figure 2A) likely renders the protein
149 completely non-functional, as it interrupts the *GTR2* protein sequence after 127 of 617 amino
150 acids. In the previously described *gtr2-1* mutant, insertion of a T-DNA into the last exon
151 abolishes only 41 amino acids at the C-terminus (Nour-Eldin et al., 2012, Supplemental Figure
152 4). We therefore sought to further phenotypically compare the newly identified *gtr2* mutant
153 with *gtr2-1*.

154 Upon analysis of leaf GLS, epiRIL573 and *gtr2-1* both displayed markedly higher LC GLS
155 levels in rosette tissue, as observed for *gtr2-1* before (Figure 2A, Figure 3A) (Hunziker et al.,
156 2021). The mutant lines accumulated SC GLS to WT levels (Figure 3B). EpiRIL573 and *gtr2-1*
157 further showed a similar trend towards higher levels of indole GLS in leaves (Figure 3C). In
158 seeds, epiRIL573, but not *gtr2-1* had significantly lower levels of SC GLS than WT (Figure
159 3D). Both mutant lines had significantly lower levels of LC GLS and indole GLS in seeds
160 compared to WT (Figure 3 E-F). Our analysis confirmed the previously published data on *gtr2-1*,
161 which suggested an increase in total aliphatic and indole GLS in rosette tissue and a reduction
162 the same GLS in seeds (Nour-Eldin et al., 2012). We thus concluded that epiRIL573 displays
163 the same leaf and seed GLS phenotypes as *gtr2-1*.

164

165


166 **Figure 3: GLS levels in epiRIL 573 vs. gtr2-1 in rosette tissue and seeds.** Grey points mark mean
167 levels. Data was analyzed with a post hoc Tukey test on model GLS~ Genotype+ error(Biorep) with
168 significance threshold of pval < 0.05. A-C) Rosette tissue from 29-day-old plants, $n_{\text{genotype}} = 4-7$. D-F)
169 Seeds, $n_{\text{genotype}} = 8-16$. GLS, glucosinolate; SC, short chain; LC, long chain; IND, indole; WT, pooled
170 data from the two corresponding WTs.

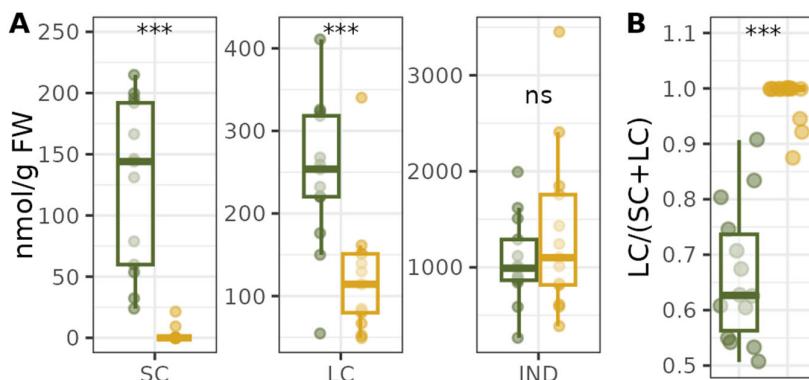
171 **S. littoralis feeding pattern indicates an altered GSL distribution in rosettes of epiRIL573**

172 The spatial distribution of GLS in *A. thaliana* is critical for the defensive function of the
173 glucosinolate-myrosinase system. In Col-0 WT, younger rosette leaves contain higher levels
174 of GLS than older leaves (Brown et al., 2003; Hunziker et al., 2021). Younger leaves have
175 further been shown to possess higher myrosinase activity, i.e. potential for more rapid release
176 of GLS activation products (Burow et al., 2007); and to release a different profile of GLS-
177 derived bioactive compounds (Wentzell and Kliebenstein, 2008). In bioassays with *Spodoptera*
178 *littoralis*, larvae fed preferentially on older rosette leaves of Col-0 WT plants. In the *gtr2-1*
179 knockout, rosettes showed an equal distribution of GLS among leaves of different
180 developmental stages and larvae of *S. littoralis* fed equally on young and old leaves of *gtr2-1*
181 (Hunziker et al., 2021).

182 When we tested the herbivore feeding preference of *S. littoralis* on epiRIL573 in comparison
183 to *gtr2-1* and their corresponding WTs (epiRIL602 and segregating Col0, respectively), the
184 feeding pattern on epiRIL573 mimicked that on *gtr2-1* (Figure 4). In the absence of a functional
185 GTR2, *S. littoralis* no longer preferred mature rosette leaves over young leaves as seen for the
186 corresponding WT lines (Figure 4B). The weight of *S. littoralis* caterpillars at the end of the
187 feeding period was not strongly affected by plant genotype (Figure 4A). We conclude that the
188 larvae show similar feeding preferences on epiRIL573 and *gtr2-1*, which suggests that
189 epiRIL573 has the same altered distribution of GLS within the rosette as *gtr2-1*.

190

191


192 **Figure 4: *S. littoralis* feeding assay.** The assay was conducted on epiRIL573, *gtr2-1* and the
193 corresponding Col-0 WTs. A) Weight of *S. littoralis* caterpillars after feeding on the different lines. Data
194 was analyzed with a post hoc Tukey test on model Weight~Genotype+ error(experimental replicate)
195 with significance threshold of pval < 0,05. B) Fraction of feeding damage on mature leaves (grey)
196 versus young leaves (white) within a rosette. Data was analyzed with a Fisher's exact test and letters
197 indicate significant differences (p-val <0,05).

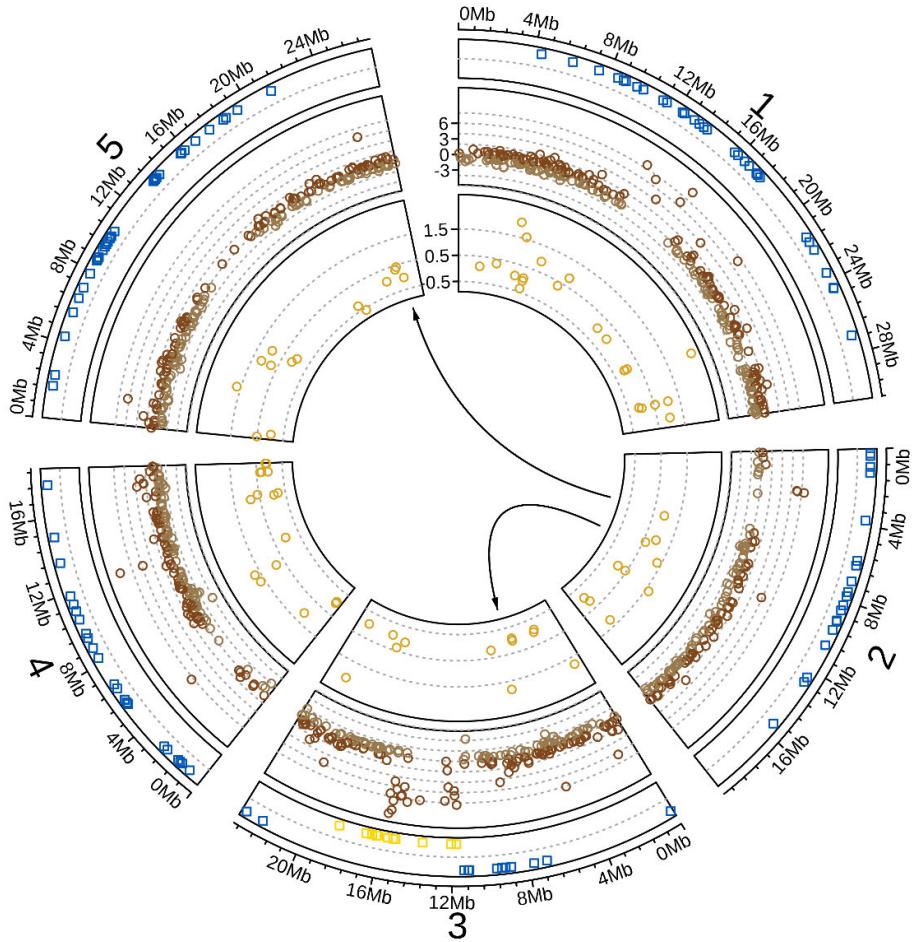
198 **Altered GLS distribution EpiRIL573 reveals feedback regulation in roots**

199 LC GLS are synthesized to a larger extent in roots than in rosette tissue of *A. thaliana*
200 (Andersen et al., 2013). In roots of the *A. thaliana* double mutant lacking a functional GTR2
201 and its closest homologue GTR1 (ATNPF2.10), GLS are not retained in the root and travel

202 upwards via the xylem. This increases the flux from root to rosette tissue and as a result,
203 aliphatic GLS levels are high in rosette tissue and low in roots (Andersen et al., 2013; Hunziker
204 et al., 2021). To assess the impact of GTR2 on the root GLS phenotype, we analyzed roots of
205 epiRIL573 representing a *gtr2* single mutant (Figure 5A). SC and LC GLS were significantly
206 lower in roots of epiRIL573. Indole GLS were significant changed. The almost depletion of
207 aliphatic GLS in epiRIL573 compared to its corresponding Col-0 WT due to pronounced
208 decrease in SC and LC GLS levels (Figure 5B).

209

210

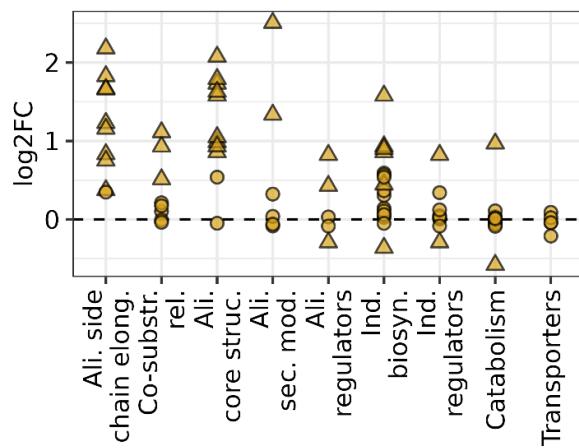

211 **Figure 5: Root GLS levels profiles.** Root tissue of 27-day-old epiRIL573 and WT plants. N= 14-20.
212 WT and epiRIL573 were compared using a Bonferroni adjusted t-test. Green = WT, yellow = EpiRIL573
213 A) GLS levels of SC GLS, LC GLS, IND GLS. Stars denote a p-value < 0.001. B) The fraction that LC
214 GLS constitute of total aliphatic GLS in root tissue. GLS were also measured in the corresponding
215 rosettes (Supplemental data file S1).

216 Changes in GLS levels and composition have been shown to feedback regulate GLS
217 biosynthesis and the surrounding regulatory networks in *A. thaliana* leaves and seedlings
218 (Burow et al., 2015; Francisco et al., 2016; Jensen et al., 2015; Jeschke et al., 2019; Wentzell
219 et al., 2007, 2007). We exploited epiRIL573, a mutant with a strong GLS phenotype and an
220 intact regulatory and biosynthetic machinery, to identify potential regulatory responses to the
221 increased efflux of GLS from the root. To study regulatory responses, we performed RNA
222 sequencing on root tissue of epiRIL573 and WT plants (Supplemental Figure S6).
223 Transcriptome sequencing revealed 888 differentially expressed genes (DEGs) in epiRIL573.
224 Of these, 439 DEGs were upregulated and 449 DEGs were downregulated. Neither AtSYTF,
225 which also carries a TE insertion in epiRIL573, nor genes co-expressed with AtSYTF
226 (Obayashi et al., 2022) were among the DEGs.

227 To gain insight to processes impacted in epiRIL573, we enriched for GO terms in up- and
228 downregulated genes (Table 1, full table is found in Supplemental data file S2). Upregulated

229 genes involved in wounding, GLS biosynthesis, jasmonic acid (JA) signaling, and the
230 regulation of defense responses were found to be overrepresented. A large proportion of the
231 downregulated genes were associated with different catabolic processes, including genes
232 encoding GLS catabolic enzymes.

233 We then integrated the genome-wide data sets on epiRIL573 by overlaying the map of stable
234 DMRs (Colomé-Tatché et al., 2012), root DEGs, root expression of GLS-related genes
235 specifically and sites of TE transpositions (Figure 6). The stably inherited DMRs in epiRIL573
236 are mainly hypermethylated (Figure 6, outer track, blue color), with the exception of one region
237 on chromosome 3 that is hypomethylated (Figure 6, outer track, yellow color). The same region
238 displayed a burst of upregulated genes in the root (Figure 6, middle track), which could possibly
239 be connected with a role of cis-acting transcriptional repression by the methylations in this
240 region that were not maintained in epiRIL573 (He et al., 2022; Zilberman et al., 2007). An
241 additional patch of genes highly expressed in epiRIL573 was, however, found on
242 chromosome 1. The two retrotranspositions that occurred in epiRIL573 did not coincide with
243 regions showing high density of DEGs with high fold differences.


244

245 **Figure 6: Omics integration of epiRIL573.** Circular plot overlapping data as follows: Outer track shows
246 the stably inherited DMRs in epiRIL573 with blue regions denoting hypermethylated regions and yellow
247 regions denoting hypomethylated regions. Middle track shows log2FC of significantly DEGs in root (padj
248 < 0.05). Dark brown marks upregulated genes and light brown marks downregulated genes. Inner track
249 shows log2FC expression of GLS pathway genes irrespective of significance. Arrows show TE
250 transpositions. The arrow from chromosome 2 to 5 marks the retrotransposition into *GTR2*
251 (*AT5G62680*). The arrow from chromosome 2 to chromosome 3 marks the movement into *ATSYTF*
252 (*AT3G18370*).

253 Genes involved in regulation, biosynthesis, catabolism, and transport of GLS are plotted as
254 their log2FC in epiRIL573 irrespective of significance (Figure 6, inner track). Whereas
255 biosynthetic genes for some specialized metabolites are arranged in gene clusters (Polturak and
256 Osbourn, 2021), GLS-related genes are scattered across the *A. thaliana* genome (Kliebenstein,

257 2009). Changes in GLS gene expression were also not location specific. We zoomed further in
258 on GLS-related genes and grouped them by their associations to different GLS processes
259 (Figure 7, Supplemental data file S3). Despite the approximately same number of genes
260 globally being up and down regulated, GLS-genes showed mostly upregulation. The biggest
261 transcriptional differences were seen for regulators and enzymes involved in the biosynthesis
262 of aliphatic GLS (Figure 7). Some genes related to indole GLS were also differentially
263 expressed in roots of epiRIL573, although the corresponding metabolites accumulated to WT
264 levels in the root (Figure 5C). Further, transcript levels of the myrosinase *TGG2* (*AT5G25980*)
265 and the Nitrile Specifier Protein *NSP5* (*AT5G48180*) differed significantly between epiRIL573
266 and the WT, suggesting fine-tuning of GLS catabolism in the absence of a functional GTR2.
267 Despite the TE insertion, GTR2 was expressed at low levels, which could be attributed to the
268 two first exons of the gene still being transcribed (Supplemental Data S3, Supplemental Figure
269 S7).

270

271

272 **Figure 7: Gene expression of GLS-related genes in epiRIL573 root tissue.** Log2FC of gene
273 expression in epiRIL573 vs. WT is grouped by the GLS process genes are associated with (for individual
274 gene expression data, see Suppl. Data File S2). Genes that were significantly altered in epiRIL573 vs.
275 WT are marked as a triangle and insignificantly altered genes are marked as a circle (padj < 0.05). Ali.
276 Side chain elong.= Aliphatic side chain elongation, Co-substr. rel= Co-substrate related, Ali. Core
277 struc.= Aliphatic core structure, Ali. Sec. mod = Aliphatic secondary modifications, Ali.
278 regulators= Aliphatic regulators, Ind. biosyn= Indolic biosynthesis, Ind. regulators= Indolic regulators.

279 A large proportion of GLS-related genes was differentially expressed in roots of epiRIL573
280 as also reflected by the GO term enrichment analysis (Table 1), which was most pronounced
281 for genes controlling the accumulation of aliphatic GLS (Figure 7).

282 **Discussion**

283 Assessing the impact of epigenetic regulation on quantitative variation in a given trait has
284 proven difficult because of the confounding genetic variation that affects the same trait. The
285 *ddm1*-derived epiRIL population was developed as an approach to overcome this issue
286 (Johannes et al., 2009). This population was designed to have a common genetic background
287 with significant variation in DNA methylation patterns, allowing for trait variation to be
288 attributed to DMRs. However, TE movement is a well-known consequence of manipulating
289 DNA methylation, and transpositioned TEs have previously been identified in epiRILs with
290 movements tracked back to the early steps in generation of the population (Cortijo et al., 2014).
291 These early TE movements did not compromise the correlation between phenotypes and DNA
292 methylations to a large extent as the impact on trait variation could largely be attributed to the
293 associated epiQTL and only to a lesser degree to the identified TE movements (Cortijo et al.,
294 2014). Genome sequencing of 107 epiRILs from the *ddm1*-derived epiRIL population more
295 recently indicated that many additional TE transpositions occurred later during propagation of
296 the epiRILs and that TE movement can still occur eight generations after reconstituting *DDMI*
297 (Quadrana et al., 2019; Tsukahara et al., 2009).

298 Our data on epiRIL573 illustrates an example of a single TE retrotransposition in an
299 individual epiRIL, which had a major impact on the investigated trait. EpiRIL573 accumulated
300 approximately nine times higher LC GLS levels in rosette tissue compared to the mean
301 accumulation in the epiRIL population (Fig. 1) (Aller et al., 2018). As we otherwise found the
302 impact of variation of DNA methylations on GLS trait variation to be relatively low, we tested
303 the hypothesis of a genomic rather than purely epigenomic alteration. We genome-sequenced
304 plants from the F2 generation after backcrossing to WT and identified two TE transpositions
305 in epiRIL573, but only the insertion of an LTR retrotransposon (*At2G13940*) into the GLS
306 transporter gene *GTR2* (*At5G62680*) co-segregated with the high LC GLS phenotype. Given
307 the strong phenotypes observed in plants homozygous for the TE insertion in *GTR2*, this
308 retrotransposition event is very unlikely to have happened in other epiRILs, but represents
309 single seed descent of the lines during the generation of the population (Johannes et al., 2009;
310 Quadrana et al., 2019).

311 The phenotypic impact of the TE transposition into *GTR2* in one epiRIL was substantial
312 enough to affect DMR mapping. Only after removing epiRIL573 from the data set, a DMR that
313 significantly correlated with variation in LC GLS levels in leaves could be mapped (Aller et
314 al., 2018). Among the 107 epiRILs that were recently genome-sequenced, 95% displayed at

315 least one and up to 97 TE transpositions that were not carried through from the *ddm1* parent
316 (Quadrana et al., 2019). We can therefore not rule out that additional TE movements in other
317 epiRILs in the population contribute smaller quantitative shifts in GLS trait variation and
318 thereby had an impact on the mapped DMRs. Minor effect mutations induced by TE movement
319 would not have rendered the respective epiRILs as extreme outliers and would thus not have
320 been removed for analysis.

321 GTR2 and its close homologues GTR1 and GTR3 (ATNPF2.9) mediate uptake of GLS
322 across the plasma-membrane and thereby impact long-distance transport of GLS. Before the
323 onset of flowering, GTRs contribute to controlling the root-to-shoot distribution of aliphatic
324 and indole GLS (Andersen et al., 2013; Jørgensen et al., 2017). Plants lacking both GTR1 and
325 GTR2 have previously been reported to accumulate high levels of all GLS, but especially LC
326 GLS in leaves (Andersen et al., 2013; Jørgensen et al., 2017; Madsen et al., 2014). The *gtr2-1*
327 single mutant is a major factor for over-accumulation of LC GLS in leaves irrespective of their
328 developmental stage (Hunziker et al., 2021). epiRIL573, which had been identified based on
329 its high GLS levels in leaves, phenotypically mimicked *gtr2-1* (Figure 3), supporting the
330 conclusion that all GLS phenotypes observed in epiRIL573 under the conditions tested can be
331 attributed to the retrotransposition event that disrupted *GTR2*. Reintroducing the GTR2 coding
332 sequence under the control of ca. 2kb of its putative promoter did not fully restore WT levels
333 of LC GLS. Complementation with the construct including 8kb promoter and the genomic
334 GTR2 sequence largely rescued the GLS phenotype (Supplemental Figure S5), suggesting that
335 regulatory elements in the distal promoter and/or introns are critical for *GTR2* regulation at the
336 transcriptional level.

337 Double mutants in *A. thaliana* and *Camelina sativa*, devoid of GTR1 and GTR2, accumulate
338 only very low levels of aliphatic GLS (Andersen et al., 2013; Hözl et al., 2023), whereas levels
339 of indole GLS were found to be higher than in WT roots (Andersen et al., 2013; Jørgensen et al.,
340 2017). In roots of epiRIL573, representing a *gtr2* single mutant, we observed substantially
341 lower levels of aliphatic GLS compared to WT (Figure 5). Although GTR2 shows no
342 preference for aliphatic GLS when expressed in *Xenopus laevis* oocytes (Jørgensen et al.,
343 2017), indole GLS levels were unaffected. This could either be due to spatial differences in
344 biosynthesis and storage between aliphatic and indole (Nintemann et al., 2018) GLS and/or be
345 explained by different mechanisms of feed-back regulation.

346 To gain insight into the transcriptional response to the TE retrotransposition into *GTR2* and
347 the resulting root GLS phenotype, we sequenced RNA from root tissue of epiRIL573 and its
348 corresponding WT. Known GLS related genes showed a distinct pattern (Figure 7). Almost all

349 genes encoding enzymes involved in the chain elongation of methionine and the subsequent
350 core structure formation of aliphatic GLS were significantly upregulated in epiRIL573.
351 Likewise, genes critical for the supply of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as
352 sulfur donor for methionine chain elongation (Møldrup et al., 2011; Yatusevich et al., 2010)
353 showed elevated expression levels in epiRIL573. In contrast, biosynthetic genes specific to
354 indole GLS, genes involved in GLS catabolism and GLS transporters were largely unchanged
355 in expression levels. Thus, the increased efflux of aliphatic GLS from the roots to the shoots is
356 accompanied by transcriptional feedback activation that is specific to aliphatic GLS
357 biosynthesis.

358 The elevated expression levels of genes involved in aliphatic GLS biosynthesis were highly
359 consistent. The log2FC in epiRIL573 compared to WT varied around an average of 1.3 and did
360 not exceed 2.5 (Supplemental data file S3). These quantitatively minor differences correspond
361 well with previous studies on transgenic lines expressing over-expressed copies of GLS
362 regulators, where moderate increases in transcript levels of GLS pathway genes led to
363 significant higher GLS accumulation (Li et al., 2013; Sønderby et al., 2007). The upregulation
364 of aliphatic GLS biosynthesis in epiRIL573 can thus be considered a strong GLS response.

365 Among the upregulated genes in the root transcriptome of epiRIL573, several other defense-
366 related GO terms that were also found to be overrepresented, among them JA signaling
367 (Table 1). Upregulated genes involved in JA biosynthesis and signaling included *MYC2*
368 (*AT1G32640*), *JAZ2* (*AT1G74950*), *JAZ5* (*AT1G17380*), *JAZ6* (*AT1G72450*), *LOX3*
369 (*AT1G17420*), *AOS* (*AT5G42650*), and *OPCL1* (*AT1G20510*).

370 JA signaling has a large effect on the regulation of both aliphatic and indole GLS
371 (Dombrecht et al., 2007; Hirai et al., 2007; Mewis et al., 2005). The R2R3 MYB transcription
372 factors that act as positive regulators of GLS biosynthesis are functionally dependent on
373 interaction with a MYC bHLH transcription factor (Frerigmann et al., 2014; Millard et al.,
374 2019), and consequently, triple mutants lacking *MYC2*, *MYC3*, and *MYC4* are almost
375 completely devoid of GLS (Schweizer et al., 2013). In rosette leaves, the GLS regulatory
376 network has further been shown to feedback regulate JA biosynthesis and signaling (Burow et
377 al., 2015). The upregulation of genes of the JA signaling network suggests that elevated JA
378 signaling is needed to channel resources into GLS biosynthesis and thereby increase GLS
379 production. Altered resource allocation in epiRIL573 is further reflected by the down-
380 regulation of leucine biosynthesis genes, which share the isopropylmalate dehydrogenase
381 *IPDMH1* with the methionine chain elongation pathway in GLS biosynthesis (He et al., 2009).
382 Alternatively, roots of epiRIL573 might perceive the low levels of GLS similar to a biotic

383 interaction that triggers GLS activation and induces JA signaling. Taken together, TE-induced
384 disruption of *GTR2* in epiRIL573 did not only have a major impact on GLS accumulation, but
385 also strongly affected aliphatic GLS at the transcriptional level by rewiring the surrounding
386 regulatory networks.

387 **Conclusions**

388 Uncoupling epigenetic and genetic mechanisms to evaluate their individual and joint impact
389 on trait variation has proven challenging. The *ddm1*-derived epiQTL mapping population
390 allows correlation of stably inherited DMRs with trait variation. These correlations must,
391 however, be interpreted with caution due to the increased rate of TE transposition in the
392 population. epiRIL573 exemplifies that a single TE movement during the single seed descent
393 can cause major defense-related phenotypes. The in-depth characterization of this line
394 illustrates the potential of TE transposition for rapid adaptation to environmental changes. By
395 encompassing both a role in creating natural variance and taking part in active adaptation, TEs
396 could in theory bridge Darwin's evolutionary model to the thoughts on active acquisition
397 proposed by Lamarck.

398 **Materials and Methods**

399 **Germplasm**

400 122 *A. thaliana* epiRILs generated in the Col-0 background and four Col-0 WT lines
401 (Colomé-Tatché et al., 2012; Johannes et al., 2009) were purchased from the Versailles
402 Arabidopsis Stock Center, Institut Jean Pierre Bourgin (INRAE, n.d.; Johannes et al., 2009).
403 EpiRIL "35RV573" is referred to as epiRIL573. The corresponding Col-0 WT "35RV002" was
404 used as control and is here referred to as epiRIL602. The *gtr2-1* T-DNA insertion line,
405 SAIL_20_B07, was previously described (Nour-Eldin et al., 2012). Data from epiRIL602 and
406 the Col-0 WT grown-along with *gtr2-1* were pooled after statistically ensuring their similarity.

407 **Plant Handling and Growth Conditions**

408 Seeds were vapor-sterilized for 2 h by exposure to a mixture of 18 mL bleach (Sodium
409 hypochlorite 14%) and 2 mL HCl (37%). Seeds were sown on a potting soil (Pindstrup nr. 2,
410 Pindstrup Mosebrug A/S, Denmark) and sand mixture (3:1), cold-stratified for 4-6 days at 4°C
411 in the dark and subsequently grown in a light chamber set to 80-120 μ E/ (m²*s), 16 h light,

412 21°C, and 70% relative humidity for 21-22 days. For GLS analysis, plant tissue was harvested
413 21-29 days after stratification as indicated in figure legends. Root tissue was obtained by
414 dipping in miliQ water. Roots and rosettes were weighed separately. For RNA-sequencing,
415 rosette tissue was harvested from 23-day old plants and root tissue from 27-day old plants. The
416 plant material was snap-frozen in liquid nitrogen and stored at -80°C.

417 **S. littoralis feeding assay**

418 For insect bioassays, plants were grown under short-day conditions (10h light, 150 µE/
419 (m²*s), 21°C, 70% relative humidity) for ca. 4 weeks. The assays were carried out as
420 previously described (Hunziker et al., 2021).

421 **GLS Analysis**

422 GLS were extracted and analyzed as desulfo-GLS (dsGLS) as described previously (Crocoll
423 et al., 2016; Kliebenstein et al., 2001). Sigma-Aldrich Millipore 96 well filter plates, cat.no.
424 MSHVN45 were charged with 45 mg DEAE Sephadex A25 and 300 ml of water per well and
425 equilibrated at room temperature (RT) for minimum 2 h. The water was removed using a
426 vacuum manifold (Millipore). Tissue was harvested into with 300 µl 85% (v/v) methanol
427 (HPLC grade) containing 5 µM p-hydroxybenzyl GLS (pOHb; PhytoLab, cat. No. 89793) as
428 internal standard and homogenized with two stainless steel balls (diameter 3.5 mm) by shaking
429 for 2 min at a frequency of 30 Hz in a Mixer Mill 303 (Retsch, Haan, Germany). Single seeds
430 were analyzed using 1 nmol internal standard. Samples were centrifuged and the supernatants
431 were applied to the filter plates followed by vacuum filtration for 2-4 s. Sephadex material was
432 washed with 2x 100 µl 70% methanol (v/v) and 2x 100 µl water and briefly centrifuged before
433 addition of 20 µl of sulfatase solution per sample (Crocoll et al., 2016). After incubation at
434 (RT) overnight, dsGLS were eluted with 100 µl water. dsGLS were analyzed by LC-MS/MS
435 on an Advance UHPLC system (Bruker, Bremen, Germany) equipped with a Kinetex® XB-
436 C18 column (100 × 2.1 mm, 1.7 µm, 100 Å, Phenomenex, USA) coupled to an EVOQ Elite
437 TripleQuad mass spectrometer (Bruker, Bremen, Germany) equipped with an electrospray
438 ionization source (ESI) as previously described (Crocoll et al., 2016). Glucosinolates were
439 quantified relative pOHb using experimentally determined response factors with commercially
440 available standards in a representative plant matrix.

441 **Segregation Analysis**

442 Reciprocal crosses were carried out with epiRIL573 and Col-0 WT (epiRIL 602). Rosette
443 tissue from 80 F1 plants was analyzed for GLS together with four plants of grown-along
444 epiRIL573 and WT controls. We propagated eight plants from the F1 generation (four plants
445 being maternally derived from WT and four from epiRIL573) representing the higher and lower
446 spectrum of LC GLS distribution. Their progeny together with the progeny of two plants from
447 each parental line grown along with the F1 plants were analyzed for segregation over four
448 experimental rounds. In each round, we analyzed 2-6 biological replicates of control plants and
449 5-12 replicates of F1 plants derived from crossing. A total of 259 F2 segregants were analyzed
450 for GLS.

451 **DNA library preparation and sequencing**

452 Rosette and root tissue was harvested from 16 plants from the F2 generation (maternally
453 derived from WT), five plants with a WT LC GLS phenotype and 11 displaying the epiRIL573
454 LC GLS phenotype. The frozen tissue was ground 5x 30 seconds at 30 Hz in a Mixer Mill 303
455 (Retsch, Haan, Germany). 1 mL 37°C sterile extraction buffer (50 mM Tris pH 8, 200 mM
456 NaCl, 2 mM EDTA, 0,5% (w/v) SDS) was added to each sample and the samples were
457 incubated at 37°C for 20 min with occasional inversion. 500 µL chloroform/phenol/isoamyl
458 alcohol (Sigma P3803) were added, samples were mixed and then centrifuged at 6000 rpm for
459 10 min. The aqueous phase was transferred to a new tube and 500 µL chloroform/isoamyl
460 alcohol (Sigma C0549) were added. Samples were mixed and centrifuged at 6000 rpm for 10
461 minutes. The aqueous phase was moved to new tubes and 600 µL isopropanol were added for
462 precipitation at 20°C overnight. DNA was pelleted by centrifugation at 6000 rpm for 10 min,
463 the supernatant was removed, and the pellet was rinsed twice with cold 70% ethanol and
464 subsequently dried at RT DNA pellets were re-solubilized in 50 µL ddH₂O at RT, and then
465 precipitated with 1 mL 96% ethanol by centrifugation at 2000 rpm for 10 min. The supernatant
466 was removed, the pellet dried at RT and finally re-solubilized in 30 µL ddH₂O at RT. DNA
467 quality was assessed using a ThermoFisher Nanodrop and DNA concentration using
468 ThermoFischer Qubit Fluorometric Quantification with the Qubit dsDNA HS Assay Kit
469 (Thermo Fischer, Catalogue number: Q32851).

470 50 µL DNA (10 µg/ml) was sheared using a sonicator (QSonica, Q800R3) with amplitude
471 setting of 25%, a pulse frequency of 10 s on and 10 s off for 3,5 min at 3°C. Sheared DNA size
472 of approximately 500 bp was validated by gel-electrophoresis.

473 DNA libraries were made with an Illumina Neoprep system using the TruSeq Nano DNA
474 Library Prep Kit (NP-101-1001). Sequencing was performed with an Illumina MiSeq system
475 and the MiSeq Reagent Kit v3 (MS-102-3003). The quality of the output bam files was assessed
476 with the program FastQC (“FastQC,” 2015) and the data was further analyzed with Integrative
477 Genomics Viewer (IGV) (Thorvaldsdottir et al., 2013).

478 **Genotyping**

479 DNA for genotyping was extracted with following CTAB-based method (Clarke, 2009).
480 Rosette tissue was harvested, snap-frozen in liquid nitrogen and ground 2x 30 seconds at 30
481 Hz in a Mixer Mill 303 (Retsch, Haan, Germany) followed by 1 min centrifugation at 3000
482 rpm. 200 µL CTAB buffer (2% (w/v) cetyl-trimethyl-ammonium bromide, 1,4 M NaCl, 100 mM
483 Tris HCl pH 8, 20 mM EDTA) was then added per sample, samples were vortexed and
484 incubated at 65°C for 1 h. After cooling, 200 µL chloroform were added and samples were
485 vortexed and spun at 2000 rpm for 15 min. 125 uL of the aqueous phase were as transferred to
486 125 uL isopropanol and mixed. Samples were then centrifuged for 15 min at 6000 rpm. Pellets
487 were washed with 150 µL EtOH and spun for 5 min at 6000 rpm. Supernatants were removed
488 and the dried pellets were then resuspended in 100 µL milliQ water.

489 For genotyping of epiRIL573 and WT plants, we amplified actin using following primers:
490 Actin-F, 5'-ACATTGTGCTCAGTGGTGGGA-3' and Actin-R, 5'-
491 TCATACTCGGCCTTGGAGAT-3' leading to an amplification product of 288 bp. Primer
492 sequences to amplify a region spanning the TE retrotransposition in GTR2 were as follows: A-
493 FP, 5'-TAGACCGATCGTCCAAGT-3', A-R1, 5'-
494 GGTGATACAAGACTCTAAGTGTC-3'. These primers only amplified the GTR2 region in
495 the absence of a TE insertion as the insertion size compromised the PCR. In absence of
496 insertion, the product size was 467 bp. Primer sequences to amplify the insertion event were
497 A-FP together with A-R2: 5'- CAGTAAGCCAAGCGCTACG-3'. In presence of an insertion,
498 a product of 689 bp is amplified. To test the T-DNA insertion, we used primer combination B-
499 FP: 5'- TAAACCAACACTCGGTATGGC- 3' and B-RP: 5'-
500 CGGGAGCTTCACACACTTAAG- 3', which amplifies 1001bp in absence of T-DNA
501 insertion. Primer combination B-FP together with LB3 for SAIL lines: 5'-
502 TAGCATCTGAATTCTATAACCAATCTCGATACAC- 3' amplifies ~500pb in presence of
503 T-DNA insertion.

504 PCR was run in a total volume of 25 μ L: 12,5 μ L EmeraldAmp GT PCR Master Mix
505 (TakaraBio, Code No. RR310A), 0,5 μ L of each primer (10 μ M), 9,5 μ L milliQ water, 2 μ L
506 DNA. The following temperature program was used: 96°C for 3 min, 30x (96°C 30 s, 55°C 30
507 s, 72°C 40 s). PCR products were analyzed by gel electrophoresis on 1% agarose gels.

508 **Plant transformation**

509 Col-0 WT, *gtr2-1*, and epiRILs573 were transformed with a WT *GTR2* construct in the
510 pFRU vector (Millard et al., 2019) comprising 1972 bp native putative promoter, *GTR2* CDS
511 and 397 bp of the native 3'UTR. For plant transformation, 50 μ L electrocompetent
512 *Agrobacterium tumefaciens* cells, C58 (pGV3850), were mixed with 1 μ L DNA in a 1 mm
513 precooled cuvette and left on ice for 1 min before electroporation at 400 ohm, 2,2 kVm and 25
514 μ F. 1mL YEP medium was added and cells were incubated at 28°C for 2 h. Subsequently, cells
515 were grown on YEP agar plates with antibiotics (50 mg/L spectinomycin, 100 mg/L ampicillin,
516 69 mg/L rifampicin) at 28°C for two days. 5mL cultures in YEP medium with antibiotics (50
517 mg/L spectinomycin, 100 mg/L ampicillin, 69 mg/L rifampicin) were started from single
518 colonies and grown overnight at 28°C. Cells were scraped off the plate and suspended in 1 ml
519 5% (w/v) sucrose solution containing 0,05% (v/v) Silwet L-77. The cell suspension was applied
520 to unopened flower buds. Afterwards, the inflorescences were kept into plastic bags for two
521 days.

522 **Statistical analysis and visualizations**

523 Outliers were defined by > 2 SD from mean level and were removed from analysis. Data
524 processing was aided by using the package tidyverse, reshape and plyr (Wickham, 2011, 2007;
525 Wickham et al., 2019) Data processing was aided by using the package tidyverse and reshape
526 (Wickham, 2007; Wickham et al., 2019). Statistical analysis was done using R and R studio (R
527 Core Team, 2022; RStudio Team, 2020). Statistical tests were done using the packages rstatix,
528 lme4, lsmeans, agricolae and rcompanion (Bates et al., 2015; Kassambara, 2023a; Lenth, 2016;
529 Mangiafico, 2023). Statistical tests were done using the packages rstatix, lme4, lsmeans and
530 agricolae (Bates et al., 2015; Kassambara, 2023a; Lenth, 2016; Mendiburu, 2023). Plots were
531 made using ggplot2, ggpibr, cowplot, circlize (Gu et al., 2014; Kassambara, 2023b; Wickham,
532 2016; Wilke, 2020).

533 **RNA-sequencing**

534 Sequencing was performed on roots of epiRIL573 and WT (epiRIL602 and epiRIL603), 5-
535 6 bioreps per line. RNA was extracted using Spectrum Plant Total RNA kit (Sigma-Aldrich)
536 according to manufacturer's protocol. Samples were analyzed on a ThermoFisher Nanodrop
537 and concentrations were obtained using ThermoFischer Qubit Fluorometric Quantification
538 with a Qubit RNA HS Assay Kit (Q32855). Libraries were made with the Illumina Neoprep
539 with TruSeq Stranded mRNA Library Prep Kit for NeoPrep (NP-202-1001). Sequencing was
540 performed on an Illumina MiSeq system using the MiSeq Reagent Kit v3 (MS-102-3003).
541 Sequencing was done with Miseq v3 600 cycles (MS-102-3003) and PhiX Control v3 (FC-
542 110-3001) as control. Output files from sequencing were prepared for analysis using Burrows-
543 Wheeler Aligner (BWA) (Li and Durbin, 2009) and Samtools (Li et al., 2009).

544 Transcriptome analysis was done using R, R Studio (R Core Team, 2022; RStudio Team,
545 2020) and package DeSeq2 (Love et al., 2014; Zhu et al., 2018) (Supplemental Figure S6).
546 Gene model descriptions were obtained from Arabidopsis.org bulk data retrieval (Berardini et
547 al., 2015). Gene Ontology (GO) enrichment analysis for Biological Processes was carried out
548 using Database for Annotation, Visualization and Integrated Discovery (DAVID, 2023/05/15)
549 (Huang et al., 2009). Of the 439 upregulated DEGs, 398 genes were identified in the enrichment
550 (92.3%). Of the 449 downregulated DEGs, 420 genes were identified in the enrichment
551 (94.4%).

552 **Global identification of TE insertions**

553 TEs were identified using the program ngs_te_mapper2 (Han et al., 2021). Ngs_te_mapper2
554 was downloaded using conda ("Anaconda Software Distribution," 2020). TEs were identified
555 against a TAIR10 genome obtained from the TAIR FTP archive (Berardini et al., 2015). Output
556 was filtered for homozygous TE insertions using a filter on allele frequency > 0,95, uniform 3'
557 and 5' support and low reference counts and validated in IGV (Thorvaldsdottir et al., 2013). A
558 global search was done on fastq files of epiRIL573 from ENA project PRJEB5137 (Quadrana
559 et al., 2019). We also tested our data on segregating F2 plants from the epiRIL573 and WT
560 cross. Fastq files were merged into two groups based on having the epiRIL573 phenotype or
561 not.

562 Acknowledgement and Funding

563 We thank Barbara Ann Halkier for providing *gtr2-1* seeds. We thank Marie-Louise Fobian
564 Thomsen and Clarisse Zigue Figueiredo for technical assistance. Financial support for this
565 work was provided by the National Research Foundation DNRF grant 99 (ESTA, CK, PH, MB,
566 DK), The Danish Council for Independent Research, DFF-4181-00077 (ESTA, MB), and
567 Villumfonden, project no. 13169 (ESTA, MB), the U.S. National Science Foundation,
568 Directorate for Biological Sciences, Division of Molecular and Cellular Biosciences, grant no.
569 MCB 1906486 (DJK), the U.S.D.A. National Institute of Food and Agriculture, AFRI project
570 2019-05709, Hatch project no. CA-D-PLS-7033-H (DJK) and Human Frontier Science
571 Program (RGY0075/2020) (CK).

572 Author Contributions

573 E.S.T.A., D.J.K. and M.B. conceived the project and designed the experiments. E.S.T.A
574 conducted lab work, data analysis, visualization and drafted the manuscript. C.K. generated the
575 complementation constructs and carried out the 8kb promoter complementation. P.H.
576 conducted and analyzed the insect feeding assays. All authors participated in the discussion of
577 the results, and edited and approved the final manuscript. M.B. has ensured that all scientists
578 who have contributed substantially to the conception, design or execution of the work described
579 in the manuscript are included as authors, and that all authors agree to the list of authors and
580 their identified contributions.

581

Table 1: Top 5 GO Enrichments for Biological Processes in up- and down regulated DEGs in epiRIL573 vs. WT root tissue (for full lists, see supplemental data file S2)

Up regulated DEGs		
GO term	Count	FDR
~response to wounding	73	3,15E-25
~glucosinolate biosynthetic process	25	6,98E-19
~response to jasmonic acid	44	1,11E-14
~protein folding	17	2,28E-06
~regulation of defense response	34	3,38E-06
Down regulated DEGs		

~organonitrogen compound catabolic process	41	1,07E-22
~cellular catabolic process	48	1,34E-20
~response to light intensity	30	8,09E-14
~response to absence of light	12	1,02E-07
~leucine catabolic process	6	4,63E-06

582 References

583 Aller, E.S.T., Jagd, L.M., Kliebenstein, D.J., Burow, M., 2018. Comparison of the Relative
584 Potential for Epigenetic and Genetic Variation To Contribute to Trait Stability. *G3*
585 *Genes|Genomes|Genetics* 8, 1733–1746. <https://doi.org/10.1534/g3.118.200127>

586 Anaconda Software Distribution, 2020. . Anaconda Documentation.

587 Andersen, T.G., Nour-Eldin, H.H., Fuller, V.L., Olsen, C.E., Burow, M., Halkier, B.A., 2013.
588 Integration of Biosynthesis and Long-Distance Transport Establish Organ-Specific
589 Glucosinolate Profiles in Vegetative *Arabidopsis*. *The Plant Cell* 25, 3133–3145.
590 <https://doi.org/10.1105/tpc.113.110890>

591 Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting Linear Mixed-Effects Models
592 Using **lme4**. *J. Stat. Soft.* 67. <https://doi.org/10.18637/jss.v067.i01>

593 Berardini, T.Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E., Huala, E., 2015. The
594 *arabidopsis* information resource: Making and mining the “gold standard” annotated
595 reference plant genome. *Genesis* 53, 474–485. <https://doi.org/10.1002/dvg.22877>

596 Blake-Kalff, M.M.A., Harrison, K.R., Hawkesford, M.J., Zhao, F.J., McGrath, S.P., 1998.
597 Distribution of Sulfur within Oilseed Rape Leaves in Response to Sulfur Deficiency
598 during Vegetative Growth. *Plant Physiology* 118, 1337–1344.
599 <https://doi.org/10.1104/pp.118.4.1337>

600 Brown, P.D., Tokuhisa, J.G., Reichelt, M., Gershenson, J., 2003. Variation of glucosinolate
601 accumulation among different organs and developmental stages of *Arabidopsis*
602 *thaliana*. *Phytochemistry* 62, 471–481. [https://doi.org/10.1016/S0031-9422\(02\)00549-6](https://doi.org/10.1016/S0031-9422(02)00549-6)

604 Burow, M., Atwell, S., Francisco, M., Kerwin, R.E., Halkier, B.A., Kliebenstein, D.J., 2015.
605 The Glucosinolate Biosynthetic Gene AOP2 Mediates Feed-back Regulation of
606 Jasmonic Acid Signaling in *Arabidopsis*. *Molecular Plant* 8, 1201–1212.
607 <https://doi.org/10.1016/j.molp.2015.03.001>

608 Burow, M., Rice, M., Hause, B., Gershenson, J., Wittstock, U., 2007. Cell- and tissue-specific
609 localization and regulation of the epithiospecifier protein in *Arabidopsis thaliana*. *Plant*
610 *Mol Biol* 64, 173–185. <https://doi.org/10.1007/s11103-007-9143-1>

611 Clarke, J.D., 2009. Cetyltrimethyl Ammonium Bromide (CTAB) DNA Miniprep for Plant
612 DNA Isolation. *Cold Spring Harb Protoc* 2009, pdb.prot5177.
613 <https://doi.org/10.1101/pdb.prot5177>

614 Colomé-Tatché, M., Cortijo, S., Wardenaar, R., Morgado, L., Lahouze, B., Sarazin, A.,
615 Etcheverry, M., Martin, A., Feng, S., Duvernois-Berthet, E., Labadie, K., Wincker, P.,
616 Jacobsen, S.E., Jansen, R.C., Colot, V., Johannes, F., 2012. Features of the *Arabidopsis*
617 recombination landscape resulting from the combined loss of sequence variation and
618 DNA methylation. *Proc. Natl. Acad. Sci. U.S.A.* 109, 16240–16245.
619 <https://doi.org/10.1073/pnas.1212955109>

620 Cortijo, S., Wardenaar, R., Colomé-Tatché, M., Gilly, A., Etcheverry, M., Labadie, K.,
621 Caillieux, E., Hospital, F., Aury, J.-M., Wincker, P., Roudier, F., Jansen, R.C., Colot,
622 V., Johannes, F., 2014. Mapping the Epigenetic Basis of Complex Traits. *Science* 343,
623 1145–1148. <https://doi.org/10.1126/science.1248127>

624 Crocoll, C., Halkier, B.A., Burow, M., 2016. Analysis and Quantification of Glucosinolates.
625 *CP Plant Biology* 1, 385–409. <https://doi.org/10.1002/cppb.20027>

626 Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P.,
627 Sewelam, N., Schenk, P.M., Manners, J.M., Kazan, K., 2007. MYC2 Differentially
628 Modulates Diverse Jasmonate-Dependent Functions in *Arabidopsis*. *The Plant Cell* 19,
629 2225–2245. <https://doi.org/10.1105/tpc.106.048017>

630 Dowen, R.H., Pelizzola, M., Schmitz, R.J., Lister, R., Dowen, J.M., Nery, J.R., Dixon, J.E.,
631 Ecker, J.R., 2012. Widespread dynamic DNA methylation in response to biotic stress.
632 *Proc. Natl. Acad. Sci. U.S.A.* 109. <https://doi.org/10.1073/pnas.1209329109>

633 Fan, W., Wang, L., Chu, J., Li, H., Kim, E.Y., Cho, J., 2022. Tracing Mobile DNAs: From
634 Molecular to Population Scales. *Front. Plant Sci.* 13, 837378.
635 <https://doi.org/10.3389/fpls.2022.837378>

636 FastQC, 2015: <https://qubeshub.org/resources/fastqc>.

637 Francisco, M., Joseph, B., Caligagan, H., Li, B., Corwin, J.A., Lin, C., Kerwin, R., Burow, M.,
638 Kliebenstein, D.J., 2016. The Defense Metabolite, Allyl Glucosinolate, Modulates
639 *Arabidopsis thaliana* Biomass Dependent upon the Endogenous Glucosinolate
640 Pathway. *Front. Plant Sci.* 7. <https://doi.org/10.3389/fpls.2016.00774>

641 Frerigmann, H., Berger, B., Gigolashvili, T., 2014. bHLH05 Is an Interaction Partner of
642 MYB51 and a Novel Regulator of Glucosinolate Biosynthesis in *Arabidopsis*. *Plant*
643 *Physiol.* 166, 349–369. <https://doi.org/10.1104/pp.114.240887>

644 Furci, L., Jain, R., Stassen, J., Berkowitz, O., Whelan, J., Roquis, D., Baillet, V., Colot, V.,
645 Johannes, F., Ton, J., 2019. Identification and characterisation of hypomethylated DNA
646 loci controlling quantitative resistance in *Arabidopsis*. *eLife* 8, e40655.
647 <https://doi.org/10.7554/eLife.40655>

648 Gu, Z., Gu, L., Eils, R., Schlesner, M., Brors, B., 2014. circlize implements and enhances
649 circular visualization in R. *Bioinformatics* 30, 2811–2812.

650 Han, S., Basting, P.J., Dias, G.B., Luhur, A., Zelhof, A.C., Bergman, C.M., 2021. Transposable
651 element profiles reveal cell line identity and loss of heterozygosity in *Drosophila* cell
652 culture. *Genetics* 219, iyab113. <https://doi.org/10.1093/genetics/iyab113>

653 He, L., Huang, H., Bradai, M., Zhao, C., You, Y., Ma, J., Zhao, L., Lozano-Durán, R., Zhu, J.-
654 K., 2022. DNA methylation-free *Arabidopsis* reveals crucial roles of DNA methylation
655 in regulating gene expression and development. *Nat Commun* 13, 1335.
656 <https://doi.org/10.1038/s41467-022-28940-2>

657 He, Y., Mawhinney, T.P., Preuss, M.L., Schroeder, A.C., Chen, B., Abraham, L., Jez, J.M.,
658 Chen, S., 2009. A redox-active isopropylmalate dehydrogenase functions in the
659 biosynthesis of glucosinolates and leucine in *Arabidopsis*. *The Plant Journal* 60, 679–
660 690. <https://doi.org/10.1111/j.1365-313X.2009.03990.x>

661 Hirai, M.Y., Sugiyama, K., Sawada, Y., Tohge, T., Obayashi, T., Suzuki, A., Araki, R.,
662 Sakurai, N., Suzuki, H., Aoki, K., Goda, H., Nishizawa, O.I., Shibata, D., Saito, K.,
663 2007. Omics-based identification of *Arabidopsis* Myb transcription factors regulating
664 aliphatic glucosinolate biosynthesis. *Proc. Natl. Acad. Sci. U.S.A.* 104, 6478–6483.
665 <https://doi.org/10.1073/pnas.0611629104>

666 Hözl, G., Rezaeva, B.R., Kumlehn, J., Dörmann, P., 2023. Ablation of glucosinolate
667 accumulation in the oil crop *Camelina sativa* by targeted mutagenesis of genes
668 encoding the transporters GTR1 and GTR2 and regulators of biosynthesis MYB28 and
669 MYB29. *Plant Biotechnology Journal* 21, 189–201. <https://doi.org/10.1111/pbi.13936>

670 Huang, D.W., Sherman, B.T., Lempicki, R.A., 2009. Systematic and integrative analysis of
671 large gene lists using DAVID bioinformatics resources. *Nat Protoc* 4, 44–57.
672 <https://doi.org/10.1038/nprot.2008.211>

673 Huercano, C., Percio, F., Sanchez-Vera, V., Morello-López, J., Botella, M.A., Ruiz-Lopez, N.,
674 2022. Identification of plant exclusive lipid transfer SMP proteins at membrane contact
675 sites in *Arabidopsis* and *Tomato* (preprint). *Plant Biology*.
676 <https://doi.org/10.1101/2022.12.14.520452>

677 Hunziker, P., Lambertz, S.K., Weber, K., Crocoll, C., Halkier, B.A., Schulz, A., 2021.
678 Herbivore feeding preference corroborates optimal defense theory for specialized
679 metabolites within plants. *Proc. Natl. Acad. Sci. U.S.A.* 118, e2111977118.
680 <https://doi.org/10.1073/pnas.2111977118>

681 INRAE, n.d. Catalogue - epiRILs: <https://publiclines.versailles.inrae.fr/catalogue/epiril>.

682 Jensen, L.M., Halkier, B.A., Burow, M., 2014. How to discover a metabolic pathway? An
683 update on gene identification in aliphatic glucosinolate biosynthesis, regulation and
684 transport. *Biological Chemistry* 395, 529–543. <https://doi.org/10.1515/hsz-2013-0286>

685 Jensen, L.M., Kliebenstein, D.J., Burow, M., 2015. Investigation of the multifunctional gene
686 AOP3 expands the regulatory network fine-tuning glucosinolate production in
687 *Arabidopsis*. *Front. Plant Sci.* 6. <https://doi.org/10.3389/fpls.2015.00762>

688 Jeschke, V., Weber, K., Moore, S.S., Burow, M., 2019. Coordination of Glucosinolate
689 Biosynthesis and Turnover Under Different Nutrient Conditions. *Front. Plant Sci.* 10,
690 1560. <https://doi.org/10.3389/fpls.2019.01560>

691 Johannes, F., Colot, V., Jansen, R.C., 2008. Epigenome dynamics: a quantitative genetics
692 perspective. *Nat Rev Genet* 9, 883–890. <https://doi.org/10.1038/nrg2467>

693 Johannes, F., Porcher, E., Teixeira, F.K., Saliba-Colombani, V., Simon, M., Agier, N., Bulski,
694 A., Albuison, J., Heredia, F., Audigier, P., Bouchez, D., Dillmann, C., Guerche, P.,
695 Hospital, F., Colot, V., 2009. Assessing the Impact of Transgenerational Epigenetic
696 Variation on Complex Traits. *PLoS Genet* 5, e1000530.
697 <https://doi.org/10.1371/journal.pgen.1000530>

698 Jørgensen, M.E., Xu, D., Crocoll, C., Ernst, H.A., Ramírez, D., Motawia, M.S., Olsen, C.E.,
699 Mirza, O., Nour-Eldin, H.H., Halkier, B.A., 2017. Origin and evolution of transporter
700 substrate specificity within the NPF family. *eLife* 6, e19466.
701 <https://doi.org/10.7554/eLife.19466>

702 Kassambara, A., 2023a. rstatix: Pipe-Friendly Framework for Basic Statistical Tests.

703 Kassambara, A., 2023b. ggpubr: “ggplot2” Based Publication Ready Plots.

704 Kato, M., Takashima, K., Kakutani, T., 2004. Epigenetic Control of CACTA Transposon
705 Mobility in *Arabidopsis thaliana*. *Genetics* 168, 961–969.
706 <https://doi.org/10.1534/genetics.104.029637>

707 Kliebenstein, D.J., 2009. A quantitative genetics and ecological model system: understanding
708 the aliphatic glucosinolate biosynthetic network via QTLs. *Phytochem Rev* 8, 243–254.
709 <https://doi.org/10.1007/s11101-008-9102-8>

710 Kliebenstein, D.J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenson, J.,
711 Mitchell-Olds, T., 2001. Genetic Control of Natural Variation in *Arabidopsis*
712 Glucosinolate Accumulation. *Plant Physiology* 126, 811–825.
713 <https://doi.org/10.1104/pp.126.2.811>

714 Kooke, R., Johannes, F., Wardenaar, R., Becker, F., Etcheverry, M., Colot, V., Vreugdenhil,
715 D., Keurentjes, J.J.B., 2015. Epigenetic Basis of Morphological Variation and
716 Phenotypic Plasticity in *Arabidopsis thaliana*. *The Plant Cell* 27, 337–348.
717 <https://doi.org/10.1105/tpc.114.133025>

718 Latzel, V., Zhang, Y., Karlsson Moritz, K., Fischer, M., Bossdorf, O., 2012. Epigenetic
719 variation in plant responses to defence hormones. *Annals of Botany* 110, 1423–1428.
720 <https://doi.org/10.1093/aob/mcs088>

721 Lenth, R.V., 2016. Least-Squares Means: The *R* Package **lsmeans**. *J. Stat. Soft.* 69.
722 <https://doi.org/10.18637/jss.v069.i01>

723 Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows–Wheeler
724 transform. *Bioinformatics* 25, 1754–1760.
725 <https://doi.org/10.1093/bioinformatics/btp324>

726 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
727 Durbin, R., 1000 Genome Project Data Processing Subgroup, 2009. The Sequence
728 Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078–2079.
729 <https://doi.org/10.1093/bioinformatics/btp352>

730 Li, Y., Sawada, Y., Hirai, A., Sato, M., Kuwahara, A., Yan, X., Hirai, M.Y., 2013. Novel
731 Insights Into the Function of *Arabidopsis* R2R3-MYB Transcription Factors Regulating
732 Aliphatic Glucosinolate Biosynthesis. *Plant and Cell Physiology* 54, 1335–1344.
733 <https://doi.org/10.1093/pcp/pct085>

734 Lisch, D., 2013. How important are transposons for plant evolution? *Nat Rev Genet* 14, 49–
735 61. <https://doi.org/10.1038/nrg3374>

736 Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion
737 for RNA-seq data with DESeq2. *Genome Biology* 15, 550.
738 <https://doi.org/10.1186/s13059-014-0550-8>

739 Lu, Z., Cui, J., Wang, L., Teng, N., Zhang, S., Lam, H.-M., Zhu, Y., Xiao, S., Ke, W., Lin, J.,
740 Xu, C., Jin, B., 2021. Genome-wide DNA mutations in *Arabidopsis* plants after
741 multigenerational exposure to high temperatures. *Genome Biol* 22, 160.
742 <https://doi.org/10.1186/s13059-021-02381-4>

743 Madsen, S.R., Olsen, C.E., Nour-Eldin, H.H., Halkier, B.A., 2014. Elucidating the Role of
744 Transport Processes in Leaf Glucosinolate Distribution. *PLANT PHYSIOLOGY* 166,
745 1450–1462. <https://doi.org/10.1104/pp.114.246249>

746 Mangiafico, S.S., 2023. rcompanion: Functions to Support Extension Education Program
747 Evaluation. Rutgers Cooperative Extension, New Brunswick, New Jersey.

748 Matzke, M.A., Mosher, R.A., 2014. RNA-directed DNA methylation: an epigenetic pathway
749 of increasing complexity. *Nat Rev Genet* 15, 394–408. <https://doi.org/10.1038/nrg3683>

750 McClintock, B., 1950. The origin and behavior of mutable loci in maize. *Proc. Natl. Acad. Sci.*
751 U.S.A.

752 Mendiburu, F. de, 2023. agricolae: Statistical Procedures for Agricultural Research.

753 Mewis, I., Appel, H.M., Hom, A., Raina, R., Schultz, J.C., 2005. Major Signaling Pathways
754 Modulate *Arabidopsis* Glucosinolate Accumulation and Response to Both Phloem-
755 Feeding and Chewing Insects. *Plant Physiology* 138, 1149–1162.
756 <https://doi.org/10.1104/pp.104.053389>

757 Michael Thieme, Arthur Brêchet, Yann Bourgeois, Bettina Keller, Bucher, E., Roulin, A.C.,
758 2022. Experimentally heat-induced transposition increases drought tolerance in
759 *Arabidopsis thaliana*. *New Phytologist*. <https://doi.org/10.1111/nph.18322>

760 Millard, P.S., Weber, K., Kragelund, B.B., Burow, M., 2019. Specificity of MYB interactions
761 relies on motifs in ordered and disordered contexts. *Nucleic Acids Research* 47, 9592–
762 9608. <https://doi.org/10.1093/nar/gkz691>

763 Møldrup, M.E., Geu-Flores, F., Olsen, C.E., Halkier, B.A., 2011. Modulation of sulfur
764 metabolism enables efficient glucosinolate engineering. *BMC Biotechnol* 11, 12.
765 <https://doi.org/10.1186/1472-6750-11-12>

766 Negi, P., Rai, A.N., Suprasanna, P., 2016. Moving through the Stressed Genome: Emerging
767 Regulatory Roles for Transposons in Plant Stress Response. *Front. Plant Sci.* 7.
768 <https://doi.org/10.3389/fpls.2016.01448>

769 Nintemann, S.J., Hunziker, P., Andersen, T.G., Schulz, A., Burow, M., Halkier, B.A., 2018.
770 Localization of the glucosinolate biosynthetic enzymes reveals distinct spatial patterns
771 for the biosynthesis of indole and aliphatic glucosinolates. *Physiologia Plantarum* 163,
772 138–154. <https://doi.org/10.1111/ppl.12672>

773 Nour-Eldin, H.H., Andersen, T.G., Burow, M., Madsen, S.R., Jørgensen, M.E., Olsen, C.E.,
774 Dreyer, I., Hedrich, R., Geiger, D., Halkier, B.A., 2012. NRT/PTR transporters are
775 essential for translocation of glucosinolate defence compounds to seeds. *Nature* 488,
776 531–534. <https://doi.org/10.1038/nature11285>

777 Obayashi, T., Hibara, H., Kagaya, Y., Aoki, Y., Kinoshita, K., 2022. ATTED-II v11: A Plant
778 Gene Coexpression Database Using a Sample Balancing Technique by Subagging of
779 Principal Components. *Plant and Cell Physiology* 63, 869–881.
780 <https://doi.org/10.1093/pcp/pcac041>

781 Polturak, G., Osbourn, A., 2021. The emerging role of biosynthetic gene clusters in plant
782 defense and plant interactions. *PLoS Pathog* 17, e1009698.
783 <https://doi.org/10.1371/journal.ppat.1009698>

784 Quadrana, L., Etcheverry, M., Gilly, A., Caillieux, E., Madoui, M.-A., Guy, J., Silveira, A.B.,
785 Engelen, S., Baillet, V., Wincker, P., Aury, J.-M., Colot, V., 2019. Transposition favors
786 the generation of large effect mutations that may facilitate rapid adaption. *Nature
787 Communications* 10, 3421. <https://doi.org/10.1038/s41467-019-11385-5>

788 Quadrana, L., Silveira, A.B., Mayhew, G.F., LeBlanc, C., Martienssen, R.A., Jeddelloh, J.A.,
789 Colot, V., 2016. The *Arabidopsis thaliana* mobilome and its impact at the species level.
790 *eLife* 5. <https://doi.org/10.7554/elife.15716>

791 R Core Team, 2022. A language and environment for statistical computing. R Foundation for
792 Statistical Computing.

793 Roquis, D., Roquis, D., Marta Robertson, Robertson, M., Ming, R., Liang Yu, Thieme, M.,
794 Michael Thieme, Julkowska, M.M., Magdalena Julkowska, Bucher, E., 2021. Genomic
795 impact of stress-induced transposable element mobility in *Arabidopsis*. *Nucleic Acids
796 Research* 49, 10431–10447. <https://doi.org/10.1093/nar/gkab828>

797 Ross, K., Varani, A.M., Snesrud, E., Huang, H., Alvarenga, D.O., Zhang, J., Wu, C., McGann,
798 P., Chandler, M., 2021. TnCentral: a Prokaryotic Transposable Element Database and
799 Web Portal for Transposon Analysis. *mBio* 12, e02060-21.
800 <https://doi.org/10.1128/mBio.02060-21>

801 Roux, F., Colomé-Tatché, M., Edelist, C., Wardenaar, R., Guerche, P., Hospital, F., Colot, V.,
802 Jansen, R.C., Johannes, F., 2011. Genome-Wide Epigenetic Perturbation Jump-Starts
803 Patterns of Heritable Variation Found in Nature. *Genetics* 188, 1015–1017.
804 <https://doi.org/10.1534/genetics.111.128744>

805 RStudio Team, 2020. RStudio: Integrated Development Environment for R.

806 Sanden, N.C., Kanstrup, C., Crocoll, C., Schulz, A., Nour-Eldin, H.H., Halkier, B.A., Xu, D.,
807 Accepted for publication. An UMAMIT-GTR transporter cascade controls
808 glucosinolate seed loading in *Arabidopsis*. *Nature Plants*.

809 Schweizer, F., Fernández-Calvo, P., Zander, M., Diez-Díaz, M., Fonseca, S., Glauser, G.,
810 Lewsey, M.G., Ecker, J.R., Solano, R., Reymond, P., 2013. *Arabidopsis* Basic Helix-
811 Loop-Helix Transcription Factors MYC2, MYC3, and MYC4 Regulate Glucosinolate
812 Biosynthesis, Insect Performance, and Feeding Behavior. *The Plant Cell* 25, 3117–
813 3132. <https://doi.org/10.1105/tpc.113.115139>

814 Slotkin, R.K., Martienssen, R., 2007. Transposable elements and the epigenetic regulation of
815 the genome. *Nat Rev Genet* 8, 272–285. <https://doi.org/10.1038/nrg2072>

816 Sønderby, I.E., Hansen, B.G., Bjarnholt, N., Ticconi, C., Halkier, B.A., Kliebenstein, D.J.,
817 2007. A Systems Biology Approach Identifies a R2R3 MYB Gene Subfamily with
818 Distinct and Overlapping Functions in Regulation of Aliphatic Glucosinolates. PLoS
819 ONE 2, e1322. <https://doi.org/10.1371/journal.pone.0001322>

820 Stuart, T., Eichten, S.R., Cahn, J., Karpievitch, Y.V., Borevitz, J.O., Lister, R., 2016.
821 Population scale mapping of transposable element diversity reveals links to gene
822 regulation and epigenomic variation. eLife 5, e20777.
823 <https://doi.org/10.7554/eLife.20777>

824 Thorvaldsdottir, H., Robinson, J.T., Mesirov, J.P., 2013. Integrative Genomics Viewer (IGV):
825 high-performance genomics data visualization and exploration. Briefings in
826 Bioinformatics 14, 178–192. <https://doi.org/10.1093/bib/bbs017>

827 Tsukahara, S., Kobayashi, A., Kawabe, A., Mathieu, O., Miura, A., Kakutani, T., 2009. Bursts
828 of retrotransposition reproduced in *Arabidopsis*. Nature 461, 423–426.
829 <https://doi.org/10.1038/nature08351>

830 Van Dooren, T.J.M., Silveira, A.B., Gilbault, E., Jiménez-Gómez, J.M., Martin, A., Bach, L.,
831 Tisné, S., Quadrana, L., Loudet, O., Colot, V., 2020. Mild drought in the vegetative
832 stage induces phenotypic, gene expression, and DNA methylation plasticity in
833 *Arabidopsis* but no transgenerational effects. Journal of Experimental Botany 71, 3588–
834 3602. <https://doi.org/10.1093/jxb/eraa132>

835 Vongs, A., Kakutani, T., Martienssen, R.A., Richards, E.J., 1993. *Arabidopsis thaliana* DNA
836 Methylation Mutants. Science 260, 1926–1928.
837 <https://doi.org/10.1126/science.8316832>

838 Wells, J.N., Feschotte, C., 2020. A Field Guide to Eukaryotic Transposable Elements. Annu.
839 Rev. Genet. 54, 539–561. <https://doi.org/10.1146/annurev-genet-040620-022145>

840 Wentzell, A.M., Kliebenstein, D.J., 2008. Genotype, Age, Tissue, and Environment Regulate
841 the Structural Outcome of Glucosinolate Activation. Plant Physiology 147, 415–428.
842 <https://doi.org/10.1104/pp.107.115279>

843 Wentzell, A.M., Rowe, H.C., Hansen, B.G., Ticconi, C., Halkier, B.A., Kliebenstein, D.J.,
844 2007. Linking Metabolic QTLs with Network and cis-eQTLs Controlling Biosynthetic
845 Pathways. PLoS Genet 3, e162. <https://doi.org/10.1371/journal.pgen.0030162>

846 Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A., Leroy,
847 P., Morgante, M., Panaud, O., Paux, E., SanMiguel, P., Schulman, A.H., 2007. A
848 unified classification system for eukaryotic transposable elements. Nat Rev Genet 8,
849 973–982. <https://doi.org/10.1038/nrg2165>

850 Wickham, H., 2016. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.
851 Wickham, H., 2011. The Split-Apply-Combine Strategy for Data Analysis. Journal of
852 Statistical Software 40, 1–29.

853 Wickham, H., 2007. Reshaping data with the reshape package. Journal of Statistical Software
854 21.

855 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G.,
856 Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller,
857 K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., Takahashi, K., Vaughan, D., Wilke,
858 C., Woo, K., Yutani, H., 2019. Welcome to the Tidyverse. JOSS 4, 1686.
859 <https://doi.org/10.21105/joss.01686>

860 Wilke, C., 2020. Cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2.”

861 Wojtyla, Ł., Paluch-Lubawa, E., Sobieszczuk-Nowicka, E., Garnczarska, M., 2020. Drought
862 stress memory and subsequent drought stress tolerance in plants, in: Priming-Mediated
863 Stress and Cross-Stress Tolerance in Crop Plants. Elsevier, pp. 115–131.
864 <https://doi.org/10.1016/B978-0-12-817892-8.00007-6>

865 Yatusevich, R., Mugford, S.G., Matthewman, C., Gigolashvili, T., Frerigmann, H., Delaney,
866 S., Koprivova, A., Flügge, U.-I., Kopriva, S., 2010. Genes of primary sulfate
867 assimilation are part of the glucosinolate biosynthetic network in *Arabidopsis thaliana*:
868 *Glucosinolate biosynthesis and sulfate assimilation*. The Plant Journal 62, 1–11.
869 <https://doi.org/10.1111/j.1365-313X.2009.04118.x>

870 Zhang, Y., Fischer, M., Colot, V., Bossdorf, O., 2013. Epigenetic variation creates potential
871 for evolution of plant phenotypic plasticity. New Phytologist 197, 314–322.
872 <https://doi.org/10.1111/nph.12010>

873 Zhu, A., Ibrahim, J.G., Love, M.I., 2018. Heavy-tailed prior distributions for sequence count
874 data: removing the noise and preserving large differences. Bioinformatics.
875 <https://doi.org/10.1093/bioinformatics/bty895>

876 Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T., Henikoff, S., 2007. Genome-wide
877 analysis of *Arabidopsis thaliana* DNA methylation uncovers an interdependence
878 between methylation and transcription. Nat Genet 39, 61–69.
879 <https://doi.org/10.1038/ng1929>

880