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Abstract—A communication-efficient protocol is introduced
over a many-to-one quantum network for Q-E-B-MDS-X-TPIR,
i.e., quantum private information retrieval with MDS-X-secure
storage and T-private queries. The protocol is resilient to
any set of up to E unresponsive servers (erased servers or
stragglers) and any set of up to B Byzantine servers. The
underlying coding scheme incorporates an enhanced version of
a Cross Subspace Alignment (CSA) code, namely a Modified
CSA (MCSA) code, into the framework of CSS codes. The error-
correcting capabilities of CSS codes are leveraged to encode
the dimensions that carry desired computation results from the
MCSA code into the error space of the CSS code, while the
undesired interference terms are aligned into the stabilized code
space. The challenge is to do this efficiently while also correcting
quantum erasures and Byzantine errors. The protocol achieves
superdense coding gain over comparable classical baselines for
Q-E-B-MDS-X-TPIR, recovers as special cases the state of
art results for various other quantum PIR settings previously
studied in the literature, and paves the way for applications
in quantum coded distributed computation, where CSA code
structures are important for communication efficiency, while
security and resilience to stragglers and Byzantine servers are
critical.

Index Terms—Coded storage, PIR, QMAC, security.

I. INTRODUCTION

ECENT interest in entanglement assisted computation
Rover quantum many to one (also referred to as quan-
tum multiple access (QMAC)) networks adds fundamentally
novel dimensions to the rapidly expanding theory of dis-
tributed communication and computation, beyond its classical
cornerstones such as secret-sharing [2], [3], [4], [5], pri-
vate information retrieval (PIR) [6], [7], [8], [9], [10],
[11], [12], coded distributed computation and computation
networks [13], [14], [15], and secure multiparty computa-
tion [16], [17], [18], [19], [20]. Ideas from these diverse
perspectives are encapsulated in a variety of specialized
coding structures — Reed-Solomon (RS) codes [21], Cross
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Subspace Alignment (CSA) codes [22], Lagrange Coded
Computing [13], and CSS codes [23], [24], to name a few.
Assimilating the specialized coding structures is essential
for a wunified theory that can facilitate a broader array of
applications. This work represents such an endeavor, with the
goal of developing a communication-efficient coding scheme
(i.e., an efficient protocol) for Q-E-B-MDS-X-TPIR [22],
i.e., quantum X-secure! T-private information retrieval from
MDS coded storage that is resilient to up to E unresponsive
servers (equivalently referred to as erased servers) and up to
B Byzantine servers.”

In the Q-E-B-MDS-X-TPIR [22] setting as shown in Fig. 1
there are N servers equipped beforehand (independent of the
classical data) with optimally entangled quantum systems.
Upon the commencement of the protocol, there are K classical
messages Wi, ..., Wx (files, datasets) that are distributed
among the servers in an MDS coded and X-secure fashion.
MDS coding implies that the messages together with some
classical randomness Z (needed for security) are coded such
that the storage size at each server is only a fraction 1/K,
of the original size of the K messages. X-security means that
even if any set of up to X servers collude they can learn
nothing about the messages. A user (with its own private
randomness Z') wishes to efficiently retrieve the 6" message
(6 € [K]) by querying the N servers in a T-private fashion.
T-privacy means that even if any set of up to 7 servers collude
they can learn nothing about which message is desired by the
user. The efficiency of the protocol is measured by the rate,
defined as the number of desired message bits retrieved per
qubit (a d-dimensional quantum system (sometimes called a
qudit) corresponds to log,(d) qubits) of total download from
the servers. Each server generates its response based on the
user’s queries and the storage available to that server, and

lX—security is a secret-sharing constraint. The messages are the secret and
the storage at each server is its share of the secret, such that any set of up to
X shares reveal nothing about the secret. There is another form of security,
server secrecy [5], [10], [11], which requires that the user must not learn
anything about any other message besides its desired message (also refered
to as DB-privacy or symmetric privacy). Note that X-security is not related
to server secrecy, and that we consider only the former (X-security) in this
work.

2When assembled with ‘PIR’, the abbreviation ‘Q’ stands for ‘Quantum’
(without ‘Q’, the setting is classical by default), ‘E’ stands for upto E erased
servers ( unresponsive servers), ‘B’ stands for upto B Byzantine servers,
‘MDS’ stands for MDS coded storage, ‘X’ stands for X-secure storage (so
that up to X colluding servers can learn nothing about the realizations of the
stored messages) and ‘T’ stands for T-privacy constraint (so that up to T
colluding servers can learn nothing about which message is desired).
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Fig. 1. Q-E-B-MDS-X-TPIR. Quantum systems Al ..... Ay are prepared
in an optimally entangled state and distributed to servers in advance. Messages
Wi, ..., Wk, together with randomness Z are encoded into Sq, ..., Sy in an
X-secure fashion and distributed to N servers as their storage. To privately
retrieve a desired message Wy, 6 € [K], a user sends to the servers random
(based on its local randomness Z’) queries Qq, ..., Qn that are T-private.
Each server locally encodes its response into its quantum system and sends it
back to the user. In the figure, unresponsive (blue) server’s quantum system
is not received, and the Byzantine (red) server applies an arbitrary quantum
channel to its quantum system.

encodes it into its own quantum system through local quantum
operations. The quantum systems are then sent as answers
from the servers to the user. The protocol must tolerate up to
E unresponsive servers, i.e., any set of up to E servers may
be unresponsive, equivalently their answers are erased over
the QMAC. The protocol must also tolerate any set of up to
B Byzantine servers whose answers are subject to arbitrary
errors. Note that while the user’s queries are sent without
knowledge of which servers may turn out to be unresponsive,
once the user receives the quantum systems in response, it
knows which servers’ answers were erased (known-position
error), i.e., which servers did not respond. The identities
of the Byzantine servers are not directly revealed to the
user from the answers. This corresponds to unknown-position
errors in the context of error correcting codes. Resilience to
unresponsive and Byzantine servers means that we require that
regardless of which E servers are erased, and which B servers
are Byzantine, the protocol must allow the user to recover its
desired message by measuring the received quantum systems.

Our solution centers around CSS codes and the classical
CSA coding scheme originally introduced for X-TPIR, i.e.,
PIR with X-secure storage and T-private queries [25], and
subsequently applied to a number of classical variants of
PIR, coded computing and private read-write designs for
federated submodel learning [26]. The classical CSA scheme
was generalized to a quantum CSA scheme for Q-MDS-X-
TPIR over the quantum many-to-one network in [27], [28],
and its resilience to eavesdroppers was explored in [12].

A. Challenges and Contributions

While we focus on Q-E-B-MDS-X-TPIR to motivate the
protocol developed in this work, we expect the protocol to be
much more broadly relevant. This is because the underlying
challenge is how to efficiently transmit CSA coded classical
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symbols when there are quantum resources shared among
servers, some of which can be unresponsive (stragglers) and/or
Byzantine. CSA code structures are not limited to PIR. For
example, CSA codes feature prominently in the broad area
of coded distributed computation (CDC) [13], [29], [30],
[31]. Thus, the protocol from this work could potentially be
a useful stepping stone towards future studies of quantum
CDC (QCDC).? Byzantine servers are more challenging in
the quantum setting, because the same quantum entanglement
that allows gains in communication efficiency under ideal
conditions, also makes entangled protocols more susceptible
to stragglers and Byzantine adversaries, as their actions impact
not only their own quantum systems, but also the overall state
of all entangled quantum systems. The challenges are listed
as follows.

1) Compared with [27], [28] that studied Q-MDS-X-TPIR,
the main challenge is to achieve resilience to unrespon-
sive and Byzantine servers. In classical settings, this
is done by having the answers form an error correct-
ing code (ECC) of the desired message symbols (and
interfering symbols introduced due to various constraints
such as X-security, T-privacy and MDS storage) so that
erasures or errors can be corrected first, after which
the desired message symbols can be recovered. This
idea is not directly applicable to quantum PIR schemes.
Even though QPIR schemes are typically based on the
stabilizer formalism [10], [11], [27], the error-correcting
capabilities of stabilizer codes are not utilized to correct
errors. Specifically, instead of the code space of a
stabilizer code, in QPIR the information is encoded
into the error space [32], and is extracted by the user
by measuring the qudits (quantum digits, a specific
representation of quantum systems that will be explained
in Section II-A) with stabilizers to reveal the syndromes.
Thus, the received N answer qudits in QPIR are not in
the stabilizer code space, even in the absence of erasures
Or errors.

Compared with [5] that explored Q-TPIR with general
access structure that involves resilience to E unrespon-
sive servers as a special case, the main challenge is to
come up with an efficient scheme that satisfies X-security
and MDS storage constraints. Unlike the random coding
based scheme that appears in [5], the CSA code structure
is important to accommodate X-security and MDS stor-
age. Note that even in the classical setting, CSA codes
allow higher communication rates in PIR with these two
constraints (e.g., the CSA code based scheme [22], [25]
can achieve higher rates than those achieved without
CSA codes in [29], [33]).

Utilizing CSA codes further prevents us from placing
the answering qudits in the code space of a stabilizer
code (without considering the erasure or Byzantine
errors). Specifically, the CSA code is the direct sum of

2)

3)

3The MDS storage can be viewed as coded matrix A, and the T private
queries as coded matrix B. The computation of AB is distributed among
servers. The MDS constraint limits upload cost, X-security/7-privacy protect
against curious servers, and resilience to unresponsive/Byzantine servers
guarantees robustness of the distributed computation.
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a Reed-Solomon code of interfering/undesired symbols
and a Cauchy RS code of desired symbols. It is non-
trivial to construct a CSS code upon two CSA codes
CSAyx, CSAz, such that CSAfg C CSAz. This is because
the dual code of a CSA code should be dual to both the
RS part and the Cauchy RS part, whose structures are
not trivially compatible.
Thus, our main contribution is a protocol that utilizes the
error-correcting capabilities of CSS codes, i.e., the information
carrying ability of their syndromes as the underlying frame-
work. Within this framework, the protocol exploits the RS
sub-code of CSA codes to efficiently retrieve the desired
computation results (desired message symbols in the PIR
problem) that are encoded by classical codes,* while also
tolerating quantum erasures and Byzantine errors. Intuitively,
in the underlying classical CSA code based protocol, the
answers from the servers are viewed as the RS sub-code
of interfering symbols, with Cauchy RS code of desired
message symbols added as “error.” The syndrome of the
RS sub-code uniquely identifies the “error” in the Cauchy
RS code space together with the actual errors introduced
by unresponsive or Byzantine servers. From the quantum
perspective, the shared qudits are initially in the code space
of the CSS code constructed from the RS sub-codes of two
instances of CSA codes. Servers apply Pauli operators to their
qudits to encode the answers generated according to the two
instances of the CSA code based classical scheme. The Pauli
operators’ components that correspond to RS sub-codes of
interfering symbols are not detectable since they commute
with stabilizers, while the component corresponding to desired
message symbols, together with the errors introduced by
unresponsive and Byzantine servers, are identified through
syndrome measurement. In a nutshell, dimensions that carry
desired computation results from the CSA code are encoded
into the error space of the CSS code, while the undesired
interference terms are aligned into the stabilized code space. A
technicality worth noting is that a key enhancement is made to
the CSA code, transforming it into a Modified CSA (MCSA)
code — whereby the RS sub-code is turned into a GRS sub-
code whose dual code is still a GRS code, so that a CSS code
can be easily constructed on GRSy, GRS that are sub-codes
of two MCSA codes, where GRng C GRSz. This ‘MCSA-
CSS’ construction can be found in Protocol 3 in this work.
While there is entanglement shared beforehand among the
distributed servers (transmitters), it is important to note that
the servers do not share any entanglement in advance with
the user (the receiver). Intuitively, the shared entanglement
among transmitters leads to a superdense coding gain in
quantum PIR schemes allowing them to achieve in some cases
twice the rate of their classical counterparts [10], [11], [27].
The quantum scheme proposed in this paper also achieves
the factor of 2 superdense coding gain compared with the
classical scheme proposed in [22]. It is also noteworthy that
the quantum PIR setting addressed in this paper recovers as
special cases various other settings considered in the literature,

4We refer to the desired message symbols as the computation results to
emphasize that they are the outcome of the computation task, e.g., PIR.

such as Q-B-X-TPIR in [34], Q-E-TPIR in [5], Q-MDS-X-
TPIR in [27], Q-MDS-TPIR in [11], and Q-TPIR in [10].
Indeed, the protocol presented in this work achieves the state-
of-the-art rates across all of the aforementioned special case
scenarios.

B. Comparison to Related Works

The most closely related work is the conference version of
this paper in [1], [35] where Q-E-X-TPIR problem is studied
based on the N-sum box abstraction of [27]. The conference
version allows neither MDS storage nor resilience to Byzantine
servers. The conference version was then developed into
a preliminary ArXiv version [36] of this paper where the
approach taken for resilience to Byzantine servers that apply
arbitrary Pauli errors is to guess the identities of Byzantine
servers, treat them as erasures and decode, and check if
there exists a set of decoding results that agree. However,
the resilience to arbitrary Byzantine errors (rather than just
Pauli errors) is not explicit under the N-sum box abstraction.
The present version further develops our approach, making
the Byzantine resilience explicit. Instead of the N-sum box
abstraction, here we directly utilize the fact that the syndrome
measurement of a CSS code can reduce arbitrary errors (that
affect fewer qudits than its minimum distance) to Pauli errors
(Lemma 1).

Let us also note the parallel and independent work in [34]
that studies Q-B-X-TPIR through the lens of the N-sum box
abstraction, as further evidence of interest in this problem.

C. Organization

Section II introduces the notation together with some
basic concepts of quantum systems, classical error correcting
codes and quantum information. Section III formalizes the
Q-E-B-MDS-X-TPIR problem. Section IV presents our main
result as Theorem 1. Section V revisits the CSA code based
classical E-B-MDS-X-TPIR scheme which is crucial to our
construction. A modified CSA code (MCSA code) is presented
in Section VI. The quantum protocol, namely MCSA-CSS,
that builds upon the MCSA code and a CSS code, is presented
in Section VII. Section VIII concludes the paper.

II. PRELIMINARIES
A. Miscellaneous

For two integers a, b, the set {a,a+ 1, ..., b} is denoted as
[a : b]. For compact notation, [1 : b] is denoted as [b]. For a
set S, |S| denotes its cardinality, and for any k < |S], (’;j) £
{S|SCS, |S| =k}. For an r x ¢ matrix A, A(A, B) denotes
the sub-matrix of A whose row indices are in A and column
indices in B. A or B will be replaced by " if they contain all
the rows or columns, respectively. If A is a vector, we simply
write A(S) to denote the sub-vector of A whose indices are
in S. For two column vectors ¢, ¢z, [¢1; ¢2] £ [c?— c;—]T, ie.,
a longer column vector with ¢; stacked above c¢;. colspan(A)
denotes the vector subspace spanned by the columns of A. If
A is a projection matrix, then Im(A) = colspan(A). ker(A) is
the kernel space of A. AT is the conjugate transpose of A. For
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a length n vector v=1[v; vy --- val T, Diag(v) denotes the
diagonal n x n matrix whose diagonal elements are entries
of v. supp(v) {i | vi # 0} and wt(v) £ | supp(v)|. Iy
is the N x N identity matrix. For any random variable that
is written in upper case (say, Z), we use the corresponding
lower case (z) to denote its realization. The state of a quantum
system A defined on Hilbert space H,4 is represented by a
density operator p4 € D4 where Dy is a set of all positive
semi-definite operators with trace 1 acting on Hy. A pure
state can also be represented by a unit vector in H,4. For a
classical-quantum system XA, pa|x—x, or simply pa|x, denotes
the density operator of A conditioned on the realization X = x.
The label of the quantum system in the subscript may be
omitted for compact notation if it is clear from the context.
F, is a finite field with order g where ¢ = p” is a prime
power. The field trace trg, /F, () : g — F), is an F)-linear map
from F, to F,, and @ £ ¢2™V~1/P_If a quantum system A
has dimension |A| = g, with {|a)}er, being its computational
basis, we call it a g-dimensional qudit.

B. Classical Error Correcting Codes

Definition 1 ([n,k,d] Code): An [n,k,d] classical code
over [F, is the column space of a rank k generator matrix G €
IF”Xk i.e., C = colspan(G). It has a rank n — k parity-check
matrlx He F"X” —k such that H' G = 0. The dual code of C is
ct= colspan(H) If an [n, k, d] code satisfies d =n —k+ 1,
we call it an [n, k] MDS (maximum distance separable) code.

Definition 2 (GRS Code): A Generalized Reed-Solomon

Code C = GRSq ,((“ " over F, is the column space of the
generator matrix deﬁned in (1) where ¢ = (a1, a2, ..., ay)
are n distinct elements in Fy, and w = (uy, u2, ..., u,) are n
non-zero elements in [F,. By definition, g > n.
up uid] . ul()l]f !
A uz U0 . M2a§ !
G pstr@w = (D
n,k :
-1
Un UpOp : una,];

Definition 3 ( CRS Code): A Cauchy Reed-Solomon Code
C CRSq “fW - over F, is the column space of
the generator matrlx deﬁned in (2) where (o, f)

(1,2, ...,0n, f1,/2, ..., fr) are n + k distinct elements and
u = (uy,up,...,u,) are n non-zero elements. By definition,
qg>=n+k.
ui Ui . Ui
fi—ar fi—a fi—ag
up up . up
A | fimw fi—o Jk—a2
GCRSZ /((u fu) = . . . (2)
u, Uy . U,
fi—an  fi—a Ji—an

C. Quantum Information

Definition 4 (Quantum Channel): A quantum channel with
input quantum system A and output quantum system B
is a completely positive trace preserving mapping (CPTP)
M: Dy — Dpg. It can be represented by Kraus Operators
{Ki} such that }_; K;'Ki is an identiy matrix and M(p) =

ZiKiPK,T-
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Definition 5 (Pauli Operators for Qudits [37]): For  any
a,b € Fy, define the single qudit Pauli Operators xXb 70 ¢
C?*4 so that

XPla) = la+b), Z"|a) = &0/ PV 1)

ForneNandany x = [x; --- x]",z2=1[z1 --- z]' €

]FZXl, let the n-qudit Pauli Operators be defined as

X¥Z* & (R X4z7.
i€[n]

Note that
(szz) (Xx/zz/> — o"Fq/Fp (z"x'—x"7) (XX 7z > (szz)

— 'Fa/Fp (z—r xX) Xx+x’ Zz+z’

3)

Definition 6 (CSS Code [23], [24], [38]): A C
CSS(Cx, Cz) code encodes the state space of k g-dimensional

qudits into a code space of n g-dimensional qudits

CSS(Cx.Cz) =colspan| > |x" +z)[zeCz|. 4

1 L
xteCy

where Cy, Cz are classical [n, kx, dx], [n, kz, dz] linear codes
with generator matrices G¢, € F"Xk’( Ge, € F”sz respec-
tively, that satisfy CL C Cz. The CSS(CX, Cz) 1s a stabilizer
code with stablhzers S = {XaZP | a € CX,b € C}} Its
minimum distance is d > min(dx, dz).

Definition 7 (Stabilizer Measurement): For the CSS code
in Definition 6, for any a € Cy,b € C}, according
to [10, Appendix C, Fact 2)], the stabilizer XaZP can be
decomposed as

XiZ> = 3" o'PP Q)
ielf,
where {P?‘b},-e]pp are orthogonal projections such that
,bpa,b . .
PIOPIY =0 Vi, (6)
Z i § (7N
i€lF,

Then the stabilizer measurement X®ZP is defined as the
Projection-Valued Measurement (PVM, [39]) with projections
(P e,

Definition 8 (Syndrome Measurement): For the CSS code
defined in Definition 6, a syndrome measurement is the
stabilizer measurement corresponding to all the (generator)
stabilizers according to Definition 7.

Proposition 1 (Well Known): For any |¢) € CSS(Cx, Cz)
and any X,z € F’;Xl, the n-qudit pure state X*Z*|y) is an
eigenvector for all the stabilizers, and its syndrome measure-
ment outcome is as follows, with He, , He, being parity-check
matrices for Cx, Cz respectively.

Sy = ngx, Sz = ngz 8)

The following lemma will be useful.
Lemma 1: Consider any n-qudit state |y) € CSS(Cx, Cz)
with the n qudits labeled as Ap,. For any X,z € ]FZXl, ScC
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[n],|S] < min(dx,dz) — 1 where dx,d; are distances of
Cx, Cz respectively, suppose the n-qudit Pauli gate X*Z* is first
applied to A(,). Then for any quantum channel Mg: D 4, —
D 4, that is applied to qudits Ag, the syndrome measurement
reduces the quantum channel to some Pauli operators only
affecting qudits Ag, i.e.,

V) € CSS(Cx, Cz): x, z € )™
S C [n], |S| < min(dyx, dz) — 1, MSI DAS — DAS’
(idpns ®Ms) (X2 ) w1 (x°2%)")

synd.meas.
—

(;) Xx+e§zz+e§ 1) (¥ (Xx+e§Zz+e§)T’ 9)

Xesz¢4 (xxzz ) (] (X"ZZ)T) (X% zs )T

with the outcome being

Sy = ng (x+€), sz= ng (z+ €%), (10)

where supp(eg) = supp(eé) =S
Though the lemma is conceptually somewhat standard, we
provide a proof in Appendix-A for the sake of completeness.

III. PROBLEM STATEMENT

Let us start with the classical setting defined in [22]. There
are K messages Wy, ..., Wk that are i.i.d. uniform over [M].
They are securely encoded with randomness Z € Z to form
the storage at N servers. For 6 € [K], the user wishes to
privately retrieve the message Wy by querying the N servers.
Local randomness Z' € Z’ is available to the user to generate
private queries. For any n € [N], the random variables
regarding the storage, query and answer (in the classical
setting) at server n, denoted as S,, Q?] and A,, with realizations
being sy, gn, an, are deterministic functions of the following
3 independent random variables, whose realizations will be
denoted as wikj, z, 7 respectively.

[Messages] : Wik) € MK,
[Storage Randomness] : Z € Z,

[User Randomness] : Z' € Z'. (11)

The classical problem is similar to the quantum problem in
Fig. 1, but there are no entangled quantum systems shared
among servers and the answers from servers are classical sym-
bols. Byzantine servers will return arbitrary classical symbols.
Next we specify the storage, queries, servers’ answers, and the
user’s decoding for both classical and quantum settings.

A. Classical Setting

MDS and X-Secure Storage: The storage at server
n,n € [N] is denoted as S, € [S]. With encoding function
Ency: [MIX x Z — [S]V, the storage Sy = Ency(Wik], Z)
forms an [N, X + K.] MDS code, such that

[MDS Storage] HWk | Ss) =0,

VS C N, IS =X + K., (12)
H(S,) =log, S = Klog,(M)/K,,
Vn € [N] (13)

[X — Security]  I(Wik); Sx) =0,

VX C [N], |X] < X. (14)
ie., any X + K, servers must be able to recover all the
K-messages, the storage size at each server is 1/K. of the total
size of the K messages, and any X or fewer servers can learn
nothing about the messages. The encoding is done by, e.g.,
sources of the messages.

Remark 1: The storage forms a ramp secret sharing [40] of
the K-message database. We call it MDS and secure storage
for comparison with Quantum MDS-PIR [11], as when X = 0,
the above entropic constraints hold for an [N, K.] MDS code
where K. message symbols are encoded into N codeword
symbols such that any K. codeword symbols recover the
message and each codeword symbol is 1/K, of the message
size (since there are K, message symbols). When K, = 1,
there is no MDS storage constraint.

Queries: A user wishes to retrieve the 67,60 € [K],
message Wy from the servers by sending the T-private queries
Q[le], Q[f], ...,Ql[g] € Q to the N servers such that any T
or fewer servers learn nothing about 8. Mathematically, using
the encoding function Encyser: [K] x 2/ — OV, the user
generates queries,

V1, 0%, ..., oY) = Encyser (0, 7)) (15)

where Z' € Z' is the user’s local randomness. Meanwhile, the
T-privacy constraint must be satisfied such that

[T — Privacy] (ST, Q[79—]) ~ <S7~, Q[79—/]),

V6,0 e [K],TC[N],|T<T. (16)
That is to say, for any 6 € [K], the joint distribution of the
storage and queries at T or fewer servers are identical.

Answers: There is a set £ C [N] of unresponsive servers
and another set B C [N] of Byzantine servers. B, £ are not
necessarily disjoint. The user does not know &, B a priori,
except that

IEl < E, Bl <B. (17)

Each server n € [N] \ (£U B) generates the answer A, €
[d] using the encoding function Encgey,: [S] x Q@ — [d]
according to its storage and received query, i.e.,

Ay = Bnceery, (Sn, Q1) Vn e [N] \ (EUB).  (18)
However, any unresponsive or Byzantine server n € £U B
generates an arbitrary answer A; € [d].

Decoding: Upon receiving the answers Apy)g, the user
decodes the desired message using a function that depends on
£ (since unresponsive servers can be identified by the user),
Dece: [K] x [dIV71¥l x 2/ — [M], ie.,

W = Decg(0, Apyp\e: Z). (19)
Thus, an E-B-MDS-X-TPIR scheme, is defined as
\I’C(Encsta Encyser, Encserv, {Decg}gc[N]JﬂfE)- (20)
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The rate of a classical E-B-MDS-X-TPIR scheme is defined
as the number of desired message bits recovered per answer
bit that is downloaded from the servers, i.e.,

RC 2 log(M) '
Nlog(d)
A rate R€ is said to be achievable if and only if there exists
a scheme W€ with this rate such that

Pr(W # Wp) =0,
Vo € [K],E, B C[N], €] <E,|B| <B.

21

(22)

B. Quantum Setting

Shared Entanglement: In quantum setting, a composite
quantum system Ay A1 A, ... Ay, with underlying
Hilbert Space H 4,y = &@yein) CY is initialized in the state
’O?‘tlm a priori, and the subsystem A, is given to server
n,n € [N].

MDS and Secure Storage: Same as the classical setting.

Queries: Same as the classical setting.

Answer: Again, there are unresponsive servers & and
Byzantine servers B with £ B C [N],|€] < E,|B] < B.
Any reliable server applies to its own quantum subsystem a
completely-positive and trace-preserving (CPTP) map as its
encoder, based on the realizations of its storage S, = s, and
received query Q,[f)] =qp, i.e.,

[sn.qnl

Enceery,” @ Dy, — Dag,- (23)

Unresponsive and Byzantine servers apply an arbitrary CPTP
map,

Meus © Dagy = Dagp (24)

to their quantum subsystems. Note that Byzantine servers do
not change their quantum systems’ dimension, as otherwise
the user can tell which servers are Byzantine and treat them
as erasures instead.

Decoding: Upon receiving the quantum system Ay ¢ with
state ,o;lw]\g, the user measures with POVM Dec?’z/]
{HZ’Z, (W), w € [M]} that depends on 6 and the realization of
its local randomness Z' = 7/, with outcome random variable
W as the decoding result.

Remark 2: Both unresponsive and Byzantine servers apply
arbitrary CPTP maps to their quantum systems. The difference
is that the indices in & are directly known to the user after
collecting all the answers since unresponsive servers do not
respond, while the indices in B are/unknown before decoding.
Thus, the decoding POVM Dec[g’” depends on €&.

Thus, an E-B-MDS-X-TPIR scheme, is defined as

\IJQ<,009 Encg, Encygser, Encgery, {DeCE}gc[N],\ﬂSE) . (25)

The rate of a Quantum E-B-MDS-X-TPIR scheme is defined
as the number of desired message bits recovered per qubit that
is downloaded from the servers, i.e.,

0 o logM)
Nlog(d)’

A rate R2 is said to be achievable if there exists a scheme

W€ with this rate such that for any 6 € [K],

(26)
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Pr(W # Wy) =0,

Vo e [K],E, BCIN]I|E <E,|Bl <B. 27)

A (quantum) E-B-MDS-X-TPIR problem is parameterized
by (E,B,K.,X,T,N,K) where N, K are number of servers
and messages respectively. We define the following constants
for any E,B,K.,X,T,N,K that will be used throughout this
paper, where in the last line of (28), we pick N + L distinct
elements in F,.

LAN—- (K, +E+2B+X+T—1),
VEKA+X+T-1,
Fgoqg=p".g=L+N,

(()(,f)é (Oll,...,aN,fl,...,fL) EFII;/JFL.

Remark 3: Since T-privacy is for the index 6, and X-
security is for the shares of messages, both of which are
classical even in the quantum setting, quantum analysis is not
required while proving the privacy and security of the quantum
protocol. Quantum considerations (e.g., CSS code formalism
in Lemma 1), are essential only in the proof of correctness of
the decoding process.

(28)

IV. MAIN RESULTS

The main result of this paper is a Q-E-B-MDS-X-TPIR
scheme/protocol, namely MCSA-CSS. This protocol interprets
the classical CSA code based E-B-MDS-X-TPIR scheme
of [22] in such a way that desired message symbols appear as
“errors” added to a code, combines the classical scheme with a
CSS code, and decodes the desired message symbols, erasures
and Byzantine errors simultaneously through the syndrome
decoding of the CSS code. The scheme achieves a higher
rate compared with its classical counterpart. As noted, our Q-
E-B-MDS-X-TPIR protocol yields the state-of-art achievable
rates under the various special cases corresponding to recently
studied quantum PIR settings, e.g., Q-B-X-TPIR [34], Q-
E-TPIR [5], Q-MDS-X-TPIR [27], Q-MDS-TPIR [11], and
Q-TPIR [10], without server secrecy constraints. We have the
following theorem,® where setting E = 0 or B = 0 corresponds
to the case of no resilience to erasures or Byzantine servers,
respectively, while setting K. = 1 or X = 0 corresponds to the
case of no MDS or X-secure storage constraints, respectively.

Theorem 1: For quantum K. MDS X-secure T-private
information retrieval with N servers out of which at most E
servers are unresponsive and B servers are Byzantine, the rate

RC =
2(N—E—2B—K.~X+1)
(N—E—N2B) > K. +X+T—-1)=>N/2
max(N—zg—w, N—E—ZB—]c((.—X—T+1 ,
(N—E—-2B)>N/2> (K. +X+T-1)
N—E—2B—K.—X—T+1

(29)

N ’
N2>(N—-E—2B)> (Ke+X+T—1)
is achievable.
S5For ease of comparison with quantum PIR problems, similar to [S] but

unlike [22], the unreceived qudits from unresponsive servers are also counted
in the download cost.
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Proof: The achievability of the third regime N/2 > (N —
E—2B) > (K. + X+ T — 1) is trivial since a g-dimensional
qudit can always be used to transmit a classical g-ary symbol
and the classical scheme in [22] can be directly applied. The
achievability of the first regime (N — E — 2B) > (K. + X +
T — 1) = N/2 will be established by the scheme presented in
Section VII.

The achievability of the second regime, (N — E — 2B) >
N/2 > (K. + X+ T — 1), follows from a combination of the
schemes for the first and third regimes, an idea that appears
in the preliminary ArXiv version of this paper [36, Th. 1,
Remark 6] and in the subsequent 214 version of [34]. First of
all, ¥ _E_QB_;,{"_X_TH is always achievable by the classical
scheme. For the achievability of w, intuitively, when
N/2 > (K. 4+ X+ T — 1), one can always use the scheme that
has more demanding privacy constraints, i.e., the scheme with
T-privacy such that K. + X+ 7 —1 =N/2 and T > T. The
Q-MDS-X-TPIR falls into the first regime and the rate can be
calculated accordingly. Note that such a choice of 7 needs N
to be even so that N/2 is an integer. The odd case will be
resolved by Remark 8. |

Remark 4: In the first regime, we note the rate of the
quantum scheme is twice of the classical scheme, which
matches the maximal superdense coding gain observed thus far
in other quantum settings of PIR [10], [11], [27] (compared
with [7], [8] and [22] without unresponsive and Byzantine
servers), secret sharing [5] (compared with [2]).

V. CLaAssIcAL E-B-MDS-X-TPIR: CSA CODE

The classical version of this problem has been studied
in [22], and the CSA code based classical scheme there is an
essential building block of its quantum version. Let us briefly
summarize it here, starting with an example.

A. Example 1: E=1,B=0,K. =2, X=1,T =1 with
N = 6 Servers [22]

Let L = N- K. +E+X+T -1 = 2 and
at, ..., 0N=6,f1,fr=2 be 8 distinct elements over F, (g > 8).
Let wk) be the realizations of all the K messages Wk]. Each
message has L x K. = 4 symbols from F, i.e., for any k € [K],
message wr = {wi (i, j)}ie[2],je[2] contains 4 symbols from [F,.
Let Wy 1, Wi 2, W2 1, W22 € IF}]XK denote the row vectors that
contain the 4 symbols of the K messages, respectively, i.e.,

. k - k
= [WmeK W1,zeK] (30)

L ke ok
W) 1€ W2 o€

where e],‘( is the k™ column vector of Ig.

Let the storage randomness Z = {Zj1,7Z>1} be uni-
form over ]F}IXK X IF}IXK and user randomness Z' =
(Z"Viet2).cer21.1=1 be uniform over (FK*1)4,

Storage: The storage at server n, n € [6], conditioned on
the realization of messages and storage randomness, is S, = s,
where

sn = [sa(1) 5,(2)]

1 . 1 .
= Wi+ Wi2+171,1
|:(fl_an)2 fi—ay
1 1
Wy + ——— W2,2+Zz,1}- (3D
(f n)2 f -
Here 211,221 € IF}IXK are the realizations of random vectors

Z1,1,Z, respectively. It is not difficult to see that for any
Le 2], (si(D),s2(D,...,s6(D) €[2]is a[6,3] MDS code for
(W11, Wi 2, 21,1), and the storage cost at each server is 1/K. =
1/2 of the K messages (s,(1), 5,(2) € F};K while each of K
messages contains 4 symbols from F,. At the same time we
have a secret sharing of 1 5 w1+ a f w; 2 with threshold
1, thus the MDS and X =1 securlty constraint is satisfied.

Queries: The query generation contains K, = 2 iterations.
The query sent from the user to server n, n € [6], conditioned
on the realization of the user’s local randomness, is Q,[la - qn
where

M <2>]’

qn = {‘]n » 4y (32)

with the superscript indicating the iteration number, and

M= an (1) _ |- an)ey + (fi — Oln)zzl(ll) (33)
dn q,gl)(z) (fz — al‘l)eK + (fz _ n)2 /(1)

o _ a2 e+t — a2
4 =\ @ =14 2 1(2) (34)
qn (2) ex + (f2 — an) Z)

Here, ex g is the 6" column of Ik, used for choosing the 67
entry of w, and z/(K) € IFgXl,l € [2],« € [2],t = 1 is the

realization of corresponding user randomness Z;ff). It is again
not difficult to verify that the queries form secret sharing of
e?( with threshold 1. Thus, the query is 1-private.

Answer: The answer generation takes K. = 2 iterations.
Conditioned on the realization of messages, storage and user
randomness, the answer sent from server n is A, = a, =
{a,%l), a,(lz)} where in iteration « € [2], the answer a,(f is just
a symbol from IF,;. Specifically, in the first iteration,

all = suq'" = 5,(Dg{P (D) + 5,(2)g P )

1 . 0 n 1
= ——W e
fi—ay K

. /(1) . /(1) . ] . ]
+(W1,1ZL1 —l—wz,lzzﬁ1 —i—wl,zeK—i-wz,zeK)

. 6
Wz’]e[(
2 — Oy

. 1

+(h — an)(wl,2z/1(’]) + Zl,le%)
. 1

+(2 — Otn)<W2 21/2( ]) + 12, 16%)

+(i — an’z11Z ) + (b — e’z (35)
1

_ 1
Cfi- fa—oy
—i—*—i—an*—i—aﬁ*

. 0 . 0
Wi 1€eg + W2 1€

(36)

where the coefficients for rational terms are desired message
symbols and the coefficients for oz,?, oz,ll, oz,% are interfering sym-
bols whose specific forms are not important. The collection of

the answers from the 6 servers can be represented as,
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- (1) r1 1 27
a%l) fiqer hme b aé L0
Wi, 1€
a%l) fier e Lo ot% Wo eg
L 1€k
a3 — | iz fr—os Loz o3 " (37)
4D 1 L oy ol .
4 fi—as fr—ay 4 *
a(l) ] 1 i 1 1 as 052
5 h—as  fr—as 5 *
a(l) 1 1 1 ar o?
=76 - Lfi—as fr—ae 6 % |

Due to the fact that any 5 rows of the matrix in (37) form
an invertible sub-matrix according to [22], the answers form
a [6,5] MDS code such that one erasure can be corrected
and 2 desired message symbols wy(:, 1) = [W1,1e?( v'vz,le%]—r
(together with the interfering symbols) can be decoded.

In the second iteration, the answer from each server is still

a symbol in Fy, where
a2 = snq;” = su(Dg;” (1) + 52 (2)q? (2)

1
- an)z

"

. . 9
w1,1eK+ W2 1€x

1
(fZ_an)z
wioeh +
fi—ay 2 — 0y
—i—*—}—an*—i—aﬁ*.

) 6
Wz’zeK

(38)

The details of derivation can be found in [22] and are omitted
here. Note that the first two terms in (38) are already known
from the first iteration of decoding. The 6 answers together
can now be written as,
r1 1
h T fZ*lal
h e
— | fi=s3
1
h 1
il 1o
Lfi—a6

— (2)_

o]

Oé% Wl,zeK
W2 2€r

fz—lotz o2

e o3

f2*1014 o4

fz—las o5

—_ e e e e e
Q
W

fag -+ %6 % ]

Zle[z] mwl,leg}_
Zle[z] mwl,le?}
2lep) | o
2iet2) g™
2 ep) (ﬁ_as)zwl,leﬁ

W ()

Wi 1€x
0 39)
1,1€g

3 6
| 2 iet2) g W19k |

o known

After subtracting oD we(:,2) = [v'vl’ze?< v'vz,ze?(]T can be

decoded similarly. The 2 x 2 desired message symbols are
retrieved by downloading 6 x 2 answer symbols from the
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B. CSA Code for E-B-MDS-X-TPIR

Recall the constants defined in (28). Each message has L x
K. symbols from Fy, i.e., for any k € [K], the realization
of message Wi, wy = (Wr(i, J))ie[L],cek.]- Let us define the
length-K vector that contains the (I, )" symbol of all the K
messages as

Wi 2 [wi, k) wall, k) - wi(l, k)], VI €[L], k € [K].

(40)
Then for any k € [K], message wi can be represented as
‘fV1,1e’k§< V:V1,2e]12 : ‘fvl,Kce]}(
WL7101;( V.VL,261;( . WL,KCeII‘(

The sources of randomness included in this scheme, uniform
over their respective alphabet, are as follows,

= {Z}ieiL) xex)s Zix € JFKX],

7 =L Vi cetkoiery 25 € FYK. 42)

We let z = {z; x}ie[r).xe[x], 2 be the
realizations.

The CSA scheme in [22] is summarized in the following
protocol. The specific forms of storage, queries and answers
generation functions can be found in Appendix-B.

Protocol 1: E-B-MDS-X-TPIR:

CSA({W1 i YieiL) kelk.1» 2 7) (Classical)

1) Storage: SIN] < StoreGen({Wl,K}IE[L],KE[K(-]a 2)

2) Queries: qin) < QueryGen(0, 7')

3) Answers: an) = {a[j'i,]},(e[K] < AnsGen(sny, g[ny)-
Note that for all ¥ € [K_], the answers at iteration x are
specified in (43), shown at the bottom of the page.
Corrupted Answers: In each iteration ¥ € [K.], the user
receives ) (answers from unresponsive servers can be
replaced by 0).

()
= {Zl,, Vel celK.],re[T]

4)

400 = g0 4 e(K)

= GegppenlwoC, ©); ]+ el )s+a®D (44

where supp(e £u B) EUB denotes the errors introduced
by unresponsive and Byzantine servers.

Decoding: For each « € [K,], the user decodes w(:, k) =
q)CSA(a(K) U(K—l))

In the 1% iteration, 0® = 0 and the answers from N

5)

servers. The rate achieved is 1/3. servers can be regarded as a codeword from C = CSA%%{?
1 1| voiq [ Wi el » _ Ve
a(l) ficar fL—loll o] . Ollv 1 : le[L],ke[k—1] (f, v,:,“): k+1
1 . - . Lkeg
_ fi—az fr—as I o * wL,Ke?( Zle[L],ke[K—l] (fl_az)xkarl 43)
0 ' * :
a . :
N 1 1 1 V-1 : .
fi—any = fi—ay ON o Wik€
N —— — — N K
Lok Jimon JLon * Zle[L],ke[K—l] (i—an)<—F1
2 o
- CSAZ,(z“t) =[wg (.6); #] L56-D, known
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code with G (
CSAL Y

errors introduced by unresponsive and Byzantine servers as
shown in (44). The generator matrix is defined in (43), and the
vector * contains V = K.+X+T —1 symbols that are regarded
as interference that arises due to MDS, security and privacy
constraints. The specific forms of the interference terms are not
important. According to the following proposition that states
the CSA code is an [N, L + V] MDS code with minimum

distance d = N— (L+V)+1 2 E4 2B+ 1, the |6 < E
erasures and |B| < B Byzantine errors can be corrected and
the user is able to recover desired message symbols wy(:, 1)
by the decoding scheme of CSA code CIDSSA.

Proposition 2: Any L + V rows of G

p being the generator matrix, added with

CSAL (f ‘9 defined

in (43) form an invertible matrix, i.e., CSA;IV(L“ ‘9
colspan(GCS AL (af)) code is an [N, L + V] MDS code [22].

In the «™ 1terat10n k € [K.], the received N answers,
after subtracting o * =1 which solely depends on the decoding
result in the previous iterations, again form a codeword from
C= CSA;’V(“ D code, added with errors. Again, according to
Proposition 2, the user is able to decode wy(:, k) in the kth
iteration.

The communication rate of the CSA code based scheme is
KL(28)N E—-2B—K.—X—-T+1

K.N N

L

RC

(45)

VI. MODIFIED CSA (MCSA) CODE

In this section, we propose a Modified CSA (MCSA) Code
which is still a classical error correction code, that is intended
for classical E-B-MDS-X-TPIR protocol, but more compatible
with our eventual Q-E-B-MDS-X-TPIR protocol construction,
by turning the RS sub-code of CSA code into a GRS code
and leveraging the fact that the dual code of a GRS code is
still a GRS code.

A. MCSA Code for E-B-MDS-X-TPIR

Definition 9 (MCSA Code (Classical)): A Modified Cross
Subspace Alignment code C MCSA;]V:(Z""E“) over F,
is the column space of the generator matrix defined

in (46) where GCS AL@D is defined in (43), (a,f) =
'N,L,V

(1,2, ...,0N,f1,/2, ..., fr) are N+ L distinct elements and

u = (ui,up,...,uy) are N non-zero elements in IF . By

definition, N > L+ V and ¢ > N + L.

67

The specific form of the generator matrix can be found
in (48), shown at the bottom of the page. For this MCSA code,
we have the following proposition.

Proposition 3: Any L+ V rows of G, ¢ ¢@tw form an

'N,L,V

q,(ee,f,u)
invertible matrix, i.e., MCSAN LV

MDS code.
Proof: For any R C [N], |R|

code is an [N,L + V]

=L+ YV, the L+ V rows

G

MCS @7)

AK/’.(L"[,’&") R,:) = Diag(u(R))GCSAK;.(Z,Q R,

form an invertible matrix since Diag(u(R)) is invertible as

uj # 0,Vi € [N], and GCS Ad@D is invertible according to
N.L,V

Proposition 2. u

Let us specify the form of the answers from an MCSA
based classical E-B-MDS-X-TPIR scheme next. Note that for
all k € [K.], the answers at iteration « are specified in (48).

Remark 5: For any « € [K_.], the answers at iteration
k specified in (48) are equal to the answers in (43) left-
multiplied by the matrix Diag(u). Thus, any CSA based
scheme can be easily converted to an MCSA based scheme by
letting server n multiply its answer generated from CSA based
scheme by u,. The generation of storage and queries remains
unchanged. Therefore, X-security and T-privacy follow from
the CSA code based scheme. Meanwhile, the decodability
of the desired message is guaranteed by Proposition 3, just
as the decodability of CSA code based scheme is guaranteed
by Proposition 2.

Remark 6: Compared with the generator matrix of the code
defined in [27, eq. (15)] which is a square matrix, note that
the generator matrix in this paper is not square to be able
to correct errors introduced by unresponsive and Byzantine
servers, and it is an enhanced version of the generator matrix
of CSA code in [22, eq. (70)].

The MCSA code based scheme is specified in Protocol 2.
The definition of {W; « }ie[z].ce[k.]> 2, 2 are the same as those
in (40) and (42). u = (u1,...,uy) € ]Fﬁlv are N non-zero
elements® in F,. Again, the storage, queries and answers
generation functions are specified in Appendix-B.

Protocol 2: E-B-MDS-X-TPIR:

MCSA ({V'Vl,,( }IE[L],KE[KC]a Z, Z/, ll) (Classical)

1) Storage : siny < StoreGen({Wy,« }ie[L] .k e[K.]» 2)

2) Queries : qpn) < QueryGen(0, 7')

6u is a constant vector included in the input to the protocol for ease of

GMCSA" (“ f") B Dlag (u)GCSA;{;(Z"‘? ’ (46) executing it twice with different parameters u, v in the quantum protocol.
GCRSq (a fu) = GGRS?\/'.%U)
A 0 Uyw; k69
JE e — | V-1 Wi € K€k
a(l) fima = up ujog MI(X{/ 1 i ZIE[L]J(E[K—I] (f[_a‘l)xfkﬂ
1 _u up U Wy ke
= e — Uy UKO) - -+ uzaz . ] Z
. o (%5 Wi € le[L],ke[k—1 o JK—k+1
| : — f1.2 .fL.Z L;:K + [L].kelc =11 (fi—an) (48)
a(l) . : V | X
N uy uy . 0
———— — R UnN UNON - - UNU uNw1 K€k
fi—a fi—on N * ZZE [L]kelk—1] pa=y
éa(") (ﬁ )
=G ¢
MCSA%.(L‘X,‘V’“) =[wo ()5 *] £450=1D_ known
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3) Answers : EI[N] = {&EI’Q)]}KE[KJ < AnsGen(s[N], q[N]),

aly) < undy), Vn € [N1, & € [Kc].

The N answers at iteration « € [K.] are as follows’

a(K) (ﬁ) G

. . (k—1)
= (etw[wo (s, k); *]+0
MCSAL " (

(48) )
= Gpggien® + Gopggatnwo (. i) + 0 D (49)

4) Corrupted Answers: In each iteration k¥ € [K.], the
user receives corrupted answers a¢) (answers from
unresponsive servers can be replaced by 0).

at) =a® 4 eé’UB

-1
= GGRSZ,‘ff,"“’* + GCRS%FL‘”'“)WG(:’ K) + 62’88 4o W=D

“error”

(50)

where supp(e(g'L)B) = £UB denotes the errors introduced
by unresponsive and Byzantine servers.

5) Decoding: For any k € [K.], user computes the syn-
drome

W 2 gt 20
s =H a
GRS 5™

:
N,V

N,L
(e=1), (51)

T
+H _ ww0
GRS% Y

and decodes the desired message through

GRS () _ g st ) GD
€ GRS§ 5

known

GRS T ) . (1)
op (HGRSj{,’f"’,““) <GCRS§{,‘Y(Z‘L") we(:, k) + €£u8>>
= (w(:, i), 6283), (52)

where CDSRS: IE‘éN_V) — IE‘S X IFIqV is the mapping from
the syndrome (after subtracting ¢®~1 related terms)
to the L desired message symbols and the error vector
introduced by unresponsive and Byzantine server, when
the unresponsive servers are those with indices in the
set &.

Remark 7: Note that besides the difference while gener-
ating the answers in step 3, compared with Protocol 1, the
interpretation of the answers and user’s way of decoding are
all different. We will explain these in the following subsection.

B. MCSA Classical E-B-MDS-X-TPIR-Another
Interpretation

Though the MDS property of the MCSA code guarantees
the decodability of message symbols when there are unrespon-
sive and Byzantine servers, in order to make it compatible
with the Q-E-B-MDS-X-TPIR scheme based on syndrome

TThe notation wg (i, k) = wy (¢, k) indicates that this represents a vector.
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measurement of a CSS code, we interpret answers from MCSA
code based classical E-B-MDS-X-TPIR scheme as the GRS
code of the interfering symbols *, with CRS encoded desired
message symbols added as “errors.” With this interpretation,
the decoding of the classical scheme is based on the syndrome
decoding of a GRS code.

Specifically, the corrupted answer (after subtracting o
which is known) in (50) can be interpreted as GRS%&’“)
encoded interfering symbols, corrupted by the “errors” caused
by CRS encoded message symbols, erasures and Byzantine

errors. H | 4w € ]FIqVX(N_V) is the parity check matrix of
GRS

GRS% 5", and (51) follows from H' G = 0.

Next let us prove Lemma 2 which guarantees the existence
of the decoding function CI>SRS in (52). Essentially, Lemma 2
says that all the correctable “errors” (including “errors”
introduced by desired message symbols) have different syn-
dromes. The “errors” introduced by desired messages are
similar to erasures in the sense that we know their error basis

(columns of Gcrs). Thus, when L + E + 2B (2—_8) N-V =
d — 1 where L is the dimension of the message symbols and
d =N —V +1 is the minimum distance of the GRS code, all
the “errors”, including those caused by the desired message
symbols, can be decoded from the syndrome.

Lemma 2: Let L+E+2B = N—V, as stated in (28). For any
given unresponsive servers £ C [N], |€| < E and any two sets
of Byzantine servers 3, B’ C [N], |B|, |B'| < B, the syndromes
will differ for any two distinct pairs (w, egup) # (W, G/&JB')’
where w, w' € FL, egp, €5 5 € F) ™!, supp(esup) = EUB
and supp(egup) = EU B, ie.,

-
HGRSf\;fﬁ’“) <GCRS7V',(Z"“)W + €5UB>

T / l
#* HGRSZ}}C'U) (GCRSZ}%'RU)W + e(fUB’) (53)
This implies the existence of the decoding function
RS Tt — TP < FLin (52).
Proof: See Appendix-C. |

C. Example 2: E=0,B=1,K. =1, X=1,T =1 With
N = 6 Servers: Protocol 2

Let L = N—- K. +2B+X+ T —-1) = 2 and
ai, ..., aN=6,f1,fL=2 be 8 distinct elements over [F,; (g > 8).
Also, let u, up, ..., us be 6 non-zero elements form IF,. Let
wik] be the realizations of all the K messages Wkj. Each
message has L x K, = 2 symbols from F, i.e., for any k € [K],
message wi = {wk (i, j)}ie[2],j=1 contains 2 symbols from F,.
Let wi 1, W21 € IF;XK denote the row vectors that contain the
2 symbols of the K messages, respectively, i.e.,

ook
wi 1€
we=|."K
W2, 1€x
where e’,‘( is the & column vector of Ig.
We skip the storage and queries. The (corrupted) answers

from the servers have the following representation, where
server 2 is Byzantine so that an error is added to its answer.

(54)
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Note that V=K., + X+ T — 1 = 2, and since K. = 1, there
is only 4l with ¢©@ = 0.
-
~(1)
o

ﬁ(l):[&(ll) A ad ad ad

. “ _
f1;0t1 f2;011 ur uaq 0
2 2 .
firw hap W2 W22 W1,1e§< €
u3 u3 . 0
_ | fimes s U3 U3X3 | Wo i€ 0
= uy Uy +
fioai Joag a4l * 0
“us us
h ;ﬁas f2 ;6055 Us Usds * 8
Lfi—as Fr—ag MO H6X6 |
_ . (1
= GGRSZ‘(;'“)* + GCRSZ:?’{'“)M + 6{2} (55)

“error”

The error correcting capability of the [6, 2, 5] GRS code will
be utilized to find the two desired message symbols and the

server 2 introduced error €, i.e., the syndrome H' Sq,(a,u)ﬁ(l)
6,2

uniquely determines the wg = wy(:, 1) and 6(1)

VII. MCSA-CSS PrROTOCOL FOR Q-E-B-MDS-X-TPIR

In this section, we propose the MCSA-CSS protocol for
the Q-E-B-MDS-X-TPIR problem, based on syndrome mea-
surement of a CSS code, that is constructed from GRS
sub-codes of two MCSA codes. Exploiting the fact that the
dual code of a GRS code is still a GRS code, a CSS
code with N physical qudits can be constructed from two
GRS codes. The N physical qudits are then delivered to
N servers.® Two MCSA codes based classical PIR schemes
are executed, and servers apply Pauli operators to the CSS
code according to the answers from the classical scheme.
The components of Pauli operators corresponding to the GRS
sub-codes of interfering symbols are not detectable, because
they commute with the stabilizers. This is due to the fact
that the CSS code is constructed from the same GRS codes.
However, the components associated with the Cauchy RS code
encoded message symbols (regarded as “errors”), along with
errors introduced by unresponsive and Byzantine servers, are
identified through syndrome measurements.

A. MCSA-CSS Protocol

The MCSA-CSS scheme is presented as Protocol 3. During
one execution of the quantum scheme, two independent
instances of classical schemes will be executed. Thus, each
message has 2LK, symbols from I, and the randomness also
has twice the size as that in classical cases.

Let wik) be the realizations of Wik, for any k € [K]. We

VA Lx2K,
have wy = [wi wZ] € Fyq where

Wi{ = (Wi{(l’ K))le[L],KE[KC]’

7 7 LxK,
wi = (wi @, K))IG[L],KG[K(-] eF” (56)

stand for the X,Z parts of message k respectively, so that
each part has the same size to a message in the classical case.

8Let us clarify that the CSS code is not used to deliver logical qudits to
servers. The N physical qudits are initially in a constant pure state and are
shared as quantum resources for improving communication efficiency.

Similar to (40), define the length-K vector that contains the
(1, k)™ symbol of all the K messages’  part (x € {X, Z}) as

sk
Wl,K

lI>

Wi, k) wilik) - wk(l, 6],
Vie L],k € [K.]. (57)
Similarly, Z = (ZX,7%},7' = (X, Z'%}. Bach Z*,Z"* *
{X, Z} is specified similarly according to (42) as follows
7" ={Z] JieL)xerx1s 2], € Ffﬂ,

= {2 Ve L2 e FIXK L (58)
s q

l.celKe].re[T]

Again, let z, 7 be their realizations. Let us pick some constants

u=(u,...,uy) €FY st u, #0,Vn € [N]. Meanwhile, set
V= (Vla"'avN) as
=u; ' [@i— )" Vie [NI. (59)
J#i

The protocol is specified as follows. Note that u,v are
constants specified by the protocol.
Protocol 3: Q-E-B-MDS-X-TPIR:
MCSA-CSS({W),., W/’ YielL].celK,]» 2> 7> W, V) (Quantum)
1) Share Entanglement: For all k € [K.], N g-dimensional

qudits A(;,), with initial state
o° w = ) (¥,
A

) € CSS(GRS" %) GRS “)) (60)

are delivered to N servers so that server N gets A,({().

We let
= ® ,0 4 -

0
o (x)
{A celKe] Aw)

M etk

2) Storage, Queries, Answers: Two independent instances
(indexed by X and Z) of Protocol 2 will be executed
to generate storage, queries and corresponding classical
answers. Specifically, execute Protocol 2 with following
parameters, so that the storage, queries, and classical
answers can be determined by corresponding steps in
Protocol 2, which are, again, generated according to the
3 functions specified in Appendix-B.

E-B-MDS-X-TPIR :
MCSA({WI K }1e[L],/ce[Kc]’

E-B-MDS-X-TPIR :
MCSA({W, .

X, 7%, U),

7 17
ety &2 ,v). 61)

For iteration « € [K.], the following classical
answers are generated according to (49) where at)* =
[a (Ol a}(\',()"]T € ]FIqVX] such that al(\',()* is known to
server n for x € {X, Z}.

(X _ X ()X
a’“’ = GGRS}'V'Y(“’,““)* +GCRS;]V.<(Zt,f‘u)W6 (k)

+ O,(K—I)X’
Z
a(K)Z = GGRSZI,’(‘«;.V) *Z + GCRS;Q(K,(ZV) Wél() (:, K)
+ o kb7, (62)
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Server n,n € [N] applies xar" za” o qudit AL s0

that the N answer qudits are in the following state.’
K K K K T
_ (X“( X al )X),o (Xa( Xl )X> (63

Corrupted Answers: For iteration k € [K.], the user
replaces the unreceived qudits .Ag() with |€] qudits
that are in completely mixed state and labels them
.Ag‘). The received qudits are in the following state due
to the quantum channels applied by unresponsive and
Byzantine servers.

1
P40 ()
A Am

3)

)OA(K) =id ®M5UB(/0A<K)) (64)

N] N]
4) Decoding: For each iteration « € [K,], the user performs
syndrome measurement of CSS(GRS§; ¢, GRS{ ).

The state becomes

03
'Afili/)] [st)X 5()Z

()X S aK)Z 0

XQ(K)X Za(/{)Z
A(K) (

where for * € {X, Z}, a()* = a®* 4 féﬁ)% (66)

(k)%
for some € SUB

= X3 za (65)

€ FN %1 The user obtains the syndrome

X _ gy A(OX
s = HGRS" (e -
sZ — Hgqu « atz (67)

and decodes the desired message symbols through
—HT

GRS [ (k)X (k=X
¢ (S GRS " o )
X
= (Wg(:, ), egﬂlg),
GRS (W)Z 1T k—1)Z
o} P (s HGRS;,\; V(‘o;,v)a )

= (wg(:, K), eg&g)

Remark 8: We require V = K. + X+ T -1 > N/2,
i.e., interfering symbols occupy at least half of the answer
dimensions, so that the CSS code can be constructed from the
GRS codes. Consider the second regime of Theorem 1, i.e.,
(N—E—-2B) > N/2 > K.+ X+ T — 1, where N is odd.
Though it is not possible to find an integer T > T such that
K. +X+T-1 =N/2,onecan find 71 > T,T, > T,T) =
T> 4 1 such that the total interfering dimensions (this idea is
also used in the preliminary ArXiv version of this paper [36,
Th. 1] and in the subsequent 21d version of [34])

(68)

Ke+X+T —1+K.+X+To—1=N. (69)

This means that while constructing the two instances of the
classical scheme, we have T privacy for the X instance, and
T, privacy for the Z instance. By such choice of Tq, T, during

9For ease of analysis, we assume unresponsive or Byzantine servers firstly
behave as reliable servers that apply correct Pauli operators to their qudits
and then apply a CPTP map . There is no loss of generality since any
actual CPTP map M’ applied by the unreliable servers can be viewed as
a composition of 1) applying correct Pauli operators, 2) reverting the Pauli
operators, 3) applying ’ where the composition of the last 2 steps is M.
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each of K. iterations, in the first instance, L = N — E —2B —
K.—X—T;+1 symbols of desired message are delivered, and
in the second instance, Iy =N —E—-2B— K, — X -1, + 1

symbols are delivered. Thus, in total L1 + L, = ©) N—-2FE—4B
symbols are delivered. The rate RZ = (N —2E —4B)/N is thus
achieved. The key is that the CSS code will be constructed
from an [N, [N/2]] GRS code and an [N, [N/2]] GRS code.

Before analyzing the protocol, let us provide an intuitive
explanation. The CSS code is constructed based on the GRS
sub-codes of two instances of MCSA codes designed for
the PIR problem. Since the GRS sub-code corresponds to
interfering symbols, the Pauli operators associated with these
interfering symbols commute with the stabilizers of the CSS
code and, therefore, cannot be detected through syndrome
measurement. In contrast, the Pauli operators associated with
message symbols, along with any erasures or Byzantine errors,
shift the N qudits into an error space that can be uniquely iden-
tified through syndrome measurement. In this interpretation,
the message symbols act as sources of “errors.” However, since
these “errors” introduced by message symbols have a known
basis, they are no more detrimental than erasures. Combined
with the fact that a Pauli error corresponds to both X and
Z errors, each of which can carry classical messages, the
CSS code used in Protocol 3 with minimum distance d >
min(dy, dz) = N — V + 1 can transmit 2L classical symbols,
correct E erasures and B Byzantine errors as long as L+ E +

BB NV = min(dy.dy) —1<d—1.

B. Analysis of MCSA-CSS Protocol

Let us first prove its correctness.

1) Existence of the CSS Code: According to [21, Th.
(5.1.6)], with the choice of v in (59), we have GRS,"\,”(“’,"“)l =
GRSL%Y, < GRSLG™Y when V. = N/2. Thus the
CSS(GRSlq\,(\"/‘ Y GRSY e %Y code exists.

2) Corrupted Answers. Without loss of generality we
assume all the unresponsive and Byzantine servers first apply
the correct Pauli Gates as other (reliable) servers, and then
apply an arbitrary quantum channel afterwards, as an arbitrary
quantum channel can be regarded as a composition of Pauli
Gates with another quantum channel.

Recall that we replaced the unreceived qudits with qudits
in completely mixed state. This can be viewed as if the
unresponsive servers’ answer qudits were received but went
through a quantum depolarizing channel (Qudit Twirl, [41,
Exercise 4.7.6]). Thus the state derived in (64) is correct.

3) State After Syndrome Measurement: The two underlying
GRS codes of the CSS code have distance dy = dz = N —

V+1>N—-(L+V)+1 (_) E+ 2B+ 1, thus min(dx, dz) >
E+2B+ 1. Thus |EUB| < E+ B < min(dyx, dz) — 1, and
according to Lemma 1, the error reduces to Pauli Operators
and (65) is correct.

4) Syndrome and Decoding: Again, according to
Lemma 1, (67) is correct and the decoding reduces to classical
case by identifying (62), (66), (67) with (49), (50), (51). Thus

the decodability is guaranteed by the decoder in Protocol 2.
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5) MDS, Security and Privacy: The satisfaction of these
constraints is ensured by Protocol 2, which, in turn, is
guaranteed by Protocol 1, as demonstrated in [22]. Note that
the pre-shared entangled systems do not break the privacy
or security since they are completely independent of the
messages, randomness, and the index of the desired message.

Finally, consider the rate of the Q-E-B-MDS-X-TPIR scheme
in Protocol 3. In each iteration « € [K,.], N qudits are down-
loaded, and 2L desired message symbols w)X(:, k), w2 (:, k)
are retrieved. Therefore, the overall rate is

o 2KL 2(N-E-2B—K.—X-T+1)

R~ = =
K.N N

(70)

VIII. CONCLUSION

The Q-E-B-MDS-X-TPIR problem is studied where the
main challenge is to find a coding structure that is compatible
with X-secure, MDS storage, T-privacy and the construction
of quantum CSS code (MCSA codes), while satisfying erasure
and Byzantine error-resilience. The new scheme, MCSA-CSS,
leverages the error-correcting capabilities of CSS code to effi-
ciently encode desired computation results (desired message
symbols in the PIR case) into the error space, while correcting
quantum erasure and errors. The optimality of the proposed
scheme remains a challenging open question. Application of
MCSA-CSS to quantum coded distributed computation is a
promising direction for future work.

APPENDIX

A. Proof of Lemma 1

While the distance of CSS code can be greater than
min(dyx, dz), let us define d 4 min(dy, dz) in this proof for
ease of notation. Let us prove Lemma 1 for S = [d — 1]. The
proof for other realizations of S follows similarly.

The initial state is p° = XXZ%|y) (Y| (XXZ*)7. After
applying the quantum channel, using the Kraus representation
of the channel, we have

o' =3 (K@ X1Z°)xZ* |y)

1

(| (X2 (K,- ® x"z")T (1)

where K; € C4“" x4V and 0 has length (n —d + 1).
Since the {X"‘Z‘6 }a BeF@Dx! form a basis for the linear

’ q
space of all ¢g¥~D x ¢@=1 complex matrices [37], by

representing K; as linear combinations of Pauli operators, p!
can be further written as

pl= Y S (P eX )Xy
B0, B eFdY
+ ’ ’ I
w1 (X2 (X2 @ x°2°)

’ ’ ! ! T

(i) Z Eﬁ,:tt Xx+ﬂzz+‘t h”) (1//| (Xx-‘r/L ZZ-‘r‘[ )

w1 v eF

(72)

where c, ¢ are some coefficients that depend only on the Kraus
Operators, and u, T, #’, T are chosen from

FA [ve]ngl |supp(v)=[d—1]]. (73)

After the PVM with orthogonal projections {P?’b},-dgp cor-
responding to stabilizers X®ZP, in (72) we have

’ ’ T
XEHZET |y () (X2 ) —

S RERZAT ) (g (e Z ) B ()

iclF,

Note that X¥t£ZZ+T |y} and XX Z2+7" ) are eigenvectors
of all stabilizers, and we have (75), shown at the bot-
tom of the page, i.e., after measuring with stabilizer Xazb,
XXHRZZHT |y (| (XXTH Z24T) T does not disappear if and
only if X¥tAZZHT |y} and X*t#'ZZHT |y lie in the same
eigen space of the stabilizer.

Thus, after the syndrome measurement, XXTAZZTT |y (]
(X¥H' 7247t exists if and only if for every stabilizer,
XXTRZ2HT |4y and XXTH 7247 ) lie in the same eigen space,
or equivalently, they correspond to the same syndrome (similar
to Proposition 1)

ng X+ p) = HEZ (x+n)

S Hy (n—p)=0—>p=yp, (76)
ng(z +1)= ng (z+1')
N ng(r—z/) =0>t1t="1, (77)

where last the step of (76) follows from the fact that wt(u —
1) <min(dy,dz)—1<dz—1,ie, u—p ¢ Cz = ker(Hc,)
if @ — p' # 0 (the last step of (77) follows similarly). After
syndrome measurement, the n qudits are in the state,

p2 — Z C;L’TXX-"-[LZZ-"-‘[ |l/f) (1//'| (XX-‘,—[LZZ-‘,—‘[)’;‘.
n,teF

(78)

Suppose the outcome of syndrome measurement is sy =
T X _HT z s X V4
HCZ(X+e[d_1]), Sz = HCX(z+e[d_l]) with €1}, €{5_1; € F.

4 ’ T
P?,bXX+ltzz+r 1) (] (XX—HL 72+t ) P?’bT _
P?,bxxﬂLzerr ) 01><q" =0

XSHZEET ) € Im(PP), XH 220 [y) ¢ Im(PRP)
’ ! T ' '
Ot (] (0FH ZA47 ) DT = 0 X125 [y) ¢ Im(@D), XHH 24 ) € I

(75)

’ ’ I ! ’
XX+[LZZ+T |w> (w| (XX—HL ZZ-I—T ) XX+ILZZ+‘L’ |1/j) , XX-HL ZZ+T |w) e Im(P?,b)
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Then Yu,t € F, the term XXTHZZHT |yr) (yr| (XX TR Z2HT)T
does not disappear if and only fif,

T T X

He,(x+p) =He, (X +€fg_y) > m =€y, (19
T T z

He, 2+ o) =He (2 +€fp) — =€y (80

where the correctness of the last steps follows by the same
reasoning as that for (76) and (77). Thus, the state becomes

Plsx,sz =

Xx+e§171]zz+e[za,71] 1) (] (XX+€[):1—1]ZZ+€[Zd71]>T. 81

Storage, Queries, Answers Generation in [22]

StoreGen({wy « }ie[L].ke[K.]> 2 = {Z1.x}ie[L).xe[x])
For all n € [N], 1 € [L]
sp = [5,(1) $,(2) --- sp(L)]
1
)= D Wi
le[L].ke[K.] (fi = on)
+ Y (fi—oa)la, eFPK (82)
xe[X]
Return S[N]
QueryGen(f, 7 = {Z;f;()}IE[L],ZG[T],KE[KC])
For all n € [N],[ € [L]
— {q(l) q(2) q(K )}
oa?, .. q
qff) =[a 1 0@ P W]
=Y (- om)KC—Ke% (83)
le[L],kelK,]
n Z(fl _ a'l)KC.+t—1Z;f;<) c Fg(xl
telT]
Return gy
AnsGen(siyy, {QEXI)]}KG[KC])
For all n € [N], k € [K;]
an—{a(l) El),...,a,(f(")}
a9 =5,q%) €T, (84)
Return aN] = {agi,)] }KG[KL-]

C. Proof of Lemma 2

We only need to prove

H' (G aetw (W—w)+ €cUB — € )
GRS]({,’V({?’") CRS% T ( ) ( EUB’)
A

2w

VW', b o) # (0,0).

Aé//
—réuBuB

#0, (85)
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Note that since |[EUB U B'| < E + 2B, we can find a set
S C [N] where |S|=E+2B and EUBUB C S so that

€tupop = InG. S)e’ € e FEHDx1 (86)

Thus, we only need to prove for all length-(L+ E + 2B (2 )
N — V) column vectors [w’; €”]# 0

1 (Gckszfz‘-‘” WG, S)GN)

GRS 5™

=H'
q,(a,u)
GRS%Y

|:GCRSq(ufu) InG, S)]|: j|7é0 (87)

As a consequence, we only need to prove the following
(N —V) x (N — V) matrix is invertible.

HT

wu (83)
GRS 5"

[GCRS}’\,‘,T fo IvG, S)]

For invertibility of (88), we first prove the following lemma.
Lemma 3: The following N x N matrix is invertible.

|:GGRS§,’V($’") GCRS%Z‘“’“) IngG, S):| (89)
Proof: On one hand,
Ve #0¢e CO]SPan([GGRSj{,’f{’,"“) GCRSX},(ZI’“)])
“8) MCSAL ),
wt(e) >N —(L+V)+1, (90)

since MCSA,’@;’(L‘!”{,’“) is an [N, L + V] MDS code according to
Proposition 3. On the other hand,

Ve # 0 € colspan(Iy(:, S)),

wt(c) < |S| = rank(Ix(:, S))
(28)

=FE+2B = N—-(L+V). on
Thus, colspan([GGRS;,\;.(‘c;,u) GCRS}%.(Z,f.w])
N colspan(Iy(:, S)) = colspan(0). (92)
Combined with the following equation
rank < [GGRSK;.(g,u) GCRS;;FZ’L“) ])
= rank(GMCSA?sz,é,u)> =L =+ V,
(28)
rankIy(;,S) =E+2B = N—(L+V) (93)
the proof is complete. |

Now let us prove the invertibility of (88) through a con-
tradiction. Suppose to the contrary, the matrlx in (88) is not
invertible, then there exists v € IE‘(N , v 7# 0 such that

T .
HGRS?V'(‘O;'U) |:GCRS7V,.(21,f.u) IN(, S):|V = 0 (94)
Lyeph*!
On the one hand, by definition v/ € colspan([GCqu (nxfu)
In(:, S)]). Additionally, v # 0 since [G, IN( S)

CRS§GHY
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has rank N —V according to Lemma 3 and because v # 0. On

the other hand, v/ € ker(H'

@) = colspan(G

GRS GRS%%””‘

A contradiction occurs since éOlSpan([GCRSq,(a,ﬂu) IyG, S
N,L

N colspan(G

NCAY = 1 0 4 di t
GRSg(V )) colspan(0) Z V' according to

Lemma 3. Therefore, (88) is invertible.

[1]

[2]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

Y. Lu and S. A. Jafar, “A coding scheme for straggler resilient quantum
X-secure T-private information retrieval,” in Proc. IEEE Int. Conf.
Commun. (ICC), 2024, pp. 2803-2808.

A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612-613, 1979.

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum
secret,” Phys. Rev. Lett., vol. 83, no. 3, p. 648, 1999.

K. Senthoor and P. K. Sarvepalli, “Theory of communication efficient
quantum secret sharing,” IEEE Trans. Inf. Theory, vol. 68, no. 5,
pp. 3164-3186, May 2022.

M. Hayashi and S. Song, “Unified approach to secret sharing and sym-
metric private information retrieval with colluding servers in quantum
systems,” IEEE Trans. Inf. Theory, vol. 69, no. 10, pp. 6537-6563,
Oct. 2023.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, ‘“Private
information retrieval,” J. ACM, vol. 45, no. 6, pp. 965-981, 1998.

H. Sun and S. A. Jafar, “The capacity of robust private information
retrieval with colluding databases,” IEEE Trans. Inf. Theory, vol. 64,
no. 4, pp. 2361-2370, Apr. 2018.

R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk,
“Private information retrieval from coded databases with colluding
servers,” SIAM J. Appl. Algebra Geometry, vol. 1, no. 1, pp. 647-664,
2017.

R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and
C. Hollanti, “Private information retrieval from coded storage systems
with colluding, Byzantine, and unresponsive servers,” IEEE Trans. Inf.
Theory, vol. 65, no. 6, pp. 3898-3906, Jun. 2019.

S. Song and M. Hayashi, “Capacity of quantum private information
retrieval with colluding servers,” IEEE Trans. Inf. Theory, vol. 67, no. 8,
pp. 5491-5508, Aug. 2021.

M. Allaix, S. Song, L. Holzbaur, T. Pllaha, M. Hayashi, and C. Hollanti,
“On the capacity of quantum private information retrieval from MDS-
coded and colluding servers,” IEEE J. Sel. Areas Commun., vol. 40,
no. 3, pp. 885-898, Mar. 2022.

A. Aytekin, M. Nomeir, S. Vithana, and S. Ulukus, “Quantum
symmetric private information retrieval with secure storage and eaves-
droppers,” in Proc. IEEE Globecom Workshops (GC Wkshps), 2023,
pp. 1057-1062.

Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
S. A. Avestimehr, “Lagrange coded computing: Optimal design for
resiliency, security, and privacy,” in Proc. 22nd Int. Conf. Artif. Intell.
Statist., 2019, pp. 1215-1225.

S. Song and M. Hayashi, “Secure quantum network code without
classical communication,” IEEE Trans. Inf. Theory, vol. 66, no. 2,
pp. 1178-1192, Feb. 2020.

Y. Yao and S. A. Jafar, “The capacity of classical summation over
a quantum MAC with arbitrarily distributed inputs and entangle-
ments,” [EEE Trans. Inf. Theory, vol. 70, no. 9, pp. 6350-6370,
Sep. 2024.

R. Cramer, I. B. Damgéird, and J. B. Nielsen, Secure Multiparty
Computation and Secret Sharing. Cambridge, U.K.: Cambridge Univ.
Press, 2015.

A. Kawachi and H. Nishimura, “Communication complexity of private
simultaneous quantum messages protocols,” in Proc. Conf. Inf. Theor.
Cryptogr. (ITC), vol. 199, 2021, pp. 1-19.

(18]

[19]

[20]
(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]
(33]

[34]
[35]

[36]

[37]

[38]
[39]

[40]

[41]

R. Christensen and P. Popovski, “Private product computation using
quantum entanglement,” IEEE Trans. Quantum Eng., vol. 4, pp. 1-9,
Sep. 2023, doi: 10.1109/TQE.2023.3320052.

Y. Lu, Y. Yao, and S. A. Jafar, “On the capacity of secure K-user product
computation over a quantum MAC,” IEEE Commun. Lett., vol. 27,
no. 10, pp. 2598-2602, Oct. 2023.

A. Aytekin, M. Nomeir, and S. Ulukus, “Quantum private membership
aggregation,” 2024, arXiv:2401.16390.

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes, vol. 1. Amsterdam, The Netherlands: Elsevier, 1977.

Z. Jia and S. A. Jafar, “X-secure T-private information retrieval
from MDS coded storage with Byzantine and unresponsive
servers,” IEEE Trans. Inf. Theory, vol. 66, no. 12, pp. 7427-7438,
Dec. 2020.

A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes
exist,” Phys. Rev. A, vol. 54, no. 2, p. 1098, 1996.

A. Steane, “Multiple-particle interference and quantum error correc-
tion,” Proc. Roy. Soc. London. Ser. A, Math., Phys. Eng. Sci., vol. 452,
no. 1954, pp. 2551-2577, 1996.

Z. Jia, H. Sun, and S. A. Jafar, “Cross subspace alignment
and the asymptotic capacity of X-secure T-private information
retrieval,” IEEE Trans. Inf. Theory, vol. 65, no. 9, pp. 5783-5798,
Sep. 2019.

S. Ulukus, S. Avestimehr, M. Gastpar, S. A. Jafar, R. Tandon, and
C. Tian, “Private retrieval, computing, and learning: Recent progress
and future challenges,” IEEE J. Sel. Areas Commun., vol. 40, no. 3,
pp. 729-748, Mar. 2022.

M. Allaix, Y. Lu, Y. Yao, T. Pllaha, C. Hollanti, and S. A. Jafar, “N-sum
box: An abstraction for linear computation over many-to-one quantum
networks,” IEEE Trans. Inf. Theory, vol. 71, no. 2, pp. 1121-1139,
Feb. 2025.

Y. Lu and S. A. Jafar, “Quantum cross subspace alignment codes via
the N-sum box abstraction,” in Proc. 57th Asilomar Conf. Signals, Syst.,
Comput., 2023, pp. 670-674.

N. Raviv and D. A. Karpuk, “Private polynomial computation from
lagrange encoding,” [EEE Trans. Inf. Forensics Security, vol. 15,
pp- 553-563, 2019.

W.-T. Chang and R. Tandon, “On the upload versus download cost for
secure and private matrix multiplication,” in Proc. IEEE Inf. Theory
Workshop (ITW), 2019, pp. 1-5.

Z. Jia and S. A. Jafar, “Cross subspace alignment codes for coded
distributed batch computation,” IEEE Trans. Inf. Theory, vol. 67, no. 5,
pp. 2821-2846, May 2021.

T. A. Brun, “Quantum error correction,” 2019, arXiv:1910.03672.

H. Yang, W. Shin, and J. Lee, “Private information retrieval for secure
distributed storage systems,” IEEE Trans. Inf. Forensics Security, vol. 13,
pp. 2953-2964, 2018.

M. Nomeir, A. Aytekin, and S. Ulukus, “Quantum X-secure B-Byzantine
T-colluding private information retrieval,” 2024, arXiv:2401.17252.

Y. Lu and S. A. Jafar, “A coding scheme for straggler resilient quantum
X-secure T-private information retrieval,” 2023, arXiv:2311.07829.

Y. Lu and S. A. Jafar, “A coding scheme for unresponsive and Byzantine
server resilient quantum X-secure 7-private information retrieval,” 2024,
arXiv:2311.07829.

A. Ketkar, A. Klappenecker, S. Kumar, and P. Sarvepalli, “Nonbinary
stabilizer codes over finite fields,” IEEE Trans. Inf. Theory, vol. 52,
no. 11, pp. 4892-4914, Nov. 2006.

L. Golowich and V. Guruswami, “Quantum locally recoverable codes,”
2023, arXiv:2311.08653.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Inform. Cambridge, U.K.: Cambridge Univ. Press, 2010.

H. Yamamoto, “Secret sharing system using (k, L, n) threshold
scheme,” Electron. Commun. Jpn. (Part I, Commun.), vol. 69, no. 9,
pp. 46-54, 1986.

M. M. Wilde, Quantum Information Theory, 2nd ed. Cambridge, U.K.:
Cambridge Univ. Press, 2017.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 02,2025 at 20:42:30 UTC from IEEE Xplore. Restrictions apply.



