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Abstract—A communication-efficient protocol is introduced
over a many-to-one quantum network for Q-E-B-MDS-X-TPIR,
i.e., quantum private information retrieval with MDS-X-secure
storage and T-private queries. The protocol is resilient to
any set of up to E unresponsive servers (erased servers or
stragglers) and any set of up to B Byzantine servers. The
underlying coding scheme incorporates an enhanced version of
a Cross Subspace Alignment (CSA) code, namely a Modified
CSA (MCSA) code, into the framework of CSS codes. The error-
correcting capabilities of CSS codes are leveraged to encode
the dimensions that carry desired computation results from the
MCSA code into the error space of the CSS code, while the
undesired interference terms are aligned into the stabilized code
space. The challenge is to do this efficiently while also correcting
quantum erasures and Byzantine errors. The protocol achieves
superdense coding gain over comparable classical baselines for
Q-E-B-MDS-X-TPIR, recovers as special cases the state of
art results for various other quantum PIR settings previously
studied in the literature, and paves the way for applications
in quantum coded distributed computation, where CSA code
structures are important for communication efficiency, while
security and resilience to stragglers and Byzantine servers are
critical.

Index Terms—Coded storage, PIR, QMAC, security.

I. INTRODUCTION

R
ECENT interest in entanglement assisted computation

over quantum many to one (also referred to as quan-

tum multiple access (QMAC)) networks adds fundamentally

novel dimensions to the rapidly expanding theory of dis-

tributed communication and computation, beyond its classical

cornerstones such as secret-sharing [2], [3], [4], [5], pri-

vate information retrieval (PIR) [6], [7], [8], [9], [10],

[11], [12], coded distributed computation and computation

networks [13], [14], [15], and secure multiparty computa-

tion [16], [17], [18], [19], [20]. Ideas from these diverse

perspectives are encapsulated in a variety of specialized

coding structures — Reed-Solomon (RS) codes [21], Cross
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Subspace Alignment (CSA) codes [22], Lagrange Coded

Computing [13], and CSS codes [23], [24], to name a few.

Assimilating the specialized coding structures is essential

for a unified theory that can facilitate a broader array of

applications. This work represents such an endeavor, with the

goal of developing a communication-efficient coding scheme

(i.e., an efficient protocol) for Q-E-B-MDS-X-TPIR [22],

i.e., quantum X-secure1 T-private information retrieval from

MDS coded storage that is resilient to up to E unresponsive

servers (equivalently referred to as erased servers) and up to

B Byzantine servers.2

In the Q-E-B-MDS-X-TPIR [22] setting as shown in Fig. 1

there are N servers equipped beforehand (independent of the

classical data) with optimally entangled quantum systems.

Upon the commencement of the protocol, there are K classical

messages W1, . . . , WK (files, datasets) that are distributed

among the servers in an MDS coded and X-secure fashion.

MDS coding implies that the messages together with some

classical randomness Z (needed for security) are coded such

that the storage size at each server is only a fraction 1/Kc

of the original size of the K messages. X-security means that

even if any set of up to X servers collude they can learn

nothing about the messages. A user (with its own private

randomness Z′) wishes to efficiently retrieve the θ th message

(θ ∈ [K]) by querying the N servers in a T-private fashion.

T-privacy means that even if any set of up to T servers collude

they can learn nothing about which message is desired by the

user. The efficiency of the protocol is measured by the rate,

defined as the number of desired message bits retrieved per

qubit (a d-dimensional quantum system (sometimes called a

qudit) corresponds to log2(d) qubits) of total download from

the servers. Each server generates its response based on the

user’s queries and the storage available to that server, and

1X-security is a secret-sharing constraint. The messages are the secret and
the storage at each server is its share of the secret, such that any set of up to
X shares reveal nothing about the secret. There is another form of security,
server secrecy [5], [10], [11], which requires that the user must not learn
anything about any other message besides its desired message (also refered
to as DB-privacy or symmetric privacy). Note that X-security is not related
to server secrecy, and that we consider only the former (X-security) in this
work.

2When assembled with ‘PIR’, the abbreviation ‘Q’ stands for ‘Quantum’
(without ‘Q’, the setting is classical by default), ‘E’ stands for upto E erased
servers ( unresponsive servers), ‘B’ stands for upto B Byzantine servers,
‘MDS’ stands for MDS coded storage, ‘X’ stands for X-secure storage (so
that up to X colluding servers can learn nothing about the realizations of the
stored messages) and ‘T’ stands for T-privacy constraint (so that up to T

colluding servers can learn nothing about which message is desired).
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Fig. 1. Q-E-B-MDS-X-TPIR. Quantum systems A1, . . . ,AN are prepared
in an optimally entangled state and distributed to servers in advance. Messages
W1, . . . , WK , together with randomness Z are encoded into S1, . . . , SN in an
X-secure fashion and distributed to N servers as their storage. To privately
retrieve a desired message Wθ , θ ∈ [K], a user sends to the servers random
(based on its local randomness Z′) queries Q1, . . . , QN that are T-private.
Each server locally encodes its response into its quantum system and sends it
back to the user. In the figure, unresponsive (blue) server’s quantum system
is not received, and the Byzantine (red) server applies an arbitrary quantum
channel to its quantum system.

encodes it into its own quantum system through local quantum

operations. The quantum systems are then sent as answers

from the servers to the user. The protocol must tolerate up to

E unresponsive servers, i.e., any set of up to E servers may

be unresponsive, equivalently their answers are erased over

the QMAC. The protocol must also tolerate any set of up to

B Byzantine servers whose answers are subject to arbitrary

errors. Note that while the user’s queries are sent without

knowledge of which servers may turn out to be unresponsive,

once the user receives the quantum systems in response, it

knows which servers’ answers were erased (known-position

error), i.e., which servers did not respond. The identities

of the Byzantine servers are not directly revealed to the

user from the answers. This corresponds to unknown-position

errors in the context of error correcting codes. Resilience to

unresponsive and Byzantine servers means that we require that

regardless of which E servers are erased, and which B servers

are Byzantine, the protocol must allow the user to recover its

desired message by measuring the received quantum systems.

Our solution centers around CSS codes and the classical

CSA coding scheme originally introduced for X-TPIR, i.e.,

PIR with X-secure storage and T-private queries [25], and

subsequently applied to a number of classical variants of

PIR, coded computing and private read-write designs for

federated submodel learning [26]. The classical CSA scheme

was generalized to a quantum CSA scheme for Q-MDS-X-

TPIR over the quantum many-to-one network in [27], [28],

and its resilience to eavesdroppers was explored in [12].

A. Challenges and Contributions

While we focus on Q-E-B-MDS-X-TPIR to motivate the

protocol developed in this work, we expect the protocol to be

much more broadly relevant. This is because the underlying

challenge is how to efficiently transmit CSA coded classical

symbols when there are quantum resources shared among

servers, some of which can be unresponsive (stragglers) and/or

Byzantine. CSA code structures are not limited to PIR. For

example, CSA codes feature prominently in the broad area

of coded distributed computation (CDC) [13], [29], [30],

[31]. Thus, the protocol from this work could potentially be

a useful stepping stone towards future studies of quantum

CDC (QCDC).3 Byzantine servers are more challenging in

the quantum setting, because the same quantum entanglement

that allows gains in communication efficiency under ideal

conditions, also makes entangled protocols more susceptible

to stragglers and Byzantine adversaries, as their actions impact

not only their own quantum systems, but also the overall state

of all entangled quantum systems. The challenges are listed

as follows.

1) Compared with [27], [28] that studied Q-MDS-X-TPIR,

the main challenge is to achieve resilience to unrespon-

sive and Byzantine servers. In classical settings, this

is done by having the answers form an error correct-

ing code (ECC) of the desired message symbols (and

interfering symbols introduced due to various constraints

such as X-security, T-privacy and MDS storage) so that

erasures or errors can be corrected first, after which

the desired message symbols can be recovered. This

idea is not directly applicable to quantum PIR schemes.

Even though QPIR schemes are typically based on the

stabilizer formalism [10], [11], [27], the error-correcting

capabilities of stabilizer codes are not utilized to correct

errors. Specifically, instead of the code space of a

stabilizer code, in QPIR the information is encoded

into the error space [32], and is extracted by the user

by measuring the qudits (quantum digits, a specific

representation of quantum systems that will be explained

in Section II-A) with stabilizers to reveal the syndromes.

Thus, the received N answer qudits in QPIR are not in

the stabilizer code space, even in the absence of erasures

or errors.

2) Compared with [5] that explored Q-TPIR with general

access structure that involves resilience to E unrespon-

sive servers as a special case, the main challenge is to

come up with an efficient scheme that satisfies X-security

and MDS storage constraints. Unlike the random coding

based scheme that appears in [5], the CSA code structure

is important to accommodate X-security and MDS stor-

age. Note that even in the classical setting, CSA codes

allow higher communication rates in PIR with these two

constraints (e.g., the CSA code based scheme [22], [25]

can achieve higher rates than those achieved without

CSA codes in [29], [33]).

3) Utilizing CSA codes further prevents us from placing

the answering qudits in the code space of a stabilizer

code (without considering the erasure or Byzantine

errors). Specifically, the CSA code is the direct sum of

3The MDS storage can be viewed as coded matrix A, and the T private
queries as coded matrix B. The computation of AB is distributed among
servers. The MDS constraint limits upload cost, X-security/T-privacy protect
against curious servers, and resilience to unresponsive/Byzantine servers
guarantees robustness of the distributed computation.
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a Reed-Solomon code of interfering/undesired symbols

and a Cauchy RS code of desired symbols. It is non-

trivial to construct a CSS code upon two CSA codes

CSAX, CSAZ , such that CSA⊥
X ⊂ CSAZ . This is because

the dual code of a CSA code should be dual to both the

RS part and the Cauchy RS part, whose structures are

not trivially compatible.

Thus, our main contribution is a protocol that utilizes the

error-correcting capabilities of CSS codes, i.e., the information

carrying ability of their syndromes as the underlying frame-

work. Within this framework, the protocol exploits the RS

sub-code of CSA codes to efficiently retrieve the desired

computation results (desired message symbols in the PIR

problem) that are encoded by classical codes,4 while also

tolerating quantum erasures and Byzantine errors. Intuitively,

in the underlying classical CSA code based protocol, the

answers from the servers are viewed as the RS sub-code

of interfering symbols, with Cauchy RS code of desired

message symbols added as “error.” The syndrome of the

RS sub-code uniquely identifies the “error” in the Cauchy

RS code space together with the actual errors introduced

by unresponsive or Byzantine servers. From the quantum

perspective, the shared qudits are initially in the code space

of the CSS code constructed from the RS sub-codes of two

instances of CSA codes. Servers apply Pauli operators to their

qudits to encode the answers generated according to the two

instances of the CSA code based classical scheme. The Pauli

operators’ components that correspond to RS sub-codes of

interfering symbols are not detectable since they commute

with stabilizers, while the component corresponding to desired

message symbols, together with the errors introduced by

unresponsive and Byzantine servers, are identified through

syndrome measurement. In a nutshell, dimensions that carry

desired computation results from the CSA code are encoded

into the error space of the CSS code, while the undesired

interference terms are aligned into the stabilized code space. A

technicality worth noting is that a key enhancement is made to

the CSA code, transforming it into a Modified CSA (MCSA)

code — whereby the RS sub-code is turned into a GRS sub-

code whose dual code is still a GRS code, so that a CSS code

can be easily constructed on GRSX, GRSZ that are sub-codes

of two MCSA codes, where GRS⊥
X ⊂ GRSZ . This ‘MCSA-

CSS’ construction can be found in Protocol 3 in this work.

While there is entanglement shared beforehand among the

distributed servers (transmitters), it is important to note that

the servers do not share any entanglement in advance with

the user (the receiver). Intuitively, the shared entanglement

among transmitters leads to a superdense coding gain in

quantum PIR schemes allowing them to achieve in some cases

twice the rate of their classical counterparts [10], [11], [27].

The quantum scheme proposed in this paper also achieves

the factor of 2 superdense coding gain compared with the

classical scheme proposed in [22]. It is also noteworthy that

the quantum PIR setting addressed in this paper recovers as

special cases various other settings considered in the literature,

4We refer to the desired message symbols as the computation results to
emphasize that they are the outcome of the computation task, e.g., PIR.

such as Q-B-X-TPIR in [34], Q-E-TPIR in [5], Q-MDS-X-

TPIR in [27], Q-MDS-TPIR in [11], and Q-TPIR in [10].

Indeed, the protocol presented in this work achieves the state-

of-the-art rates across all of the aforementioned special case

scenarios.

B. Comparison to Related Works

The most closely related work is the conference version of

this paper in [1], [35] where Q-E-X-TPIR problem is studied

based on the N-sum box abstraction of [27]. The conference

version allows neither MDS storage nor resilience to Byzantine

servers. The conference version was then developed into

a preliminary ArXiv version [36] of this paper where the

approach taken for resilience to Byzantine servers that apply

arbitrary Pauli errors is to guess the identities of Byzantine

servers, treat them as erasures and decode, and check if

there exists a set of decoding results that agree. However,

the resilience to arbitrary Byzantine errors (rather than just

Pauli errors) is not explicit under the N-sum box abstraction.

The present version further develops our approach, making

the Byzantine resilience explicit. Instead of the N-sum box

abstraction, here we directly utilize the fact that the syndrome

measurement of a CSS code can reduce arbitrary errors (that

affect fewer qudits than its minimum distance) to Pauli errors

(Lemma 1).

Let us also note the parallel and independent work in [34]

that studies Q-B-X-TPIR through the lens of the N-sum box

abstraction, as further evidence of interest in this problem.

C. Organization

Section II introduces the notation together with some

basic concepts of quantum systems, classical error correcting

codes and quantum information. Section III formalizes the

Q-E-B-MDS-X-TPIR problem. Section IV presents our main

result as Theorem 1. Section V revisits the CSA code based

classical E-B-MDS-X-TPIR scheme which is crucial to our

construction. A modified CSA code (MCSA code) is presented

in Section VI. The quantum protocol, namely MCSA-CSS,

that builds upon the MCSA code and a CSS code, is presented

in Section VII. Section VIII concludes the paper.

II. PRELIMINARIES

A. Miscellaneous

For two integers a, b, the set {a, a + 1, . . . , b} is denoted as

[a : b]. For compact notation, [1 : b] is denoted as [b]. For a

set S, |S| denotes its cardinality, and for any k ≤ |S|,
(S

k

)
�

{S | S ⊂ S, |S| = k}. For an r × c matrix A, A(A,B) denotes

the sub-matrix of A whose row indices are in A and column

indices in B. A or B will be replaced by ‘:’ if they contain all

the rows or columns, respectively. If A is a vector, we simply

write A(S) to denote the sub-vector of A whose indices are

in S. For two column vectors c1, c2, [c1; c2] � [c�
1 c�

2 ]�, i.e.,

a longer column vector with c1 stacked above c2. colspan(A)

denotes the vector subspace spanned by the columns of A. If

A is a projection matrix, then Im(A) = colspan(A). ker(A) is

the kernel space of A. A† is the conjugate transpose of A. For
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a length n vector v = [v1 v2 · · · vn]�, Diag(v) denotes the

diagonal n × n matrix whose diagonal elements are entries

of v. supp(v) � {i | vi 	= 0} and wt(v) � | supp(v)|. IN

is the N × N identity matrix. For any random variable that

is written in upper case (say, Z), we use the corresponding

lower case (z) to denote its realization. The state of a quantum

system A defined on Hilbert space HA is represented by a

density operator ρA ∈ DA where DA is a set of all positive

semi-definite operators with trace 1 acting on HA. A pure

state can also be represented by a unit vector in HA. For a

classical-quantum system XA, ρA|X=x, or simply ρA|x, denotes

the density operator of A conditioned on the realization X = x.

The label of the quantum system in the subscript may be

omitted for compact notation if it is clear from the context.

Fq is a finite field with order q where q = pr is a prime

power. The field trace trFq/Fp
(·) : Fq → Fp is an Fp-linear map

from Fq to Fp, and ω � e2π
√

−1/p. If a quantum system A

has dimension |A| = q, with {|a〉}a∈Fq
being its computational

basis, we call it a q-dimensional qudit.

B. Classical Error Correcting Codes

Definition 1 ([n, k, d] Code): An [n, k, d] classical code

over Fq is the column space of a rank k generator matrix G ∈
F

n×k
q , i.e., C = colspan(G). It has a rank n − k parity-check

matrix H ∈ F
n×n−k
q such that H�G = 0. The dual code of C is

C⊥ = colspan(H). If an [n, k, d] code satisfies d = n − k + 1,

we call it an [n, k] MDS (maximum distance separable) code.

Definition 2 (GRS Code): A Generalized Reed-Solomon

Code C = GRS
q,(α,u)

n,k over Fq is the column space of the

generator matrix defined in (1) where α = (α1, α2, . . . , αn)

are n distinct elements in Fq and u = (u1, u2, . . . , un) are n

non-zero elements in Fq. By definition, q ≥ n.

G
GRS

q,(α,u)

n,k

�

⎡
⎢⎢⎢⎣

u1 u1α1 · · · u1α
k−1
1

u2 u2α2 · · · u2α
k−1
2

...
...

...
...

un unαn · · · unα
k−1
n

⎤
⎥⎥⎥⎦ (1)

Definition 3 (CRS Code): A Cauchy Reed-Solomon Code

C = CRS
q,(α,f,u)

n,k over Fq is the column space of

the generator matrix defined in (2) where (α, f) =
(α1, α2, . . . , αn, f1, f2, . . . , fk) are n + k distinct elements and

u = (u1, u2, . . . , un) are n non-zero elements. By definition,

q ≥ n + k.

G
CRS

q,(α,f,u)

n,k

�

⎡
⎢⎢⎢⎢⎣

u1
f1−α1

u1
f1−α1

· · · u1
fk−α1

u2
f1−α2

u2
f1−α2

· · · u2
fk−α2

...
...

...
...

un

f1−αn

un

f1−αn
· · · un

fk−αn

⎤
⎥⎥⎥⎥⎦

(2)

C. Quantum Information

Definition 4 (Quantum Channel): A quantum channel with

input quantum system A and output quantum system B

is a completely positive trace preserving mapping (CPTP)

M : DA → DB. It can be represented by Kraus Operators

{Ki} such that
∑

i K
†
i Ki is an identiy matrix and M(ρ) =∑

i KiρK
†
i .

Definition 5 (Pauli Operators for Qudits [37]): For any

a, b ∈ Fq, define the single qudit Pauli Operators Xb, Zb ∈
C

q×q so that

X
b |a〉 = |a + b〉 , Z

b |a〉 = ω
trFq/Fp (ba) |a〉 .

For n ∈ N and any x = [x1 · · · xn]�, z = [z1 · · · zn]� ∈
F

n×1
q , let the n-qudit Pauli Operators be defined as

X
x
Z

z �
⊗

i∈[n]

X
xiZ

zi .

Note that
(
X

x
Z

z
)(

X
x′

Z
z′) = ω

trFq/Fp

(
z�x′−x�z′)(

X
x′

Z
z′)(

X
x
Z

z
)

= ω
trFq/Fp

(
z�x′)

X
x+x′

Z
z+z′

(3)

Definition 6 (CSS Code [23], [24], [38]): A C =
CSS(CX, CZ) code encodes the state space of k q-dimensional

qudits into a code space of n q-dimensional qudits

CSS(CX, CZ) = colspan

⎛
⎜⎝

∑

x⊥∈C⊥
X

|x⊥ + z〉 | z ∈ CZ

⎞
⎟⎠, (4)

where CX , CZ are classical [n, kX, dX], [n, kZ, dZ] linear codes

with generator matrices GCX
∈ F

n×kX
q , GCZ

∈ F
n×kZ
q respec-

tively, that satisfy C⊥
X ⊂ CZ . The CSS(CX, CZ) is a stabilizer

code with stabilizers S = {XaZb | a ∈ C⊥
X , b ∈ C⊥

Z }. Its

minimum distance is d ≥ min(dX, dZ).

Definition 7 (Stabilizer Measurement): For the CSS code

in Definition 6, for any a ∈ C�
X , b ∈ C�

Z , according

to [10, Appendix C, Fact 2)], the stabilizer XaZb can be

decomposed as

X
a
Z

b =
∑

i∈Fp

ωiP
a,b
i (5)

where {Pa,b
i }i∈Fp

are orthogonal projections such that

P
a,b
i P

a,b
j = 0 ∀i 	= j, (6)

∑

i∈Fp

P
a,b
i = I. (7)

Then the stabilizer measurement XaZb is defined as the

Projection-Valued Measurement (PVM, [39]) with projections

{Pa,b
i }i∈Fp

.

Definition 8 (Syndrome Measurement): For the CSS code

defined in Definition 6, a syndrome measurement is the

stabilizer measurement corresponding to all the (generator)

stabilizers according to Definition 7.

Proposition 1 (Well Known): For any |ψ〉 ∈ CSS(CX, CZ)

and any x, z ∈ F
n×1
q , the n-qudit pure state XxZz |ψ〉 is an

eigenvector for all the stabilizers, and its syndrome measure-

ment outcome is as follows, with HCX
, HCZ

being parity-check

matrices for CX, CZ respectively.

sX = H�
CZ

x, sZ = H�
CX

z (8)

The following lemma will be useful.

Lemma 1: Consider any n-qudit state |ψ〉 ∈ CSS(CX, CZ)

with the n qudits labeled as A[n]. For any x, z ∈ F
n×1
q ,S ⊂
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[n], |S| ≤ min(dX, dZ) − 1 where dX, dZ are distances of

CX, CZ respectively, suppose the n-qudit Pauli gate XxZz is first

applied to A[n]. Then for any quantum channel MS : DAS
→

DAS
that is applied to qudits AS, the syndrome measurement

reduces the quantum channel to some Pauli operators only

affecting qudits AS, i.e.,

∀ |ψ〉 ∈ CSS(CX, CZ); x, z ∈ F
n×1
q ;

S ⊂ [n], |S| ≤ min(dX, dZ) − 1,MS : DAS
→ DAS

,(
id[n]\S ⊗MS

)(
X

x
Z

z |ψ〉 〈ψ |
(
X

x
Z

z
)†
)

synd.meas.−→ X
εX
S Z

εZ
S

(
X

x
Z

z |ψ〉 〈ψ |
(
X

x
Z

z
)†
)(

X
εX
S Z

εZ
S

)†

(3)= X
x+εX

S Z
z+εZ

S |ψ〉 〈ψ |
(
X

x+εX
S Z

z+εZ
S

)†
, (9)

with the outcome being

sX = H�
CZ

(
x + εX

S

)
, sZ = H�

CX

(
z + εZ

S

)
, (10)

where supp(εX
S
) = supp(εZ

S
) = S.

Though the lemma is conceptually somewhat standard, we

provide a proof in Appendix-A for the sake of completeness.

III. PROBLEM STATEMENT

Let us start with the classical setting defined in [22]. There

are K messages W1, . . . , WK that are i.i.d. uniform over [M].

They are securely encoded with randomness Z ∈ Z to form

the storage at N servers. For θ ∈ [K], the user wishes to

privately retrieve the message Wθ by querying the N servers.

Local randomness Z′ ∈ Z′ is available to the user to generate

private queries. For any n ∈ [N], the random variables

regarding the storage, query and answer (in the classical

setting) at server n, denoted as Sn, Q
[θ]
n and An with realizations

being sn, qn, an, are deterministic functions of the following

3 independent random variables, whose realizations will be

denoted as w[K], z, z′ respectively.

[Messages] : W[K] ∈ [M]K,

[Storage Randomness] : Z ∈ Z,

[User Randomness] : Z′ ∈ Z′. (11)

The classical problem is similar to the quantum problem in

Fig. 1, but there are no entangled quantum systems shared

among servers and the answers from servers are classical sym-

bols. Byzantine servers will return arbitrary classical symbols.

Next we specify the storage, queries, servers’ answers, and the

user’s decoding for both classical and quantum settings.

A. Classical Setting

MDS and X-Secure Storage: The storage at server

n, n ∈ [N] is denoted as Sn ∈ [S]. With encoding function

Encst : [M]K × Z → [S]N , the storage S[N] = Encst(W[K], Z)

forms an [N, X + Kc] MDS code, such that
[
MDS Storage

]
H(W[K] | SS) = 0,

∀S ⊂ [N], |S| = X + Kc, (12)

H(Sn) = log2 S = K log2(M)/Kc,

∀n ∈ [N] (13)

[
X − Security

]
I(W[K]; SX) = 0,

∀X ⊂ [N], |X| ≤ X. (14)

i.e., any X + Kc servers must be able to recover all the

K-messages, the storage size at each server is 1/Kc of the total

size of the K messages, and any X or fewer servers can learn

nothing about the messages. The encoding is done by, e.g.,

sources of the messages.

Remark 1: The storage forms a ramp secret sharing [40] of

the K-message database. We call it MDS and secure storage

for comparison with Quantum MDS-PIR [11], as when X = 0,

the above entropic constraints hold for an [N, Kc] MDS code

where Kc message symbols are encoded into N codeword

symbols such that any Kc codeword symbols recover the

message and each codeword symbol is 1/Kc of the message

size (since there are Kc message symbols). When Kc = 1,

there is no MDS storage constraint.

Queries: A user wishes to retrieve the θ th, θ ∈ [K],

message Wθ from the servers by sending the T-private queries

Q
[θ]
1 , Q

[θ]
2 , . . . , Q

[θ]
N ∈ Q to the N servers such that any T

or fewer servers learn nothing about θ . Mathematically, using

the encoding function Encuser : [K] × Z′ → QN , the user

generates queries,

(Q
[θ]
1 , Q

[θ]
2 , . . . , Q

[θ]
N ) = Encuser

(
θ, Z′) (15)

where Z′ ∈ Z′ is the user’s local randomness. Meanwhile, the

T-privacy constraint must be satisfied such that

[
T − Privacy

] (
ST, Q

[θ]
T

)
∼
(

ST, Q
[θ ′]
T

)
,

∀θ, θ ′ ∈ [K],T ⊂ [N], |T| ≤ T. (16)

That is to say, for any θ ∈ [K], the joint distribution of the

storage and queries at T or fewer servers are identical.

Answers: There is a set E ⊂ [N] of unresponsive servers

and another set B ⊂ [N] of Byzantine servers. B, E are not

necessarily disjoint. The user does not know E,B a priori,

except that

|E| ≤ E, |B| ≤ B. (17)

Each server n ∈ [N] \ (E ∪ B) generates the answer An ∈
[d] using the encoding function Encservn : [S] × Q → [d]

according to its storage and received query, i.e.,

An = Encservn

(
Sn, Q[θ]

n

)
,∀n ∈ [N] \ (E ∪ B). (18)

However, any unresponsive or Byzantine server n̄ ∈ E ∪ B

generates an arbitrary answer An̄ ∈ [d].

Decoding: Upon receiving the answers A[N]\E, the user

decodes the desired message using a function that depends on

E (since unresponsive servers can be identified by the user),

DecE : [K] × [d]N−|E| × Z′ → [M], i.e.,

Ŵ = DecE(θ, A[N]\E, Z). (19)

Thus, an E-B-MDS-X-TPIR scheme, is defined as

�C
(
Encst, Encuser, Encserv, {DecE}E⊂[N],|E|≤E

)
. (20)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 02,2025 at 20:42:30 UTC from IEEE Xplore.  Restrictions apply. 



64 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 6, 2025

The rate of a classical E-B-MDS-X-TPIR scheme is defined

as the number of desired message bits recovered per answer

bit that is downloaded from the servers, i.e.,

RC �
log(M)

N log(d)
. (21)

A rate RC is said to be achievable if and only if there exists

a scheme �C with this rate such that

Pr(Ŵ 	= Wθ ) = 0,

∀θ ∈ [K], E,B ⊂ [N], |E| ≤ E, |B| ≤ B. (22)

B. Quantum Setting

Shared Entanglement: In quantum setting, a composite

quantum system A[N] = A1A2, . . .AN , with underlying

Hilbert Space HA[N]
=
⊗

n∈[N] C
d is initialized in the state

ρ0
A[N]

a priori, and the subsystem An is given to server

n, n ∈ [N].

MDS and Secure Storage: Same as the classical setting.

Queries: Same as the classical setting.

Answer: Again, there are unresponsive servers E and

Byzantine servers B with E,B ⊂ [N], |E| ≤ E, |B| ≤ B.

Any reliable server applies to its own quantum subsystem a

completely-positive and trace-preserving (CPTP) map as its

encoder, based on the realizations of its storage Sn = sn and

received query Q
[θ]
n = qn, i.e.,

Enc
[sn,qn]
servn

: DAn
→ DAn

. (23)

Unresponsive and Byzantine servers apply an arbitrary CPTP

map,

ME∪B : DAE∪B → DAE∪B (24)

to their quantum subsystems. Note that Byzantine servers do

not change their quantum systems’ dimension, as otherwise

the user can tell which servers are Byzantine and treat them

as erasures instead.

Decoding: Upon receiving the quantum system A[N]\E with

state ρ′
A[N]\E

, the user measures with POVM Dec
[θ,z′]
E

=
{	θ,z′

E
(ŵ), ŵ ∈ [M]} that depends on θ and the realization of

its local randomness Z′ = z′, with outcome random variable

Ŵ as the decoding result.

Remark 2: Both unresponsive and Byzantine servers apply

arbitrary CPTP maps to their quantum systems. The difference

is that the indices in E are directly known to the user after

collecting all the answers since unresponsive servers do not

respond, while the indices in B are unknown before decoding.

Thus, the decoding POVM Dec
[θ,z′]
E

depends on E.

Thus, an E-B-MDS-X-TPIR scheme, is defined as

�Q
(
ρ0, Encst, Encuser, Encserv, {DecE}E⊂[N],|E|≤E

)
. (25)

The rate of a Quantum E-B-MDS-X-TPIR scheme is defined

as the number of desired message bits recovered per qubit that

is downloaded from the servers, i.e.,

RQ �
log(M)

N log(d)
. (26)

A rate RQ is said to be achievable if there exists a scheme

�Q with this rate such that for any θ ∈ [K],

Pr(Ŵ 	= Wθ ) = 0,

∀θ ∈ [K], E,B ⊂ [N], |E| ≤ E, |B| ≤ B. (27)

A (quantum) E-B-MDS-X-TPIR problem is parameterized

by (E, B, Kc, X, T, N, K) where N, K are number of servers

and messages respectively. We define the following constants

for any E,B,Kc,X,T ,N,K that will be used throughout this

paper, where in the last line of (28), we pick N + L distinct

elements in Fq.

L � N − (Kc + E + 2B + X + T − 1),

V � Kc + X + T − 1,

Fq, q = pr, q ≥ L + N,

(α, f ) � (α1, . . . , αN, f1, . . . , fL) ∈ F
N+L
q . (28)

Remark 3: Since T-privacy is for the index θ , and X-

security is for the shares of messages, both of which are

classical even in the quantum setting, quantum analysis is not

required while proving the privacy and security of the quantum

protocol. Quantum considerations (e.g., CSS code formalism

in Lemma 1), are essential only in the proof of correctness of

the decoding process.

IV. MAIN RESULTS

The main result of this paper is a Q-E-B-MDS-X-TPIR

scheme/protocol, namely MCSA-CSS. This protocol interprets

the classical CSA code based E-B-MDS-X-TPIR scheme

of [22] in such a way that desired message symbols appear as

“errors” added to a code, combines the classical scheme with a

CSS code, and decodes the desired message symbols, erasures

and Byzantine errors simultaneously through the syndrome

decoding of the CSS code. The scheme achieves a higher

rate compared with its classical counterpart. As noted, our Q-

E-B-MDS-X-TPIR protocol yields the state-of-art achievable

rates under the various special cases corresponding to recently

studied quantum PIR settings, e.g., Q-B-X-TPIR [34], Q-

E-TPIR [5], Q-MDS-X-TPIR [27], Q-MDS-TPIR [11], and

Q-TPIR [10], without server secrecy constraints. We have the

following theorem,5 where setting E = 0 or B = 0 corresponds

to the case of no resilience to erasures or Byzantine servers,

respectively, while setting Kc = 1 or X = 0 corresponds to the

case of no MDS or X-secure storage constraints, respectively.

Theorem 1: For quantum Kc MDS X-secure T-private

information retrieval with N servers out of which at most E

servers are unresponsive and B servers are Byzantine, the rate

RQ =⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2(N−E−2B−Kc−X+1)
N

,

(N − E − 2B) > (Kc + X + T − 1) ≥ N/2

max
(

N−2E−4B
N

, N−E−2B−Kc−X−T+1
N

)
,

(N − E − 2B) ≥ N/2 > (Kc + X + T − 1)
N−E−2B−Kc−X−T+1

N
,

N/2 > (N − E − 2B) > (Kc + X + T − 1)

(29)

is achievable.

5For ease of comparison with quantum PIR problems, similar to [5] but
unlike [22], the unreceived qudits from unresponsive servers are also counted
in the download cost.
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Proof: The achievability of the third regime N/2 > (N −
E − 2B) > (Kc + X + T − 1) is trivial since a q-dimensional

qudit can always be used to transmit a classical q-ary symbol

and the classical scheme in [22] can be directly applied. The

achievability of the first regime (N − E − 2B) > (Kc + X +
T − 1) ≥ N/2 will be established by the scheme presented in

Section VII.

The achievability of the second regime, (N − E − 2B) ≥
N/2 > (Kc + X + T − 1), follows from a combination of the

schemes for the first and third regimes, an idea that appears

in the preliminary ArXiv version of this paper [36, Th. 1,

Remark 6] and in the subsequent 2nd version of [34]. First of

all, N−E−2B−Kc−X−T+1
N

is always achievable by the classical

scheme. For the achievability of N−2E−4B
N

, intuitively, when

N/2 > (Kc + X + T − 1), one can always use the scheme that

has more demanding privacy constraints, i.e., the scheme with

T̄-privacy such that Kc + X + T̄ − 1 = N/2 and T̄ ≥ T . The

Q-MDS-X-T̄PIR falls into the first regime and the rate can be

calculated accordingly. Note that such a choice of T̄ needs N

to be even so that N/2 is an integer. The odd case will be

resolved by Remark 8.

Remark 4: In the first regime, we note the rate of the

quantum scheme is twice of the classical scheme, which

matches the maximal superdense coding gain observed thus far

in other quantum settings of PIR [10], [11], [27] (compared

with [7], [8] and [22] without unresponsive and Byzantine

servers), secret sharing [5] (compared with [2]).

V. CLASSICAL E-B-MDS-X-TPIR: CSA CODE

The classical version of this problem has been studied

in [22], and the CSA code based classical scheme there is an

essential building block of its quantum version. Let us briefly

summarize it here, starting with an example.

A. Example 1: E = 1, B = 0, Kc = 2, X = 1, T = 1 with

N = 6 Servers [22]

Let L = N − (Kc + E + X + T − 1) = 2 and

α1, . . . , αN=6, f1, fL=2 be 8 distinct elements over Fq (q ≥ 8).

Let w[K] be the realizations of all the K messages W[K]. Each

message has L×Kc = 4 symbols from Fq, i.e., for any k ∈ [K],

message wk = {wk(i, j)}i∈[2],j∈[2] contains 4 symbols from Fq.

Let ẇ1,1, ẇ1,2, ẇ2,1, ẇ2,2 ∈ F
1×K
q denote the row vectors that

contain the 4 symbols of the K messages, respectively, i.e.,

wk =
[

ẇ1,1ek
K ẇ1,2ek

K

ẇ2,1ek
K ẇ2,2ek

K

]
(30)

where ek
K is the kth column vector of IK .

Let the storage randomness Z = {Z1,1, Z2,1} be uni-

form over F
1×K
q × F

1×K
q and user randomness Z′ =

{Z′(κ)
l,t }l∈[2],κ∈[2],t=1 be uniform over (FK×1

q )4.

Storage: The storage at server n, n ∈ [6], conditioned on

the realization of messages and storage randomness, is Sn = sn

where

sn =
[
sn(1) sn(2)

]

=
[

1

(f1 − αn)2
ẇ1,1 + 1

f1 − αn

ẇ1,2 + z1,1

1

(f2 − αn)2
ẇ2,1 + 1

f2 − αn

ẇ2,2 + z2,1

]
. (31)

Here z1,1, z2,1 ∈ F
1×K
q are the realizations of random vectors

Z1,1, Z2,1 respectively. It is not difficult to see that for any

l ∈ [2], (s1(l), s2(l), . . . , s6(l))l ∈ [2] is a [6, 3] MDS code for

(ẇl,1, ẇl,2, zl,1), and the storage cost at each server is 1/Kc =
1/2 of the K messages (sn(1), sn(2) ∈ F

1×K
q while each of K

messages contains 4 symbols from Fq. At the same time we

have a secret sharing of 1
(αn−f1)

2 ẇl,1+ 1
αn−f1

ẇl,2 with threshold

1, thus the MDS and X = 1 security constraint is satisfied.

Queries: The query generation contains Kc = 2 iterations.

The query sent from the user to server n, n ∈ [6], conditioned

on the realization of the user’s local randomness, is Q
[θ]
n = qn

where

qn =
{

q(1)
n , q(2)

n

}
, (32)

with the superscript indicating the iteration number, and

q(1)
n =

[
q
(1)
n (1)

q
(1)
n (2)

]
=
[
(f1 − αn)e

θ
K + (f1 − αn)

2z
′(1)
1,1

(f2 − αn)e
θ
K + (f2 − αn)

2z
′(1)
2,1

]
(33)

q(2)
n =

[
q
(2)
n (1)

q
(2)
n (2)

]
=
[

eθ
K + (f1 − αn)

2z
′(2)
1,1

eθ
K + (f2 − αn)

2z
′(2)
2,1

]
(34)

Here, eK,θ is the θ th column of IK , used for choosing the θ th

entry of ẇ, and z
′(κ)
l,t ∈ F

K×1
q , l ∈ [2], κ ∈ [2], t = 1 is the

realization of corresponding user randomness Z
′(κ)
l,t . It is again

not difficult to verify that the queries form secret sharing of

eθ
K with threshold 1. Thus, the query is 1-private.

Answer: The answer generation takes Kc = 2 iterations.

Conditioned on the realization of messages, storage and user

randomness, the answer sent from server n is An = an =
{a(1)

n , a
(2)
n } where in iteration κ ∈ [2], the answer a

(κ)
n is just

a symbol from Fq. Specifically, in the first iteration,

a(1)
n = snq(1)

n = sn(1)q(1)
n (1) + sn(2)q(1)

n (2)

= 1

f1 − αn

ẇ1,1eθ
K + 1

f2 − αn

ẇ2,1eθ
K

+
(

ẇ1,1z
′(1)
1,1 + ẇ2,1z

′(1)
2,1 + ẇ1,2eθ

K + ẇ2,2eθ
K

)

+(f1 − αn)

(
ẇ1,2z

′(1)
1,1 + z1,1eθ

K

)

+(f2 − αn)

(
ẇ2,2z

′(1)
2,1 + z2,1eθ

K

)

+(f1 − αn)
2z1,1z

′(1)
1,1 + (f2 − αn)

2z2,1z
′(1)
2,1 (35)

= 1

f1 − αn

ẇ1,1eθ
K + 1

f2 − αn

ẇ2,1eθ
K

+ ∗ +αn ∗ +α2
n∗ (36)

where the coefficients for rational terms are desired message

symbols and the coefficients for α0
n, α1

n, α2
n are interfering sym-

bols whose specific forms are not important. The collection of

the answers from the 6 servers can be represented as,
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

a
(1)
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
f1−α1

1
f2−α1

1 α1 α2
1

1
f1−α2

1
f2−α2

1 α2 α2
2

1
f1−α3

1
f2−α3

1 α3 α2
3

1
f1−α4

1
f2−α4

1 α4 α2
4

1
f1−α5

1
f2−α5

1 α5 α2
5

1
f1−α6

1
f2−α6

1 α6 α2
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ẇ1,1eθ
K

ẇ2,1eθ
K

∗
∗
∗

⎤
⎥⎥⎥⎥⎦

. (37)

Due to the fact that any 5 rows of the matrix in (37) form

an invertible sub-matrix according to [22], the answers form

a [6, 5] MDS code such that one erasure can be corrected

and 2 desired message symbols wθ (:, 1) = [ẇ1,1eθ
K ẇ2,1eθ

K]�

(together with the interfering symbols) can be decoded.

In the second iteration, the answer from each server is still

a symbol in Fq, where

a(2)
n = snq(2)

n = sn(1)q(2)
n (1) + sn(2)q(2)

n (2)

= 1

(f1 − αn)2
ẇ1,1eθ

K + 1

(f2 − αn)2
ẇ2,1eθ

K

+ 1

f1 − αn

ẇ1,2eθ
K + 1

f2 − αn

ẇ2,2eθ
K

+ ∗ + αn ∗ +α2
n ∗ . (38)

The details of derivation can be found in [22] and are omitted

here. Note that the first two terms in (38) are already known

from the first iteration of decoding. The 6 answers together

can now be written as,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
5

a
(2)
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
f1−α1

1
f2−α1

1 α1 α2
1

1
f1−α2

1
f2−α2

1 α2 α2
2

1
f1−α3

1
f2−α3

1 α3 α2
3

1
f1−α4

1
f2−α4

1 α4 α2
4

1
f1−α5

1
f2−α5

1 α5 α2
5

1
f1−α6

1
f2−α6

1 α6 α2
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ẇ1,2eθ
K

ẇ2,2eθ
K

∗
∗
∗

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
l∈[2]

1
(fl−α1)

2 ẇl,1eθ
K∑

l∈[2]
1

(fl−α2)
2 ẇl,1eθ

K∑
l∈[2]

1
(fl−α3)

2 ẇl,1eθ
K∑

l∈[2]
1

(fl−α4)
2 ẇl,1eθ

K∑
l∈[2]

1
(fl−α5)

2 ẇl,1eθ
K∑

l∈[2]
1

(fl−α6)
2 ẇl,1eθ

K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
σ (1),known

. (39)

After subtracting σ (1), wθ (:, 2) = [ẇ1,2eθ
K ẇ2,2eθ

K]� can be

decoded similarly. The 2 × 2 desired message symbols are

retrieved by downloading 6 × 2 answer symbols from the

servers. The rate achieved is 1/3.

B. CSA Code for E-B-MDS-X-TPIR

Recall the constants defined in (28). Each message has L ×
Kc symbols from Fq, i.e., for any k ∈ [K], the realization

of message Wk, wk = (wk(i, j))l∈[L],κ∈[Kc]. Let us define the

length-K vector that contains the (l, κ)th symbol of all the K

messages as

ẇl,κ �
[
w1(l, κ) w2(l, κ) · · · wK(l, κ)

]
, ∀l ∈ [L], κ ∈ [K].

(40)

Then for any k ∈ [K], message wk can be represented as

wk =

⎡
⎢⎢⎢⎣

ẇ1,1ek
K ẇ1,2ek

K · · · ẇ1,Kc ek
K

ẇ2,1ek
K ẇ2,2ek

K · · · ẇ2,Kc ek
K

...
...

...
...

ẇL,1ek
K ẇL,2ek

K · · · ẇL,Kc ek
K

⎤
⎥⎥⎥⎦ ∈ F

L×Kc
q . (41)

The sources of randomness included in this scheme, uniform

over their respective alphabet, are as follows,

Z = {Zl,x}l∈[L],x∈[X], Zl,x ∈ F
K×1
q ,

Z′ = {Z′(κ)
l,t }l∈[L],κ∈[Kc],t∈[T], Z

′(κ)
l,t ∈ F

1×K
q . (42)

We let z = {zl,x}l∈[L],x∈[X], z′ = {z′(κ)
l,t }l∈[L],κ∈[Kc],t∈[T] be the

realizations.

The CSA scheme in [22] is summarized in the following

protocol. The specific forms of storage, queries and answers

generation functions can be found in Appendix-B.

Protocol 1: E-B-MDS-X-TPIR:

CSA({ẇl,κ }l∈[L],κ∈[Kc], z, z′) (Classical)

1) Storage: s[N] ← StoreGen({ẇl,κ }l∈[L],κ∈[Kc], z)

2) Queries: q[N] ← QueryGen(θ, z′)
3) Answers: a[N] = {a(κ)

[N]}κ∈[Kc] ← AnsGen(s[N], q[N]).

Note that for all κ ∈ [Kc], the answers at iteration κ are

specified in (43), shown at the bottom of the page.

4) Corrupted Answers: In each iteration κ ∈ [Kc], the user

receives â(κ) (answers from unresponsive servers can be

replaced by 0).

â(κ) = a(κ) + ε
(κ)

E∪B =
= G

CSA
q,(α,f)
N,L,V

[wθ (:, κ); ∗] + ε
(κ)

E∪B + σ (κ−1) (44)

where supp(ε
(κ)

E∪B) = E∪B denotes the errors introduced

by unresponsive and Byzantine servers.

5) Decoding: For each κ ∈ [Kc], the user decodes w(:, κ) =
�CSA
E

(â(κ) − σ (κ−1)).

In the 1st iteration, σ (0) = 0 and the answers from N

servers can be regarded as a codeword from C = CSA
q,(α,f)
N,L,V

⎡
⎢⎣

a
(1)
1
...

a
(1)
N

⎤
⎥⎦

︸ ︷︷ ︸
�a(κ)

=

⎡
⎢⎢⎢⎢⎣

1
f1−α1

· · · 1
fL−α1

1 α1 · · · αV−1
1

1
f1−α2

· · · 1
fL−α2

1 α2 · · · αV−1
2

...
...

...
...

...
...

...
1

f1−αN
· · · 1

fL−αN
1 αN · · · αV−1

N

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�G

CSA
q,(α,f)
N,L,V

⎡
⎢⎢⎢⎢⎢⎢⎣

ẇ1,κeθ
K

:

ẇL,κeθ
K

∗
:

∗

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=[wθ (:,κ); ∗]

+

⎡
⎢⎢⎢⎢⎢⎢⎣

∑
l∈[L],k∈[κ−1]

ẇl,keθ
K

(fl−α1)
κ−k+1

∑
l∈[L],k∈[κ−1]

ẇl,keθ
K

(fl−α2)
κ−k+1

...
∑

l∈[L],k∈[κ−1]
ẇl,keθ

K

(fl−αN )κ−k+1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�σ (κ−1), known

(43)
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code with G
CSA

q,(α,f)
N,L,V

being the generator matrix, added with

errors introduced by unresponsive and Byzantine servers as

shown in (44). The generator matrix is defined in (43), and the

vector ∗ contains V = Kc+X+T−1 symbols that are regarded

as interference that arises due to MDS, security and privacy

constraints. The specific forms of the interference terms are not

important. According to the following proposition that states

the CSA code is an [N, L + V] MDS code with minimum

distance d = N − (L + V) + 1
(28)= E + 2B + 1, the |E| ≤ E

erasures and |B| ≤ B Byzantine errors can be corrected and

the user is able to recover desired message symbols wθ (:, 1)

by the decoding scheme of CSA code �CSA
E

.

Proposition 2: Any L + V rows of G
CSA

q,(α,f)
N,L,V

defined

in (43) form an invertible matrix, i.e., CSA
q,(α,f)
N,L,V �

colspan(G
CSA

q,(α,f)
N,L,V

) code is an [N, L + V] MDS code [22].

In the κ th iteration, κ ∈ [Kc], the received N answers,

after subtracting σ (κ−1) which solely depends on the decoding

result in the previous iterations, again form a codeword from

C = CSA
q,(α,f)
N,L,V code, added with errors. Again, according to

Proposition 2, the user is able to decode wθ (:, κ) in the κ th

iteration.

The communication rate of the CSA code based scheme is

RC = KcL

KcN

(28)= N − E − 2B − Kc − X − T + 1

N
. (45)

VI. MODIFIED CSA (MCSA) CODE

In this section, we propose a Modified CSA (MCSA) Code

which is still a classical error correction code, that is intended

for classical E-B-MDS-X-TPIR protocol, but more compatible

with our eventual Q-E-B-MDS-X-TPIR protocol construction,

by turning the RS sub-code of CSA code into a GRS code

and leveraging the fact that the dual code of a GRS code is

still a GRS code.

A. MCSA Code for E-B-MDS-X-TPIR

Definition 9 (MCSA Code (Classical)): A Modified Cross

Subspace Alignment code C = MCSA
q,(α,f,u)
N,L,V over Fq

is the column space of the generator matrix defined

in (46) where G
CSA

q,(α,f)
N,L,V

is defined in (43), (α, f) =
(α1, α2, . . . , αN, f1, f2, . . . , fL) are N +L distinct elements and

u = (u1, u2, . . . , uN) are N non-zero elements in Fq. By

definition, N ≥ L + V and q ≥ N + L.

G
MCSA

q,(α,f,u)
N,L,V

� Diag(u)G
CSA

q,(α,f)
N,L,V

. (46)

The specific form of the generator matrix can be found

in (48), shown at the bottom of the page. For this MCSA code,

we have the following proposition.

Proposition 3: Any L + V rows of G
MCSA

q,(α,f,u)
N,L,V

form an

invertible matrix, i.e., MCSA
q,(α,f,u)
N,L,V code is an [N, L + V]

MDS code.

Proof: For any R ⊂ [N], |R| = L + V , the L + V rows

G
MCSA

q,(α,f,u)
N,L,V

(R, :) = Diag(u(R))G
CSA

q,(α,f)
N,L,V

(R, :) (47)

form an invertible matrix since Diag(u(R)) is invertible as

ui 	= 0,∀i ∈ [N], and G
CSA

q,(α,f)
N,L,V

is invertible according to

Proposition 2.

Let us specify the form of the answers from an MCSA

based classical E-B-MDS-X-TPIR scheme next. Note that for

all κ ∈ [Kc], the answers at iteration κ are specified in (48).

Remark 5: For any κ ∈ [Kc], the answers at iteration

κ specified in (48) are equal to the answers in (43) left-

multiplied by the matrix Diag(u). Thus, any CSA based

scheme can be easily converted to an MCSA based scheme by

letting server n multiply its answer generated from CSA based

scheme by un. The generation of storage and queries remains

unchanged. Therefore, X-security and T-privacy follow from

the CSA code based scheme. Meanwhile, the decodability

of the desired message is guaranteed by Proposition 3, just

as the decodability of CSA code based scheme is guaranteed

by Proposition 2.

Remark 6: Compared with the generator matrix of the code

defined in [27, eq. (15)] which is a square matrix, note that

the generator matrix in this paper is not square to be able

to correct errors introduced by unresponsive and Byzantine

servers, and it is an enhanced version of the generator matrix

of CSA code in [22, eq. (70)].

The MCSA code based scheme is specified in Protocol 2.

The definition of {ẇl,κ}l∈[L],κ∈[Kc], z, z′ are the same as those

in (40) and (42). u = (u1, . . . , uN) ∈ F
N
q are N non-zero

elements6 in Fq. Again, the storage, queries and answers

generation functions are specified in Appendix-B.

Protocol 2: E-B-MDS-X-TPIR:

MCSA ({ẇl,κ }l∈[L],κ∈[Kc], z, z′, u) (Classical)

1) Storage : s[N] ← StoreGen({ẇl,κ }l∈[L],κ∈[Kc], z)

2) Queries : q[N] ← QueryGen(θ, z′)

6u is a constant vector included in the input to the protocol for ease of
executing it twice with different parameters u, v in the quantum protocol.

←−

⎡
⎢⎣

a
(1)
1
...

a
(1)
N

⎤
⎥⎦

︸ ︷︷ ︸
�a(κ)

=

⎡
⎢⎢⎢⎢⎣

= G
CRS

q,(α,f,u)
N,L︷ ︸︸ ︷

u1
f1−α1

· · · u1
fL−α1

= G
GRS

q,(α,u)
N,V︷ ︸︸ ︷

u1 u1α1 · · · u1α
V−1
1

u2
f1−α2

· · · u2
fL−α2

u2 u2α2 · · · u2α
V−1
2

...
...

...
...

...
...

...
uN

f1−αN
· · · uN

fL−αN
uN uNαN · · · uNαV−1

N

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=G

MCSA
q,(α,f,u)
N,L,V

⎡
⎢⎢⎢⎢⎢⎢⎣

ẇ1,κeθ
K

:

ẇL,κeθ
K

∗
:

∗

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=[wθ (:,κ); ∗]

+

⎡
⎢⎢⎢⎢⎢⎢⎣

∑
l∈[L],k∈[κ−1]

u1ẇl,keθ
K

(fl−α1)
κ−k+1

∑
l∈[L],k∈[κ−1]

u2ẇl,keθ
K

(fl−α2)
κ−k+1

...
∑

l∈[L],k∈[κ−1]
uN ẇl,keθ

K

(fl−αN )κ−k+1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�σ (κ−1), known

(48)
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3) Answers : ã[N] = {ã(κ)
[N]}κ∈[Kc] ← AnsGen(s[N], q[N]),

a
(κ)
[N] ← unã

(κ)
[N],∀n ∈ [N], κ ∈ [Kc].

The N answers at iteration κ ∈ [Kc] are as follows7

a(κ) (48)= G
MCSA

q,(α,f,u)
N,L,V

[wθ (:, κ); ∗] + σ (κ−1)

(48)= G
GRS

q,(α,u)
N,V

∗ + G
CRS

q,(α,f,u)
N,L

wθ (:, κ) + σ (κ−1) (49)

4) Corrupted Answers: In each iteration κ ∈ [Kc], the

user receives corrupted answers â(κ) (answers from

unresponsive servers can be replaced by 0).

â(κ) = a(κ) + ε
(κ)

E∪B
= G

GRS
q,(α,u)
N,V

∗ + G
CRS

q,(α,f,u)
N,L

wθ (:, κ) + ε
(κ)

E∪B
︸ ︷︷ ︸

“ error ”

+σ (κ−1)

(50)

where supp(ε
(κ)

E∪B) = E∪B denotes the errors introduced

by unresponsive and Byzantine servers.

5) Decoding: For any κ ∈ [Kc], user computes the syn-

drome

s(κ) � H�
GRS

q,(α,u)
N,V

â(κ)

= H�
GRS

q,(α,u)
N,V

(
G

CRS
q,(α,f,u)
N,L

wθ (:, κ) + ε
(κ)

E∪B

)

+ H�
GRS

q,(α,u)
N,V

σ (κ−1). (51)

and decodes the desired message through

�GRS
E

(
s(κ) − H�

GRS
q,(α,u)
N,V

σ (κ−1)

︸ ︷︷ ︸
known

)
(51)=

�GRS
E

(
H�

GRS
q,(α,u)
N,V

(
G

CRS
q,(α,f,u)
N,L

wθ (:, κ) + ε
(κ)

E∪B

))

=
(

wθ (:, κ), ε
(κ)

E∪B

)
, (52)

where �GRS
E

: F
(N−V)
q → F

L
q × F

N
q is the mapping from

the syndrome (after subtracting σ (κ−1) related terms)

to the L desired message symbols and the error vector

introduced by unresponsive and Byzantine server, when

the unresponsive servers are those with indices in the

set E.

Remark 7: Note that besides the difference while gener-

ating the answers in step 3, compared with Protocol 1, the

interpretation of the answers and user’s way of decoding are

all different. We will explain these in the following subsection.

B. MCSA Classical E-B-MDS-X-TPIR–Another

Interpretation

Though the MDS property of the MCSA code guarantees

the decodability of message symbols when there are unrespon-

sive and Byzantine servers, in order to make it compatible

with the Q-E-B-MDS-X-TPIR scheme based on syndrome

7The notation wθ (:, κ) = wθ (:, κ) indicates that this represents a vector.

measurement of a CSS code, we interpret answers from MCSA

code based classical E-B-MDS-X-TPIR scheme as the GRS

code of the interfering symbols ∗, with CRS encoded desired

message symbols added as “errors.” With this interpretation,

the decoding of the classical scheme is based on the syndrome

decoding of a GRS code.

Specifically, the corrupted answer (after subtracting σ

which is known) in (50) can be interpreted as GRS
q,(α,u)
N,V

encoded interfering symbols, corrupted by the “errors” caused

by CRS encoded message symbols, erasures and Byzantine

errors. H
GRS

q,(α,u)
N,V

∈ F
N×(N−V)
q is the parity check matrix of

GRS
q,(α,u)
N,V , and (51) follows from H�G = 0.

Next let us prove Lemma 2 which guarantees the existence

of the decoding function �GRS
E

in (52). Essentially, Lemma 2

says that all the correctable “errors” (including “errors”

introduced by desired message symbols) have different syn-

dromes. The “errors” introduced by desired messages are

similar to erasures in the sense that we know their error basis

(columns of GCRS). Thus, when L + E + 2B
(28)= N − V =

d − 1 where L is the dimension of the message symbols and

d = N − V + 1 is the minimum distance of the GRS code, all

the “errors”, including those caused by the desired message

symbols, can be decoded from the syndrome.

Lemma 2: Let L+E+2B = N−V , as stated in (28). For any

given unresponsive servers E ⊂ [N], |E| ≤ E and any two sets

of Byzantine servers B,B′ ⊂ [N], |B|, |B′| ≤ B, the syndromes

will differ for any two distinct pairs (w, εE∪B) 	= (w′, ε′
E∪B′),

where w, w′ ∈ F
L
q , εE∪B, ε′

E∪B′ ∈ F
N×1
q , supp(εE∪B) = E ∪ B

and supp(εE∪B′) = E ∪ B′, i.e.,

H�
GRS

q,(α,u)
N,V

(
G

CRS
q,(α,f,u)
N,L

w + εE∪B

)

	= H�
GRS

q,(α,u)
N,V

(
G

CRS
q,(α,f,u)
N,L

w′ + ε′
E∪B′

)
(53)

This implies the existence of the decoding function

�GRS
E

: FN×1
q → F

L×1
q × F

N×1
q in (52).

Proof: See Appendix-C.

C. Example 2: E = 0, B = 1, Kc = 1, X = 1, T = 1 With

N = 6 Servers: Protocol 2

Let L = N − (Kc + 2B + X + T − 1) = 2 and

α1, . . . , αN=6, f1, fL=2 be 8 distinct elements over Fq (q ≥ 8).

Also, let u1, u2, . . . , u6 be 6 non-zero elements form Fq. Let

w[K] be the realizations of all the K messages W[K]. Each

message has L×Kc = 2 symbols from Fq, i.e., for any k ∈ [K],

message wk = {wk(i, j)}i∈[2],j=1 contains 2 symbols from Fq.

Let ẇ1,1, ẇ2,1 ∈ F
1×K
q denote the row vectors that contain the

2 symbols of the K messages, respectively, i.e.,

wk =
[

ẇ1,1ek
K

ẇ2,1ek
K

]
(54)

where ek
K is the kth column vector of IK .

We skip the storage and queries. The (corrupted) answers

from the servers have the following representation, where

server 2 is Byzantine so that an error is added to its answer.
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Note that V = Kc + X + T − 1 = 2, and since Kc = 1, there

is only â(1) with σ (0) = 0.

â(1) =
[
â
(1)
1 â

(1)
2 â

(1)
3 â

(1)
4 â

(1)
5 â

(1)
6

]�

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1
f1−α1

u1
f2−α1

u1 u1α1
u2

f1−α2

u2
f2−α2

u2 u2α2
u3

f1−α3

u3
f2−α3

u3 u3α3
u4

f1−α4

u4
f2−α4

u4 u4α4
u5

f1−α5

u5
f2−α5

u5 u5α5
u6

f1−α6

u6
f2−α6

u6 u6α6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

ẇ1,1eθ
K

ẇ2,1eθ
K

∗
∗

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

ε

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

= G
GRS

q,(α,u)

6,2

∗ + G
CRS

q,(α,f,u)

6,2

wθ (:, 1) + ε
(1)
{2}

︸ ︷︷ ︸
“ error ”

(55)

The error correcting capability of the [6, 2, 5] GRS code will

be utilized to find the two desired message symbols and the

server 2 introduced error ε, i.e., the syndrome H�
GRS

q,(α,u)

6,2

â(1)

uniquely determines the wθ = wθ (:, 1) and ε
(1)
{2} .

VII. MCSA-CSS PROTOCOL FOR Q-E-B-MDS-X-TPIR

In this section, we propose the MCSA-CSS protocol for

the Q-E-B-MDS-X-TPIR problem, based on syndrome mea-

surement of a CSS code, that is constructed from GRS

sub-codes of two MCSA codes. Exploiting the fact that the

dual code of a GRS code is still a GRS code, a CSS

code with N physical qudits can be constructed from two

GRS codes. The N physical qudits are then delivered to

N servers.8 Two MCSA codes based classical PIR schemes

are executed, and servers apply Pauli operators to the CSS

code according to the answers from the classical scheme.

The components of Pauli operators corresponding to the GRS

sub-codes of interfering symbols are not detectable, because

they commute with the stabilizers. This is due to the fact

that the CSS code is constructed from the same GRS codes.

However, the components associated with the Cauchy RS code

encoded message symbols (regarded as “errors”), along with

errors introduced by unresponsive and Byzantine servers, are

identified through syndrome measurements.

A. MCSA-CSS Protocol

The MCSA-CSS scheme is presented as Protocol 3. During

one execution of the quantum scheme, two independent

instances of classical schemes will be executed. Thus, each

message has 2LKc symbols from Fq, and the randomness also

has twice the size as that in classical cases.

Let w[K] be the realizations of W[K], for any k ∈ [K]. We

have wk = [wX
k wZ

k ] ∈ F
L×2Kc
q where

wX
k =

(
wX

k (l, κ)
)

l∈[L],κ∈[Kc]
,

wZ
k =

(
wZ

k (l, κ)
)

l∈[L],κ∈[Kc]
∈ F

L×Kc
q (56)

stand for the X, Z parts of message k respectively, so that

each part has the same size to a message in the classical case.

8Let us clarify that the CSS code is not used to deliver logical qudits to
servers. The N physical qudits are initially in a constant pure state and are
shared as quantum resources for improving communication efficiency.

Similar to (40), define the length-K vector that contains the

(l, κ)th symbol of all the K messages’ 
 part (
 ∈ {X, Z}) as

ẇ

l,κ � [w


1(l, κ) w

2(l, κ) · · · w


K(l, κ)],

∀l ∈ [L], κ ∈ [Kc]. (57)

Similarly, Z = {ZX, ZZ}, Z′ = {Z′X, Z′Z}. Each Z
, Z′
, 
 ∈
{X, Z} is specified similarly according to (42) as follows

Z
 = {Z

l,x}l∈[L],x∈[X], Z


l,x ∈ F
K×1
q ,

Z′
 = {Z′(κ)

l,t }l∈[L],κ∈[Kc],t∈[T], Z

′(κ)

l,t ∈ F

1×K
q . (58)

Again, let z, z′ be their realizations. Let us pick some constants

u = (u1, . . . , uN) ∈ F
N
q s.t. un 	= 0,∀n ∈ [N]. Meanwhile, set

v = (v1, . . . , vN) as

vi = u−1
i

∏

j 	=i

(αi − αj)
−1,∀i ∈ [N]. (59)

The protocol is specified as follows. Note that u, v are

constants specified by the protocol.

Protocol 3: Q-E-B-MDS-X-TPIR:

MCSA-CSS({ẇX
l,κ , ẇZ

l,κ }l∈[L],κ∈[Kc], z, z′, u, v) (Quantum)

1) Share Entanglement: For all κ ∈ [Kc], N q-dimensional

qudits A
(κ)
[N], with initial state

ρ0

A
(κ)
[N]

= |ψ〉 〈ψ | ,

|ψ〉 ∈ CSS
(

GRS
q,(α,v)
N,V , GRS

q,(α,u)
N,V

)
(60)

are delivered to N servers so that server N gets A
(κ)
n .

We let

ρ0{
A

(κ)
[N]

}
κ∈[Kc]

=
⊗

κ∈[Kc]

ρ0

A
(κ)
[N]

.

2) Storage, Queries, Answers: Two independent instances

(indexed by X and Z) of Protocol 2 will be executed

to generate storage, queries and corresponding classical

answers. Specifically, execute Protocol 2 with following

parameters, so that the storage, queries, and classical

answers can be determined by corresponding steps in

Protocol 2, which are, again, generated according to the

3 functions specified in Appendix-B.

E-B-MDS-X-TPIR :

MCSA
({

ẇX
l,κ

}
l∈[L],κ∈[Kc]

, zX, z′X, u
)
,

E-B-MDS-X-TPIR :

MCSA
({

ẇZ
l,κ

}
l∈[L],κ∈[Kc]

, zZ, z′Z, v
)
. (61)

For iteration κ ∈ [Kc], the following classical

answers are generated according to (49) where a(κ)
 =
[a

(κ)

1 · · · a

(κ)

N ]� ∈ F

N×1
q such that a

(κ)

N is known to

server n for 
 ∈ {X, Z}.

a(κ)X = G
GRS

q,(α,u)
N,V

∗X + G
CRS

q,(α,f,u)
N,L

w
(κ)X
θ (:, κ)

+ σ (κ−1)X,

a(κ)Z = G
GRS

q,(α,v)
N,V

∗Z + G
CRS

q,(α,f,v)
N,L

w
(κ)Z
θ (:, κ)

+ σ (κ−1)Z . (62)
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Server n, n ∈ [N] applies Xa
(κ)X
n Za

(κ)Z
n to qudit A

(κ)
n so

that the N answer qudits are in the following state.9

ρ1

A
(κ)
[N]

=
(
X

a(κ)X

Z
a(κ)X

)
ρ0

A
(κ)
[N]

(
X

a(κ)X

Z
a(κ)X

)†
. (63)

3) Corrupted Answers: For iteration κ ∈ [Kc], the user

replaces the unreceived qudits A
(κ)

E
with |E| qudits

that are in completely mixed state and labels them

A
(κ)

E
. The received qudits are in the following state due

to the quantum channels applied by unresponsive and

Byzantine servers.

ρ2

A
(κ)
[N]

= id ⊗ME∪B(ρ1

A
(κ)
[N]

) (64)

4) Decoding: For each iteration κ ∈ [Kc], the user performs

syndrome measurement of CSS(GRS
q,(α,u)
N,V , GRS

q,(α,v)
N,V ).

The state becomes

ρ3

A
(κ)
[N]|s(κ)X ,s(κ)Z

= X
â(κ)X

Z
â(κ)Z

ρ0

A
(κ)
n

(
X

â(κ)X

Z
â(κ)Z

)†
, (65)

where for 
 ∈ {X, Z}, â(κ)
 = a(κ)
 + ε
(κ)


E∪B (66)

for some ε
(κ)


E∪B ∈ F
N×1
q . The user obtains the syndrome

s(κ)X = H�
GRS

q,(α,u)
N,V

â(κ)X,

s(κ)Z = H�
GRS

q,(α,v)
N,V

â(κ)Z (67)

and decodes the desired message symbols through

�GRS
E

(
s(κ)X − H�

GRS
q,(α,u)
N,V

σ (κ−1)X

)

=
(

wX
θ (:, κ), ε

(κ)X

E∪B

)
,

�GRS
E

(
s(κ)Z − H�

GRS
q,(α,v)
N,V

σ (κ−1)Z

)

=
(

wZ
θ (:, κ), ε

(κ)Z

E∪B

)
. (68)

Remark 8: We require V = Kc + X + T − 1 ≥ N/2,

i.e., interfering symbols occupy at least half of the answer

dimensions, so that the CSS code can be constructed from the

GRS codes. Consider the second regime of Theorem 1, i.e.,

(N − E − 2B) ≥ N/2 > Kc + X + T − 1, where N is odd.

Though it is not possible to find an integer T̄ > T such that

Kc + X + T̄ − 1 = N/2, one can find T1 > T, T2 ≥ T, T1 =
T2 + 1 such that the total interfering dimensions (this idea is

also used in the preliminary ArXiv version of this paper [36,

Th. 1] and in the subsequent 2nd version of [34])

Kc + X + T1 − 1 + Kc + X + T2 − 1 = N. (69)

This means that while constructing the two instances of the

classical scheme, we have T1 privacy for the X instance, and

T2 privacy for the Z instance. By such choice of T1, T2, during

9For ease of analysis, we assume unresponsive or Byzantine servers firstly
behave as reliable servers that apply correct Pauli operators to their qudits
and then apply a CPTP map M. There is no loss of generality since any
actual CPTP map M′ applied by the unreliable servers can be viewed as
a composition of 1) applying correct Pauli operators, 2) reverting the Pauli
operators, 3) applying M′ where the composition of the last 2 steps is M.

each of Kc iterations, in the first instance, L1 = N − E − 2B −
Kc −X −T1 +1 symbols of desired message are delivered, and

in the second instance, L2 = N − E − 2B − Kc − X − T2 + 1

symbols are delivered. Thus, in total L1 +L2
(69)= N −2E −4B

symbols are delivered. The rate RQ = (N −2E−4B)/N is thus

achieved. The key is that the CSS code will be constructed

from an [N, �N/2�] GRS code and an [N, �N/2�] GRS code.

Before analyzing the protocol, let us provide an intuitive

explanation. The CSS code is constructed based on the GRS

sub-codes of two instances of MCSA codes designed for

the PIR problem. Since the GRS sub-code corresponds to

interfering symbols, the Pauli operators associated with these

interfering symbols commute with the stabilizers of the CSS

code and, therefore, cannot be detected through syndrome

measurement. In contrast, the Pauli operators associated with

message symbols, along with any erasures or Byzantine errors,

shift the N qudits into an error space that can be uniquely iden-

tified through syndrome measurement. In this interpretation,

the message symbols act as sources of “errors.” However, since

these “errors” introduced by message symbols have a known

basis, they are no more detrimental than erasures. Combined

with the fact that a Pauli error corresponds to both X and

Z errors, each of which can carry classical messages, the

CSS code used in Protocol 3 with minimum distance d ≥
min(dX, dZ) = N − V + 1 can transmit 2L classical symbols,

correct E erasures and B Byzantine errors as long as L + E +
2B

(28)= N − V = min(dX, dZ) − 1 ≤ d − 1.

B. Analysis of MCSA-CSS Protocol

Let us first prove its correctness.

1) Existence of the CSS Code: According to [21, Th.

(5.1.6)], with the choice of v in (59), we have GRS
q,(α,u)
N,V

⊥
=

GRS
q,(α,v)
N,N−V ⊂ GRS

q,(α,v)
N,V when V ≥ N/2. Thus the

CSS(GRS
q,(α,u)
N,V , GRS

q,(α,v)
N,V ) code exists.

2) Corrupted Answers: Without loss of generality we

assume all the unresponsive and Byzantine servers first apply

the correct Pauli Gates as other (reliable) servers, and then

apply an arbitrary quantum channel afterwards, as an arbitrary

quantum channel can be regarded as a composition of Pauli

Gates with another quantum channel.

Recall that we replaced the unreceived qudits with qudits

in completely mixed state. This can be viewed as if the

unresponsive servers’ answer qudits were received but went

through a quantum depolarizing channel (Qudit Twirl, [41,

Exercise 4.7.6]). Thus the state derived in (64) is correct.

3) State After Syndrome Measurement: The two underlying

GRS codes of the CSS code have distance dX = dZ = N −
V + 1 ≥ N − (L + V) + 1

(28)= E + 2B + 1, thus min(dX, dZ) ≥
E + 2B + 1. Thus |E ∪ B| ≤ E + B ≤ min(dX, dZ) − 1, and

according to Lemma 1, the error reduces to Pauli Operators

and (65) is correct.

4) Syndrome and Decoding: Again, according to

Lemma 1, (67) is correct and the decoding reduces to classical

case by identifying (62), (66), (67) with (49), (50), (51). Thus

the decodability is guaranteed by the decoder in Protocol 2.
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5) MDS, Security and Privacy: The satisfaction of these

constraints is ensured by Protocol 2, which, in turn, is

guaranteed by Protocol 1, as demonstrated in [22]. Note that

the pre-shared entangled systems do not break the privacy

or security since they are completely independent of the

messages, randomness, and the index of the desired message.

Finally, consider the rate of the Q-E-B-MDS-X-TPIR scheme

in Protocol 3. In each iteration κ ∈ [Kc], N qudits are down-

loaded, and 2L desired message symbols w(κ)X(:, κ), w(κ)Z(:, κ)

are retrieved. Therefore, the overall rate is

RQ = 2KcL

KcN
= 2(N − E − 2B − Kc − X − T + 1)

N
. (70)

VIII. CONCLUSION

The Q-E-B-MDS-X-TPIR problem is studied where the

main challenge is to find a coding structure that is compatible

with X-secure, MDS storage, T-privacy and the construction

of quantum CSS code (MCSA codes), while satisfying erasure

and Byzantine error-resilience. The new scheme, MCSA-CSS,

leverages the error-correcting capabilities of CSS code to effi-

ciently encode desired computation results (desired message

symbols in the PIR case) into the error space, while correcting

quantum erasure and errors. The optimality of the proposed

scheme remains a challenging open question. Application of

MCSA-CSS to quantum coded distributed computation is a

promising direction for future work.

APPENDIX

A. Proof of Lemma 1

While the distance of CSS code can be greater than

min(dX, dZ), let us define d ��� min(dX, dZ) in this proof for

ease of notation. Let us prove Lemma 1 for S = [d − 1]. The

proof for other realizations of S follows similarly.

The initial state is ρ0 = XxZz |ψ〉 〈ψ | (XxZz)†. After

applying the quantum channel, using the Kraus representation

of the channel, we have

ρ1 =
∑

i

(
Ki ⊗ X

0
Z

0
)
X

x
Z

z |ψ〉

· 〈ψ |
(
X

x
Z

z
)†
(

Ki ⊗ X
0
Z

0
)†

(71)

where Ki ∈ C
q(d−1)×q(d−1)

and 0 has length (n − d + 1).

Since the {XαZβ}
α,β∈F(d−1)×1

q
form a basis for the linear

space of all q(d−1) × q(d−1) complex matrices [37], by

representing Ki as linear combinations of Pauli operators, ρ1

can be further written as

ρ1 =
∑

α,β,α′,β ′∈F(d−1)
q

c
α′,β ′

α,β

(
X

α
Z

β ⊗ X
0
Z

0
)
X

x
Z

z |ψ〉

· 〈ψ |
(
X

x
Z

z
)†
(
X

α′
Z

β ′ ⊗ X
0
Z

0
)†

(3)=
∑

μ,τ ,μ′,τ ′∈F
c̃μ′,τ ′
μ,τ X

x+μ
Z

z+τ |ψ〉 〈ψ |
(
X

x+μ′
Z

z+τ ′)†

(72)

where c, c̃ are some coefficients that depend only on the Kraus

Operators, and μ, τ ,μ′, τ ′ are chosen from

F �

{
v ∈ F

n×1
q | supp(v) = [d − 1]

}
. (73)

After the PVM with orthogonal projections {Pa,b
i }i∈Fp

cor-

responding to stabilizers XaZb, in (72) we have

X
x+μ

Z
z+τ |ψ〉 〈ψ |

(
X

x+μ′
Z

z+τ ′)†
−→

∑

i∈Fp

P
a,b
i X

x+μ
Z

z+τ |ψ〉 〈ψ |
(
X

x+μ′
Z

z+τ ′)†
P

a,b
i

†
. (74)

Note that Xx+μZz+τ |ψ〉 and Xx+μ′
Zz+τ ′ |ψ〉 are eigenvectors

of all stabilizers, and we have (75), shown at the bot-

tom of the page, i.e., after measuring with stabilizer XaZb,

Xx+μZz+τ |ψ〉 〈ψ | (Xx+μ′
Zz+τ ′

)† does not disappear if and

only if Xx+μZz+τ |ψ〉 and Xx+μ′
Zz+τ ′ |ψ〉 lie in the same

eigen space of the stabilizer.

Thus, after the syndrome measurement, Xx+μZz+τ |ψ〉 〈ψ |
(Xx+μ′

Zz+τ ′
)† exists if and only if for every stabilizer,

Xx+μZz+τ |ψ〉 and Xx+μ′
Zz+τ ′ |ψ〉 lie in the same eigen space,

or equivalently, they correspond to the same syndrome (similar

to Proposition 1)

H�
CZ

(x + μ) = H�
CZ

(
x + μ′)

→ H�
CZ

(
μ − μ′) = 0 → μ = μ′, (76)

H�
CX

(z + τ ) = H�
CX

(
z + τ ′)

→ H�
CX

(
τ − τ ′) = 0 → τ = τ ′, (77)

where last the step of (76) follows from the fact that wt(μ −
μ′) ≤ min(dX, dZ)−1 ≤ dZ −1, i.e., μ−μ′ /∈ CZ = ker(HCZ

)

if μ − μ′ 	= 0 (the last step of (77) follows similarly). After

syndrome measurement, the n qudits are in the state,

ρ2 =
∑

μ,τ∈F
c′
μ,τ X

x+μ
Z

z+τ |ψ〉 〈ψ |
(
X

x+μ
Z

z+τ
)†

. (78)

Suppose the outcome of syndrome measurement is sX =
H�
CZ

(x+ εX
[d−1]), sZ = H�

CX
(z+ εZ

[d−1]) with εX
[d−1], ε

Z
[d−1] ∈ F.

P
a,b
i X

x+μ
Z

z+τ |ψ〉 〈ψ |
(
X

x+μ′
Z

z+τ ′)†
P

a,b
i

† =
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

P
a,b
i Xx+μZz+τ |ψ〉 01×qn = 0 Xx+μZz+τ |ψ〉 ∈ Im(P

a,b
i ), Xx+μ′

Zz+τ ′ |ψ〉 /∈ Im(P
a,b
i )

0qn×1 〈ψ |
(
Xx+μ′

Zz+τ ′
)†

P
a,b
i

† = 0 Xx+μZz+τ |ψ〉 /∈ Im(P
a,b
i ), Xx+μ′

Zz+τ ′ |ψ〉 ∈ Im(P
a,b
i )

Xx+μZz+τ |ψ〉 〈ψ |
(
Xx+μ′

Zz+τ ′
)†

Xx+μZz+τ |ψ〉 , Xx+μ′
Zz+τ ′ |ψ〉 ∈ Im(P

a,b
i )

(75)
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Then ∀μ, τ ∈ F, the term Xx+μZz+τ |ψ〉 〈ψ | (Xx+μZz+τ )†

does not disappear if and only if,

H�
CZ

(x + μ) = H�
CZ

(
x + εX

[d−1]

)
→ μ = εX

[d−1], (79)

H�
CX

(z + τ ) = H�
CX

(
z + εZ

[d−1]

)
→ τ = εZ

[d−1], (80)

where the correctness of the last steps follows by the same

reasoning as that for (76) and (77). Thus, the state becomes

ρ3
|sX ,sZ

=

X
x+εX

[d−1]Z
z+εZ

[d−1] |ψ〉 〈ψ |
(
X

x+εX
[d−1]Z

z+εZ
[d−1]

)†
. (81)

B. Storage, Queries, Answers Generation in [22]

StoreGen({ẇl,κ}l∈[L],κ∈[Kc], z = {zl,x}l∈[L],x∈[X])

For all n ∈ [N], l ∈ [L]

sn = [sn(1) sn(2) · · · sn(L)]

sn(l) =
∑

l∈[L],κ∈[Kc]

1

(fl − αn)Kc−κ+1
ẇl,κ

+
∑

x∈[X]

(fl − αn)
x−1zl,x ∈ F

1×K
q (82)

Return s[N]

QueryGen(θ, z′ = {z′(κ)
l,t }l∈[L],t∈[T],κ∈[Kc])

For all n ∈ [N], l ∈ [L]

qn = {q(1)
n , q(2)

n , . . . , q(Kc)
n }

q(κ)
n =

[
q
(κ)
n (1); q

(κ)
n (2); · · · ; q

(κ)
n (L)

]

q(κ)
n (l) =

∑

l∈[L],κ∈[Kc]

(fl − αn)
Kc−κeθ

K (83)

+
∑

t∈[T]

(fl − αn)
Kc+t−1z

′(κ)
l,t ∈ F

K×1
q

Return q[N]

AnsGen(s[N], {q(κ)
[N]}κ∈[Kc])

For all n ∈ [N], κ ∈ [Kc]

an = {a(1)
n , a(2)

n , . . . , a(Kc)
n }

a(κ)
n = snq(κ)

n ∈ Fq (84)

Return a[N] = {a(κ)
[N]}κ∈[Kc]

C. Proof of Lemma 2

We only need to prove

H�
GRS

q,(α,u)
N,V

(
G

CRS
q,(α,f,u)
N,L

(
w − w′)
︸ ︷︷ ︸

�w′′

+
(
εE∪B − ε′

E∪B′
)

︸ ︷︷ ︸
�ε′′

E∪B∪B′

)

	= 0, ∀(w′′, ε′′
E∪B∪B′) 	= (0, 0). (85)

Note that since |E ∪ B ∪ B′| ≤ E + 2B, we can find a set

S ⊂ [N] where |S| = E + 2B and E ∪ B ∪ B′ ⊂ S so that

ε′′
E∪B∪B′ = IN(:,S)ε′′, ε′′ ∈ F

(E+2B)×1
q . (86)

Thus, we only need to prove for all length-(L + E + 2B
(28)=

N − V) column vectors [w′′; ε′′] 	= 0

H�
GRS

q,(α,u)
N,V

(
G

CRS
q,(α,f,u)
N,L

w′′ + IN(:,S)ε′′
)

= H�
GRS

q,(α,u)
N,V

[
G

CRS
q,(α,f,u)
N,L

IN(:,S)

][
w′′

ε′′

]
	= 0. (87)

As a consequence, we only need to prove the following

(N − V) × (N − V) matrix is invertible.

H�
GRS

q,(α,u)
N,V

[
G

CRS
q,(α,f,u)
N,L

IN(:,S)

]
(88)

For invertibility of (88), we first prove the following lemma.

Lemma 3: The following N × N matrix is invertible.
[

G
GRS

q,(α,u)
N,V

G
CRS

q,(α,f,u)
N,L

IN(:,S)

]
(89)

Proof: On one hand,

∀c 	= 0 ∈ colspan

([
G

GRS
q,(α,u)
N,V

G
CRS

q,(α,f,u)
N,L

])

(48)= MCSA
q,(α,f,u)
N,L,V ,

wt(c) ≥ N − (L + V) + 1, (90)

since MCSA
q,(α,f,u)
N,L,V is an [N, L + V] MDS code according to

Proposition 3. On the other hand,

∀c′ 	= 0 ∈ colspan(IN(:,S)),

wt(c′) ≤ |S| = rank(IN(:,S))

= E + 2B
(28)= N − (L + V). (91)

Thus, colspan

([
G

GRS
q,(α,u)
N,V

G
CRS

q,(α,f,u)
N,L

])

∩ colspan(IN(:,S)) = colspan(0). (92)

Combined with the following equation

rank

([
G

GRS
q,(α,u)
N,V

G
CRS

q,(α,f,u)
N,L

])

= rank

(
G

MCSA
q,(α,f,u)
N,L,V

)
= L + V,

rank(IN(:,S)) = E + 2B
(28)= N − (L + V) (93)

the proof is complete.

Now let us prove the invertibility of (88) through a con-

tradiction. Suppose to the contrary, the matrix in (88) is not

invertible, then there exists v ∈ F
(N−V)×1
q , v 	= 0 such that

H�
GRS

q,(α,u)
N,V

[
G

CRS
q,(α,f,u)
N,L

IN(:,S)

]
v

︸ ︷︷ ︸
�v′∈FN×1

q

= 0. (94)

On the one hand, by definition v′ ∈ colspan([G
CRS

q,(α,f,u)
N,L

IN(:,S)]). Additionally, v′ 	= 0 since [G
CRS

q,(α,f,u)
N,L

IN(:,S)]
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has rank N −V according to Lemma 3 and because v 	= 0. On

the other hand, v′ ∈ ker(H�
GRS

q,(α,u)
N,V

) = colspan(G
GRS

q,(α,u)
N,V

).

A contradiction occurs since colspan([G
CRS

q,(α,f,u)
N,L

IN(:,S)])

∩ colspan(G
GRS

q,(α,u)
N,V

) = colspan(0) 	� v′ according to

Lemma 3. Therefore, (88) is invertible.
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