

1 **Dynamic Benthic Oxygen Fluxes Lessen Hypoxia Effects on Open Continental Shelves**

2

3 Clare E. Reimers^{1*}, Sarah K. Henkel², Kristen E. Fogaren^{1,3}, Peter J. Chace¹, Anna Hughes¹ and

4 W. Waldo Wakefield⁴

5

6 ¹College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis,

7 Oregon, 97331, USA

8 ²Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331, USA

9 ³ Current address: Earth and Environmental Sciences, Boston College, Chestnut Hill, MA 02467,

10 USA

11 ⁴Cooperative Institute for Marine Ecosystem and Resources Studies (CIMERS), Oregon State

12 University, 2030 SE Marine Science Drive, Newport, Oregon 97365, USA

13

14 *Correspondence: clare.reimers@oregonstate.edu

15 Other Author Email addresses: sarah.henkel@oregonstate.edu, fogaren@bc.edu,

16 chacep@oregonstate.edu, hugheann@oregonstate.edu, [waldo.wakefield@oregonstate.edu](mailto>waldo.wakefield@oregonstate.edu).

17

18 Running Head: Oxygen fluxes to a shelf benthos under hypoxia

19

20 ***Abstract***

21 Under the supposition that organisms inhabiting physically dynamic marine environments are
22 better able to survive hypoxic conditions than those experiencing little turbulent or advective
23 augmentation of oxygen fluxes, we evaluated summertime benthic macrofauna communities, in
24 situ aquatic eddy covariance measurements, and ex situ sediment core incubations from 5
25 latitudinally distinct mid-shelf locations off Oregon-Washington, USA. Despite bottom water
26 dissolved oxygen (DO) concentrations averaging from 17-75 $\mu\text{mol L}^{-1}$, invertebrate faunal
27 collections contained mixtures of 11-28 taxa per 0.1 m^2 box core and increased in richness and
28 abundance at sites with greater velocity variation. Eddy covariance derivations showed that
29 oxygen fluxes to the shelf benthos are very often correlated with flow parameters and with short-
30 term changes in DO that are associated with internal waves. Daily averages of the oxygen fluxes
31 to the sediment were determined to range from -3.5 to -23 $\text{mmol m}^{-2}\text{d}^{-1}$, and these fluxes,
32 assumed to fully represent seabed respiration, were 2-5 times greater than rates of DO uptake by
33 sediment cores from the same locations. Velocity profiles measured from 0.3 to 2.5 m above the
34 seafloor at a subset of sites were consistent with a wave-current boundary layer modulated by
35 ocean swell. These findings illustrate how natural physical processes can relieve the stress of
36 hypoxia exposure on the benthos. Physical dynamics play critical roles in supplying DO and
37 determining sediment grain size, permeability, and the activities of benthic organisms. Thus,
38 these factors need consideration when predicting the impacts of low DO concentrations in
39 coastal regions.

40 ***Introduction***

41 The prevalence and severity of oxygen depletion in coastal waters are increasing
42 worldwide with consequences affecting marine life, biogeochemical processes, and ecosystems
43 (Diaz and Rosenberg 2008; Rabalais et al. 2010; Breitburg et al. 2018). Low oxygen waters are
44 causative of what have been characterized as “dead zones” and are described as “hypoxic” when
45 dissolved oxygen (DO) concentrations are $\leq 2 \text{ mg L}^{-1}$ ($62.5 \mu\text{mol L}^{-1}$) (Rabalais et al. 2002).

46 However, previous studies demonstrate wide ranges of thresholds for lethal and sublethal
47 responses to low oxygen among different marine taxa (Vaquer-Sunyer and Duarte 2008).

48 Sublethal responses include avoidance as well as significant changes in respiration, ventilation,
49 feeding, growth, and reproductive rates (Lee et al. 2023). Additionally, an organism’s normal
50 mobility, life stage, and habitat associations affect these responses, with, for example, many
51 sessile organisms relying on pumping behaviors or stirring actions to augment molecular
52 diffusion for oxygenating tissues (Hoffman et al. 2008; Shapiro et al. 2014). Different thresholds
53 can also be explained as reflecting a diversity of physiological and biochemical systems evolved
54 within organisms as defense mechanisms to hypoxia (Levin et al. 2009; Somero et al. 2016; Lee
55 et al. 2023). The most effective mechanisms clear anaerobic metabolites that cause oxidative
56 stress and are believed to be linked to the expression of specialized hypoxia induction factor
57 genes in many hypoxia-tolerant invertebrates (Lee et al. 2023).

58 Whether caused by natural or anthropogenic factors, hypoxic waters will form in coastal
59 locations with high rates of sub-pycnocline, water-column respiration and benthic respiration
60 fueled by organic matter fluxes (Fennel and Testa 2019). In many regions, these conditions are
61 seasonal, and in some instances, hypoxic waters may extend from their source regions due to
62 coastal upwelling and other drivers of physical advection governed by wind, bathymetry,

63 circulation, and stratification (Adams et al. 2016; Jarvis et al. 2021; Walter et al. 2022). Physical
64 dynamics will also drive oxygen variability over a range of frequencies in marine environments,
65 making it challenging to link specific oxygen levels to observations of mortalities of organisms
66 in the field or to changes in benthic communities (Rabalais et al. 2002; Vaquer-Sunyer and
67 Duarte 2008). Further, depending on the physiological mechanisms and anatomical adaptations
68 an organism uses to take up dissolved oxygen (DO), the physical processes that govern the flux
69 of gases to a boundary may outweigh the environmental oxygen concentration in dictating the
70 organism's oxygen uptake rate and susceptibility to hypoxia. Take, for example, the many
71 benthic marine mollusks, cnidarians, echinoderms, and annelids that exchange gases through
72 protruding tube feet, tentacles, ciliated gills, or their epidermis (Storch and Alberti 1978; Perry et
73 al. 2019). These body surfaces are living boundaries within the environment's benthic boundary
74 layer (BBL), which encompasses both waters in direct contact with the seafloor and the
75 uppermost layers of seafloor substrates (Boudreau and Jørgenson 2001). At positions
76 approaching organism and sediment interfaces, the supply of DO will depend on highly variable
77 contributions from advection, turbulent eddies, and molecular diffusion (Boudreau 1997). The
78 supply will be influenced by flow patterns over or through an organism's body (Abelson et al.
79 1993), roughness elements of the habitat, and the permeability of the substrata where microbial
80 respiration usually dominates (Glud 2008). Advection and turbulence may also cause sediment
81 resuspension and transport, altering sediment texture and bedforms. On open (specifically,
82 pericontinental) shelves, currents, deep-reaching wave action, and high turbulence appear to
83 enable many metazoan species to persist and be active under low DO conditions while also
84 enhancing oxygen consumption and limiting organic matter burial. These factors have the

85 potential to set open shelves apart from many continental slopes, semi-enclosed basins, fjords,
86 and bays when characterizing benthic communities under hypoxia (Levin et al. 2009).

87 The focus of this paper is to use observations from the Oregon-Washington continental
88 shelf to illustrate the highly dynamic nature of the supply of DO to benthic communities on an
89 open shelf during periods of oxygen depletion. We present a combination of invertebrate
90 community characterizations, in situ eddy covariance measurements, and ex situ sediment core
91 incubations from five mid-shelf areas sampled between 44.5 and 46.5°N during short-duration,
92 summer, oceanographic research cruises in 2018 or 2022. Near-bed velocity profiles are added
93 from three areas. We make the reasonable but rarely considered argument that organisms
94 inhabiting physically dynamic marine environments like the Oregon-Washington shelf are better
95 able to survive hypoxic conditions than those experiencing little DO exchange coupled to
96 advection and turbulent mixing. Further, we explore the dynamic and environmental variables
97 that may explain variation in benthic oxygen fluxes as determined by the eddy covariance
98 method that has been validated in many prior studies and found to be non-invasive and able to
99 detect the effects of faunal activities and flow on benthic oxygen uptake (Berg et al. 2003, 2022).

100 ***Materials and methods***

101 **Seabed characteristics, communities, and sample collections**

102 Oregon-Washington shelf sediments at water depths less than 100 m are dominantly
103 composed of fine sand (both relict and modern; Goldfinger et al. 2014), are subject to active
104 erosion, transport, and rippling by waves and currents in winter, but collect fresh phytodetritus
105 and finer surface deposits in summer (Komar et al. 1972; Kulm et al. 1975; McCann-Grosvenor
106 et al. 2014). At mid-shelf depths, the surface sediments become highly bioturbated in the
107 summer, losing ripple marks but gaining mounds, depressions, tracks, and burrows (Kulm et al.

108 1975). Demersal fishes and large benthic invertebrates, including the commercially important
109 Dungeness crab (*Metacarcinus magister*), are moderately abundant and have catch rates per unit
110 effort in fisheries bottom trawl surveys that are positively related to bottom water DO (Keller et
111 al. 2010, 2015). Assemblages of smaller invertebrate macrofauna that serve as prey for many
112 flatfishes (Kravitz et al. 1977; Pearcy and Hancock 1978) are patchy and group largely by
113 sediment grain size and water depth (Henkel and Gilbane 2020), with latitudinal gaps in species
114 occurrence indicating other controlling factors (Henkel and Nelson 2018). The method to
115 distinguish macrofauna applied by Henkel and Gilbane (2020) was to sample the seabed with a
116 0.1 m² Grey-O'Hara (aka GOMEX) box core (Boland and Rowe 1991) and to sieve the collected
117 cores through a 1.0 mm mesh to assess the organisms living in the sediment or as epifauna. The
118 same sample collection and processing methods were applied here and paired in 2022 with
119 bottom images captured with two downward-looking Paralenz *Vaquitas* video cameras mounted
120 with DeepSea Power & Light *SeaLites* on a wire-landed frame (74 cm x 74 cm). A towed video
121 beam trawl system (Stinton et al. 2014) provided bottom imagery for a study location on the
122 Newport Hydrographic (NH) Line sampled repeatedly in 2018, but since no box core collections
123 were made at that site in 2018, we include macrofauna data from NH Line sampling in the
124 summer of 2010. A hydraulically damped gravity corer was used to recover cores for
125 incubation studies and later core sectioning in both 2018 and 2022 (core tube inner area = 88.2
126 cm², methods described in Hughes et al. 2025). Fig. 1 displays the primary site locations on a
127 regional bathymetric map with representative seabed images. The surface sediments are
128 dominantly fine to medium sand with organic carbon contents universally less than 0.2% dry
129 weight across all but the siltier area off Willapa, Washington (WLP1) (Reimers et al. 2012;
130 Hughes et al. 2025). At WLP1, the median grain size was determined to be 43 µm, and the

131 organic carbon was 1%, reflecting inputs from the Columbia River (Hughes et al. 2025).
132 Sediment permeability has been measured using core samples from the NH80 site (Reimers et al.
133 2012) and at the PWS2 site (Reimers, unpublished), equating to $1.7\text{-}3.9 \times 10^{-11} \text{ m}^2$, which is a
134 typical range for medium sand (Huettel and Rusch 2000).

135 **Oceanographic setting**

136 Hypoxia develops on the Oregon-Washington continental shelf only during the summer
137 upwelling season, and its prevalence has increased over the past half century (Chan et al. 2008;
138 Pierce et al. 2012; Barth et al. 2024). When viewed from the perspective of the region's physical
139 drivers, hypoxia occurs primarily because oxygen-depleted waters from offshore are advected
140 onto the shelf by intermittent, wind-driven Ekman transport and then retained as bottom waters
141 in areas of enhanced stratification or sluggish BBL flow (Adams et al. 2016). BBL heights on the
142 shelf, when defined by isopycnals, DO, and turbidity, are generally 10-30 m; however, they have
143 event-scale variability dictated by upwelling strength (Perlin et al. 2005; Adams et al. 2016).
144 Generally, the BBL will thicken during wind relaxations or downwelling. At certain locations,
145 BBL thickness and DO are also affected by local recirculation and sources of turbulence, such as
146 when flow meets a topographic high or when internal waves propagate onto the shelf (Moum et
147 al. 2007; Siedlecki et al. 2015).

148 The second contributor to hypoxia on the Oregon-Washington shelf is local DO
149 consumption. Water-column respiration combined with sediment oxygen demand is estimated to
150 generate at least 50% of the oxygen deficit and to oxidize roughly 60-70% of the organic matter
151 produced during a typical upwelling season (Connelly et al. 2010; Siedlecki et al. 2015). Thus,
152 the DO and density signature of water upwelled onto the shelf is progressively altered by
153 biological processes and by shelf mixing (Pierce et al. 2012). Fig. 2 displays illustrative lower

154 water column DO and density profiles collected over each study location by casts of Sea-Bird
155 CTD packages with SBE-43 oxygen sensors. The NKW1 site, named for its location off
156 Neskowin, Oregon (see also Hughes et al. 2025), is the shallowest of this study's primary sites, is
157 located where the shelf is narrowest, and was oxygen-depleted but not hypoxic when sampled.
158 For characterizing the 80 m site on the Newport Hydrographic Line (also designated by some
159 researchers as NH10 because it is 10 nm from shore), there is the added benefit of long-term,
160 ship-based, mooring, bottom-node, and glider water-column data and time-lapse imagery
161 stemming from the Ocean Observatories Initiative and earlier programs (Risien et al. 2023). For
162 example, OOI data products during the summer of 2018 show that the bottom waters at NH80
163 were hypoxic nearly continuously during August, with a similar prolonged period of low DO in
164 August 2022 (<https://ooinet.oceanobservatories.org>).

165 **Eddy covariance measurements**

166 The principal outcomes of this study will be drawn from seven eddy covariance lander
167 deployments, with these deployments numbered in order of deployment dates. Deployments 1-3
168 were at the NH80 site and will be used to compare fluxes replicated across a site and within a
169 single summer season: 2018. Deployments 4-7 occurred in 2022 at PWS2, NKW1, NEH2, and
170 WLP1, respectively.

171 The primary eddy covariance measurements were water-column velocities and DO
172 concentrations. Velocities were measured in Cartesian *xyz* coordinates (referenced to the
173 instrument) using a fixed-stem Nortek *Vector* Acoustic Doppler Velocimeter (ADV). The ADV
174 was oriented vertically with its probe directed down and clamped at a position that nominally
175 placed the acoustic sampling volume 30 cm above the seafloor (see *Supporting Information* Fig.
176 S1a). However, the true height above the seafloor was also measured by the *Vector* from a

177 bottom echo at the start of each deployment and ranged from 27-31 cm. Additionally, the ADV
178 recorded pressure, as well as compass heading, pitch, and roll, which allowed transformation of
179 xyz velocities into East-North-Up (ENU) coordinates where a positive E velocity is towards East.
180 DO was measured with 430 μm -diameter Pyroscience fiber-optic oxygen sensors (OXB430)
181 positioned with tips \sim 2 cm outside the ADV's sampling volume. In one case, we report results
182 obtained when a pair of OXB430 sensors was used with a single ADV, and each fiber was
183 oriented at a position opposite a different receiver probe of the *Vector*, such that the tips were
184 separated by 120 $^{\circ}$ in the plane of the ADV sampling point (Fig. S1b).

185 Two nearly identical aluminum lander frames, moored to floats at the sea surface, were
186 the deployment and recovery platforms for the eddy covariance sensors as described previously
187 (Reimers et al. 2012, 2016; Reimers and Fogaren 2021). Reference measurements included
188 records from co-located Aanderaa oxygen optode/temperature (model 4175) sensors or a Sea-
189 Bird 16plusV2 CTD. Additionally, near-bottom temperature, salinity, and DO reference
190 measurements were made at 2-5 discrete times during lander deployment periods through casts
191 of the ship's Sea-Bird CTD sensor package.

192 **Derivations of eddy covariance oxygen fluxes and parameters**

193 To derive eddy covariance oxygen fluxes, a data processing sequence described in detail
194 within the *Supporting Information* was followed. Briefly, the time series of measurements from
195 each deployment were divided into 15-minute-long data segments or "bursts"; trends in the
196 directional velocities and oxygen concentrations were computed as 6.25-min running averages
197 (but also compared to other mean estimates); and the varying components
198 $[v_x'(t), v_y'(t), v_z'(t), C'(t)]$ were derived by subtraction of trend points from measurements at

199 corresponding times. After these and other steps to finalize the time series of v_z' and C' , estimates
200 of total eddy covariance oxygen flux by burst were calculated as

201 $Oxygen\ flux = \overline{v_z' C'}$ (1)

202 where the overbar $\overline{\cdot}$ denotes a time average (Berg et al. 2003, 2022).

203 Additionally, burst averages of all measured parameters and a variety of other derived
204 parameters were computed routinely. Amongst the derived parameters, several represented
205 characteristics of the physical environment, including horizontal flow speeds (S) computed as

206 $S = \sqrt{\overline{v_x^2} + \overline{v_y^2}}$ (2)

207 (Trowbridge and Lentz 1998) where any uncertainty created by signal noise was minimized by
208 first averaging the velocity components of each burst. Similarly, friction velocities (u_*) were
209 calculated based on Reynolds stresses, according to the covariance technique relationship as

210 $u_* = ((\overline{v_x' v_z'})^2 + (\overline{v_y' v_z'})^2)^{1/4}$ (3)

211 (Berg et al. 2007); and pressure-based, bottom-sensed significant wave heights (H_s); root-mean-
212 square (RMS) wave-induced velocities; and turbulent dissipation rates (ϵ) were calculated as in
213 Reimers et al. (2012), Trowbridge and Agrawal (1995), and Reimers et al. (2020), respectively.

214 Further, we considered that flux variations may stem from factors affecting one or both
215 the covariate measures, i.e., v_z' or C' , and we characterized the strength of these variations as
216 $sv_z' = (\overline{|v_z'|})$ and $sC' = (\overline{|C'|})$. Conceptually, situations could arise where benthic oxygen
217 uptake rates increase under unchanging flow (for example, due to fresh organic matter inputs),
218 resulting in a flux correlation with sC' but not with sv_z' . Conversely, heightened turbulence
219 reflected in sv_z' may drive more DO into permeable shelf sediments, enhancing oxygen uptake
220 rates because of greater oxidation of reduced pore water solutes.

221 Correlations between these parameter averages and oxygen fluxes within and between
222 deployments were assessed by computing pairwise Pearson's correlation coefficients (r) and p-
223 values (setting significance for $p < 0.05$) using OriginPro 2024 data analysis and graphing
224 software after expressing the fluxes as positive sediment oxygen consumption rates. We also
225 applied a circular-linear correlation analysis between flow direction and flux using a Matlab
226 toolbox developed by Berens (2009).

227 **BBL velocity profiles**

228 To further characterize BBL dynamics during hypoxia, vertical velocity profiles were
229 measured spanning 0.3 to 2.5 m above the seafloor using a Nortek Aquadopp HR, 1 MHz, side-
230 looking acoustic profiler fixed horizontally in an upward-facing configuration and set on the
231 seafloor as an extension off a wire-lowered tripod (1.6 m pod-to-pod, 1.4 m high) (see
232 *Supporting Information* Fig. S2). The Aquadopp was deployed only during the 2022 cruises, and
233 it sampled at 1 Hz. Profiles were selected from casts where the instrumentation was stable on the
234 seafloor for >2-5 min. The lowest sampling height of these measurements was determined by the
235 setting of the Aquadopp's acoustic blanking distance and its face height above the seafloor. The
236 period and height of surface waves sensed near the bottom were derived from the Aquadopp's
237 time series of pressure with the same code applied to *Vector* time series of pressure (Reimers and
238 Fogaren 2021). Lastly, logarithmic regressions of lower segments of mean flow speed profiles
239 were computed to assess how well profiles conformed to the standard law of the wall model for
240 turbulent flow and to yield additional estimates of friction velocities (u_*) and large-scale
241 roughness parameters (z_0) at each site (Trowbridge and Lentz 1998, 2018). The model was
242 applied assuming that the average near-bottom horizontal flow speed (S) will vary with height
243 above the seafloor (z) according to the relationship

244
$$S = \sqrt{\bar{E}^2 + \bar{N}^2} = \frac{u_*}{K} \ln \left(\frac{z}{z_0} \right) \quad (4)$$

245 where \bar{E} and \bar{N} are means of the measured velocities in East and North coordinates, and K is the
246 von Karman's constant (0.41). Only the lowest five profile bins were fit to the model in keeping
247 with previous studies that have suggested that more than one logarithmic-profile region with
248 different logarithmic slopes may develop (Chriss and Caldwell 1982). Profile-based friction
249 velocities were also compared to concurrent covariance technique derivations (Eq. 3) in three
250 cases.

251 **Macrofaunal taxonomic analysis**

252 Upon return to the laboratory, organisms sieved from box core samples collected from a
253 small range of water depths proximate to the eddy covariance lander deployment locations were
254 sorted into major taxonomic groups. Echinoderms were identified by laboratory staff, and
255 crustaceans, mollusks, and polychaetes were sent to contracted taxonomic experts. Multivariate
256 analyses were undertaken using PRIMER 7th Edition (Clarke and Gorley 2006). Species
257 abundance data were square-root transformed to reduce the influence of highly abundant species.
258 A Bray-Curtis similarity matrix was created as the basis for investigating variability in
259 communities among stations. The SIMPER routine in PRIMER was run to identify the
260 characteristic species (taxa that are primarily responsible for observed differences between
261 groups of samples) of each site and their densities. Biological traits of characteristic fauna were
262 obtained from Queirós et al. (2013) and the Cefas Data Portal
263 (<https://data.cefas.co.uk/#/View/21362>) developed by Clare et al. (2022).

264 **Results**

265 **Benthic macrofaunal assemblages**

266 Fig. 2 established that severe to borderline hypoxic conditions were present in the bottom
267 waters above the shelf sediments sampled in this study. However, from these sediments,
268 macrofauna invertebrates were collected in densities averaging 31-113 organisms per 0.1 m^2 box
269 core per sampling area, and these samples contained on average 11 to 28 taxa (Table 1).
270 Characteristic taxa differed among locations with some latitudinal patterns. Although faunal
271 abundance and richness estimates near the NH80 site were derived from box core sampling in
272 the summer of 2010, helically coiled gastropods (appearing to be *Alia gausapata*) were abundant
273 on the seafloor in bottom video imagery collected in 2018 (Fig. 1), as well as in 2010 (Table 1).
274 Megafauna visible in the 2018 bottom imagery included fishes (Pacific sanddabs *Citharichthys*
275 *sordidus*, English sole *Parophrys vetulus*, Dover sole *Microstomus pacificus*, Rex sole
276 *Glyptocephalus zachirus*, Longnose skate *Caliraja rhina*), anemones, and sea stars. Fresh
277 mounds, burrow openings, tracks, tubes, and decaying detrital pyrosomes (cf. *Pyrosoma*
278 *atlanticum*) were common (see *Supporting Information* Fig. S3).

279 One organism of special interest is the burrowing shrimp, *Neotrypaea gigas*, which is
280 known to inhabit both shelf and estuarine sediments, but was first noted in high densities on the
281 Oregon shelf just inshore of the PWS2 site in 2019 (Henkel et al. 2022). This discovery caused
282 us to hypothesize that *Neotrypaea gigas* may be shifting its distribution and/or abundance and
283 thus affecting other resident macrofauna because of its deep burrow digging and irrigation.
284 Burrow openings presumed to be from *Neotrypaea gigas* (but also documented in gravity cores)
285 were visible in drop camera videos at all four sites sampled in 2022 (Table 1), and shrimp were
286 recovered in densities up to 15 per box core or 150 m^{-2} . Flow from burrow openings was
287 observed in drop camera videos, indicating active burrow maintenance.

288 **Eddy covariance time series**

289 The BBL dynamics of the Oregon-Washington shelf in summer were sampled by this
290 study's eddy covariance measurements, with Fig. 3 illustrating deployments 1 and 3 from the
291 Newport Hydrographic Line site at 80 m (NH80). Common features of the near-bed velocity
292 series (top panels) are the combined effects of surface wave oscillations and currents, internal
293 wave arrivals, and tides. Oxygen concentrations (middle panels) show periods of both stability
294 and change, often with gradual increases or declines following shifts in the tide. Pressure time
295 series (middle panels) indicate the timing of tides, and the period and the height of the surface
296 swell. The 15-min flux determinations displayed in the bottom panels are the basis for flux
297 averages (± 1 standard deviation) given in Table 2 with other situational information for all
298 deployments. A summary of all derived flow parameters, such as mean horizontal flow speeds
299 and friction velocities, is given by deployment in *Supporting Information* as Table S1.

300 Close examinations of the combined sensor records from individual deployments reveal
301 further details of the regional summertime hydrodynamics. First, internal waves crossing a site
302 may impact velocities greatly while having little effect on oxygen concentrations as was
303 observed between ~17:00 and 19:00 on July 3, 2018, at NH80 (Fig. 3a) and more strikingly
304 between ~01:30 and 3:00 on August 3 (Fig. 3b). Second, small temperature changes may roughly
305 mirror small oxygen changes over cycles of mixed tides (for example, declines of $<0.02^{\circ}\text{C}$ when
306 DO declined $2\text{--}3 \mu\text{mol L}^{-1}$ toward the low tides at the NH80 site in August, see Fig. S8 in
307 *Supporting Information*). Further, horizontal flow speeds can be relatively low, averaging $5.0 \pm$
308 2.4 cm s^{-1} during deployment 1 and only $3.3 \pm 1.7 \text{ cm s}^{-1}$ during deployment 3 under quiescent
309 BBL conditions influenced primarily by the summertime swell. The two co-occurring
310 independent deployments of separate eddy covariance systems landed 0.4 km apart at NH80 in
311 July 2018 (deployments 1 and 2) represent a full duplication of the approach under shared

312 bottom water conditions. The two deployments yielded nearly equivalent average fluxes (Table
313 2) and velocity records that confirmed shared regional forcings but also differences in local
314 friction velocities (Fig. 4).

315 The July 2022 record from the southern-most site PWS2 (see *Supporting Information*
316 Fig. S5) had average flow speeds of $4.6 \pm 2.5 \text{ cm s}^{-1}$, which were observed during more acutely
317 hypoxic conditions (average DO = $24.7 \pm 1.2 \mu\text{mol L}^{-1}$, Table 2) than observed at NH80 in 2018.
318 During the PWS2 deployment, internal wave arrivals were also seen in the velocities, and these
319 waves were accompanied by oscillations and small rises in the dissolved oxygen concentration.
320 Oxygen fluxes at the PWS2 site averaged $-4.9 \pm 2.3 \text{ mmol m}^{-2} \text{ d}^{-1}$.

321 During the NEH2 deployment (Fig. 5), two fiber optic oxygen sensors measured oxygen
322 variations separately on one lander to yield two oxygen flux records that helped to identify an
323 example of an intermittent sensor artifact (Huettel et al. 2020). Sensor “ox1” displayed some
324 sharp jumps in signal near the end of the deployment that were not recorded by “ox2”. This
325 sensor instability led to lower ox1 fluxes over the last 5 bursts, even when these data segments
326 were trimmed to remove the most egregious spikes. However, the temporal variations in fluxes
327 seen over the whole preceding record are reflected by both sensors, increasing confidence that
328 the dynamics of the BBL extend to benthic oxygen fluxes. The overall bottom water oxygen
329 concentration also rose by $30 \mu\text{mol L}^{-1}$ over the 22.5-h NEH2 deployment, thereby approaching
330 the upper limit of hypoxia.

331 The average eddy covariance-derived oxygen flux at NEH2 in September 2022 was
332 $-13.2 \pm 6.9 \text{ mmol m}^{-2} \text{ d}^{-1}$ (via ox 1, Table 2), but the site off Neskowin, Oregon, NKW1, during
333 the same week in September had notably higher oxygen concentrations and greater fluxes into
334 the sediment ($-23.0 \pm 11.2 \text{ mmol m}^{-2} \text{ d}^{-1}$, Table 2). Oxygen concentrations observed 30 cm above

335 the seafloor of site NKW1 rose from 63 to 85 $\mu\text{mol L}^{-1}$ with a very abrupt change coincident
336 with internal wave arrivals starting at $\sim 21:00$ in the record (see *Supporting Information* Fig. S6).
337 This site had benthic oxygen fluxes of magnitudes we have measured in past Oregon shelf
338 studies only at inner shelf depths in summer months (McCann-Grosvenor et al. 2014) or under
339 winter conditions on the mid shelf (Reimers and Fogaren 2021).

340 Lastly, WLP1 exhibited multiple episodes of internal wave arrivals and eddy covariance-
341 derived oxygen fluxes equaling -4.7 ± 2.6 while being under severely hypoxic conditions (see
342 *Supporting Information* Fig. S7). All eddy flux means were 2-5 times greater in magnitude than
343 corresponding core incubation fluxes (Table 2), indicating oxygen uptake enhancements are
344 created by turbulent flow across tens of m^2 of shelf sediment and bottom life (the eddy
345 covariance footprint, Berg et al. 2007).

346 **Exploration of covariate factors for eddy fluxes within records**

347 All the eddy covariance oxygen flux records of this study exhibited sub-hourly
348 variability. Pairwise Pearson correlation analyses were run to investigate which short-term
349 factors showed the greatest association (Fig. 6, *Supporting Information* Table S2). Interestingly,
350 the strength of the covariate measures, sv_z' and sC' , both drove changes in the oxygen uptake,
351 with sv_z' dominating variations across deployment 5 (NWK1) compared to sC' ; both measures
352 being of about equal importance within deployments 2, 4 and 7 (NH80#2, PWS2 and WLP1);
353 but sC' having a greater influence on flux variations during deployments 1, 3 and 6
354 (NH80#1 and #3 and NEH2). Varying flow conditions recorded during deployments 1, 4, 5, 6 and
355 7 caused parameters such as u_* and ε to correlate significantly with short-term rates of sediment
356 oxygen uptake. Fluxes observed within deployments 1, 2, 6 and 7 were moderately correlated
357 with both RMS velocities and horizontal flow speed, but not with wave heights. In contrast,

358 fluxes during the August 2018 NH80 deployment 3 had weak correlations ($r < |0.2|$) with all
359 flow-related parameters, reflecting the relatively quiescent conditions during that observation
360 period.

361 Another question we sought to test was whether flux values depended on flow direction,
362 which could occur if the seafloor was not uniform around the eddy covariance lander at a given
363 site or if there were differential lander effects on the measurements. This led to circular-linear
364 correlation computations between Dir (computed from E and N velocities) and flux. Only
365 deployment 4 at the PWS2 site showed a moderately strong directional dependence ($r = 0.44$, p-
366 value < 0.0001 , Table S2).

367 **Exploration of covariate factors for eddy fluxes between deployments**

368 When using correlation analyses between mean fluxes and environmental factors by
369 deployment, many of the same variables examined within single records emerged as important,
370 and pressure (station depth) was an added variable (see *Supporting Information* Table S3).
371 Notably amongst the seven deployments, significant relationships between sediment oxygen
372 consumption rates and mean determinations of sC' , DO, and pressure were reflected in Pearson
373 coefficients of 0.97, 0.68 and -0.78, respectively, indicating greater rates of oxygen uptake and
374 thus larger oxygen fluctuations at shallower, more oxygenated sites. Pearson correlation
375 coefficients found for relationships between sediment oxygen uptake rates and mean sv_z' ,
376 Horizontal speed, RMS velocity, ε , and u_* were 0.73, 0.37, 0.77, 0.51 and 0.83, respectively,
377 further supporting flux enhancements by physical dynamics. Bottom-sensed significant wave
378 height H_s was only weakly correlated ($r = 0.26$), but wave height is expected to be largely a
379 seasonal driver reflective of winter storm activity (Reimers et al. 2016). Median grain size,
380 macrofaunal numbers, and richness were also tested for correlations with the mean oxygen

381 consumption rates of the four sites fully characterized in 2022, yielding non-significant
382 correlation coefficients of 0.48, 0.51 and 0.45, respectively, and weaker correlations with mean
383 DO. Macrofaunal abundance and richness did show significant correlations with mean
384 sv_z' , turbulent dissipation rates, RMS velocities, and with each other, despite the low number of
385 observations (see *Supporting Information* Table S4). The estimates of turbulent energy
386 dissipation rates, ε , ranged on average from 3.7×10^{-7} to $7.8 \times 10^{-6} \text{ m}^2\text{s}^{-3}$ (see *Supporting*
387 *Information* Table S2) in agreement with prior determinations by Perlin et al. (2005).

388 Velocity profiles

389 Additional observations for characterizing the BBL dynamics for three regions sampled
390 in 2022 are presented through acoustic velocity profiles (Fig. 7) and log-layer fitting parameters
391 (Table 3). The profiles capture only snapshots of the vertical structure of mean flow in the BBL,
392 but they offer insight into the extent of deviations from the classical log-law, and apparent
393 bottom roughness scales (z_0) affecting turbulent fluctuations and oxygen exchange near the
394 bottom boundary. We note the tripod may have caused minor amounts of acoustic beam
395 interference, especially with beam spreading above 1.2 m in some profiles. The time series of
396 velocities and pressure measured with the Aquadopp profiler show that near-bottom flows were
397 dominated by the local swell (see *Supporting Information* Fig. S9). Furthermore, the mean flow
398 was directed primarily to the north within 2.5 m of the bottom during two NEH area casts and at
399 WLP1 (Fig. 7). Flattening wave orbitals, bottom friction, and effects of the bottom Ekman layer
400 balance (Perlin et al. 2005) appear to have created distinctive profile segments below
401 approximately 0.6 m height. The cm-scale roughness lengths derived from the lowest profile
402 segments at NKW1, WLP1, and NEH1 agree with observations from bottom images (Fig. 1), and
403 the friction velocities fall within the ranges of values based on Reynolds stresses using the

404 covariance relationship (Table 3). In the case of the NKW1 profile, the measurements coincided
405 with an episode of internal wave arrivals evident in Fig. S6 of the *Supporting Information*. The
406 NEH2 profile, which was based on only a 2-minute record (Table 3), coincided with some of the
407 highest flow speeds observed late in the eddy covariance deployment at that site (Fig. 5).

408 **Discussion**

409 In this study we focused on the middle Oregon-Washington shelf, a region where hypoxia
410 occurs because of physical and biogeochemical processes within a seasonal coastal upwelling
411 regime. We show that while the seafloor may be bathed by hypoxic waters, highly variable
412 physical dynamics within the benthic boundary layer will maintain a supply of oxygen to the
413 benthos, fueling consumption rates of -3.5 to -23 $\text{mmol m}^{-2} \text{d}^{-1}$ during summer. The rates from
414 different sites varied inversely with water depth and directly with flow parameters such as
415 friction velocities. Greater confidence in these rates was established through concurrent
416 deployments of two eddy covariance landers in one experiment, by a repeat deployment at the
417 same site one month later, and by another deployment with dual DO sensors. The results from
418 these experiments suggest that rates of seabed respiration when averaged over 24 h are not
419 highly heterogeneous at shelf area scales of 0.2 km^2 or within a single summer season. They also
420 show that short-term variability within records is common and reproducible. Furthermore, these
421 eddy covariance benthic oxygen fluxes were significantly elevated over fluxes measured by
422 parallel core incubations (-1.2 to -4.3 $\text{mmol m}^{-2} \text{d}^{-1}$, Table 2). Prior diffusive oxygen utilization
423 rates from microelectrode oxygen profiles (-1.1 to -2.7 $\text{mmol m}^{-2} \text{d}^{-1}$, McCann-Grosvenor et al.
424 2014; Reimers et al. 2012) and prior in situ benthic chamber DO fluxes (-4.3 to -12.5 $\text{mmol m}^{-2} \text{d}^{-1}$,
425 ¹, Fuchsman et al. 2015) on the Oregon shelf in summer support the oft conclusion that core
426 incubations will underestimate rates of seafloor oxygen uptake simply because they do not

427 maintain the natural conditions of physical and biological advective exchange captured by eddy
428 covariance (Jørgensen et al. 2022). However, oxygen fluxes can be dominated by diffusion in
429 low-energy deep-sea environments or semi-enclosed coastal basins. This appeared to be the case
430 within Saanich Inlet at 100 m depth during a 7-month eddy covariance study where Reimers et
431 al. (2020) found average benthic fluxes of oxygen were only $-1.6 \pm 1.2 \text{ mmol m}^{-2} \text{ d}^{-1}$ despite
432 organic-rich sediments.

433 The responses of fauna to hypoxia in Saanich Inlet and other well-studied eutrophic
434 coastal fjords and basins have been observed to follow patterns of progressive behavioral
435 changes and physiological stress, leading to population changes that favor more hypoxia-tolerant
436 species as DO concentrations decrease to severely low levels (Levin et al. 2009; Matabos et al.
437 2012; Tunnicliffe et al. 2020). Manifestations of hypoxic stress in benthic organisms can include
438 movement to the surface and out of sediments (Montagna and Ritter 2006) where they may
439 benefit from turbulent and advective fluxes of DO. In our bottom imagery, we did not observe
440 organisms that are normally found within the sediment residing on the surface. Since the
441 sediments are permeable, bioturbated, and under strong flows and high turbulence, any threshold
442 for emergence may not have occurred. Thus, reports of localized mortalities in assemblages of
443 benthic invertebrates do appear to signal the onset of anoxia as inferred by Chan et al. (2008).

444 Richness per 0.1 m^2 box core in this study (11 to 28 taxa) was substantially lower than
445 that observed in summer 2003 shelf assessments between 40 and 48°N (20-100; Henkel and
446 Nelson 2018) but similar to summer assessments in 2010-12 (21-38; Henkel and Politano 2017),
447 which mirrors the trends in dissolved oxygen observed in those studies (85 - $138 \mu\text{mol L}^{-1}$, Henkel
448 and Nelson 2018; 52 - $65 \mu\text{mol L}^{-1}$ Henkel and Politano unpublished data). However, the fewer
449 taxa relative to collections in 2003 may reflect the myriad changes within the northern California

450 Current over the last two decades (Barth et al. 2024), not just deoxygenation trends. A
451 multivariate analysis by Henkel and Politano (2017) of macrofaunal invertebrate groupings
452 across the shelf from northern California to southern Washington at depths spanning 50 to 110 m
453 found that assemblages correlated primarily with sediment texture (percent fines, and median
454 grain size - spanning silt to gravel), and thus presumably with other wide-scale environmental
455 factors that determine or depend on sediment grain size such as riverine inputs, currents, winter
456 wave energy, and permeability, respectively (Voorhies et al. 2018).

457 Bottom imagery confirmed all study sites were habitat for active infauna, often showing
458 the burrow openings of the shrimp *Neotrypaea gigas*, which is an ecosystem engineer that can
459 influence sediment characteristics, pore water chemistry, and benthic fluxes. *Neotrypaea gigas*
460 were first found in high numbers with multiple cohorts on the central Oregon shelf in 2019
461 (Henkel et al. 2022). They were present in 45% of box cores across the four sites sampled in
462 2022, at densities up to 15 per box core or 150 m^{-2} (Table 1). These results indicate a sizeable
463 offshore population contributing greater biomass and metabolism overall than other smaller taxa.
464 The highest *in situ* oxygen concentration, *in situ* flux as measured by eddy covariance, and core
465 incubation oxygen flux were measured at the site with the highest *Neotrypaea gigas* densities
466 and the second highest density of burrow openings observed in the nearby seafloor video
467 (NWK1). *Neotrypaea* sp. have been characterized as oxyregulators that increase ventilation
468 behaviors to oxygenate their burrows and to resist hypoxic stress (Levia et al. 2015). They are
469 also subsurface deposit feeders and, like other Callianassid burrowing shrimp, generally
470 influence bioturbation via mixing and conveying of sediment during burrow formation and
471 maintenance (Clare et al. 2022; Queirós et al. 2013).

472 The characteristic polychaetes observed in this study were similar at the three central
473 Oregon sites, including the tube-dwelling *Spiophanes norrisi*, described as a surface depositor by
474 Clare et al. (2022) and an upward and downward conveyor by Queirós et al. (2013), and
475 *Leitoscoplos pugettensis*, which has been described as a common intertidal and subtidal burrower
476 and deposit feeder (Hiebert 2015). Two of these sites also supported free-living predatory
477 *Nephtys* sp. and burrow-dwelling subsurface deposit-feeding *Notomastus* sp., thus, with bottom
478 images, collectively suggesting active bioturbation under hypoxic conditions that should
479 contribute to sediment oxygen consumption. The more northern Oregon sites, NKW1 and NEH2,
480 which exhibited the highest DO fluxes, were additionally characterized by suspension-feeding,
481 tube-dwelling *Onuphis iridescent*. The densities of *O. iridescent* (average of 37-75 m⁻²; Table 1)
482 exceeded those reported for eastern U.S.A. tidal flat congeners, *O. microcephala* (average of 26
483 m⁻²; Pryor 1975) and *O. jenneri* (8-79 m⁻²; Waldbusser and Marinelli 2009) whose densities
484 have been correlated to rates of pore water advection. The most abundant polychaete at the
485 northern Oregon site NEH2 and the Washington WLP1 was the burrowing *Galathowenia* (prev.
486 *Myriochele*) *oculata*, which is both a surface suspension and surface deposit feeder and
487 considered a downward conveyor by Clare et al. (2022) but a surficial modifier by Queirós et al.
488 (2013). On the western continental shelf of the U.K., *G. oculata* was the principal species
489 defining similarity among grab samples from unconsolidated-sediment habitats, where the
490 percent cover of bioturbated surface also made a significant contribution to habitat group
491 similarities (McGonigle et al. 2009). Such observations suggest that *G. oculata* likely plays a
492 role in surface modification on the Oregon-Washington shelf, adding to the creation of biological
493 roughness.

494 The near-bottom velocity profiles measured at the NKW1, NEH2&1, and WLP1 sites
495 showed wave-current interactions, which can enhance bottom turbulence and feedback to reduce
496 hypoxic stress to the benthos. Velocity time series at all study sites also displayed the interacting
497 influences of surface waves, internal waves, and tides. Thus, the physical forces that drive
498 interfacial transport and carry DO to benthic communities act in conjunction with organic matter
499 fluxes, bioturbation, and particle trapping (Huettel and Rusch 2000) to sustain oxygen
500 consumption as a vigorous process over much of the Oregon-Washington middle shelf.
501 Latitudinal differences are evident in the groupings of species, indicating other regional
502 controlling factors such as shelf morphology or conditions that alter the seafloor during non-
503 summer seasons. Similar findings are very likely to be observed on other open, sediment-
504 covered, continental shelves. The variable dynamics create a complex interplay with the benthos,
505 which has not been fully recognized in shelf ecosystem and population studies or when
506 characterizing the effects of hypoxia. We advocate that, as a first advance, future studies
507 consider that it is the dynamics of the benthic oxygen supply that will shape benthic responses to
508 hypoxia, not simply the DO concentration.

509 ***Acknowledgements***

510 This work was supported by a grant from the National Science Foundation to S. Henkel and C.
511 Reimers [grant number OCE-2126112] and an earlier grant to C. Reimers [OCE-1634319].
512 Equipment acquired with funding from Oregon Sea Grant #NA18OAR4170072 (CFDA No.
513 11.417), Project number R/HBT-23-Reimers2022 was used for the collection of velocity profiles.
514 We are grateful to the crews, marine technicians, and research assistants aboard R/Vs *Oceanus*
515 and *Robert Gordon Sproul* for their contributions to operations and sampling. The manuscript
516 benefited from reviews by Peter Berg and two anonymous reviewers.

517 ***Author Contribution Statement***

518 All authors contributed to the field work and collection of data. Clare Reimers led the research
519 cruises, analyzed the eddy covariance and velocity profile data, prepared figures and tables, and
520 wrote the paper. Sarah Henkel directed the box coring and drop-camera collections, assembled
521 the macrofauna analyses, and provided content for the paper's discussion. Waldo Wakefield
522 provided the video beam trawl, identified fauna within images, and reviewed the text. Kristen
523 Fogaren and Anna Hughes provided details and editing to the text.

524 ***Data Availability Statement***

525 The data that support the findings of this study are available through the repository BCO-DMO.
526 DOI: 10.26008/1912/bco-dmo.962251.1
527 BCO-DMO Metadata Landing Page: <https://www.bco-dmo.org/dataset/962251>

528

529 **References**

530 Abelson, A., T. Miloh, and Y. Loya. 1993. Flow patterns induced by substrata and body
531 morphologies of benthic organisms, and their roles in determining availability of food particles.
532 *Limnology and Oceanography* **38**: 1116-1124. <https://doi.org/10.4319/lo.1993.38.6.1116>

533

534 Adams, K. A., J. A. Barth, and R. K. Shearman. 2016. Intraseasonal cross-shelf variability of
535 hypoxia along the Newport, Oregon, Hydrographic Line. *Journal of Physical Oceanography* **46**:
536 2219-2238. <https://doi.org/10.1175/JPO-D-15-0119.1>

537

538 Attard, K. M., R. N. Glud, D. F. McGinnis, and S. Rysgaard. 2014. Seasonal rates of benthic
539 primary production in a Greenland fjord measured by aquatic eddy correlation. *Limnology and*
540 *Oceanography* **59**: 1555-1569. <https://doi.org/10.4319/lo.2014.59.5.1555>

541

542 Barth, J. A., S. D. Pierce, B. R. Carter, F. Chan, A. Y. Erofeev, J. L. Fisher, R. A. Feely, K. C.
543 Jacobson, A. A. Keller, C. A. Morgan, J. E. Pohl, L. K. Rasmussen, and V. Simon. 2024.
544 Widespread and increasing near-bottom hypoxia in the coastal ocean off the United States
545 Pacific Northwest. *Nature Scientific Reports* **14**: 3798. [https://doi.org/10.1038/s41598-024-54476-0](https://doi.org/10.1038/s41598-024-
546 54476-0)

547

548 Berens, P. 2009. CircStat: A MATLAB Toolbox for Circular Statistics. *Journal of Statistical*
549 *Software* **31**: 1-21. <https://doi.org/10.18637/jss.v031.i10>

550

551 Berg, P., M. Huettel, R. N. Glud, C. E. Reimers, and K. A. Attard. 2022. Aquatic eddy
552 covariance: the method and its contributions to defining oxygen and carbon fluxes in marine
553 environments. *Annual Review of Marine Science* **14**: 431-455. <https://doi.org/10.1146/annurev-marine-042121-012329>

555

556 Berg, P., H. Røy, F. Janssen, V. Meyer, and B. B. Jørgensen. 2003. Oxygen uptake by aquatic
557 sediments measured with a novel non-invasive eddy-correlation technique. *Mar. Ecol. Prog. Ser.*
558 **261**: 75 - 83.

559

560 Berg, P., H. Røy, and P. L. Wiberg. 2007. Eddy correlation flux measurements: The sediment
561 surface area that contributes to the flux. *Limnology and Oceanography* **52**: 1672-1684.
562 <https://doi.org/10.4319/lo.2007.52.4.1672>

563

564 Boland, G.S. and G.T. Rowe. 1991. Deep-sea benthic sampling with the GOMEX box corer.
565 *Limnology and Oceanography* **36**: 1015-1020. <https://doi.org/10.4319/lo.1991.36.5.1015>

566

567 Boudreau, B. P. 1997. Diagenetic Models and Their Implementation. 417p. Springer-Verlag.
568 ISBN-13:978-3-642-64399-6. <https://doi.org/10.1007/978-3-642-60421-8>

569

570 Boudreau, B. P., and B. B. Jørgensen, (eds.). 2001. The Benthic Boundary Layer: Transport
571 Processes and Biogeochemistry. Oxford Univ. Press. ISBN 0-19-511881-2.
572 <https://doi.org/10.1007/978-3-642-60421-8>

573

574 Breitburg, D., L. A. Levin, A. Oschlies, M. Grégoire, F. P. Chavez, D. J. Conley, V. Garçon, D.
575 Gilbert, D. Gutiérrez, K. Isensee, G. S. Jacinto, K. E. Limburg, I. Montes, S. W. A. Naqvi, G. C.
576 Pitcher, N. N. Rabalais, M. R. Roman, K. A. Rose, B. A. Seibel, M. Telszewski, M. Yasuhra,
577 and J. Zhang. 2018. Declining oxygen in the global ocean and coastal waters. *Science* **359**: 7240.
578 <https://doi.org/10.1126/science.aam7240>

579

580 Chan, F., J. A. Barth, J. Lubchenco, A. Kirincich, H. Weeks, W. T. Peterson, and B. A. Menge.
581 2008. Emergence of anoxia in the California current large marine ecosystem. *Science*
582 **319**: 920. <https://doi.org/10.1126/science.1149016>

583

584 Chriss, T. M., and D. R. Caldwell. 1982. Evidence for the influence of form drag on bottom
585 boundary layer flow. *Journal of Geophysical Research* **87**: 4148-4154.
586 <https://doi.org/10.1029/JC087iC06p04148>

587

588 Clare, D. S., S. G. Bolam, P. S. McIlwaine, C. Garcia, J. M. Murray, and J. D. Eggleton. 2022.
589 Biological traits of marine benthic invertebrates in Northwest Europe. *Scientific Data* **9**: 339.
590 <https://doi.org/10.1038/s41597-022-01442-y>

591

592 Clarke K. R. and R. N. Gorley. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E,
593 Plymouth.

594

595 Connolly, T. P., B. M. Hickey, S. L. Geier, and W. P. Cochlan. 2010. Processes influencing
596 seasonal hypoxia in the northern California Current System. *Journal of Geophysical Research*
597 **115**: C03021. <https://doi.org/10.1029/2009JC005283>

598

599 Díaz, R. J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine
600 ecosystems. *Science* **321**: 926–929. <https://doi.org/10.1126/science.1156401>

601

602 Fennel, K., and J. M. Testa. 2019. Biogeochemical controls on coastal hypoxia. *Annual Review*
603 *of Marine Science* **11**: 103-130. <https://doi.org/10.1146/annurev-marine-010318-095138>

604

605 Fuchsman, C. A., A. H. Devol, Z. Chase, C.E. Reimers and B. Hales. 2015. Benthic fluxes on the
606 Oregon shelf. *Estuarine, Coastal and Shelf Science*, Part B **163**: 156-166.
607 <https://doi.org/10.1016/j.ecss.2015.06.001>

608

609 Glud, R. N. 2008. Oxygen dynamics of marine sediments. *Marine Biology Research* **4**: 243-289.
610 <https://doi.org/10.1080/17451000801888726>

611

612 Goldfinger, C., S. K. Henkel, C. Romsos, A. Havron, and B. Black. 2014. Benthic habitat
613 characterization offshore the Pacific Northwest. Volume 1: Evaluation of Continental Shelf
614 Geology. US Dept. of the Interior, Bureau of Ocean Energy Management, Pacific OCS Region.
615 OCS Study BOEM 2014-662. 161 pp.

616

617 Henkel, S. K. and L. A. Gilbane. 2020. Using benthic macrofaunal assemblages to define habitat
618 types on the northeast Pacific sedimentary shelf and slope. *Estuarine Coastal and Shelf Science*
619 **246**: 107056. <https://doi.org/10.1016/j.ecss.2020.107056>

620

621 Henkel, S. K. and W. G. Nelson. 2018. Assessment of spatial patterns in benthic macrofauna of
622 the U.S. west coast continental shelf. *Journal of Biogeography* **45**: 2701-2717.
623 <https://doi.org/10.1111/jbi.13451>

624

625 Henkel, S. K. and K. K. Politano. 2017. Small proportions of silt linked to distinct and
626 predictable differences in marine macrofaunal assemblages on the continental shelf of the Pacific
627 Northwest. *Continental Shelf Research* **144**: 38-49. <https://doi.org/10.1016/j.csr.2017.06.016>

628

629 Henkel, S. K., E.C. Revelas, S. Wodzicki, and J. Chapman. 2022. Discovery of a large offshore
630 population of the northeast Pacific burrowing shrimp *Neotrypaea* sp. (Decapoda: Axiidea).
631 *Estuarine, Coastal and Shelf Science* **274**: 107936. <https://doi.org/10.1016/j.ecss.2022.107936>

632

633 Hiebert, T. C. 2015. *Leitoscoloplos pugettensis*. In: Oregon Estuarine Invertebrates: Rudys'
634 Illustrated Guide to Common Species, 3rd ed. T. C. Hiebert, B. A. Butler and A. L. Shanks
635 (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR.

636

637 Hoffman, F., H. Røy, K. Bayer, U. Hentschel, M. Pfannkuchen, F. Brümmer, and D. de Beer.
638 2008. Oxygen dynamics and transport in the Mediterranean sponge *Aplysina aerophoba*. *Marine
639 Biology* **153**: 1257-1264. <https://doi.org/10.1007/s00227-008-0905-3>

640

641 Holtappels, M., R. N. Glud, D. Donis, B. Liu, A. Hume, F. Wenzhöfer, and M. M. M. Kuypers .

642 2013. Effect of transient bottom water currents and oxygen concentrations on benthic exchange

643 rates as assessed by eddy correlation measurements. *Journal of Geophysical Research-Oceans*

644 **118**: 1157–1169. <https://doi.org/10.1002/jgrc.20112>

645

646 Huettel, M., P. Berg, and A. Merikhi. 2020. Technical note: Measurements and data analysis of

647 sediment-water oxygen flux using a new dual-optode eddy covariance instrument.

648 *Biogeosciences* **17**: 4459-4476. <https://doi.org/10.5194/bg-17-4459-2020>

649

650 Huettel, M. and A. Rusch. 2000. Transport and degradation of phytoplankton in permeable

651 sediment. *Limnology and Oceanography* **45**: 534-549. <https://doi.org/10.4319/lo.2000.45.3.0534>

652

653 Hughes, A., C. E. Reimers, K. E. Fogaren, and Y. Alleau. 2025. Spatiotemporal variability in

654 benthic-pelagic coupling on the Oregon-Washington shelf. *Marine Chemistry* **268**: 104473.

655 <https://doi.org/10.1016/j.marchem.2024.104473>

656

657 Jarvis, B. M., R. M. Greene, Y. Wan, J. C. Lehrter, L. L. Lowe, and D. S. Ko. 2021. Contiguous

658 low oxygen waters between the continental shelf hypoxia zone and nearshore coastal waters of

659 Louisiana, USA: Interpreting 30 years of profiling data and three-dimensional ecosystem

660 modeling. *Environmental Science and Technology* **55**: 4709-4719.

661 <https://doi.org/10.1021/acs.est.0c05973>

662

663 Jørgensen, B. B., F. Wenzhöfer, M. Egger, and R. N. Glud. 2022. Sediment oxygen
664 consumption: Role in the global marine carbon cycle. *Earth-Science Reviews* **228**: 103987.

665

666 Keller, A.A., L. Ciannelli, W.W. Wakefield, V. Simon, J.A. Barth, and S.D. Pierce. 2015.
667 Occurrence of demersal fishes in relation to near-bottom oxygen levels within the California
668 Current large marine ecosystem. *Fisheries Oceanography* **24**: 162-176.

669 <https://doi.org/10.1111/fog.12100>

670

671 Keller, A. A., V. Simon, F. Chan, W. W. Wakefield, M. E. Clarke, J. A. Barth, D. Kamikawa and
672 E. L. Fruh. 2010. Demersal fish and invertebrate biomass in relation to an offshore hypoxic zone
673 along the US West Coast. *Fisheries Oceanography* **19**: 76-87. <https://doi.org/10.1111/j.1365-2419.2009.00529.x>

675

676 Komar, P. D., R. H. Neudeck, and L. D. Kulm. 1972. Observations and significance of deep-
677 water oscillatory ripple marks on the Oregon continental shelf, in Swift D. J. P., Duane D. B.,
678 and Pilkey O. H. eds. *Shelf Sediment Transport*. Stroudsburg, Pennsylvania, Dowden,
679 Hutchinson and Ross, Inc.: 601-619.

680

681 Kravitz, M., W. G. Pearcy, and M. P. Gum. 1977. Food of five species of cooccurring flatfishes
682 on Oregon's continental shelf. *Fishery Bulletin* **74**: 984-990.

683

684 Kulm, L. D., R. C. Boush, J. C. Harlett, R. H. Neudeck, D. M. Chambers, and E. J. Runge. 1975.

685 Oregon continental shelf sedimentation: interrelationships of facies distributions and sedimentary

686 processes. *The Journal of Geology* **83**: 145-175.

687

688 Lee, Y., E. Byeon, D.-H. Kim, P. Maszczyk, M. Wang, R. S. S. Wu, H.-D. Jeung, U.-K. Hwang,

689 and J.-S. Lee. 2023. Hypoxia in aquatic invertebrates: Occurrence and phenotypic and molecular

690 responses. *Aquatic Toxicology* **263**: 106685. <https://doi.org/10.1016/j.aquatox.2023.106685>

691

692 Leiva, F.P., M.A. Urbina, J.P. Cumillaf, P. Gebauer, and K. Paschle. 2015. Physiological

693 responses of the ghost shrimp *Neotrypaea uncinata* (Milne Edwards 1837) (Decapoda:

694 Thalassinidea) to oxygen availability and recovery after severe environmental hypoxia.

695 *Comparative Biochemistry and Physiology* **189**: 30-37.

696 <https://doi.org/10.1016/j.cbpa.2015.07.008>

697

698 Levin, L. A., W. Ekau, A. J. Gooday, F. Jorissen, J. J. Middelburg, S. W. A. Naqvi, C. Neira, N.

699 N. Rabalais, and J. Zhang. 2009. Effects of natural and human-induced hypoxia on coastal

700 benthos. *Biogeosciences* **6**: 2063-2098. <https://doi.org/10.5194/bg-6-2063-2009>

701

702 Matabos, M., V. Tunnicliffe, S. Juniper, and C. Dean. 2012. A year in hypoxia: Epibenthic

703 community responses to severe oxygen deficit at a subsea observatory in a coastal inlet. *PLoS*

704 *ONE* **7**: e45626. <https://doi.org/10.1371/journal.pone.0045626>

705

706 McCann-Grosvenor, K., C. E. Reimers, and R. D. Sanders. 2014. Dynamics of the benthic
707 boundary layer and seafloor contributions to oxygen depletion on the Oregon inner shelf.
708 *Continental Shelf Research* **84**: 93-106. <https://doi.org/10.1016/j.csr.2014.05.010>

709

710 McGonigle, C., C. Brown, R. Quinn, and J. Grabowski. 2009. Evaluation of image-based
711 multibeam sonar backscatter classification for benthic habitat discrimination and mapping at
712 Stanton Banks, UK. *Estuarine, Coastal and Shelf Science* **81**:423–437.
713 <https://doi.org/10.1016/j.ecss.2008.11.017>

714

715 Montagna, P. A. and C. Ritter. 2006. Direct and indirect effects of hypoxia on benthos in Corpus
716 Christi Bay, Texas, U.S.A. *Journal of Experimental Marine Biology and Ecology* **330**: 119-131.
717 <https://doi.org/10.1016/j.jembe.2005.12.021>

718

719 Moum, J., J. M. Klymak, J. D. Nash, A. Perlin, and W. D. Smyth. 2007. Energy transport by
720 nonlinear internal waves. *Journal of Physical Oceanography* **37**: 1968-1988.
721 <https://doi.org/10.1175/JPO3094.1>

722

723 Pearcy, W. G. and D. Hancock. 1978. Feeding habits of Dover sole, *Microstomus pacificus*; rex
724 sole, *Glyptocephalus zachirus*; slender sole, *Lyopsetta exilis*; and Pacific sanddab, *Citharichthys*
725 *sordidus*, in a region of diverse sediments and bathymetry off Oregon. *Fishery Bulletin* **75**:173-
726 183.

727

728 Perlin, A., J. N. Moum, and J. M. Klymak. 2005. Response of the bottom boundary layer over a
729 sloping shelf to variations in alongshore wind. *Journal of Geophysical Research* **110**: C10S09.
730 <https://doi.org/10.1029/2004JC002500>

731

732 Perry, S. F., M. Lambertz, and A. Schmitz. 2019. Respiratory faculties of aquatic invertebrates.
733 In: *Respiratory Biology of Animals: Evolutionary and Functional Morphology*. Oxford
734 University Press. <https://doi.org/10.1093/oso/9780199238460.001.0001>

735

736 Pierce, S. D., J. A. Barth, K. Shearman, and A. Y. Erofeev. 2012. Declining oxygen in the
737 Northeast Pacific. *Journal of Physical Oceanography* **42**: 495-501. <https://doi.org/10.1175/JPO-D-11-0170.1>

739

740 Pryor, W. A. 1975. Biogenic sedimentation and alteration of argillaceous sediments in shallow
741 marine environments. *Geological Society of America Bulletin* **86**: 1244-1254.
742 [https://doi.org/10.1130/0016-7606\(1975\)86%3C1244:BSAAOA%3E2.0.CO;2](https://doi.org/10.1130/0016-7606(1975)86%3C1244:BSAAOA%3E2.0.CO;2)

743

744 Queirós, A. M., S. N. Birchenough, J. Bremner, J. A. Godbold, R. E. Parker, A. Romero-
745 Ramirez, H. Reiss, M. Solan, P. J. Somerfield, C. Van Colen, and G. Van Hoey. 2013. A
746 bioturbation classification of European marine infaunal invertebrates. *Ecology and Evolution* **3**:
747 3958-3985. <https://doi.org/10.1002/ece3.769>

748

749 Rabalais, N. N., R. J. Díaz, L. A. Levin, R. E. Turner, D. Gilbert, and J. Zhang. 2010. Dynamics
750 and distribution of natural and human-caused hypoxia. *Biogeosciences* **7**: 585-619.
751 <https://doi.org/10.5194/bg-7-585-2010>

752

753 Rabalais, N. N., R. E. Turner, and W. J. Wiseman. 2002. Gulf of Mexico hypoxia, aka ‘‘The
754 dead zone’’. *Annual Review of Ecology, Evolution, and Systematics* **33**: 235–263.
755 <https://doi.org/10.1146/annurev.ecolsys.33.010802.150513>

756

757 Reimers, C..E. and K. E. Fogaren. 2021. Bottom boundary layer oxygen fluxes during winter on
758 the Oregon shelf. *Journal of Geophysical Research-Oceans* **126**: e2020JC016828.
759 <https://doi.org/10.1029/2020JC016828>

760

761 Reimers, C. E., H. T. Özkan-Haller, R. D. Sanders, K. McCann-Grosvenor, K., P. J. Chace, and
762 S. A. Crowe. 2016. The dynamics of benthic respiration at a mid-shelf station off Oregon.
763 *Aquatic Geochemistry* **22**: 505-527. <https://doi.org/10.1007/s10498-016-9303-5>

764

765 Reimers, C. E., H. T. Özkan-Haller, P. Berg, A. Devol, K. McCann-Grosvenor, and R. D.
766 Sanders. 2012. Benthic oxygen consumption rates during hypoxic conditions on the Oregon
767 continental shelf: Evaluation of the eddy correlation method. *Journal of Geophysical Research-
768 Oceans* **117**: C02021, <https://doi.org/10.1029/2011JC007564>

769

770 Reimers, C. E., R. D. Sanders, R. Dewey, and R. Noel. 2020. Benthic fluxes of oxygen and heat
771 from a seasonally hypoxic region of Saanich Inlet fjord observed by eddy covariance. *Estuarine,*
772 *Coastal and Shelf Science* **243**: 106815. <https://doi.org/10.1016/j.ecss.2020.106815>

773

774 Risien, C. M., B. T. Cervantes, M. R. Fewings, J. A. Barth and P. M. Kosro. 2023. A stitch in
775 time: Combining more than two decades of mooring data from the central Oregon shelf. *Data in*
776 *Brief* **48**: 109041. <https://doi.org/10.1016/j.dib.2023.109041>

777

778 Siedlecki, S. A., N. S. Banas, K. A. Davis, S. Giddings, S., B. M. Hickey, P. MacCready, T.
779 Connolly, T. and S. Geier. 2015. Seasonal and interannual oxygen variability on the Washington
780 and Oregon continental shelves. *Journal of Geophysical Research-Oceans* **120**: 608-633.
781 <https://doi.org/10.1002/2014JC010254>

782

783 Shapiro, O. H., V. I. Fernando, M. Garren, and R. Stocker. 2014. Vortical ciliary flows actively
784 enhance mass transport in reef corals. *Proceedings of the National Academy of Sciences* **111**:
785 13391-13396. <https://doi.org/10.1073/pnas.1323094111>

786

787 Somero, G. N., J. M. Beers, F. Chan, T. A. Hill, T. Klinger, and S. Y. Litvin. 2016. What
788 changes in carbonate system, oxygen, and temperature portend for the Northeastern Pacific
789 Ocean: A physiological perspective. *BioScience* **66**: 14-26. <https://doi.org/10.1093/biosci/biv162>

790

791 Stinton, A., L. Ciannelli, D. C. Reese, and W. W. Wakefield. 2014. Using in situ video analysis
792 to assess juvenile flatfish behavior along the Oregon Central Coast. *CalCOFI Reports* **55**: 158-
793 168.

794

795 Storch, V. and G. Alberti. 1978. Ultrastructural observations on the gills of polychaetes.
796 *Helgoländer wissenschaftliche Meeresuntersuchungen* **31**: 169-179.

797

798 Trowbridge, J. H. and Y. C. Agrawal. 1995. Glimpses of a wave boundary layer. *Journal of
799 Geophysical Research-Oceans* **100**: 20,729-20,743. <https://doi.org/10.1029/95JC02131>

800

801 Trowbridge, J. H. and S. J. Lentz. 1998. Dynamics of the bottom boundary layer on the northern
802 California shelf. *Journal of Physical Oceanography* **28**: 2075–2093.
803 [https://doi.org/10.1175/1520-0485\(1998\)028<2075:DOTBBL>2.0.CO;2](https://doi.org/10.1175/1520-0485(1998)028<2075:DOTBBL>2.0.CO;2)

804

805 Trowbridge, J. H. and S. J. Lentz. 2018. The bottom boundary layer. *Annual Review of Marine
806 Science* **10**: 397-420. <https://doi.org/10.1146/annurev-marine-121916-063351>

807

808 Tunnicliffe, V., R. Gasbarro, F. Juanes, J. Quallie, N. Soderberg, and J. W. F. Chu. 2020. An
809 hypoxia-tolerant flatfish: consequences of sustained stress on the slender sole *Lyopsetta exilis*
810 (Pleuronectidae) in the context of a changing ocean. *Journal of Fish Biology* **96**: 394-407.
811 <https://doi.org/10.1111/jfb.14212>

812

813 Vaquer-Sunyer, R., and C. M. Duarte. 2008. Thresholds of hypoxia for marine biodiversity.

814 *Proceedings of the National Academy of Sciences* **105**: 15452-15457.

815 <https://doi.org/10.1073/pnas.0803833105>

816

817 Voorhies, K.J., Wootton, J.T., Henkel, S.K., 2018. Longstanding signals of marine community

818 structuring by winter storm wave-base. *Marine Ecology Progress Series*

819 **603**: 135–146. <https://doi.org/10.3354/meps12703>

820

821 Waldbusser, G. G. and R. L. Marinelli. 2009. Evidence of infaunal effects on porewater

822 advection and biogeochemistry in permeable sediments: A proposed infaunal functional group

823 framework. *Journal of Marine Research* **67**: 503-532.

824

825 Walter, R. K., S. A. Huie, J. C. P. Abraham, A. Pasulka, K. A. Davis, T. P. Connolly, P. L. F.

826 Mazzini, and I. Robbins. 2022. Seasonal controls on nearshore dissolved oxygen variability and

827 hypoxia in a coastal embayment. *Estuarine, Coastal and Shelf Science* **278**: 108123.

828 <https://doi.org/10.1016/j.ecss.2022.108123>

829

Table 1. Average macrofaunal abundance and richness (per 0.1 m² box core), densities of the top characteristic invertebrate species within each taxonomic group, and average numbers of *Neotrypaea gigas* burrows m⁻² in dual images from each of two video camera frame landings within each area of study. The bolded value is for the video images closest to the EC deployment location. n.d.=not determined.

Sampling area	NH Line	PWS2	NKW1	NEH2	WLP1
Number box cores	6	6	7	7	8
Water depths (m)	72-78	72-84	64-71	73-78	68-75
Average abundance per 0.1 m⁻²	55	31	68	113	47
Average richness per 0.1 m²	20	11	20	28	19
Characteristic Crustaceans (abundance per 0.1 m² box core)	<i>Ampelisca agassizi</i> (1.75) <i>Diastylopsis dawsoni</i> (1.00)	<i>Neotrypaea</i> sp. (0.92) <i>Diastylopsis dawsoni</i> (1.00)	<i>Neotrypaea</i> sp. (3.71) <i>Diastylopsis dawsoni</i> (2.14) <i>Rhepoxynius fatigans</i> (2.57) & <i>R. abronius</i> (1.43)	<i>Euphilomedes carcharodonta</i> (6.00) <i>Rhepoxynius fatigans</i> (2.57) <i>Diastylopsis dawsoni</i> (1.00) <i>Neotrypaea</i> sp. (0.29)	<i>Neotrypaea</i> sp. (1.43) <i>Diastylopsis dawsoni</i> (1.14)
Characteristic Molluscs (abundance per 0.1 m² box core)	<i>Alia gausapata</i> (22.00) <i>Axinopsida serricata</i> (4.00)	<i>Axinopsida serricata</i> (1.33) <i>Alia gausapata</i> (0.67) <i>Cylichna attonsa</i> (1.00)	<i>Kurtiella tumida</i> (25.57) <i>Acila castrensis</i> (4.71) <i>Cylichna attonsa</i> (1.57)	<i>Acila castrensis</i> (12.29) <i>Axinopsida serricata</i> (7.00) <i>Alia gausapata</i> (1.86)	<i>Nuculana hamata</i> (0.71) <i>Compsomyax subdiaphana</i> (0.86) <i>Pulsellum salishorum</i> (0.43)
Characteristic Polychaetes (abundance per 0.1 m² box core)	<i>Spiophanes norrisi</i> (10.75) <i>Nephtys</i> sp. (3.00)	<i>Leitoscoplos pugettensis</i> (1.83) <i>Notomastus</i> sp. (3.22)	<i>Onuphis iridescent</i> (3.72) <i>Leitoscoplos pugettensis</i> (2.48)	<i>Galathowenia oculata</i> (13.06) <i>Notomastus</i> sp. (6.94)	<i>Galathowenia oculata</i> (5.25) <i>Magelona longicornis</i> (4.38)

	<i>Leitoscoplos pugettensis</i> (2.00) <i>Notomastus</i> sp. (5.25)	<i>Nephtys</i> sp. (1.78) <i>Spiophanes norrisi</i> (3.94)	<i>Spiophanes norrisi</i> (2.64)	<i>Onuphis iridescent</i> (7.50) <i>Nephtys</i> sp. (1.38)	<i>Maldane sarsi</i> (2.25)
Characteristic Echinoderms (abundance per 0.1 m² box core)	None	None	<i>Amphiodia urtica</i> (1.00)	<i>Amphiodia urtica</i> (5.66) <i>Amphiodia occidentalis</i> (1.63)	<i>Amphiodia urtica</i> (7.88) <i>Amphiodia occidentalis</i> (0.88)
<i>Neotrypaea gigas</i> burrow densities per m²	n.d.	0, 24.4	11.9 , 2.5	82.5, 1.9	8.2 , 11.25

Table 2. Situational information for the eddy covariance (EC) data series and oxygen fluxes (mean \pm 1 std dev) determined by eddy covariance methods and by core incubations.

EC Deployment number & site ⁺	Start date (mm/dd/yy)	Duration (h)	Water depth (m) [*]	DO ($\mu\text{mol L}^{-1}$) [†]	Temperature (°C)	EC oxygen flux (mmol $\text{m}^{-2} \text{d}^{-1}$)	% Record utilized [#]	Core incubation oxygen flux (mmol $\text{m}^{-2} \text{d}^{-1}$)	Number of cores
1 NH80	07/03/18	24	81.7 \pm 0.6	46.7 \pm 2.3	7.51 \pm 0.01	-3.5 \pm 2.9	98.4	-1.2 \pm 1.5	2
2 NH80	07/03/18	24	80.4 \pm 0.6	48.6 \pm 2.9	nd	-3.7 \pm 2.9	93.8	--	--
3 NH80	08/02/18	27.5	82.2 \pm 0.5	46.3 \pm 0.8	7.61 \pm 0.01	-4.0 \pm 2.4	100	--	--
4 PWS2	07/22/22	29.75	84.1 \pm 0.6	24.7 \pm 1.2	7.53 \pm 0.02	-4.9 \pm 2.3	90.8	-1.3	1
5 NKW1	09/14/22	18.5	67.7 \pm 0.7	75.3 \pm 6.9	8.04 \pm 0.03	-23.0 \pm 11.2	95.8	-4.3 \pm 0.9	2
6 NEH2	09/15/22	22.5	75.2 \pm 0.6	41.0 \pm 6.0 41.3 \pm 5.8	8.00 \pm 0.05	-13.2 \pm 6.9 -13.3 \pm 9.3	97.5 95.9	-3.2 \pm 0.1	2
7 WLP1	09/16/22	31.5	71.1 \pm 0.6	17.0 \pm 2.9	7.82 \pm 0.02	-4.7 \pm 2.6	95.8	-2.3 \pm 0.1	2

⁺Deployments were made from R/V *Oceanus* during cruises OC1807A and OC1808A, and from R/V *Robert Gordon Sprout* during cruises SP2215 and SP2219; Lat./Long. #1-#7: 44.636 -124.308, 44.637 -124.313, 44.641 -124.307, 44.571 -124.304, 45.104 -124.072, 45.722 -124.067, 46.450 -124.305.

^{*}Depth derived from the standard gravity variation with latitude and pressure using the mean and standard deviation of the Vector pressure record with the height of the pressure sensor added.

[†]Mean and standard deviation as assessed by the cross-calibrated fiber optic oxygen sensors. Where paired sensors were used, determinations from both are given.

[#]See supporting information for explanation of criteria for excluding data.

Table 3. Friction velocities and roughness lengths derived using logarithmic regression across flow speeds measured within the five lowest profile bins displayed in Fig. 7. Wave periods and wave heights were derived from simultaneous pressure recordings. The ranges of friction velocities calculated from Eq. 3 and ADV velocities from the same sites are reported as $EC u_*$ values.

Site	Start DateTime MM/DD/YY hh:mm:ss	Record duration (min)	u_* (cm s ⁻¹)	z_0 (cm)	R^2	T_p (s)	H_s (m)	Mean water depth (m)	$EC u_*$ (cm s ⁻¹)
NKW1	9/14/22 21:47:00	4	0.71	1.4	0.98	15.0	0.40	67.1	0.18-1.16
NEH2	9/16/22 13:23:45	2	0.45	<0.1	0.70	13.3	0.71	77.2	0.05-0.78
WLP1	09/17/22 10:16:30	4	0.45	0.3	0.97	13.3	0.51	71.4	0.10-0.86
NEH1	09/18/22 16:08:30	5	0.57	2.0	0.99	9.1	1.1	60.9	n.d.

Figure Captions

Fig. 1. Regional bathymetry map of the seafloor off southern Washington and northern Oregon, USA, showing the principal study site locations. Surrounding seafloor images were taken contemporaneously with other measurements during this study. Laser beam spots in NH80 images are separated by 10 cm. Identifiable fauna and features include: Dungeness crab (NEH2), slender sole *Lyopsetta exilis* (PWS2), *Neotrypaea gigas* burrows (NWK1, WLP1, PWS2), helically coiled gastropods (NH80, NEH2, PWS2). One additional station from which limited data is reported (NEH1) is 3 km shoreward of NEH2 (see Hughes et al. 2025).

Fig. 2. Water column profiles of DO and seawater density determined from CTD casts at each study site within the time periods of the eddy covariance instrument deployments. Hypoxic waters are indicated by the shading.

Fig. 3. Time series of eddy covariance sensor measurements at NH80 in **(a)** July 2018 (deployment 1) and **(b)** August 2018 (deployment 3). Top panels show velocities in ENU Cartesian coordinates and mean horizontal speed for each 15-min segment. Middle panels show the ADV pressure record and dissolved oxygen at 8 Hz. Bottom panels display derived oxygen fluxes every 15 minutes.

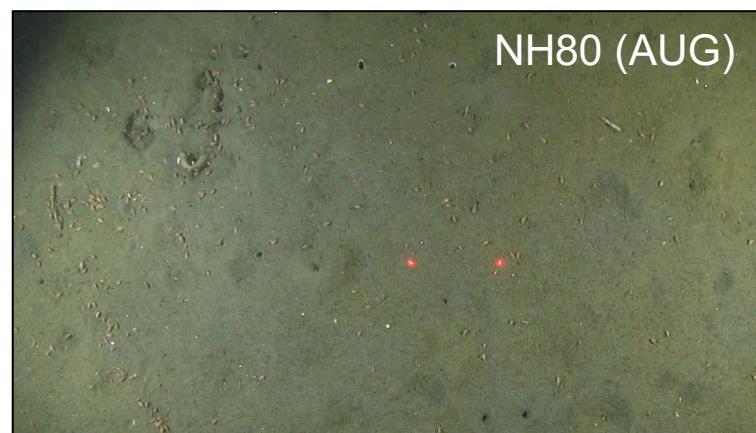
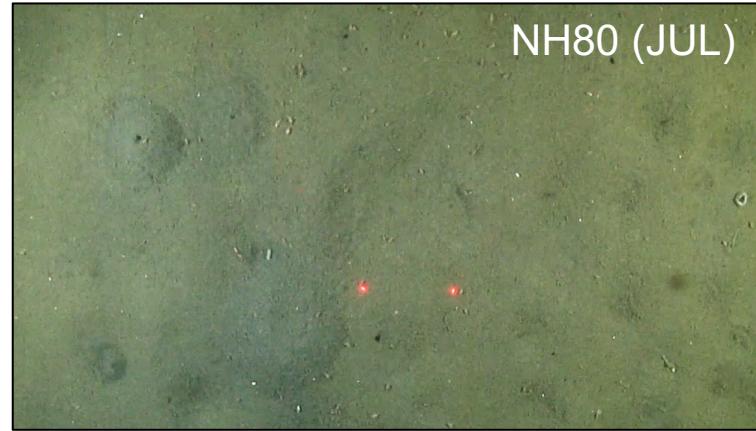
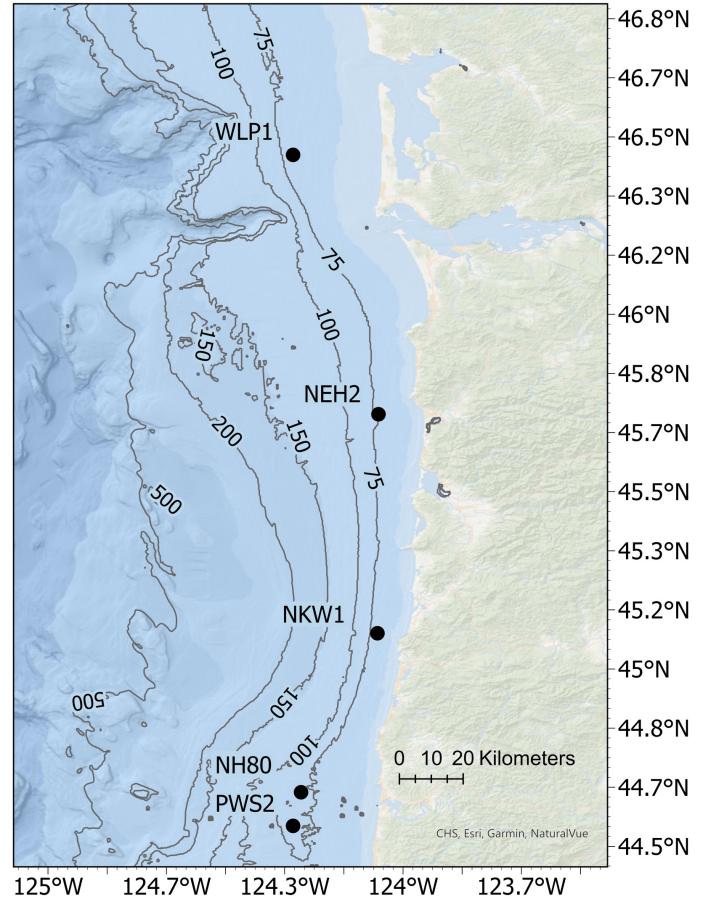



Fig. 4. Comparison of flow characteristics during concurrent eddy covariance measurements by two separate systems during deployments 1 and 2 (designated as D1 and D2) at NH80 in July 2018. Each point represents 15-min representations of: **(a)** horizontal flow speed, and **(b)** friction velocity.

Fig. 5. Time series of eddy covariance sensor measurements at NEH2 (deployment 6). During this deployment, two oxygen sensors were used, yielding two oxygen time series (ox1 and ox2)

in the middle panel and two corresponding flux estimates for each 15-minute segment of the record in the bottom panel.

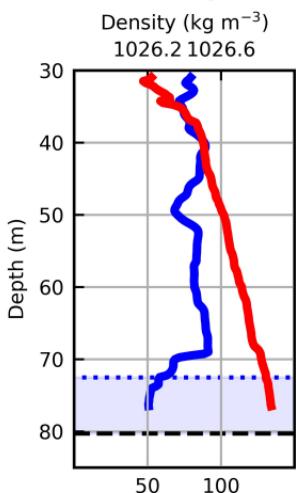
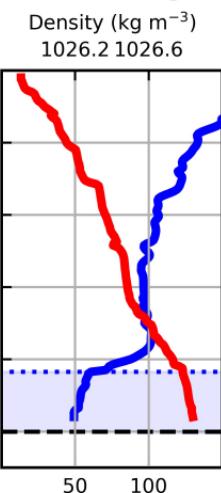
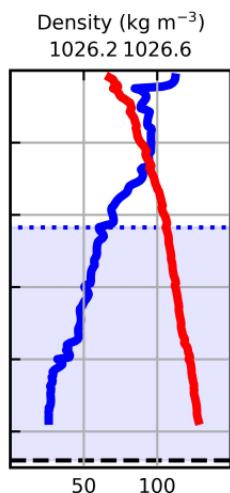
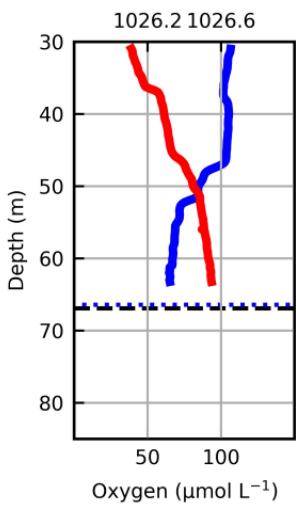

Fig. 6. Box and whisker plots showing Pearson correlation coefficients between rates of sediment oxygen consumption and parameters related to flow and DO conditions. The r values for individual deployments are indicated by the deployment number placement within each range (Min-Max). For deployment 6 at NEH2, the results with sensor ox1 were used.

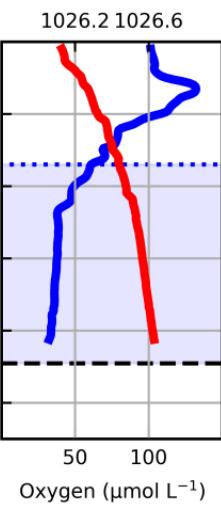
Fig. 7. Snap-shot velocity profiles in East and North directions and corresponding profiles of horizontal flow speed at stations NKW1, NEH2, WLP1, and NEH1 (3 km shoreward of NEH2). Logarithmic model fits to the bottom 5 depth bins are plotted as dashed lines extended towards the seabed (0 height).

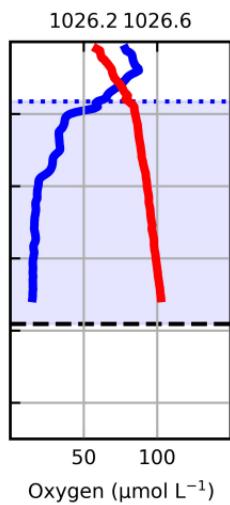


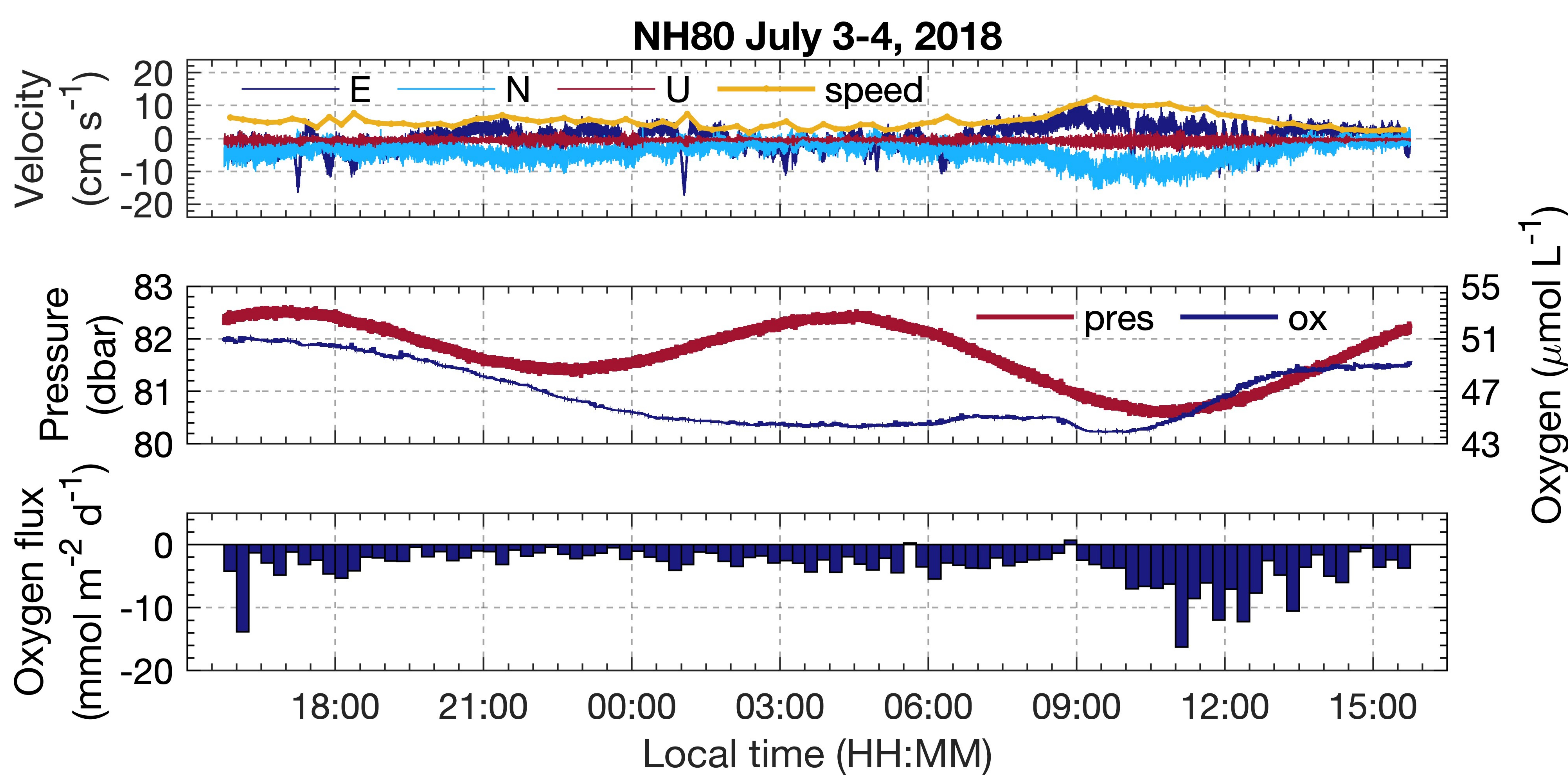
• Hypoxia threshold Hypoxic Oxygen Density Seafloor depth

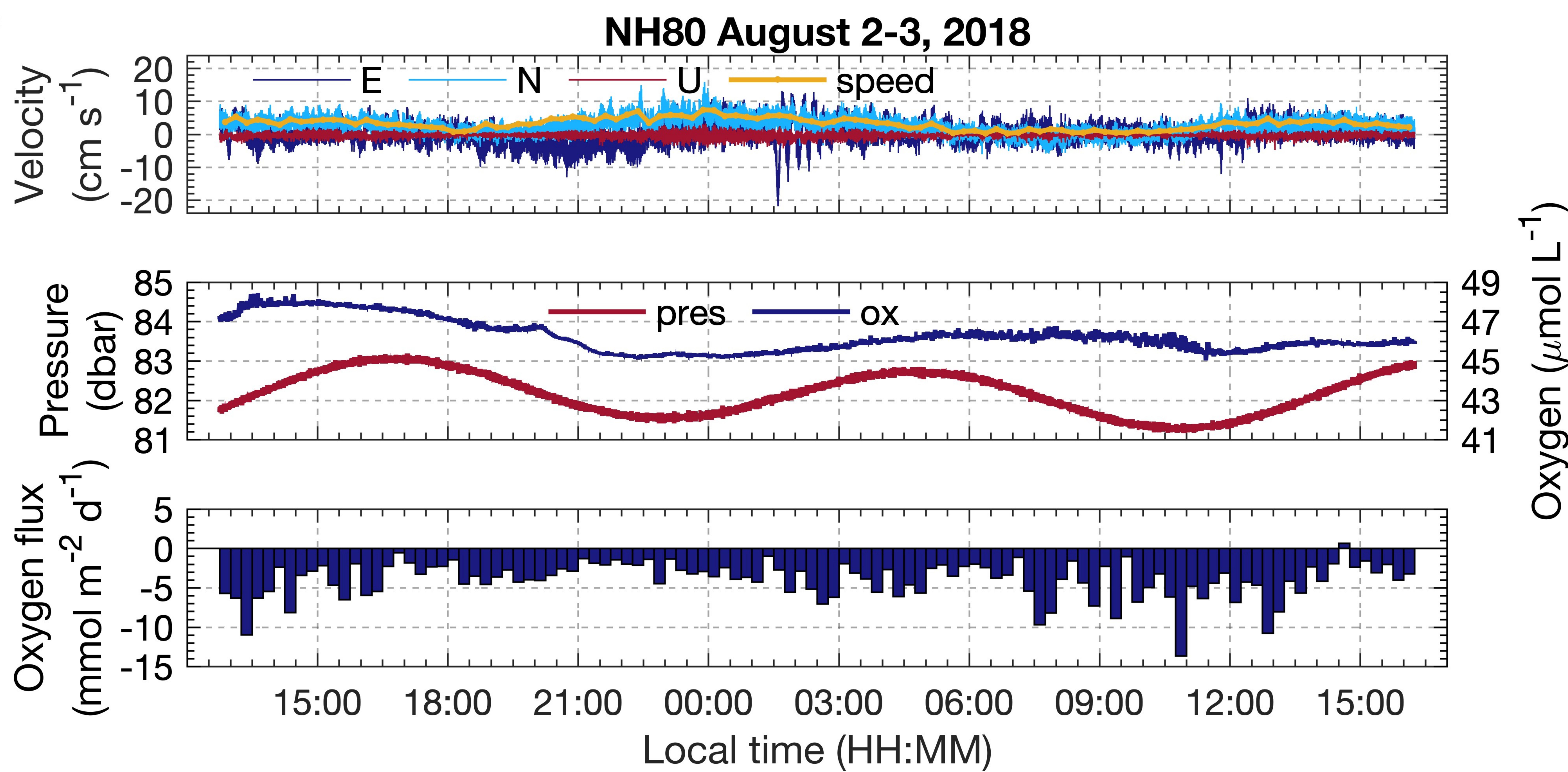

NH80 (Jul)

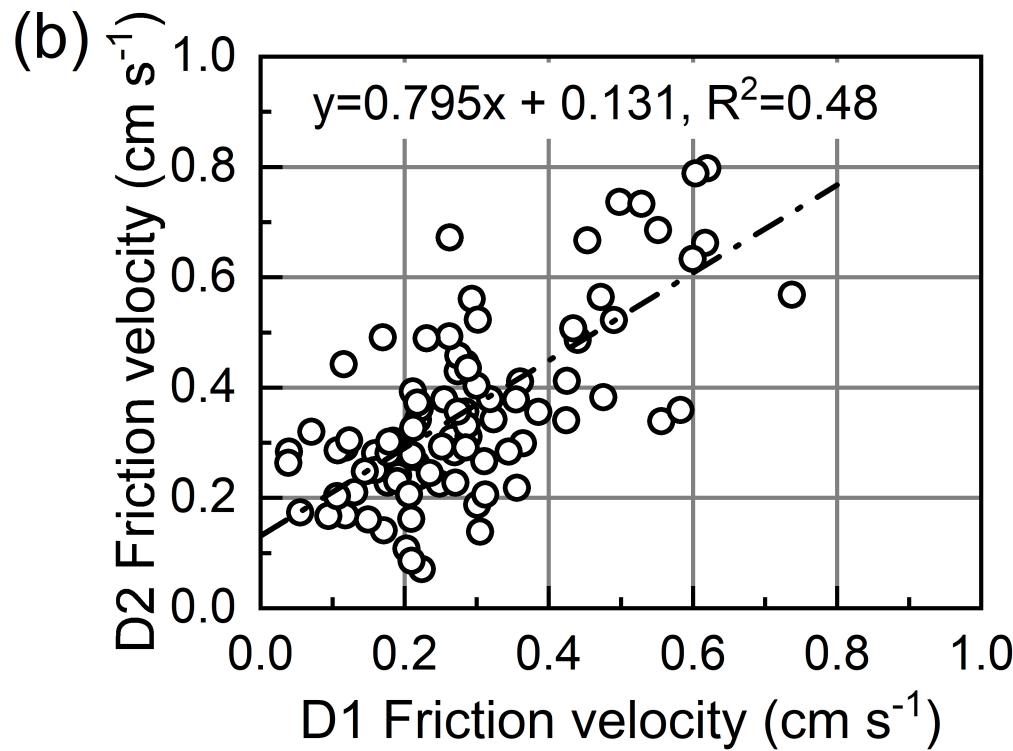
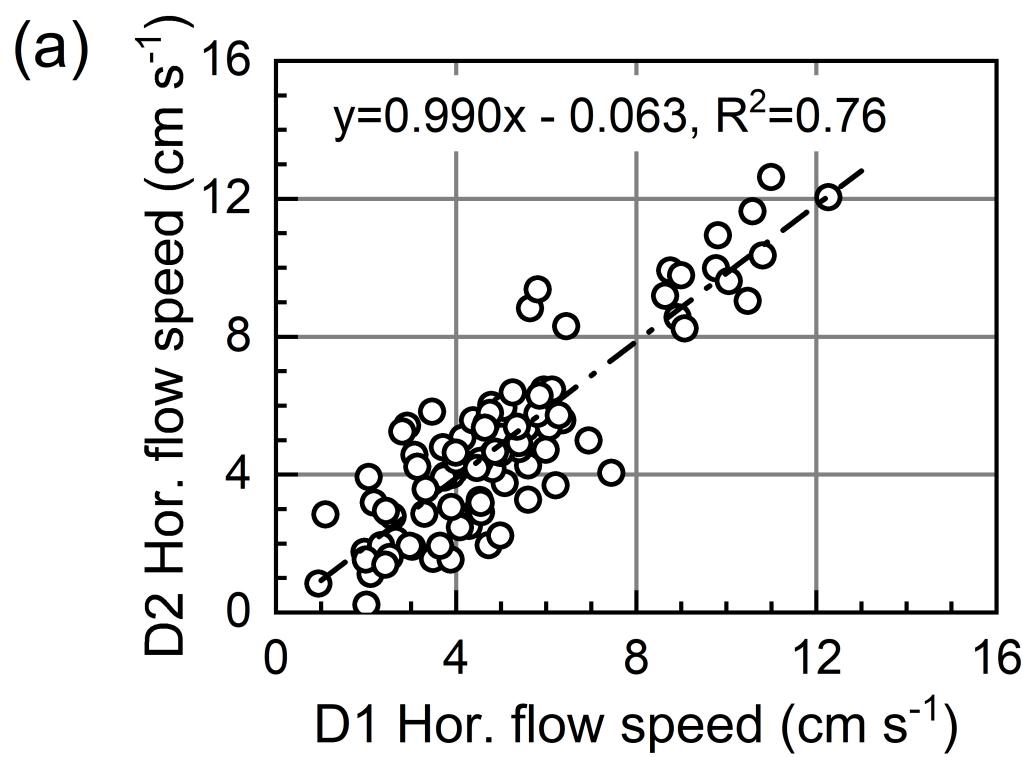

NH80 (Aug)


PWS2

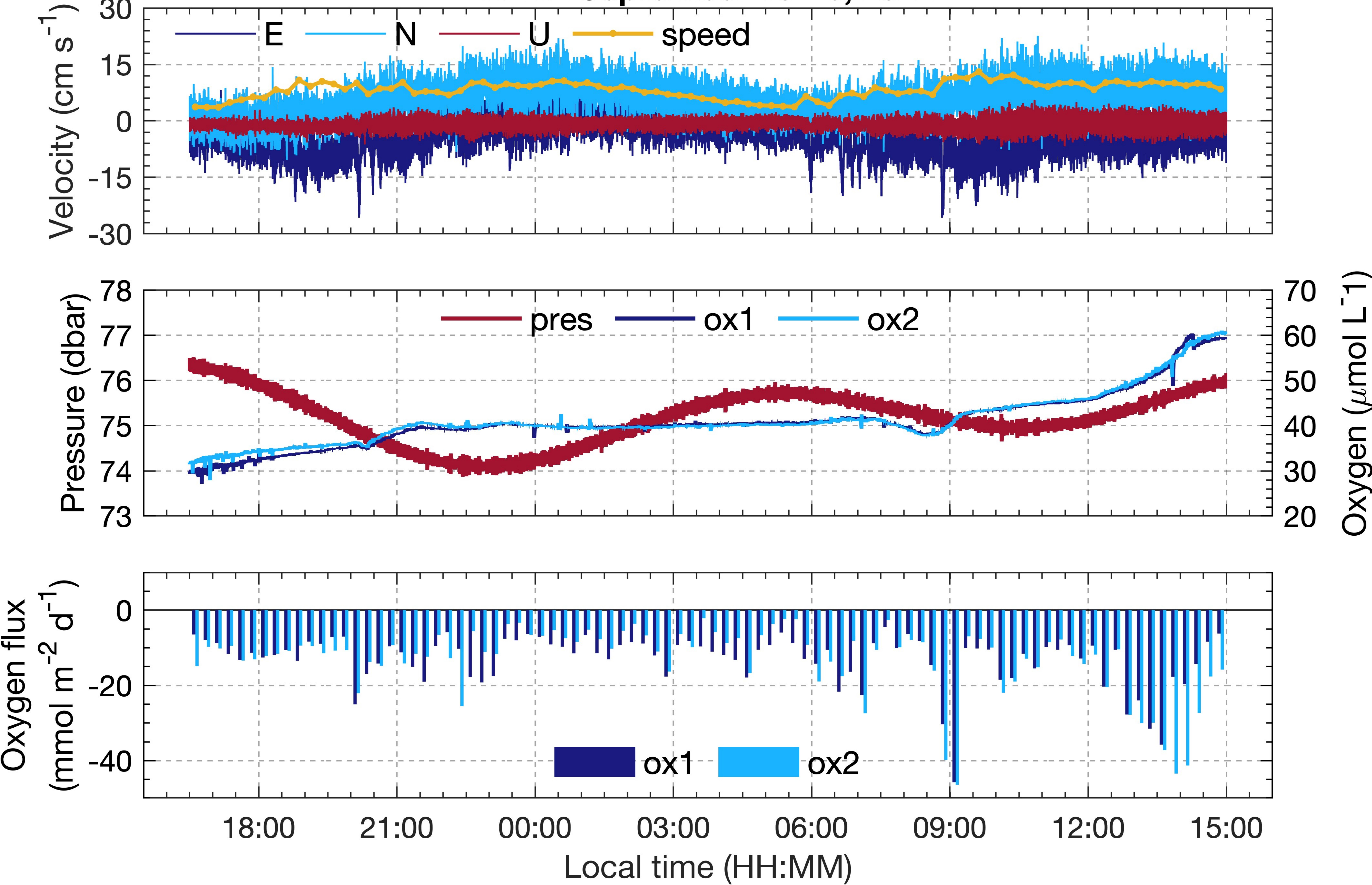

NKW1

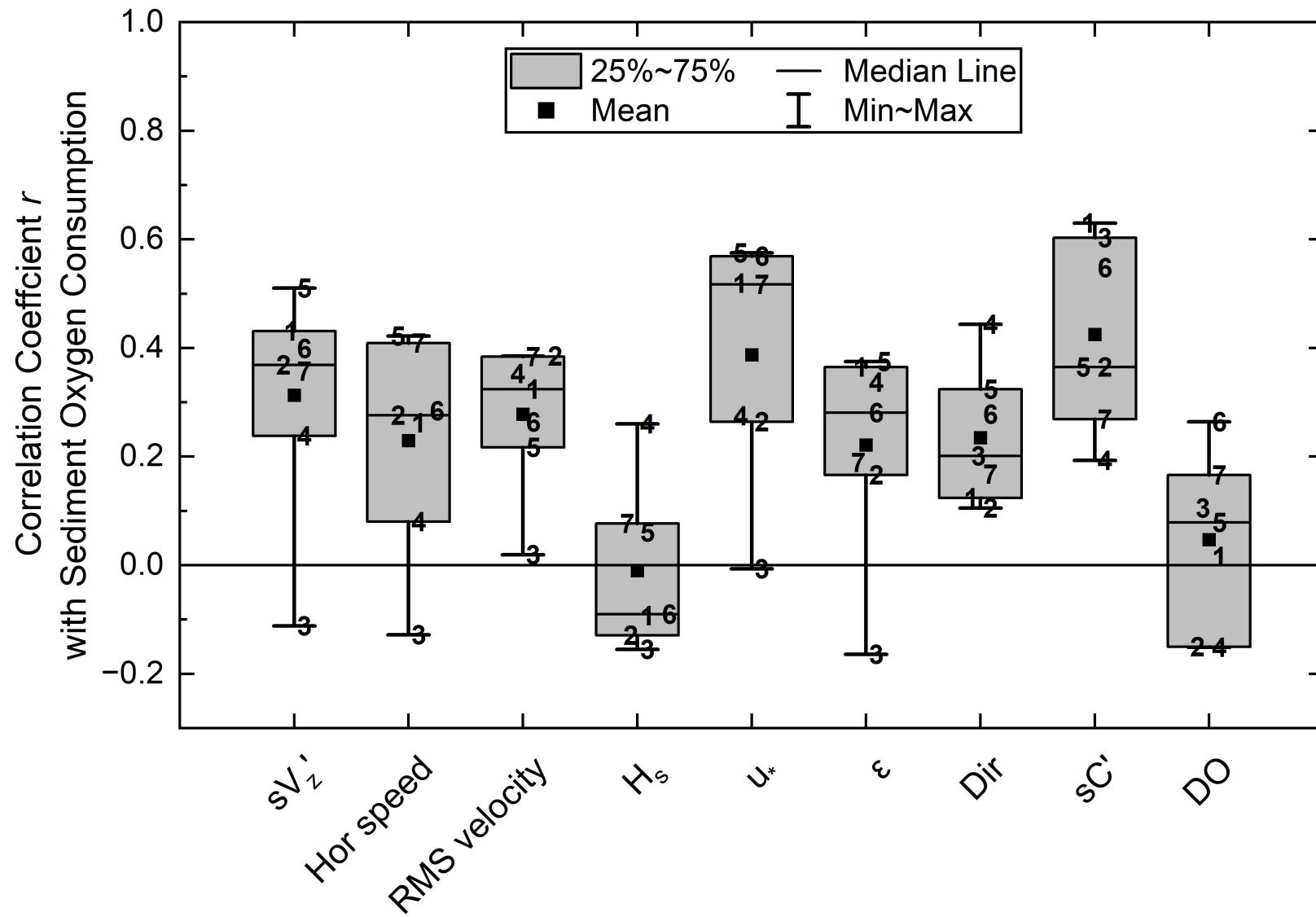

NEH2

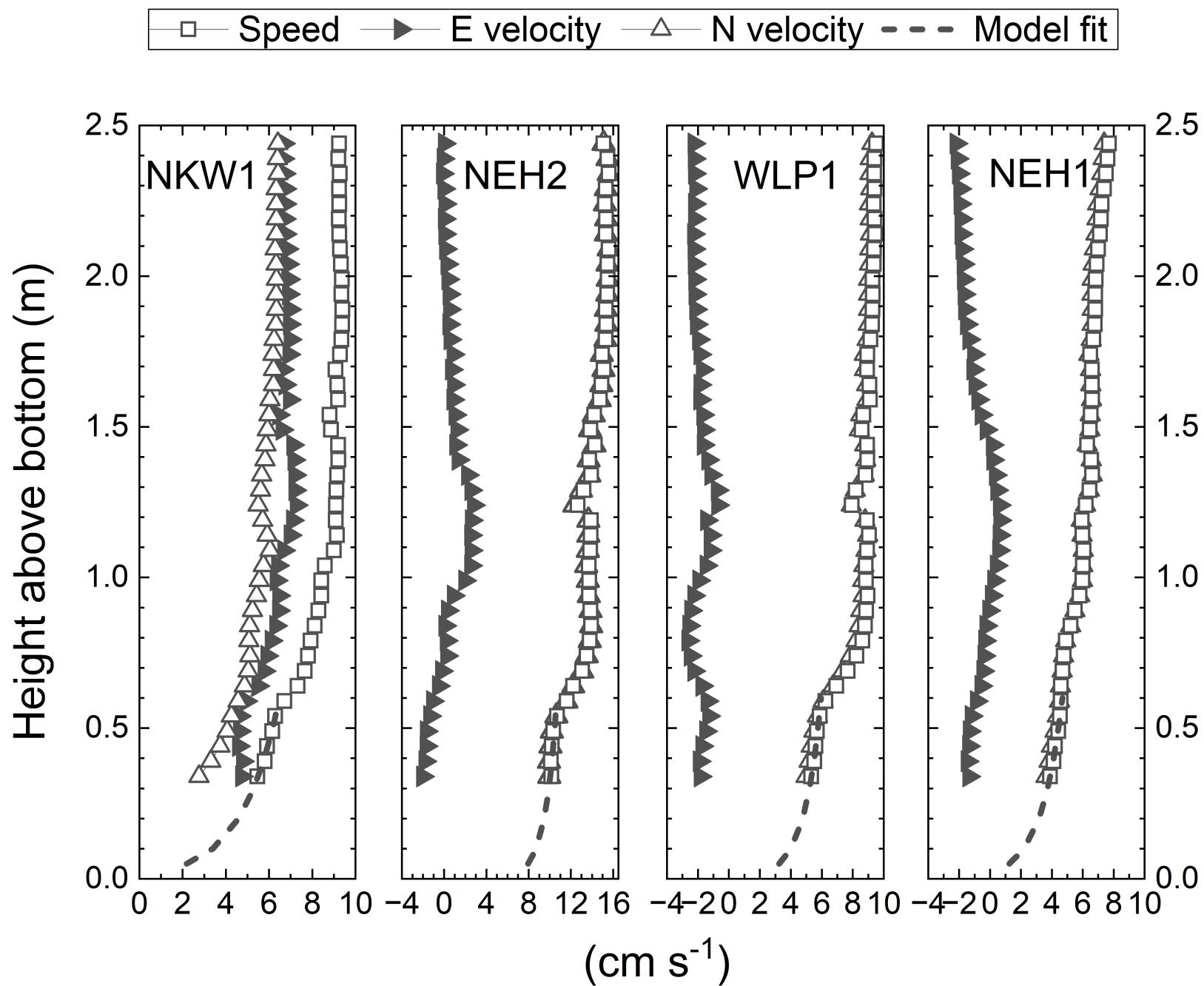

WLP1

(a)




(b)



NEH2 September 15-16, 2022

Supporting Information for

Dynamic Benthic Oxygen Fluxes Lessen Hypoxia Effects on Open Continental Shelves

Clare E. Reimers^{1*}, Sarah K. Henkel², Kristen E. Fogaren^{1,3}, Peter J. Chace¹, Anna Hughes¹
and W. Waldo Wakefield⁴

¹College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis,
Oregon, 97331, USA

²Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331, USA

³Current address: Earth and Environmental Sciences, Boston College, Chestnut Hill, MA
02467, USA

⁴Cooperative Institute for Marine Ecosystem and Resources Studies (CIMERS), Oregon
State University, 2030 SE Marine Science Drive, Newport, Oregon 97365, USA

*Correspondence: clare.reimers@oregonstate.edu

Supplemental Method Details

Eddy covariance data processing

Velocities and other ADV outputs were recorded continuously at rates of 32 or 64 Hz during deployments. Simultaneously, the fiber-optic oxygen sensors were activated at pulsed LED flash rates of 10 Hz through PyroScience FireStingO₂-Subport modules enclosed in Delrin housings, and their analog outputs were sampled and recorded at the ADV sampling rate. Rockland Scientific (Victoria, BC, Canada) fabricated the fiber-optic sensor controlling units under their Microsquid product line.

The processing sequence used to derive benthic oxygen fluxes and to study the eddy covariance time-series data began by preparing calibration configuration files for each OXB430 sensor based on both “pre-” and “post-” deployment, in-laboratory, 0% and 100% air-saturation, sensor dPhi recordings (i.e., values that represent the phase shift of the sensor’s NIR-emission relative to the red-light excitation) at a known temperature and atmospheric pressure. Next, these files were called by a Matlab function (provided by Rockland Scientific) to convert the sensor’s deployment record into physical units. The function inputs were data vectors of the sensor’s dPhi readings, temperature, salinity, and water depth, in addition to the configuration files.

Other scripts written in Matlab were used to divide data records into numbered 15- minute-long periods or “bursts”; replace by interpolation any outliers identified as spikes (Goring and Nikora 2002); and reduce the sampling to 8 Hz. Both pre- and post-calibration DO series in 8 Hz format were then compared to all available independent reference data. As described in Reimers and Fogaren (2021), a final oxygen series was resolved such that the accepted series was adjusted to be a weighted percent of the pre- and post-calibration series where the fractions of each were set to progressively shift to match reference measurements.

The concluding stage of processing was to compute the fluctuating components of the directional velocities [$v_x'(t)$, $v_y'(t)$, $v_z'(t)$] and oxygen concentrations [$C'(t)$] by subtracting long period trends [$\overline{v_x(t)}$, $\overline{v_y(t)}$, $\overline{v_z(t)}$, $\overline{C(t)}$] derived by 3 methods for each 15-minute burst. These methods represented the “means” of each 15-min series as either: (1) a linear trend, (2) a low-pass frequency filter (set to 0.002 Hz) (Reimers et al. 2012), or (3) a running mean (given a filter size set in this study to a 6.25 min moving time window). These different filters informed evaluations of how low-frequency oscillations may have contributed to or biased oxygen fluxes, with a focus on internal wave effects (expanded on below). The velocity series of each burst were also rotated by a 2-angle method (first around the z-axis, then around y-axis) that solves for rotation angles that minimize any surface wave frequency variations in $v_z'(t)$ (Reimers et al. 2012; Reimers and Fogaren 2021). Lastly, the oxygen data series of each burst was shifted in time relative to the rotated velocity data to a maximum of 2 seconds to achieve the greatest correlation (and thus maximum flux) per burst (Attard et al. 2014). These time shifts will ideally account for the separation of the OXB430 fiber-optic sensor relative to the velocity measurement volume and the inherent response lag of the OX430 sensor (Merikhi et al. 2018).

Final oxygen flux evaluations

Criteria to reject segments of eddy covariance data when deriving time series of benthic oxygen fluxes have been proposed in several studies (e.g., Attard et al. 2014; Huettel et al. 2020), with such criteria aimed to ultimately eliminate conditions that may invalidate the method’s primary assumption, which is that eddy covariance fluxes reflect the sediment sink in an adjacent control volume dependent on the velocity field (Berg et al. 2007). Most often, bursts are examined individually and discounted or trimmed if they show evidence of oxygen sensor spikes or dips that may be caused by particle collisions, or abrupt changes in dissolved oxygen, flow speed and/or

direction, that while interesting, can contaminate fluxes (Holtappels et al. 2013; Attard et al. 2014; Huettel et al. 2020). This screening practice was applied in this study.

One complicating dynamic observed in all records from this study was low-frequency oscillations forced by internal waves. Pulses of internal wave velocity oscillations have been observed in prior measurements of this kind on the Oregon shelf (Reimers et al. 2016) and were discerned here to display wave periods averaging 12.5 min. In some cases, their effects resulted in outlier fluxes or caused fluxes to be sensitive to the three alternate detrending methods we routinely applied, which differed in how low frequencies were filtered. We used this sensitivity to help screen the time series, excluding bursts where the internal wave effects were acute, and this screening reduced the standard deviations of average fluxes. Overall, when reporting average fluxes in Table 2 of this study, from 0 to 9.2% of individual eddy covariance time series were excluded because of irregularities, and a 6.25 min running average (RA) filtering method was used as the final detrending approach to minimize internal wave frequency contributions likely to be unreflective of oxygen consumption by the seabed. The RA fluxes were equal to between 84 and 95% of comparable fluxes computed with linear detrending and 94-116% compared to trends from a 0.002 frequency filter.

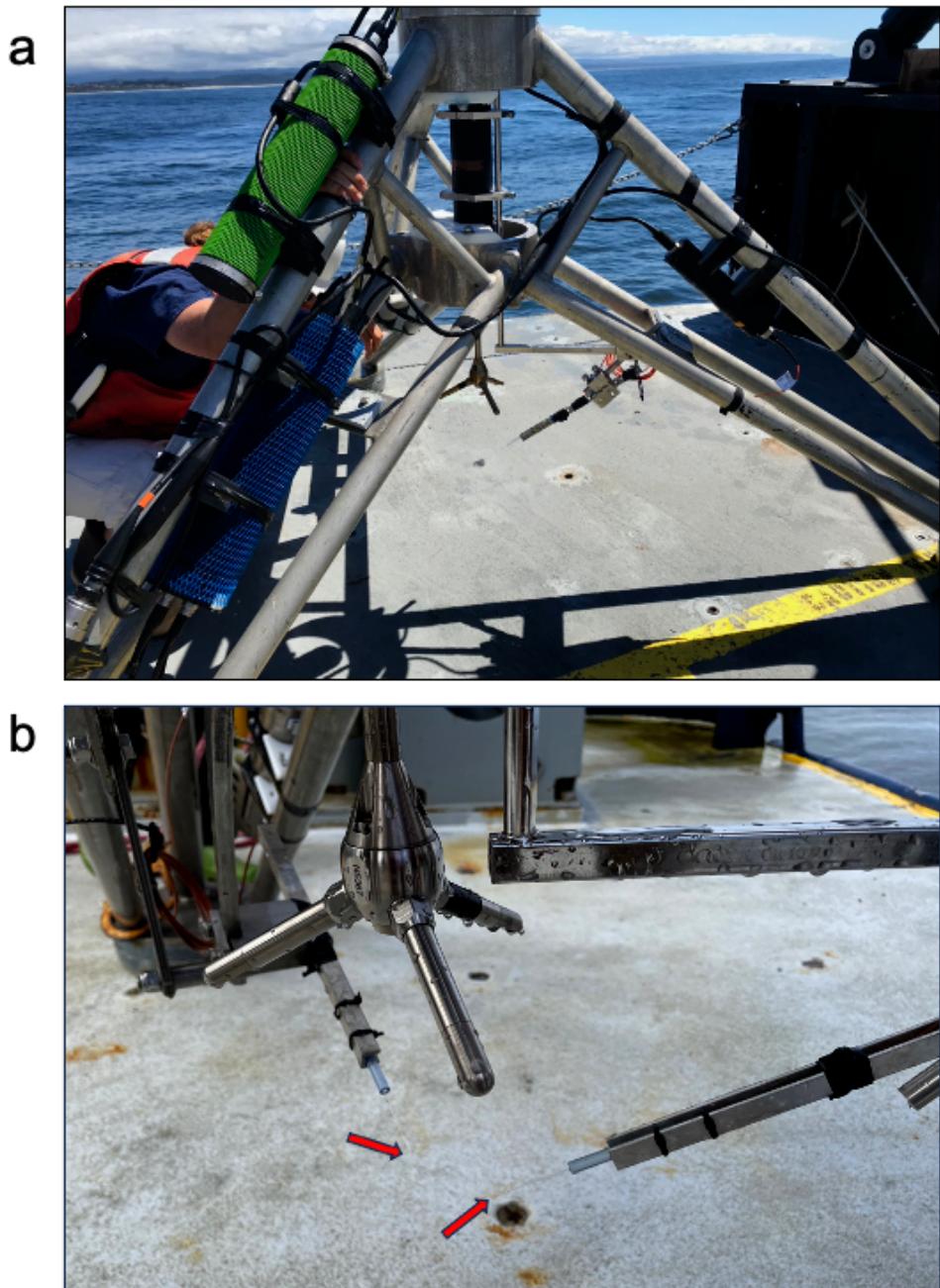
Supplemental Tables

Table S1. Burst means of environmental and flow parameters across deployments.

Deployment	n	sv'_z (cm s^{-1})	sC' ($\mu\text{mol L}^{-1}$)	DO ($\mu\text{mol L}^{-1}$)	Hor. Speed (cm s^{-1})	RMS vel (cm s^{-1})	H_s (m)	u_* (cm s^{-1})	ε (m^2s^{-3})
1	96	0.31 ± 0.12	0.036 ± 0.015	46.7 ± 2.3	5.0 ± 2.4	2.1 ± 0.9	0.29 ± 0.03	0.28 ± 0.15	$6.6 \pm 8.7 \text{ E-07}$
2	92	0.33 ± 0.12	0.053 ± 0.017	48.6 ± 2.9	4.9 ± 2.7	2.1 ± 0.7	0.29 ± 0.03	0.36 ± 0.17	$8.4 \pm 11.1 \text{ E-07}$
3	110	0.31 ± 0.11	0.049 ± 0.020	46.3 ± 0.8	3.3 ± 1.7	2.5 ± 0.9	0.70 ± 0.11	0.36 ± 0.13	$8.2 \pm 11.1 \text{ E-07}$
4	108	0.29 ± 0.10	0.063 ± 0.030	24.7 ± 1.2	4.6 ± 2.5	2.5 ± 0.7	0.40 ± 0.07	0.28 ± 0.12	$3.7 \pm 4.1 \text{ E-07}$
5	72	0.51 ± 0.14	0.135 ± 0.069	75.3 ± 6.9	4.9 ± 1.7	3.4 ± 1.1	0.49 ± 0.05	0.46 ± 0.20	$2.6 \pm 2.0 \text{ E-06}$
6	90	0.64 ± 0.19	0.079 ± 0.032	41.0 ± 6.0	8.3 ± 2.3	3.8 ± 0.7	0.70 ± 0.07	0.45 ± 0.18	$7.8 \pm 7.7 \text{ E-06}$
7	122	0.43 ± 0.11	0.045 ± 0.011	17.0 ± 2.9	5.0 ± 2.2	2.9 ± 0.6	0.57 ± 0.08	0.31 ± 0.15	$2.1 \pm 2.0 \text{ E-06}$

Table S2. Pearson correlation coefficients and p-values between eddy covariance oxygen flux determinations of sediment oxygen consumption and parameters within deployments. Those in red are significant (p-value <0.05).

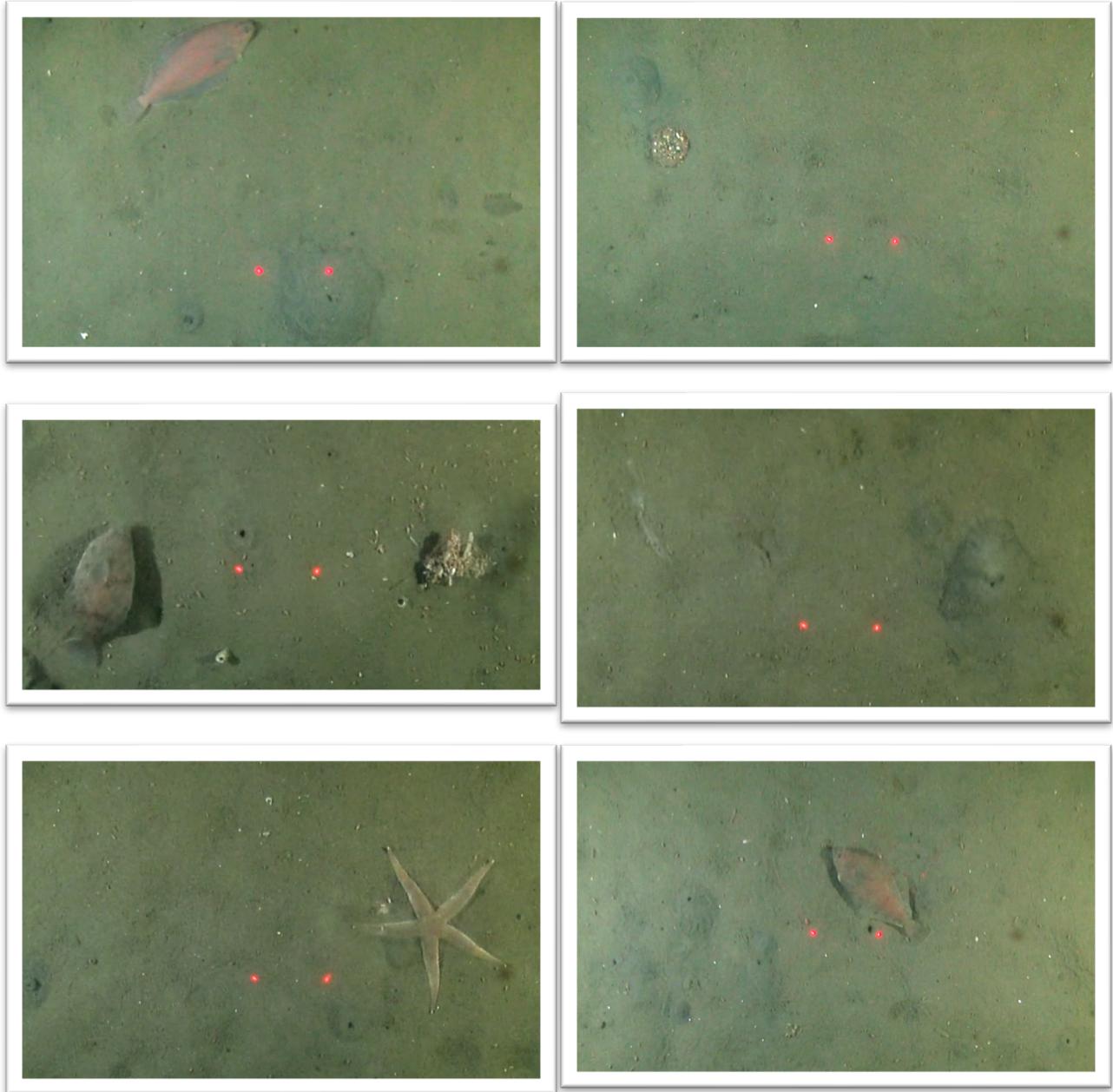
Deployment	sv'_z	sC'	Dir	DO	Hor. speed	RMS vel	H_s	u_*	ε
1	0.431 <0.0001	0.630 <0.0001	0.124 0.480	0.016 0.876	.262 0.010	0.324 0.001	-0.093 0.368	0.519 <0.0001	0.365 0.0003
2	0.371 0.0003	0.365 0.0003	0.105 0.600	-0.150 0.153	0.276 .0008	0.371 .0003	-0.129 0.220	0.264 .011	0.166 0.115
3	-0.112 0.244	0.603 <0.0001	0.201 0.108	0.105 0.273	-0.128 0.181	0.0194 0.841	-0.155 0.105	-0.0065 0.947	-0.164 0.086
4	0.238 0.013	0.193 0.045	0.443 <0.0001	-0.151 0.118	0.080 0.410	0.353 0.0002	0.260 0.0065	0.275 0.0040	0.337 .0004
5	0.510 <0.0001	0.365 0.0016	0.324 0.023	0.079 0.510	0.422 0.0002	0.217 0.067	0.061 0.613	0.575 <0.0001	0.375 0.0012
6	0.368 0.0004	0.546 <0.0001	0.278 0.031	0.264 0.012	0.284 0.0067	0.403 <0.0001	-0.090 0.399	0.569 <0.0001	0.281 0.0074
7	0.357 <0.0001	0.269 0.0027	0.168 0.180	0.166 0.067	0.409 <0.0001	0.384 <0.0001	0.077 0.399	0.517 <0.0001	0.189 0.037

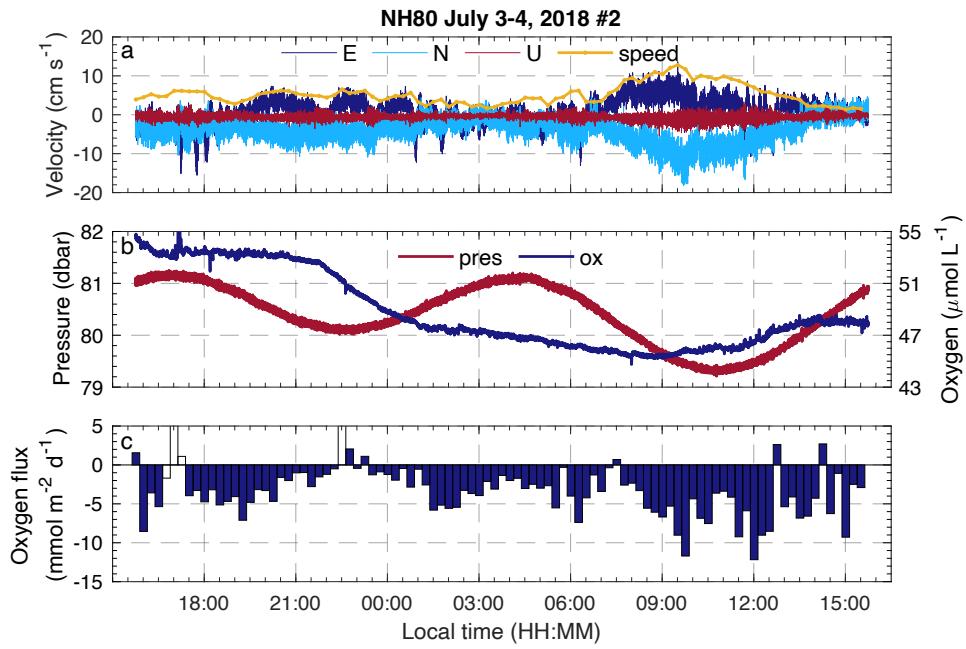

Table S3. Correlation coefficients and p-values between deployment mean eddy covariance oxygen flux determinations expressed as positive Sediment Oxygen Consumption rates (i.e., +3.5 to +23.0 mmol m⁻²d⁻¹) and means of environmental parameters. *significant correlation (p value <0.05)

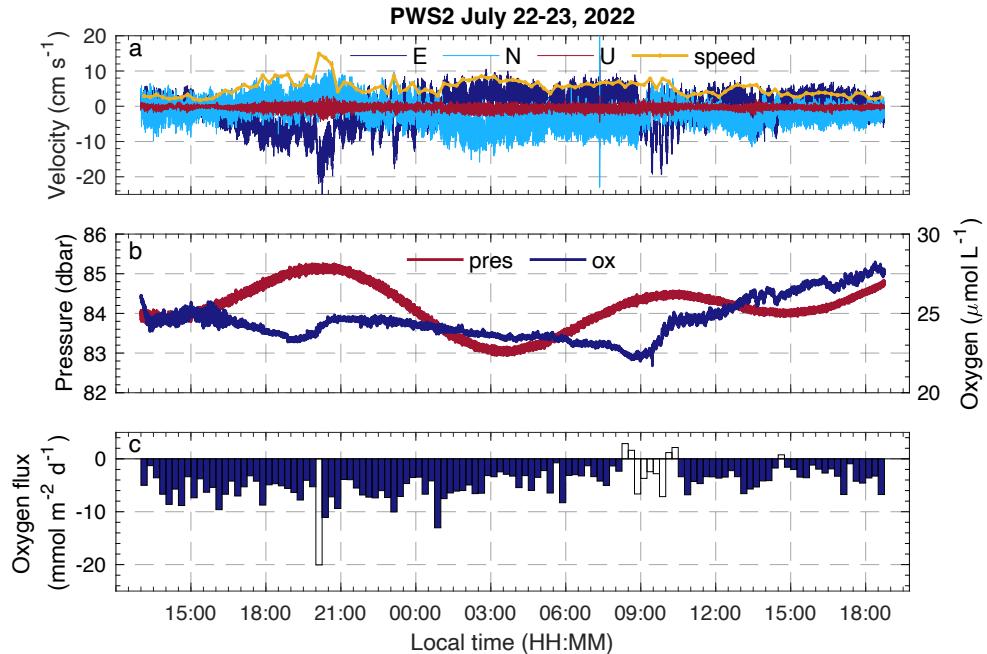
Environmental parameter	Pearson Correlation Coefficient (<i>r</i>)	p-value	Number of observations (n)
DO (μmol L ⁻¹)	0.68	0.10	7
ADV Pressure (dbar)	-0.78	0.04*	7
H _s (m)	0.26	0.57	7
ε (m ² s ⁻³)	0.51	0.24	7
sv' _z (cm s ⁻¹)	0.73	0.06	7
sC' (μmol L ⁻¹)	0.97	0.0003*	7
Hor. Speed (cm s ⁻¹)	0.37	0.42	7
u _* (cm s ⁻¹)	0.83	0.02*	7
RMS Velocity (cm s ⁻¹)	0.77	0.04*	7

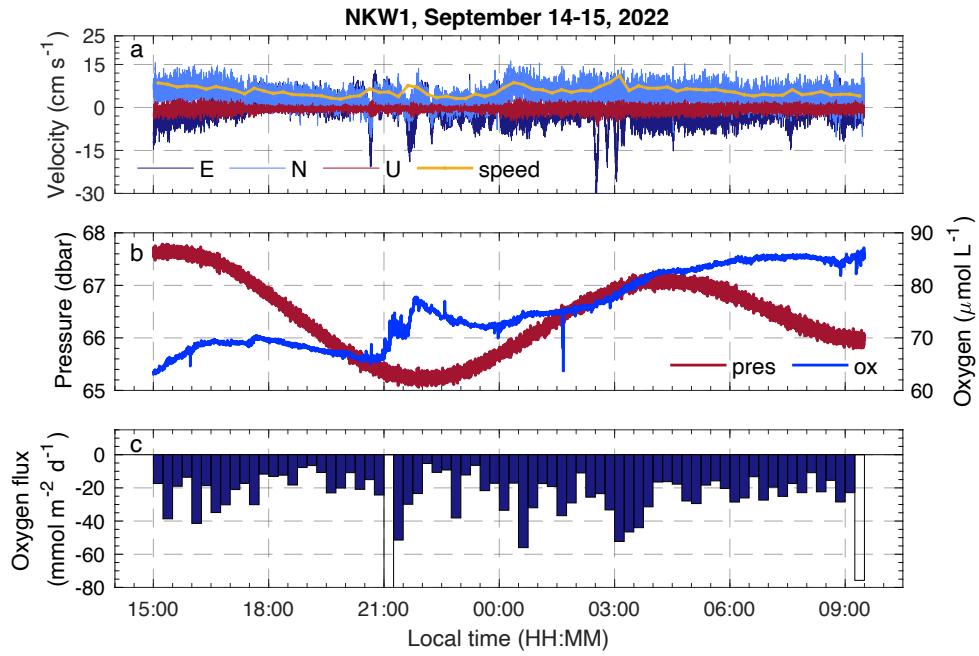
Table S4. Correlation coefficients and p-values between median grain size, mean macrofaunal abundance and richness, and several environmental characteristics of the four sites sampled in 2022. Those in red are significant (p-value ≤ 0.05).

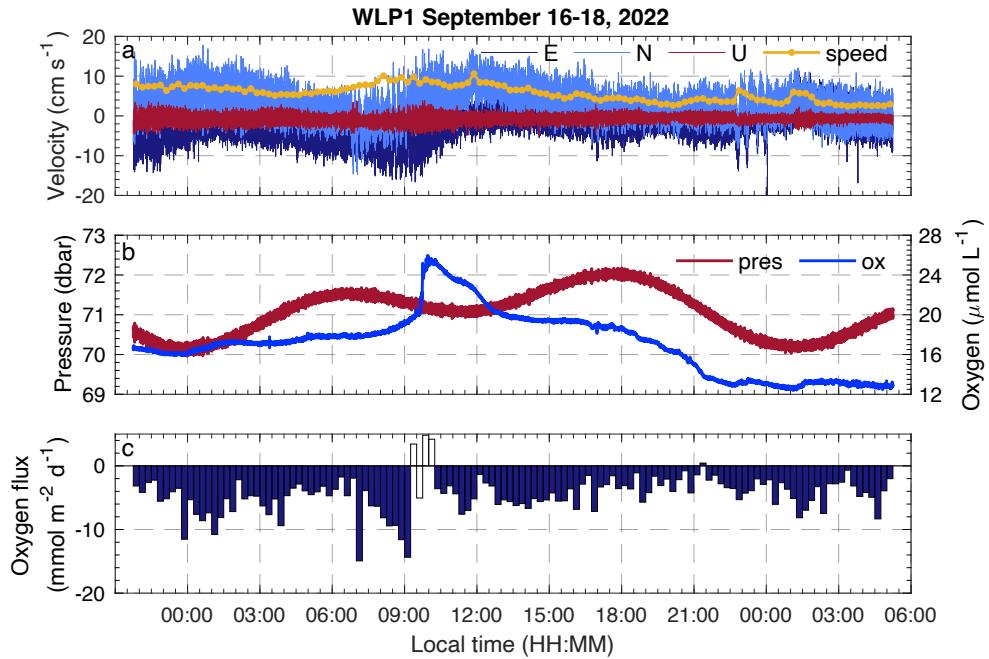
		Median Grain Size	Abundance	Richness
SOC	Pearson Corr. p-value	0.48 0.52	0.51 0.49	0.45 0.55
DO	Pearson Corr. p-value	0.58 0.42	0.39 0.61	0.31 0.69
Pressure	Pearson Corr. p-value	0.31 0.69	-0.31 0.69	-0.50 0.50
H_s	Pearson Corr. p-value	-0.45 0.55	0.87 0.13	0.95 0.05
Turb. Diss. ϵ	Pearson Corr. p-value	-0.06 0.94	0.98 0.02	0.95 0.05
RMS Velocity	Pearson Corr. p-value	0.02 0.98	0.97 0.03	0.96 0.04
sv_z'	Pearson Corr. p-value	-0.09 0.91	0.97 0.03	0.99 0.01
sc'	Pearson Corr. p-value	0.64 0.36	0.32 0.68	0.23 0.77
Hor. Speed	Pearson Corr. p-value	-0.04 0.96	0.93 0.07	0.87 0.13
u*	Pearson Corr. p-value	0.30 0.70	0.83 0.17	0.78 0.22
Median Grain Size	Pearson Corr. p-value		0.05 0.95	-0.23 0.77
Abundance	Pearson Corr. p-value	0.05 0.95		0.95 0.046
Richness	Pearson Corr. p-value	-0.23 0.77	0.95 0.046	

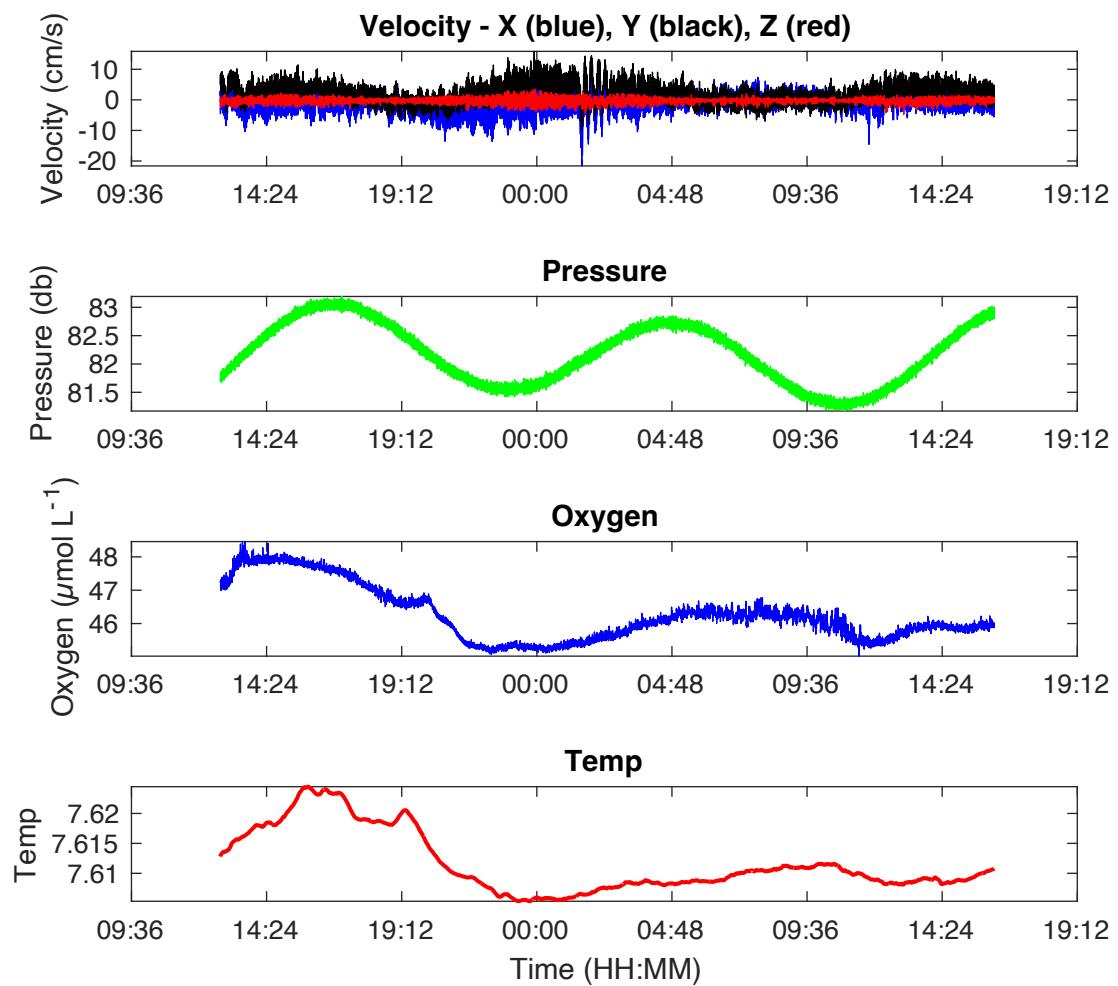

Supplemental Figures


Fig. S1. Images of eddy covariance sensors with (a) single and (b) two fiber optic oxygen sensors positioned around the *Vector* sampling volume. Red arrows in (b) point to sensor tips.


Fig. S2. Image of the Aquadopp Profiler 1 MHz, extended to the left, off a deployment tripod. A red arrow points to the sensor head. A device for collecting water samples at varying heights with inlets along a 1-m vertical mast was also mounted on the tripod after the design of Knoery et al. (2019).


Fig. S3. Video screen-grab images of the seafloor on the NH line at 80 m showing flatfishes (clockwise from upper left: Rex sole *Glyptocephalus zachirus* and two Pacific sanddabs *Citharichthys sordidus*), an anemone, mounds, borrows, tubes, a sea star (*Luidia foliolata*), coiled gastropods, and a decaying pyrosome. Laser spot separation is 10 cm.


Fig. S4. Time series of eddy covariance sensor measurements at NH80 in July 2018 (deployment #2). Panel a) velocities in East-North-Up Cartesian coordinates and mean horizontal speed for each 15-min segment, b) pressure and dissolved oxygen at 8 Hz, c) derived oxygen fluxes for 15-min segments. White bars indicate calculated fluxes of segments omitted from deployment flux averages.


Fig. S5. Time series of eddy covariance sensor measurements at PWS2 in July 2022 (deployment #4). Panels are as in Fig. S4.

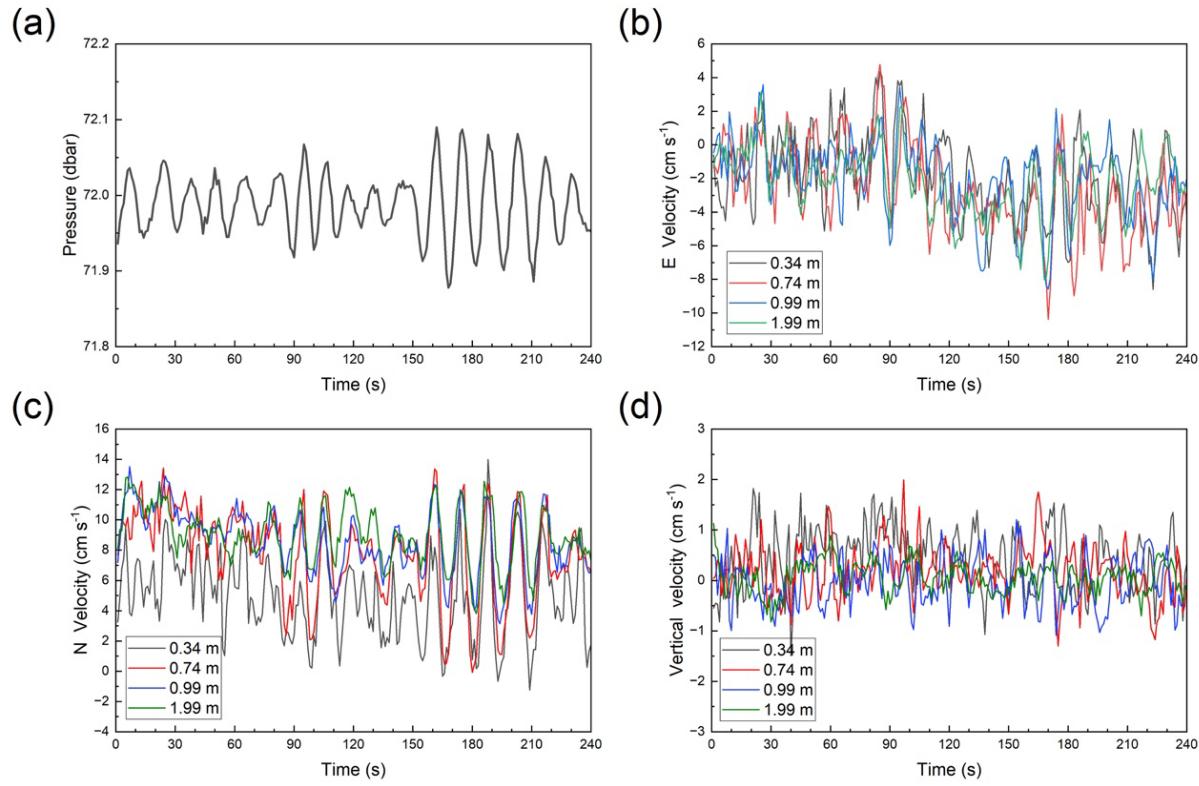

Fig. S6. Time series of eddy covariance sensor measurements at NKW1 in September 2022 (deployment #5). Panels are as in Fig. S4.

Fig. S7. Time series of eddy covariance sensor measurements at WLP1 in September 2022 (deployment #7). Panels are as in Fig. S4.

Fig. S8. Deployment 3 primary time series including temperature in °C.

Fig. S9. Example of Aquadopp Profiler time-series data. Displayed are (a) Pressure, and (b) E velocity, (c) N velocity and (d) Vertical velocity (+Up) at four heights at WLP 1.

References within Supporting Information

Attard, K. M., R. N. Glud, D. F. McGinnis, and S. Rysgaard. 2014. Seasonal rates of benthic primary production in a Greenland fjord measured by aquatic eddy correlation. *Limnology and Oceanography* **59**: 1555-1569. <https://doi.org/10.4319/lo.2014.59.5.1555>

Berg, P., H. Røy, and P. L. Wiberg. 2007. Eddy correlation flux measurements: The sediment surface area that contributes to the flux. *Limnology and Oceanography* **52**: 1672-1684. <https://doi.org/10.4319/lo.2007.52.4.1672>

Goring, D. G., and V. I. Nikora. 2002. Despiking acoustic Doppler velocimeter data. *Journal of Hydraulic Engineering* **128**: 117-126. [https://doi.org/10.1061/\(ASCE\)0733-9429\(2002\)128:1\(117\)](https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117))

Huettel, M., P. Berg, and A. Merikhi. 2020. Technical note: Measurements and data analysis of sediment-water oxygen flux using a new dual-optode eddy covariance instrument. *Biogeosciences* **17**: 4459-4476. <https://doi.org/10.5194/bg-17-4459-2020>

Knoery, J., D. Cossa, B. Thomas, G. Gregory, and S. Rigaud. 2019. SUSANE, a device for sampling chemical gradients in the benthic water column. *Limnology and Oceanography: Methods* **17**: 331-342. <https://doi.org/10.1002/lom3.10317>

Merikhi, A., P. Berg, V. Meyer, and M. Huettel. 2018. Jet-nozzle method for measuring response times of scalar sensors used in liquids and gases. *Limnology and Oceanography: Methods* **16**: 475-483. <https://doi.org/10.1002/lom3.10259>

Reimers, C..E. and K. E. Fogaren. 2021. Bottom boundary layer oxygen fluxes during winter on the Oregon shelf. *Journal of Geophysical Research-Oceans* **126**: e2020JC016828. <https://doi.org/10.1029/2020JC016828>

Reimers, C. E., H. T. Özkan-Haller, P. Berg, A. Devol, K. McCann-Grosvenor, and R. D. Sanders. 2012. Benthic oxygen consumption rates during hypoxic conditions on the Oregon continental shelf: Evaluation of the eddy correlation method. *Journal of Geophysical Research- Oceans* **117**: C02021, <https://doi.org/10.1029/2011JC007564>

Reimers, C. E., H. T. Özkan-Haller, R. D. Sanders, K. McCann-Grosvenor, K., P. J. Chace, and S. A. Crowe. 2016. The dynamics of benthic respiration at a mid-shelf station off Oregon. *Aquatic Geochemistry* **22**: 505-527. <https://doi.org/10.1007/s10498-016-9303-5>