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Abstract
We prove an Ω(𝑛/𝑘 + 𝑘) communication lower bound on (𝑘 − 1)-round distributional complexity of
the 𝑘-step pointer chasing problem under uniform input distribution, improving the Ω(𝑛/𝑘 − 𝑘 log𝑛)
lower bound due to Yehudayoff (Combinatorics Probability and Computing, 2020). Our lower bound
almost matches the upper bound of 𝑂 (𝑛/𝑘 + 𝑘) communication by Nisan and Wigderson (STOC 91).

As part of our approach, we put forth gadgetless lifting, a new framework that lifts lower bounds
for a family of restricted protocols into lower bounds for general protocols. A key step in gadgetless
lifting is choosing the appropriate definition of restricted protocols. In this paper, our definition
of restricted protocols is inspired by the structure-vs-pseudorandomness decomposition by Göös,
Pitassi, and Watson (FOCS 17) and Yang and Zhang (STOC 24).

Previously, round-communication trade-offs were mainly obtained by round elimination and
information complexity. Both methods have some barriers in some situations, and we believe
gadgetless lifting could potentially address these barriers.
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1 Introduction

Pointer chasing is a well-known problem [26] that demonstrates the power of interaction
in communication and has broad applications in different areas. It was used for proving
monotone constant-depth hierarchy theorem [23, 20], lower bounds on the time complexity of
distributed computation [22], lower bounds on the space complexity of streaming algorithms
[10, 15, 1], adaptivity hierarchy theorem for property testing [5], exponential separations in
local differential privacy [16], memory bounds for continual learning [7] and limitations of
the transformer architecture [24]. It is a two-party function defined below.
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75:2 Improved Lower Bounds for Pointer Chasing

▶ Definition 1 (𝑘-step pointer chasing function). For 𝑘 ≥ 1, the 𝑘-step pointer chasing function
PC𝑘 : [𝑛]𝑛 × [𝑛]𝑛 → {0, 1} is defined as follows. Given input 𝑓𝐴, 𝑓𝐵 ∈ [𝑛]𝑛, for 𝑟 = 0, 1, . . . , 𝑘
we recursively define pointers via

pt𝑟 (𝑓𝐴, 𝑓𝐵)
def
=


1 if 𝑟 = 0;
𝑓𝐴 (pt𝑟−1 (𝑓𝐴, 𝑓𝐵)) if 𝑟 > 0 is odd;
𝑓𝐵 (pt𝑟−1 (𝑓𝐴, 𝑓𝐵)) if 𝑟 > 0 is even.

The output of PC𝑘 is the parity of the last pointer, namely, PC𝑘 (𝑓𝐴, 𝑓𝐵)
def
= pt𝑘 (𝑓𝐴, 𝑓𝐵) mod 2.

Upper bounds

If Alice and Bob could communicate for 𝑘 rounds, a simple protocol is the following: Alice
and Bob alternatively send 𝑓𝐴 (pt𝑟−1 (𝑓𝐴, 𝑓𝐵)) or 𝑓𝐴 (pt𝑟−1 (𝑓𝐴, 𝑓𝐵)). The total communication
cost for this simple protocol is 𝑂 (𝑘 · log𝑛). However, if Alice and Bob can only communicate
(𝑘−1) rounds, the upper bound then becomes non-trivial. Nisan and Wigderson [23] proposed
a randomized (𝑘 − 1)-round protocol with 𝑂 ((𝑛/𝑘 + 𝑘) log𝑛) communication bits.

In the beginning, Alice and Bob use public randomness to pick a set of coordinates 𝐼 ⊆ [𝑛]
of size 10𝑛/𝑘, and then send 𝑓𝐴 (𝐼 ) and 𝑓𝐵 (𝐼 ) to the other party.
On the other hand, Alice and Bob also simulate (𝑟 rounds) deterministic protocol but
skip one round if one party finds that the pointer is located in 𝐼 .
If the skip round never happens, Alice and Bob simply abort at the last round. A simple
calculation shows the probability of this event is low.

This randomized protocol is indeed very simple. Alice and Bob only share coordinate-wise
information. In fact, this is a structured rectangle in our setting.

Lower Bounds

Consider (𝑘 − 1) round protocols where Alice speaks first. For deterministic protocols, Nisan
and Wigderson [23] proved an Ω(𝑛 −𝑘 log𝑛) communication lower bound. In the same paper,
they also proved an Ω(𝑛/𝑘2 − 𝑘 log𝑛) communication lower bound for protocols that achieve
2/3 accuracy under uniform input distribution.

Since then, lower bounds for pointer chasing and its close variants have been substantially
studied by a good amount of papers [9, 8, 25, 18, 19, 10, 15, 1]. Finally, Yehudayoff [29]
proved an Ω(𝑛/𝑘 − 𝑘 log𝑛) lower bound for protocols achieving constant advantage under
uniform input distribution.

Now the main gap between the upper bound [23] and the lower bound [29] is the extra
𝑘 log𝑛 term. This gap becomes significant if 𝑘 ≥

√
𝑛. In this paper, we further improve the

lower bound and close the gap.

1.1 Our results
We prove that any protocol that achieves constant advantage under uniform input distribution
must communicate Ω(𝑛/𝑘 + 𝑘) bits.

▶ Theorem 2. Let Π be a (𝑘 − 1)-round deterministic protocol for PC𝑘 where Alice speaks
first such that

Pr
𝑓𝐴,𝑓𝐵←[𝑛]𝑛

[Π(𝑓𝐴, 𝑓𝐵) = PC𝑘 (𝑓𝐴, 𝑓𝐵)] ≥ 2/3.

Then the communication complexity of Π is Ω(𝑛/𝑘 + 𝑘).
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By Yao’s minimax principle, it implies a lower bound for the (𝑘 − 1) round randomized
communication complexity.

▶ Corollary 3. Every (𝑘 − 1)-round randomized protocol for PC𝑘 with error at most 1/3
(where Alice speaks first) has communication complexity Ω(𝑛/𝑘 + 𝑘).

We observe there is still a (log𝑛) gap between our lower bound and the protocol by [23].
We conjecture that our lower bound is tight and there is a chance to remove the log𝑛 factor
in the upper bound side. A simple deterministic protocol with (𝑘 − 1) rounds and 𝑂 (𝑛)
communication bits could be the following: Alice and Bob send the parity of 𝑓𝐴 (𝑥) and 𝑓𝐵 (𝑥)
for all 𝑥 ∈ [𝑛] in the beginning. Hence they can skip the last round as they already know the
parity. This simple protocol shows that [23]’s protocol is not tight when 𝑘 = 𝑜 (log𝑛). We
believe similar ideas could be extended for large 𝑘.

Applications

Given the connections between PC𝑘 and diverse applications [10, 22, 5, 16, 7, 24], our
improved lower bounds automatically lead to several applications. We list two applications
below.

▶ Corollary 4 (Direct sum extension of pointer chasing). The (𝑘 − 1)-round randomized
communication complexity of PC𝑘 with 𝑑 pairs of functions is Ω(𝑑 · 𝑛/𝑘2 + 𝑑)

This corollary improves the previous Ω(𝑑 ·𝑛/𝑘3 −𝑑𝑘 log𝑛 − 2𝑑) lower bound presented in [10],
which has applications in BFS trees streaming lower bound.

▶ Corollary 5 (Exponential separations in local differential privacy). Let 𝐴 be a (𝑘 − 1)-round
sequentially interactive 𝜀-locally private protocol solving PC𝑘 with error probability 𝛾 ≤ 1/3.
Then the sample complexity of 𝐴 is Ω

( 1
𝑒𝜀
· (𝑛/𝑘 + 𝑘)

)
and there is a 𝑘 round protocol with

sample complexity 𝑂
(
𝑘 log𝑛
𝜀2

)
.

This corollary improves the previous Ω
(

𝑛
𝑒𝜀𝑘2

)
lower bound for 𝑘 <

√︁
𝑛/log𝑛 given by [16].

1.2 Gadgetless Lifting: A New Framework to Prove Communication
Lower Bounds

The following two-step approach for proving communication lower bounds often appears in
previous works (e.g., [11, 27]):
1. Identify a family of structured protocols.
2. Simulate general protocols by structured protocols and prove communication lower bounds

for structured protocols.
This approach culminates in query-to-communication lifting theorems [12, 13, 6, 21].

Query-to-communication lifting theorems

Let 𝑓 : 𝑍𝑛 → {0, 1} be a function, and let 𝑔 : 𝑋 × 𝑌 → 𝑍 be a two-party gadget function.
The goal is to prove communication lower bounds for the function 𝑓 ◦ 𝑔𝑛 : 𝑋𝑛 × 𝑌𝑛 → {0, 1}.
Indeed, all functions for which lower bounds are proven using the above approach can be
written as 𝑓 ◦ 𝑔𝑛 for appropriate 𝑓 and 𝑔. For such functions, a communication protocol can
always simulate a decision tree that computes 𝑓 – such protocols consist of a natural family
of structured protocols. Communication complexity for such protocols is essentially the query
complexity of 𝑓 , for which lower bounds are often easy to prove. Hence, the primary job is
to show how to simulate general protocols by structured ones.

ITCS 2025



75:4 Improved Lower Bounds for Pointer Chasing

Though query-to-communication lifting is a beautiful framework, it requires a gadget
function 𝑔 since 𝑓 is a one-party function. As a consequence, this framework only applies to
lifted functions, namely, functions that can be written as 𝑓 ◦ 𝑔𝑛. Many important problems,
such as pointer chasing, do not fall into this category; hence, lifting theorems do not apply
in those cases.

To address this limitation, we propose a new framework called gadgetless lifting. We take
a step back to the original approach, reconsidering the choice of structured protocols. In some
cases, although the function is not a lifted function, there are simple and natural protocols.
The crux of gadgetless lifting is how to decide the structured protocols. In this paper, we
capture it as those protocols that “all shared useful information are local information”. For
example, the protocol by [23] only share local information such as 𝑓𝐴 (𝑥) or 𝑓𝐵 (𝑥) for some
𝑥 ∈ [𝑛]. In lemma 11, we show that any protocol for PC𝑘 can be simulated by such protocols.
Our proof is inspired by the structure-vs-pseudorandomness decomposition by Göös, Pitassi,
and Watson [13] and Yang and Zhang [28], which is a powerful tool that emerged in the
study of query-to-communication lifting theorems. Therefore, we call our method “gadgetless
lifting”.

In the study of lifted functions, it has been shown that query-to-communication lifting
theorems bypassed some fundamental barriers from previous methods. Similarly, gadgetless
lifting can also bypass obstacles from existing methods. We discuss two of them below.

Avoiding the loss in round elimination method

Previously, the only method to prove round-communication trade-offs is the round elimination
method [23]. In [23] and [29], the authors studied the pointer chasing problem via the round
elimination method. Denote by 𝑴1, . . . ,𝑴𝑡 the messages sent in the first 𝑡 rounds, and let 𝒁𝑖
be the pointer in the 𝑖-th round, i.e., , 𝑍𝑖 = pt𝑖 (𝑋,𝑌 ) where 𝑋,𝑌 are uniformly chosen from
[𝑛]𝑛. As is standard the round elimination method, [23, 29] analyzed the random variables

𝑹𝑡 = (𝑴1, . . . ,𝑴𝑡 ,𝒁1, . . . ,𝒁𝑡−1) for 𝑡 ≤ 𝑘.

They proved that H(𝑹𝑘 ) ≥ Ω(𝑛/𝑘). Together with the fact that H(𝒁1, . . . ,𝒁𝑘 ) = 𝑘 log𝑛, it
implies that H(𝑴) ≥ Ω(𝑛/𝑘 − 𝑘 log𝑛). The (𝑘 log𝑛) loss (or something similar) appears in
many previous works that adopt round elimination-based [23, 18, 19, 14, 10, 29]. In this
paper, we avoid the 𝑘 log𝑛 loss via the gadgetless lifting.

Breaking square-root loss barrier in information complexity

Another popular method in proving communication lower bounds is by way of information
complexity. However, as mentioned by Yahudayoff [29], entropy-based analyses are likely
to induce a square-root loss barrier. This barrier usually comes from applying Pinsker’s
inequality (or its variant) to bound statistical distance from a small entropy gap. As a
consequence, many results such as [23] can only prove an Ω(𝑛/𝑘2 − 𝑘 log𝑛) lower bound.

As mentioned in [29], the square-root loss also appears in many works when using the
entropy-based method to prove lower bounds. For example, it appears in the parallel
repetition theorem and is related to the “strong parallel repetition” conjecture which is
motivated by Khot’s unique games conjecture [17]. This loss also appears in direct-sum
theorems [2] and direct-product theorems [4] in communication complexity.

[29] overcomes this square-root loss barrier by using a non-standard measurement called
triangular discrimination. By contrast, our approach overcomes the barrier more naturally
without using entropy.
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Potential applications

We noticed that our method can also be naturally extended to multiparty settings such
as the numbers in hand model. Moreover, some important open problems, such as round-
communication tradeoff of bipartite matching problem [3] and set pointer chasing problem
[10, 15], are difficult to solve using the round elimination method due to its inherent limitations.
Our method offers the potential to solve these challenging problems.

2 Preliminaries

Notations

We use capital letters 𝑋 to denote a set and use bold symbols like 𝑹 to denote random
variables. Particularly, for a set 𝑋 , we use 𝑿 to denote the random variable uniformly
distributed over the set 𝑋 . We use ← to denote sampling from a distribution or choosing an
element from a set uniformly at random.

2.1 Density-Restoring Partition
Min-entropy and dense distribution

For a random variable 𝑿 , we use supp(𝑿 ) to denote the support of 𝑿 .

▶ Definition 6 (Min-entropy and deficiency). The min-entropy of a random variable 𝑿 is
defined by

H∞ (𝑿 ) := min
𝑥∈supp(𝑿 )

log
(

1
Pr[𝑿 = 𝑥]

)
.

Suppose that 𝑿 is supported on [𝑛] 𝐽 . We define the deficiency of 𝑿 as

D∞ (𝑿 ) := |𝐽 | log𝑛 −H∞ (𝑿 ).

For 𝐼 ⊆ 𝐽 , 𝑥 ∈ [𝑛] 𝐽 , let 𝑥 (𝐼 ) def
= (𝑥 (𝑖))𝑖∈𝐼 ∈ [𝑛]𝐼 be the projection of 𝑥 on coordinates in 𝐼 .

▶ Definition 7 (Dense distribution). Let 𝛾 ∈ (0, 1). A random variable 𝑿 supported on [𝑛] 𝐽
is said to be 𝛾-dense if for all nonempty 𝐼 ⊆ 𝐽 , H∞ (𝑥 (𝐼 )) ≥ 𝛾 |𝐼 | log𝑛.

The following lemma is the crux of the structure-vs-pseudorandomness method by [13]. It
essentially says that a flat random variable could be decomposed into a convex combination
of flat random variables with disjoint support and dense properties.

▶ Lemma 8 (Density-restoring partition). Let 𝛾 ∈ (0, 1). Let 𝑋 be a subset of [𝑛]𝑀 and
𝐽 ⊆ [𝑀]. Suppose that there exists an 𝛽 ∈ [𝑛] 𝐽 such that ∀𝑥 ∈ 𝑋, 𝑥 (𝐽 ) = 𝛽. Then, there exists
a partition 𝑋 = 𝑋 1 ∪ 𝑋 2 ∪ · · · ∪ 𝑋 𝑟 and every 𝑋 𝑖 is associated with a set 𝐼𝑖 ⊆ 𝐽 and a value
𝛼𝑖 ∈ [𝑛]𝐼𝑖 that satisfy the following properties.
1. ∀𝑥 ∈ 𝑋 𝑖 , 𝑥 (𝐼𝑖 ) = 𝛼𝑖 ;
2. 𝑿 𝑖 (𝐽 \ 𝐼𝑖 ) is 𝛾-dense;
3. D∞

(
𝑿 𝑖 (𝐽 \ 𝐼𝑖 )

)
≤ D∞ (𝑿 (𝐽 )) − (1 − 𝛾) log𝑛 · |𝐼𝑖 | + 𝛿𝑖 , where 𝛿𝑖

def
= log( |𝑋 |/| ∪𝑗≥𝑖 𝑋 𝑗 |).

The proof of this lemma, simple and elegant, is included in the appendix for completeness.

ITCS 2025



75:6 Improved Lower Bounds for Pointer Chasing

2.2 Communication Protocols
We recall basic definitions and facts about communication protocols.

Protocol Tree

Let 𝑋 and 𝑌 be the input space of Alice and Bob respectively. A deterministic communication
protocol Π is specified by a rooted binary tree. For every internal vertex 𝑣 ,

it has 2 children, denoted by Π(𝑣, 0) and Π(𝑣, 1);
𝑣 is owned by either Alice or Bob – we denote the owner by owner(𝑣);
every leaf node specifies an output.

Starting from the root, the owner of the current node cur partitions its input space into two
parts 𝑋0 and 𝑋1, and sets the current node to Π(cur, 𝑏) if its input belongs to 𝑋𝑏 .

▶ Fact 9. The set of all inputs that leads to an internal vertex 𝑣 is a rectangle, denoted by
Π𝑣 = 𝑋𝑣 × 𝑌𝑣 ⊆ 𝑋 × 𝑌 .

The communication complexity of Π, denoted by CC(Π), is the depth of the tree. The
round complexity of Π, is the minimum number 𝑘 such that in every path from the root to
some leaf, the owner switches at most (𝑘 − 1) times. Clearly, if a protocol has 𝑘 round, then
its communication complexity is at least 𝑘. We can safely make the following assumptions
for any protocol Π:

Π has 𝑘 rounds on every input; and
Π communicates CC(Π) bits on every input.

Indeed, for any protocol, we can add empty messages and rounds in the end, which boosts
the communication complexity by a factor of 2.

3 Proof of Main Theorem

▶ Theorem 10 (Main theorem, Theorem 2 restated). Let Π be a (𝑘 − 1)-round deterministic
protocol for PC𝑘 where Alice speaks first such that

Pr
𝑓𝐴,𝑓𝐵←[𝑛]𝑛

[Π(𝑓𝐴, 𝑓𝐵) = PC𝑘 (𝑓𝐴, 𝑓𝐵)] ≥ 2/3.

Then the communication complexity of Π is Ω(𝑛/𝑘 + 𝑘).

We use a decomposition and sampling process DS, as shown in Algorithm 1, in our
analysis. DS takes as input a protocol Π, and samples a rectangle 𝑅 that is contained in Π𝑣
for some leaf node 𝑣 . Our proof proceeds in three steps:
1. First, Section 3.1 analyzes crucial invariants during the running of DS.
2. Next, Section 3.2 shows that the accuracy of Π is captured by a quantity called average

fixed size, which is a natural quantity that arises in the running of DS.
3. Finally, Section 3.3 proves that the average fixed size can be bounded from above by

𝑂 (CC(Π)). Consequently, if Π enjoys high accuracy, we get a lower bound of CC(Π).

3.1 The Decomposition and Sampling Process
During the sampling process, we maintain a useful structure of 𝑅 mainly by a partitioning-
then-sampling mechanism: At the beginning, 𝑅 is set to be the set of all inputs. Walking
down the protocol tree, we decompose the rectangle into structured sub-rectangles; then we
sample a decomposed rectangle with respect to its size. In the end, we arrive at a leaf node
𝑣 and a subrectangle of Π𝑣.
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Algorithm 1 The decomposition and sampling process DS.

Input: A protocol Π for the problem PC𝑘 .
Output: A rectangle 𝑅 = 𝑋 × 𝑌 , and 𝐽𝐴, 𝐽𝐵 ⊆ [𝑛].

1 Initialize 𝑣 := root of Π, 𝑟 := 1, 𝑋 := 𝑌 := [𝑛]𝑛, 𝐽𝐴 := 𝐽𝐵 := [𝑛], bad := False.
2 while 𝑣 is not a leaf node do
3 //Invariant: (1) 𝑋 × 𝑌 ⊆ Π𝑣; (2) there exists some 𝑧𝑟−1 ∈ [𝑛] such

that pt𝑟−1 (𝑓𝐴, 𝑓𝐵) = 𝑧𝑟−1 ∀(𝑓𝐴, 𝑓𝐵) ∈ 𝑋 × 𝑌 (See Lemma 11).
4 Let 𝑢0 := Π(𝑣, 0), 𝑢1 := Π(𝑣, 1) be the two children of 𝑣 .
5 if owner(𝑣) = Alice then
6 Partition 𝑋 into 𝑋 = 𝑋 0 ∪ 𝑋 1 such that 𝑋𝑏 × 𝑌 ⊆ Π𝑢𝑏 for 𝑏 ∈ {0, 1}.
7 Sample 𝒃 ∈ {0, 1} such that Pr [𝒃 = 𝑏] = |𝑋𝑏 |/|𝑋 | for 𝑏 ∈ {0, 1}.
8 Update 𝑋 := 𝑋𝒃 , 𝑣 := 𝑢𝒃 .
9 if owner(𝑢𝒃 ) = Bob then

10 // A new round.
11 Further Partition 𝑋 into 𝑋 = 𝑋 0 ∪ 𝑋 1 where

𝑋𝑏 := {𝑓𝐴 ∈ 𝑋 : 𝑓𝐴 (𝑧𝑟−1) mod 2 = 𝑏}.
12 Sample 𝒃′ ∈ {0, 1} such that Pr [𝒃′ = 𝑏] = |𝑋𝑏 |/|𝑋 | for 𝑏 ∈ {0, 1}.
13 Update 𝑋 := 𝑋𝒃′ , 𝑟 := 𝑟 + 1.
14 Let 𝑋 = 𝑋 1 ∪ · · · ∪ 𝑋𝑚 be the decomposition of 𝑋 promised by Lemma 8 with

associated sets 𝐼1, . . . , 𝐼𝑚 ⊆ 𝐽𝐴.
15 // Invoking Lemma 8 with 𝐽 = 𝐽𝐴, 𝑀 = 𝑛,𝛾 = 1 − 0.1

log𝑛.
16 Sample a random element 𝒋 ∈ [𝑚] such that Pr[𝒋 = 𝑗] = |𝑋 𝑗 |/|𝑋 | for 𝑗 ∈ [𝑚].
17 Update 𝑋 := 𝑋 𝒋, 𝐽𝐴 := 𝐽𝐴 \ 𝐼𝒋 .
18 if owner(𝑢𝒃 ) = Bob ∧ 𝑧𝑟−1 ∉ 𝐽𝐵 then
19 bad := True.

20 if owner(𝑣) = Bob then
21 Partition 𝑌 into 𝑌 = 𝑌 0 ∪ 𝑌 1 such that 𝑋 × 𝑌𝑏 ⊆ Π𝑢𝑏 for 𝑏 ∈ {0, 1}.
22 Sample 𝒃 ∈ {0, 1} such that Pr [𝒃 = 𝑏] = |𝑌𝑏 |/|𝑌 | for 𝑏 ∈ {0, 1}.
23 Update 𝑌 := 𝑌𝒃 , 𝑣 := 𝑢𝒃 .
24 if owner(𝑢𝒃 ) = Alice then
25 Further Partition 𝑌 into 𝑌 = 𝑌 0 ∪ 𝑌 1 where

𝑌𝑏 := {𝑓𝐵 ∈ 𝑌 : 𝑓𝐵 (𝑧𝑟−1) mod 2 = 𝑏}.
26 Sample 𝒃′ ∈ {0, 1} such that Pr [𝒃′ = 𝑏] = |𝑌𝑏 |/|𝑌 | for 𝑏 ∈ {0, 1}.
27 Update 𝑌 := 𝑌𝒃′ , 𝑟 := 𝑟 + 1.
28 Let 𝑌 = 𝑌 1 ∪ · · · ∪ 𝑌𝑚 be the decomposition of 𝑌 promised by Lemma 8 with

associated sets 𝐼1, . . . , 𝐼𝑚 ⊆ 𝐽𝐵 .
29 Sample a random element 𝒋 ∈ [𝑚] such that Pr[𝒋 = 𝑗] = |𝑌 𝑗 |/|𝑌 | for 𝑗 ∈ [𝑚].
30 Update 𝑌 := 𝑌 𝒋, 𝐽𝐵 := 𝐽𝐵 \ 𝐼𝒋 .
31 if owner(𝑢𝒃 ) = Alice ∧ 𝑧𝑟−1 ∉ 𝐽𝐴 then
32 bad := True.
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▶ Lemma 11 (Loop invariant). Set 𝛾 def
= 1 − 0.1

log𝑛 . Then in the running of DS(Π), we have
the following loop invariants: After each iteration,
(♦) 𝑋 × 𝑌 ⊆ Π𝑣;
(♣) 𝑿 (𝐽𝐴), 𝒀 (𝐽𝐵) are 𝛾-dense;
(♥) there exists some 𝛼𝐴 ∈ [𝑛] 𝐽𝐴 , 𝛼𝐵 ∈ [𝑛] 𝐽𝐵 such that 𝑥 (𝐽𝐴) = 𝛼𝐴, 𝑦 (𝐽𝐵) = 𝛼𝐵 for all 𝑥 ∈ 𝑋,𝑦 ∈

𝑌 ;
(♠) there exists some 𝑧𝑟 ∈ [𝑛] such that pt𝑟 (𝑓𝐴, 𝑓𝐵) = 𝑧𝑟 for all (𝑓𝐴, 𝑓𝐵) ∈ 𝑋 × 𝑌 .

Proof. Item (♦) is true because every time 𝑣 is updated, 𝑋 × 𝑌 is updated accordingly to a
sub-rectangle of Π𝑣 and updating 𝑋 ×𝑌 into its sub-rectangles does not violate this condition.

Since we applied density restoring partition at the end of each iteration, Item (♣) and
(♥) is guaranteed by Lemma 8 and the way that 𝑋,𝑌, 𝐽𝐴, 𝐽𝐵 are updated.

We prove the last item (♠) by induction. Assume that the statement holds after the first
(𝑡 − 1) iterations. WLOG, assume that at the beginning of the 𝑡-th iteration, 𝑣 is owned by
Alice. Consider the following two cases.

Case 1. Not a new round: Line 13 is not executed in the 𝑡-th iteration. Since 𝑟 remains
unchanged and we only update 𝑅 to be a sub-rectangle of itself, the statement still holds.
Case 2. A new round begins: Line 13 is executed and 𝑟 is increased by 1. Let 𝜌 denote
the value of 𝑟 before Line 13, then after this iteration, we have 𝑟 = 𝜌 + 1. The induction
hypothesis guarantees that there exists some 𝑧𝜌−1 ∈ [𝑛] such that

pt𝜌−1 (𝑓𝐴, 𝑓𝐵) = 𝑧𝜌−1 for all(𝑓𝐴, 𝑓𝐵) ∈ 𝑋 × 𝑌 .

Due to the partition and the update in Line 11 and Line 12, |supp(𝑿 (𝑧𝜌−1)) | ≤ 𝑛/2.
Hence, 𝑿 (𝑧𝜌−1) cannot be 𝛾-dense as we set 𝛾 = 1− 0.1

log𝑛 . Observe that after the update in
Line 17, 𝑿 (𝐽𝐴) is 𝛾-dense. Consequently, we must have 𝑧𝜌−1 ∈ 𝐽𝐴, and by item (♥), there
exists some 𝑧𝜌 ∈ [𝑛] such that 𝑓𝐴 (𝑧𝜌−1) = 𝑧𝜌 ∀𝑓𝐴 ∈ 𝑋 . By definition, for all (𝑓𝐴, 𝑓𝐵) ∈ 𝑋 ×𝑌 ,

pt𝜌 (𝑓𝐴, 𝑓𝐵) = 𝑓𝐴 (pt𝜌−1 (𝑓𝐴, 𝑓𝐵)) = 𝑓𝐴 (𝑧𝜌−1) = 𝑧𝜌 .

This is exactly the same statement after the 𝑡-th iteration (as we have 𝑟 = 𝜌 + 1). ◀

The restricted rectangles in this loop invariant are inspired by the protocols of Nisan
and Wigderson [23]. This lemma aims to capture the fact that Alice and Bob cannot
get any additional useful information other than coordinate-wise information during their
communication.

3.2 Relating Accuracy and Average Fixed Size
From Lemma 11 we know that the coordinates in 𝐽𝐴 and 𝐽𝐵 are fixed if we only look at the
inputs in 𝑋 ×𝑌 . Intuitively, the advantage of the protocol comes from such fixed coordinates,
since the “alive” coordinates 𝐽𝐴, 𝐽𝐵 are dense in the sense that 𝑿 (𝐽𝐴), 𝒀 (𝐽𝐵) is 𝛾-dense. This
intuition is formalized in the following lemma.

▶ Lemma 12 (Relating accuracy and avarage fixed size). Let Π be a (𝑘 −1)-round deterministic
protocol where Alice speaks first. Then

Pr
𝑓𝐴,𝑓𝐵←[𝑛]𝑛

[Π(𝑓𝐴, 𝑓𝐵) = PC𝑘 (𝑓𝐴, 𝑓𝐵)] ≤
𝑛1−𝛾

2 + 𝑛−𝛾 · (𝑘 − 1) · E
(𝑅,𝐽𝐴,𝐽𝐵 )←DS(Π)

[
|𝐽𝐴 | + |𝐽𝐵 |

]
.

The proof of the lemma is by the following two claims. The first claim readily says that
conditioned on the flag bad is not raised, Π has little advantage in the rectangle 𝑅 output by
DS(Π). The second claim shows the probability that the flag is raised is bounded in terms of
the average fixed size.
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▷ Claim 13. If DS(Π) outputs (𝑅 = 𝑋 × 𝑌, 𝐽𝐴, 𝐽𝐵) and bad = False in the end, then

Pr
(𝑓𝐴,𝑓𝐵 )←𝑅

[Π(𝑓𝐴, 𝑓𝐵) = PC𝑘 (𝑓𝐴, 𝑓𝐵)] ≤
𝑛1−𝛾

2 .

▷ Claim 14. PrDS(Π) [bad = True] ≤ 𝑛−𝛾 · (𝑘 − 1) · E(𝑅,𝐽𝐴,𝐽𝐵 )←DS(Π)
[
|𝐽𝐴 | + |𝐽𝐵 |

]
.

Next, we first prove Lemma 12 using the above two claims, and the proof of the claims is
followed.

Proof of Lemma 12. Note that in the running of DS(Π), we always update 𝑅 to a randomly
chosen rectangle and the probability of each rectangle being chosen is proportional to its
size. Consequently,

Pr
𝑓𝐴,𝑓𝐵←[𝑛]𝑛

[Π(𝑓𝐴, 𝑓𝐵) = PC𝑘 (𝑓𝐴, 𝑓𝐵)]

= Pr
(𝑅,𝐽𝐴,𝐽𝐵 )←DS(Π),(𝑓𝐴,𝑓𝐵 )←𝑅

[Π(𝑓𝐴, 𝑓𝐵) = PC𝑘 (𝑓𝐴, 𝑓𝐵)]

≤ Pr
DS(Π)

[bad = True] + Pr
(𝑅,𝐽𝐴,𝐽𝐵 )←DS(Π),(𝑓𝐴,𝑓𝐵 )←𝑅

[Π(𝑓𝐴, 𝑓𝐵) = PC𝑘 (𝑓𝐴, 𝑓𝐵) ∧ bad = False]

≤ 𝑛
1−𝛾

2 + 𝑛−𝛾 · (𝑘 − 1) · E
(𝑅,𝐽𝐴,𝐽𝐵 )←DS(Π)

[
|𝐽𝐴 | + |𝐽𝐵 |

]
.

where the last step is by Claim 13 and Claim 14. ◀

It remains to prove the two claims.

Proof of Claim 13. WLOG, assume 𝑘 − 1 is odd and the protocol always has 𝑘 round. Let
𝑧𝑘−1 be the pointer guaranteed by the loop invariant (Lemma 11), i.e., pt𝑘−1 (𝑓𝐴, 𝑓𝐵) = 𝑧𝑘−1
for all (𝑓𝐴, 𝑓𝐵) ∈ 𝑅. Since bad = False, we have 𝑧𝑘−1 ∈ 𝐽𝐴. Again by the loop invariant,
H∞ (𝑿 (𝑧𝑘−1)) ≥ 𝛾 . Moreover, since 𝑅 is contained in some leaf node of Π, Π output the same
answer in 𝑅, say 𝑏∗ ∈ {0, 1}. Consequently,

Pr
(𝑓𝐴,𝑓𝐵 )←𝑅

[Π(𝑓𝐴, 𝑓𝐵) = PC𝑘 (𝑓𝐴, 𝑓𝐵)] = Pr
𝑓𝐴←𝑋

[𝑓𝐴 (𝑧𝑘−1) mod 2 = 𝑏∗]

≤
∑︁

𝜎∈[𝑛]:𝜎 mod 2=𝑏∗
Pr
𝑓𝐴←𝑋

[𝑓𝐴 (𝑧𝑘−1) = 𝜎]

≤ 𝑛2 · 𝑛
−𝛾 . ◁

Proof of Claim 14. Let Eℓ denote the event that the flag bad is raised when 𝑟 = ℓ + 1 (i.e.,
when the ℓ-th round ends) for the first time. Clearly, Pr [bad = True] = ∑𝑘−1

ℓ=1 Pr [Eℓ ] . It
suffices to bound each Pr [Eℓ ].

Assume ℓ is odd, meaning that Alice speaks in the ℓ-th round. Let coin denote the
randomness used for the first (ℓ − 1) rounds. Let 𝑋 (ℓ−1) , 𝐽 (ℓ−1)

𝐴
, 𝐽
(ℓ−1)
𝐵

be the sets 𝑋, 𝐽𝐴, 𝐽𝐵
when executing DS(Π) using coin until the ℓ-th round begins. Let 𝑧ℓ−1 be the pointer
promised by the invariant. For Eℓ to happen, we must have bad = False until the ℓ-th round
begins, meaning that 𝑧ℓ−1 ∈ 𝐽 (ℓ−1)

𝐴
.

Note that the random variable 𝒛ℓ exactly has the same distribution as 𝑿 (ℓ−1) (𝑧ℓ−1). This
is because, in the ℓ-th round (i.e., until 𝑟 steps to ℓ + 1), we decompose 𝑋 (ℓ−1) into finer sets
and update 𝑋 to be one of them with probability proportional to their size. Therefore,
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Pr
coin′
[E𝑡 ] = Pr

coin′

[
𝒛ℓ ∉ 𝐽

(ℓ−1)
𝐵

]
= Pr
𝑓𝐴←𝑿 (ℓ−1)

[
𝑓𝐴 (𝒛ℓ−1) ∉ 𝐽 (ℓ−1)

𝐵

]
=

∑︁
𝜎∈ 𝐽 (ℓ−1)

𝐵

Pr
𝑓𝐴←𝑿 (ℓ−1)

[𝑓𝐴 (𝒛ℓ−1) = 𝜎]

≤
����𝐽 (ℓ−1)
𝐵

���� · 𝑛−𝛾 ,
where we fix coin and the probability runs over coin′, the randomness used afterward; the
last inequality holds because 𝑧ℓ−1 ∈ 𝐽 (ℓ−1)

𝐴
and 𝑿 (ℓ−1)

(
𝐽
(ℓ−1)
𝐴

)
is 𝛾-dense (by Item (♣) in

Lemma 11). Averaging over coin, we get

Pr
DS(Π)

[Eℓ ] ≤ E
coin

[����𝐽 (ℓ−1)
𝐵

����] · 𝑛−𝛾 ≤ E
(𝑅,𝐽𝐴,𝐽𝐵 )←DS(Π)

[
|𝐽𝐵 |

]
· 𝑛−𝛾 ,

where the second inequality holds because 𝐽𝐵 becomes smaller and smaller during the
execution.

For even ℓ’s, we analogously have Pr [Eℓ ] ≤ E
[
|𝐽𝐴 |

]
· 𝑛−𝛾 , and hence the claim follows

from union bound. ◁

3.3 Average Fixed Size is Bounded by Communication
Now that the accuracy of a protocol Π is bounded from above by the average fixed size (i.e.,
E(𝑅,𝐽𝐴,𝐽𝐵 )←DS(Π)

[
|𝐽𝐴 | + |𝐽𝐵 |

]
), in what follows we show that the average fixed size is at most

𝑂 (CC(Π)). Formally, we prove that

▶ Lemma 15. Let Π be a (𝑘 − 1)-round deterministic protocol where Alice speaks first. Then

E
(𝑅,𝐽𝐴,𝐽𝐵 )←DS(Π)

[
|𝐽𝐴 | + |𝐽𝐵 |

]
≤ 3CC(Π)
(1 − 𝛾) log𝑛 .

▶ Remark 16. We shall set 𝛾 := 1 − 0.1
log𝑛 and hence the right-handed side equals 30CC(Π).

Proof. We shall prove this lemma by density increment argument. That is, we study the
change of the density function

D∞ (𝑅)
def
= D∞ (𝑿 (𝐽𝐴)) +D∞ (𝒀 (𝐽𝐵)). (1)

in each iteration. Let 𝝓𝒕 be the value of D∞ (𝑅) at the end of the 𝑡-th iteration. Assume
without loss of generality Alice speaks (i.e., owner(𝑣) = Alice) in the 𝑡-th iteration.

We fix the random coins used for the first (𝑡 − 1) iterations and consider the updates in
the current iteration.
1. First, 𝑋 is partitioned into 𝑋 = 𝑋 0 ∪ 𝑋 1 according to Π. Then, 𝑋 is updated to 𝑋𝑏 with

probability |𝑋
𝑏 |
|𝑋 | . Consequently, D∞ (𝑿 (𝐽𝐴)) will increase as |𝑋 | shrinks, and in expectation

(over the random choice of 𝒃) the increment is∑︁
𝑏∈{0,1}

|𝑋𝑏 |
|𝑋 | log

(
|𝑋 |
|𝑋𝑏 |

)
≤ 1. (2)

2. Next, suppose that updating 𝑣 leads to the switch of the owner, i.e., Line 13 is triggered.
Since we also partition 𝑋 into two parts and update 𝑋 with probability proportional to
the size of each part, the same argument applies. That is, taking expectation over the
random choice of 𝒃′, D∞ (𝑿 (𝐽𝐴)) increases by at most 1 in expectation.
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3. Finally, we further partition 𝑋 according to Lemma 8. Say 𝑋 is partitioned into 𝑋 =

𝑋 1∪ · · · ∪𝑋𝑚 and let 𝐼1, . . . , 𝐼𝑚 be the index sets promised by Lemma 8; and for all 𝑗 ∈ [𝑚]
we have

D∞ (𝑿 𝑗 (𝐽𝐴 \ 𝐼 𝑗 )) ≤ D∞ (𝑿 (𝐽𝐴)) − (1 − 𝛾) log𝑛 |𝐼 𝑗 | + 𝛿 𝑗 ,

where 𝛿 𝑗 = log( |𝑋 |/∪𝑣≥ 𝑗𝑋 𝑣). With probability 𝑝 𝑗
def
= |𝑋 𝑗 |/|𝑋 |, we update 𝑋 := 𝑋 𝑗 and

𝐽𝐴 := 𝐽𝐴 \ 𝐼 𝑗 . Therefore, taking expectation over the random choice of 𝒋, the density
function will decrease by

D∞ (𝑿 (𝐽𝐴)) − E
𝑗←𝒋

[
D∞ (𝑿 𝑗 (𝐽𝐴 \ 𝐼 𝑗 ))

]
≥ E
𝑗←𝒋

[
(1 − 𝛾) log𝑛 · |𝐼 𝑗 | − 𝛿 𝑗

]
. (3)

Note that 𝛿 𝑗
def
= log 1∑

𝑣≥ 𝑗 𝑝𝑣
and thus

E
𝑗←𝒋

[
𝛿 𝑗
]
=

𝑚∑︁
𝑗=1

𝑝 𝑗 log 1∑
𝑣≥ 𝑗 𝑝 𝑗

≤
∫ 1

0
log 1

1 − 𝑥 d𝑥 ≤ 1. (4)

Let F𝑡−1 be the 𝜎-algebra generated by the random coins used for the first (𝑡 − 1)
iterations. Let 𝜷𝑡 be the increment of |𝐽𝐴 | and |𝐽𝐵 | in the 𝑡-th iteration. Observe that 𝜷𝑡 = |𝐼𝒋 |
by definition. By Equation (3) and Equation (4), taking expectation over random choice of
𝒋, D∞ (𝑿 (𝐽𝐴)) decrease by at least (1 − 𝛾) log𝑛 · E [𝜷𝑡 | F𝑡−1] − 1 due to the density restoring
partition. Then

E [𝝓𝑡 − 𝝓𝑡−1] = E [E [𝝓𝑡 − 𝝓𝑡−1 | F𝑡−1]] ≤ E [1 + 𝜼𝒕 − ((1 − 𝛾) log𝑛 · 𝜷𝑡 − 1)] , (5)

where 𝜼𝒕
def
= 𝟙[owner switches in the 𝑡-th iteration].

Write 𝑐 def
= CC(Π) and assume we always have 𝑐 iterations. 1 In the beginning, 𝝓0 =

D∞ ( [𝑛]𝑛 × [𝑛]𝑛) = 0. Since the density function is always non-negative by definition, we have
𝝓𝑐 ≥ 0 and thus E [𝝓𝑐 − 𝝓0] ≥ 0. On the other hand, by telescoping,

E [𝝓𝑐 − 𝝓0] =
𝑐∑︁
𝑡=1

E [𝝓𝑡 − 𝝓𝑡−1] ≤ 2𝑐 +
𝑐∑︁
𝑡=1

E [𝜼𝑡 − (1 − 𝛾) log𝑛 · 𝜷𝒕 ] ,

where the inequality follows from Equation (5). Observe that
∑𝑐
𝑡=1 𝜼𝑡 is at most 𝑘 and∑𝑐

𝑡=1 𝜷𝑡 = |𝑱𝐴 | + |𝑱𝐵 | by definition. We conclude that

E
[
|𝑱𝐴 | + |𝑱𝐵 |

]
= E

[
𝑐∑︁
𝑡=1

𝜷𝑡

]
≤ 2𝑐 + 𝑘
(1 − 𝛾) log𝑛 ≤

3𝑐
(1 − 𝛾) log𝑛 ,

as desired. ◀

Proving the main theorem

Now our main theorem easily follows from the two lemmas.

1 Namely, Π communicates 𝑐 bits on all inputs.
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Proof of Theorem 2. Set 𝛾 def
= 1 − 0.1

log𝑛 . By Lemma 15 and Lemma 12, we get

Accuracy(Π) def
= Pr

𝑓𝐴,𝑓𝐵←[𝑛]𝑛
[Π(𝑓𝐴, 𝑓𝐵) = PC𝑘 (𝑓𝐴, 𝑓𝐵)]

≤ 𝑛
1−𝛾

2 + 𝑛−𝛾 · (𝑘 − 1) · 3CC(Π)
(1 − 𝛾) log𝑛

≤ 0.54 + 1.08(𝑘 − 1)
𝑛

· 30CC(Π),

where we use 𝑛1−𝛾

2 ≤ 0.54, 𝑛−𝛾 ≤ 1.08
𝑛
. Since we assumed Accuracy(Π) ≥ 2/3, we conclude that

CC(Π) ≥ 2/3 − 0.54
1.08 · 30 ·

𝑛

𝑘 − 1 > 0.0039 · 𝑛

𝑘 − 1 = Ω(𝑛/𝑘).

We also trivially have CC(Π) ≥ 𝑘 − 1 as Π has (𝑘 − 1) rounds; putting it together we conclude
that CC(Π) = Ω(𝑛/𝑘 + 𝑘). ◀
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A Appendix

The following lemma and proof are from Lemma 5 in [13].

▶ Lemma 17 (Lemma 8 restated). Let 𝛾 ∈ (0, 1). Let 𝑋 be a subset of [𝑛]𝑀 and 𝐽 ⊆ [𝑀].
Suppose that there exists an 𝛽 ∈ [𝑛] 𝐽 such that ∀𝑥 ∈ 𝑋, 𝑥 (𝐽 ) = 𝛽. Then, there exists a partition
𝑋 = 𝑋 1 ∪ 𝑋 2 ∪ · · · ∪ 𝑋 𝑟 and every 𝑋 𝑖 is associated with a set 𝐼𝑖 ⊆ 𝐽 and a value 𝛼𝑖 ∈ {0, 1}𝐼𝑖
that satisfy the following properties.
1. ∀𝑥 ∈ 𝑋 𝑖 , 𝑥 (𝐼𝑖 ) = 𝛼𝑖 ;
2. 𝑿 𝑖 (𝐽 \ 𝐼𝑖 ) is 𝛾-dense;
3. D∞

(
𝑿 𝑖 (𝐽 \ 𝐼𝑖 )

)
≤ D∞ (𝑿 (𝐽 )) − (1 − 𝛾) log𝑛 · |𝐼𝑖 | + 𝛿𝑖 , where 𝛿𝑖

def
= log( |𝑋 |/| ∪𝑗≥𝑖 𝑋 𝑗 |).

Proof. We prove it by a greedy algorithm as follows.

Algorithm 2 Greedy Algorithm.

Input: 𝑋 ⊆ [𝑛]𝑀
Output: A partition 𝑋 = 𝑋 1 ∪ 𝑋 2 ∪ · · · ∪ 𝑋𝑚

1 Initialize 𝑖 := 1.
2 while 𝑋 ≠ ∅ do
3 Let 𝐼 ⊆ 𝐽 be a maximal subset (possibly 𝐼 = ∅) such that H∞ (𝑿 (𝐼 )) < 𝛾 |𝐼 | log𝑛

and let 𝛼𝑖 ∈ [𝑛]𝐼 be a witness of this fact, i.e., Pr[𝑿 (𝐼 ) = 𝛼𝑖 ] > 𝑛−𝛾 |𝐼 | .
4 𝑋 𝑖 := {𝑥 ∈ 𝑋 : 𝑥 (𝐼 ) = 𝛼𝑖 } and 𝐼𝑖 := 𝐼 .
5 Update 𝑋 := 𝑋 \ 𝑋 𝑖 , 𝐽 := 𝐽 \ 𝐼𝑖 , and 𝑖 := 𝑖 + 1.

Item 1 is guaranteed by the construction of 𝑋 𝑖 and 𝐼𝑖 .
We prove Item 2 by contradiction. Assume towards contradiction that 𝑿 𝑖 (𝐽 \ 𝐼𝑖 ) is not

𝛾-dense for some 𝑖. By definition, there is a nonempty set 𝐾 ⊆ 𝐽 \ 𝐼𝑖 and 𝛽 ∈ [𝑛]𝐾 violating
the min-entropy condition, namely, Pr [𝑿 (𝐾) = 𝛽] > 𝑛−𝛾 |𝐾 | . Write 𝑋 ≥𝑖 def

= ∪𝑗≥𝑖𝑋 𝑖 . Then

Pr
[
𝑿 ≥𝑖 (𝐼𝑖 ∪ 𝐾) = (𝛼𝑖 , 𝛽)

]
= Pr

[
𝑿 ≥𝑖 (𝐼𝑖 ) = 𝛼𝑖

]
· Pr

[
𝑿 𝑖 (𝐾) = 𝛽

]
> 𝑛−𝛾 |𝐼𝑖 | · 𝑛−𝛾 |𝐾 | = 𝑛−𝛾 |𝐼𝑖∪𝐾 | ,

where the first equality holds as (𝑿 ≥𝑖 |𝑿 ≥𝑖 (𝐼𝑖 ) = 𝛼𝑖 ) = 𝑿 𝑖 . However, this means at moment
that 𝐼𝑖 is chosen, the set 𝐼𝑖 ∪ 𝐾 ⊆ 𝐽 also violates the min-entropy condition (witnessed by
(𝛼𝑖 , 𝛽)), contradicting the maximality of 𝐼𝑖 .

Finally, Item 3 is proved by straightforward calculation:

D∞ (𝑿 𝑖 (𝐽 \ 𝐼𝑖 )) = |𝐽 \ 𝐼𝑖 | log𝑛 − log |𝑋 𝑖 |

≤ (|𝐽 | log𝑛 − |𝐼𝑖 | log𝑛) − log
(��𝑋 ≥𝑖 �� · 𝑛−𝛾 |𝐼𝑖 | )

= ( |𝐽 | log𝑛 − log |𝑋 |) − (1 − 𝛾) |𝐼𝑖 | · log𝑛 + log
(
|𝑋 |
|𝑋 ≥𝑖 |

)
= D∞

(
𝑿 (𝐽 )

)
− (1 − 𝛾) |𝐼𝑖 | log𝑛 + 𝛿𝑖 . ◀


	1 Introduction
	1.1 Our results
	1.2 Gadgetless Lifting: A New Framework to Prove Communication Lower Bounds

	2 Preliminaries
	2.1 Density-Restoring Partition
	2.2 Communication Protocols

	3 Proof of Main Theorem 
	3.1 The Decomposition and Sampling Process
	3.2 Relating Accuracy and Average Fixed Size
	3.3 Average Fixed Size is Bounded by Communication

	4 Appendix

