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Abstract

Interlinear glossed text (IGT) is a popular for-
mat in language documentation projects, where
each morpheme is labeled with a descriptive
annotation. Automating the creation of inter-
linear glossed text would be desirable to re-
duce annotator effort and maintain consistency
across annotated corpora. Prior research (Ginn
et al., 2023; Zhao et al., 2020; Moeller and
Hulden, 2018) has explored a number of sta-
tistical and neural methods for automatically
producing IGT.

As large language models (LLMs) have showed
promising results across multilingual tasks,
even for rare, endangered languages (Zhang
et al., 2024), it is natural to wonder whether
they can be utilized for the task of generating
IGT. We explore whether LLMs can be effec-
tive at the task of interlinear glossing with in-
context learning, without any traditional train-
ing. We propose new approaches for selecting
examples to provide in-context, observing that
targeted selection can significantly improve per-
formance. We find that LLM-based methods
beat standard transformer baselines, despite re-
quiring no training at all. These approaches
still underperform state-of-the-art supervised
systems for the task, but are highly practical
for researchers outside of the NLP community,
requiring minimal effort to use.

1 Introduction

With thousands of endangered languages at risk of
extinction, language documentation has become
a major area of linguistic research (Himmelmann,
2006; Woodbury, 1999), aiming to produce perma-
nent artifacts such as annotated corpora, reference
grammars, and dictionaries. Furthermore, research
has explored the potential for computational meth-
ods to aid in language documentation and revital-
ization (Palmer et al., 2009; Moeller and Hulden,
2018; Wiemerslage et al., 2022; Kann et al., 2022;
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Figure 1: Accuracy of an LLM-based glossing method
on Gitksan data, varying the number of provided exam-
ples and the strategy for selecting examples.

Gessler, 2022; Zariquiey et al., 2022; Zhang et al.,
2022; Flavelle and Lachler, 2023).
In particular, we study the task of generating

interlinear glossed text (IGT), a line-by-line format
for annotated text corpora that is commonly used
in documentation projects. IGT generation has
been studied using statistical (Palmer et al., 2009;
Samardžić et al., 2015; McMillan-Major, 2020)
and neural (Moeller and Hulden, 2018; Zhao et al.,
2020; Barriga Martínez et al., 2021) methods.

A key challenge when working with endangered
languages is that, in nearly all cases,1 there is very
little labeled or unlabeled data available. This is
particularly challenging for large neural models
which depend on large, representative training data
sets. Research has explored methods to overcome
this challenge for IGT generation systems, such
as crosslingual transfer (He et al., 2023; Okabe
and Yvon, 2023; Ginn et al., 2024) and architec-
tural modifications (Girrbach, 2023a), but these
approaches struggle in very low-resource scenarios.
In addition, previous approaches generally require

1As Liu et al. (2022) notes, not all endangered languages
are low-resource (and vice versa), and such languages bear
different concerns when developing language technology.
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expertise in model training, implementation, and
deployment, as well as the computational resources
needed to serve large neural models.
As large language models (LLMs) have demon-

strated impressive performance on various natu-
ral language tasks, the question arises whether
they can benefit language documentation. We seek
to evaluate the ability of current LLMs to gener-
ate interlinear glossed text, compared with earlier
state-of-the-art methods. This research can also
shed light on the language-agnostic capabilities of
LLMs, requiring the model to learn patterns in very
rare languages which are unlikely to have signifi-
cant presence in their training data.
We study strategies for selecting in-context ex-

amples, finding significant impacts to performance.
Our best-performing systems outperform trans-
former model baselines, despite involving no train-
ing whatsoever. They still underperform SOTA
systems that induce morphological segmentation,
but at the same time hold promise for offering a
new approach to interlinear glossing for language
documentation practitioners. Our code is available
on Github.2

2 Background

2.1 Interlinear Glosed Text
A typical example of IGT is shown in item 1.

(1) nuhu’
this

tih-’eeneti-3i’
when.PAST-speak-3PL

heneenei3oobei-3i’
IC.tell.the.truth-3PL

“When they speak, they tell the truth.” (Cowell, 2020)

The first line (transcription line) contains the text
in the language being documented, and may be seg-
mented into morphemes (as here). The second line
(gloss line) provides a gloss for each morpheme in
the transcription. Glosses may indicate grammati-
cal function or a translation of the morpheme (for
stems). The third line contains a translation into a
high-resource language such as English. Produc-
ing each of these lines requires knowledge of the
language and/or skilled linguistic analysis.

Generally, automated IGT systems are trained to
predict the gloss line given the transcription line
(and sometimes the translation as in Zhao et al.,
2020; Rice et al., 2024). The primary aim of such
systems is to assist a human annotator, providing
suggestions for common morphemes that are often
glossed with the same label. These systems are not
intended to replace human annotators, who are vi-
tal to the documentation process, annotating novel

2https://github.com/michaelpginn/igt-icl

morphemes and interesting linguistic phenomena,
as well as verifying automatically-produced labels.

2.2 LLMs for Rare Languages
Though LLMs generally have limited understand-
ing of rare and low-resource languages (Ebrahimi
et al., 2022), they can often achieve signifi-
cantly better performance through crosslingual in-
context learning (X-ICL), where a number of ex-
amples in the target language are provided directly
in the prompt to a multilingual model (Winata et al.,
2021; Lin et al., 2022; Cahyawijaya et al., 2024).

We study X-ICL methods for using LLMs for the
task of IGT generation, including complete IGT ex-
amples in the prompt. We hypothesize that this ap-
proach will leverage both the set of labeled training
examples and the robust multilingual knowledge
of the language model. In particular, we explore
the effects of including an increasing number of
examples in context (section 4) and using different
strategies to select relevant examples (section 5).

2.3 Related Work
A number of approaches have been used for IGT
generation. Palmer et al. (2009) uses a maximum
entropy classifier and represents the earliest work
describing benefits of using automated glossing sys-
tems. A number of papers (Samardžić et al., 2015;
Moeller and Hulden, 2018; McMillan-Major, 2020)
use statistical classifiers such as conditional ran-
dom fields. Recent research explores neural models
such as recurrent neural networks and transform-
ers (Moeller and Hulden, 2018; Zhao et al., 2020;
Barriga Martínez et al., 2021). Other approaches
improve glossing performance using crosslingual
transfer (He et al., 2023; Okabe and Yvon, 2023;
Ginn et al., 2024), hard attention (Girrbach, 2023a),
and pseudolabeling (Ginn and Palmer, 2023).

IGT data is not only useful for preservation and
revitalization projects, but also for downstream
tasks such as machine translation (Zhou et al.,
2019), developing linguistic resources like dictio-
naries (Beermann et al., 2020) and UMR (Uniform
Meaning Representation) graphs (Buchholz et al.,
2024), studying syntax and morphology (Bender
et al., 2013; Zamaraeva, 2016; Moeller et al., 2020),
and dependency parsing (Georgi et al., 2012).
Given the cost and difficulty of obtaining IGT

data, research has explored methods to scrape it
from LATEX documents (Schenner and Nordhoff,
2016; Nordhoff and Krämer, 2022) and even im-
ages (Round et al., 2020). Finally, another line
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of work has attempted to standardize IGT con-
ventions and formats, balancing consistency and
expressiveness across languages (Lehmann, 1982;
Hughes et al., 2003; Nordhoff, 2020; Mortensen
et al., 2023).

3 Methodology

We study the IGT generation task described in Ginn
et al. (2023). Given a transcription line and trans-
lation line, systems must predict the gloss line.
We focus on the closed track setting, where the
input words are not segmented into morphemes.
This task is strictly more difficult than the setting
where words are already segmented, as models
must jointly learn segmentation and gloss predic-
tion. As reported in Ginn et al. (2023), the SOTA
on this task remains far weaker than the setting with
segmented inputs, with up to a 40 point discrepency
in SOTA performance.

3.1 Data

We use the IGT corpora and splits from the 2023
SIGMORPHON Shared Task (Ginn et al., 2023),
allowing us to directly compare several other sys-
tems. We use the languages described in Table 1.

# IGT Examples
Language Train Dev Test
Gitskan [git] 74 42 31
Lezgi [lez] 705 88 87
Natugu [ntu] 791 99 99
Uspanteko [usp] 9774 232 633

Table 1: Languages and data splits, originally from Ginn
et al. (2023)

We primarily focus on the lower-resource lan-
guages from the shared task, where neural methods
tended to struggle due to limited training data. We
use the data as formatted by Ginn et al. (2024).

3.2 Evaluation

We evaluate using the same metrics as the shared
task. We primarily report morpheme accuracy,
which measures how many morpheme glosses
match between the predicted and true glosses. Any
predicted glosses beyond the length of the true
gloss string are ignored.

3.3 Models
We run preliminary experiments using Cohere’s
Command R+ model,3 a 104B parameter
instruction-tuned language model with 128K to-
ken context that is designed for multilingual tasks.

3.4 Prompting
Though the exact prompt varies from experiment
to experiment, all runs use the same base prompt.
We use the following prompts for our prelimi-

nary experiments. The blue placeholders are re-
placed with the appropriate values. The system
prompt is as follows.

You are an expert documentary linguist,
specializing in $language. You are
working on a documentation project
for $language text, where you are
creating annotated text corpora
using the interlinear glossed text (
IGT) and following the Leipzig
glossing conventions.

Specifically, you will be provided with
a line of text in $language as well
as a translation of the text into
$metalang, in the following format.

Transcription: some text in $language
Translation: translation of the

transcription line in $metalang

You are to output the gloss line of IGT.
You should gloss stem/lexical

morphemes with their translation in
$metalang, and gloss gram/functional
morphemes with a label indicating

their function. Please output the
gloss line in the following format:

Glosses: the gloss line for the
transcribed text

Glosses should use all caps lettering
for functional morphemes and
standard lettering for stem
translations. Glosses for morphemes
in a word should be separated by
dashes, and words should be
separated by spaces.

3https://docs.cohere.com/docs/command-r-plus
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The main prompt is as follows:

Here are some complete glossed examples:
$fewshot_examples

Please gloss the following example in
$metalang.

Transcription: $transcription
Translation: $translation

For zero-shot prompts, we remove the first sen-
tence of the main prompt. Furthermore, from quali-
tative analysis, we observe that the LLM sometimes
pulls words from the translation to use as glosses,
resulting in incorrect examples. Thus, for the fi-
nal test, we omit the translation lines from both
prompts.
We run each experiment three times with tem-

perature 0 and a different random seed, ensuring
both the retrieval strategy and model API calls are
reproducible. We report the average and standard
deviation for performance.

4 Many-Shot Prompting

Few-shot prompting, where a model is provided
with a small number of examples in the context, has
proven very effective at a variety of tasks (Brown
et al., 2020; Winata et al., 2021; Lin et al., 2022;
Cahyawijaya et al., 2024). Furthermore, as model
context lengths have continued to increase, it has
become possible to provide hundreds or even thou-
sands of examples, and performance typically con-
tinues to improve (Bertsch et al., 2024). On the
other hand, increasingly long prompts bear a high
cost, and strategies to retrieve relevant examples
can often achieve similar performance at a fraction
of the cost (see section 5).

4.1 Experimental Settings

For all experiments, we run two settings, one with
just the base task description, and one where we
include a list of possible glosses for functional mor-
phemes. We scrape this list of glosses from all of
the seen glosses in the training set. We instruct
the model to only use these glosses for functional
morphemes (while stem morphemes should still
be glossed with their translation). We refer to this
setting as [+ GLOSSLIST], with an example gloss
list in Appendix A.
For each language, we experiment with vary-

ing number of examples. For all languages except

Gitksan, we run experiments providing no exam-
ples (zero-shot) and 1, 2, 3, 5, 10, 30, 50, and
100 examples. Gitksan has fewer than 100 training
examples, so we use all 74 for the final setting.
For each example in our eval set, we randomly

sample examples from the training set to be in-
cluded in the prompt. In section 5, we compare this
strategy to more intentional retrieval strategies that
aim to select relevant examples.

4.2 Results

We report results for our languages in Figure 2,
with a full table of results provided in Appendix B.
Generally, we see that the model has very weak
performance in the zero-shot setting, indicating
that the model has little knowledge of our chosen
languages. In some cases, the zeroshot experiments
produce results that are not even in the desired
output format.
Performance improves drastically for the first

few shots added, showing smaller improvements as
the number of shots increases. For Gitksan, perfor-
mance levels up as the number of provided exam-
ples approaches the full training set. For the other
languages with much larger training sets, perfor-
mance shows continued improvement even around
100 shots, supporting the findings of Bertsch et al.
(2024). We suspect that this trend would continue
to some extent, but the cost of providing hundreds
of examples quickly becomes infeasible.

Relationship between Shots and Accuracy
What sort of shape is formed by the curve in Fig-
ure 1 and Figure 2? The relationship appears to
be roughly logarithmic, starting steep and level-
ing off. To quantify this relationship, we take
the log(#shots + 1) for each setting.4 Figure 3
shows the transformed curve for Gitksan, which
now shows a strong linear relationship.
We compute the R2 value over all settings and

report it in Table 2.

Language Base + Glosslist
Gitksan 0.962 0.958
Lezgi 0.934 0.981
Natugu 0.993 0.996

Uspanteko 0.952 0.983

Table 2: Coefficient of determination (R2) computed
between morpheme accuracy and log(#shots+ 1)

.
4Adding 1 so the zero-shot setting is defined.
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Figure 2: Morpheme accuracy of LLM-based glossing on Gitksan, Lezgi, Natugu, Uspanteko, and [New Image
Caption], varying the number of provided examples. Reported values are averages over three runs; error bars
indicate standard deviation. In the BASE +GLOSSLIST setting, we provide a list of possible glosses in the prompt.
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Figure 3: Morpheme accuracy for Gitksan, where the
predictor variable is the logarithm of the number of
provided examples (plus one).

We observe extremely strong correlation values
across all settings. This indicates that the logarith-
mic model is a good fit for the data, and predicts
that maintaining steady performance improvements
requires exponentially more examples.

Effect of Gloss List We initially hypothesized
that providing a complete list of possible glosses
in the prompt could help the model better adhere
to the desired glossing conventions. We report a
summary plot of the difference in accuracy between
the two settings across languages in Figure 4.

The average difference is close to 0, well within
a standard deviation in all cases, and thus there is
little evidence to suggest that including the gloss
list meaningfully affects performance. A possible
explanation is that since the model has very limited
prior knowledge of these languages, providing a
simple list of glosses without any explanation or
examples does not provide any useful information.
To investigate whether including a gloss list

changes the predictions at all, even if it doesn’t
improve glossing performance, we measure the
adherence percentage. This metric is computed
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Figure 4: Difference in averaged accuracy between set-
tings with and without a complete gloss list provided in
the prompt. We observe minimal differences.

by dividing the number of predicted (functional)
glosses that adhere to the gloss list by the total num-
ber of predicted glosses. We report the distribution
over languages and settings in Figure 5.

We observe that including the gloss list in the
prompt is effective for increasing adherence com-
pared to the base setting. While the experiments
without the gloss list vary widely, the experiments
with it nearly always use glosses from the list. On
the other hand, we have observed no evidence that
the gloss list improves performance, suggesting
that the model may be predicting glosses from the
list randomly.

Furthermore, including a gloss list in the prompt
carries a fixed cost of several hundred tokens for
every prompt (e.g. for Uspanteko, the cost is 124
tokens). Since it provides negligible benefit, we
opt to omit the glosslist for future experiments in
order to reduce cost.
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Figure 5: Distribution of adherence percentages, across
languages, comparing with and without the glosslist.

5 Retrieval Strategies

While including a large number of in-context ex-
amples can certainly improve performance, long
prompts carry a high cost that may be infeasible for
real-world documentation projects. For example,
running prompts with a thousand examples in Us-
panteko costs roughly 10 cents per inference call,
which can quickly add up over thousands of exam-
ples. Many LLMs still have limited context length,
particularly among open-source models, and in-
cluding many examples may not even be possible.
Finally, Bertsch et al. (2024) suggests that the effec-
tiveness of many-shot prompting is mainly due to
the model seeing relevant examples, and ignoring
many irrelevant ones.
With this in mind, we consider a method in-

spired by retrieval-augmented generation (RAG,
Lewis et al. 2020). RAG was originally used for
knowledge-intensive tasks, using document embed-
dings to search for relevant documents to a given
query and include them in prompt context. We ap-
ply a similar strategy in order to search for relevant
IGT examples from our training corpus to include
in our prompt.

5.1 Experimental Settings

We consider several strategies for selecting exam-
ples that are relevant for the target sentence.

Random As a baseline, we use the random strat-
egy from the prior section, which simply samples
n examples randomly from the training corpus.

Word Recall and Word Precision We hypothe-
size that a straightforward way to improve perfor-
mance is by providing examples which have the
same morphemes as the target sentence. Since our
data is not segmented into morphemes, we instead
look for matching words (which will nearly always
be composed of the same morphemes). We split
each example into words using whitespace, and
compute the word recall for a target sentence T
and candidate training sentence S.

WORDRECALL =
|unique(S) ∩ unique(T )|

|unique(T )|
(1)

This computes the fraction of unique words in
the target sentence that appear in the candidate
sentence. We can also compute the word precision
with a slightly modified formula:

WORDPRECISION =
|S ∩ unique(T )|

|S| (2)

This metric rewards examples where the major-
ity of words in the candidate are in the target sen-
tence. Notice that we do not use the unique words
of S, instead weighting an example that uses the
same word from T several times more heavily. We
select the examples with the highest word recall or
precision, considering each example independently
and breaking ties randomly.

Aggregate Word Recall One limitation of the
prior approach is that by considering each candi-
date individually, we can potentially select several
redundent examples in few-shot scenarios. Instead,
we can compute the aggregate word recall over a
candidate sample of n examples.

Sagg =

n⋃

i=1

unique(Si) (3)

AGGWORDREC =
|Sagg ∩ unique(T )|

|unique(T )| (4)

This metric rewards samples that jointly cover
more of the words in the target. This is equivalent
to the Maximum Coverage Problem, and as such
is NP-Hard (Nemhauser et al., 1978). We use the
greedy algorithm, which runs in polynomial time
(Hochbaum, 1996).

chrF A limitation of the previous strategies is
that, by only considering atomic words, there is no
way to select examples that may contain the same
morphological units. One way we can attempt to
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capture morphological similarity is through using
substring similarity metrics such as chrF (Popović,
2015) and chrF++ (Popović, 2017). These metrics
compute the F-score of character n-gram matches
(chrF++ also incorporates word n-grams), and have
been shown to correspond more closely to human
judgements for machine translation.

Morpheme Recall Although we do not have seg-
mented data, much research has explored methods
to induce morphological segmentations from data
in an unsupervised manner. In particular, we use
Morfessor (Creutz and Lagus, 2005), a popular
statistical method that seeks to find a segmenta-
tion that maximizes overall the probability of seg-
mented words.

We create silver segmentations using Morfessor
and compute the recall metric as described earlier,
but using morphemes rather than words. We train
the segmentation model using the default parame-
ters on the training data, and use Viterbi inference
to segment test examples. We use the Morfessor
2.0 library (Virpioja et al., 2013).

5.2 Results

We report results across our four languages and six
retrieval strategies in Figure 6. We run tests using
1, 2, 5, 10, 30, and 50 examples in each prompt.

Comparison with Random Retrieval Across
all languages, we observe clear and significant im-
provements over the random selection method de-
scribed in the prior section (here indicated with a
gray line). This is the case both with a small num-
ber of fewshot examples and as the number grows
large. The only exception is the 50 example setting
for Gitksan, at which point the provided examples
make up a large fraction of the training corpus.

This is an intuitive result, as the IGT generation
task requires, at minimum, knowledge about the
words of a language and their potential glosses.
Even a simple baseline that glosses tokens with
their most common gloss from the training set is
often fairly effective (Ginn et al., 2023). This is
particularly important since the LLM used seems to
have very limited prior knowledge of the language,
as evidenced by the poor zero-shot performance.

Relationship between Shots and Accuracy As
before, we generally see consistently improving
performance as additional examples are added.
However, there are several cases where perfor-
mance drops going from 30 to 50 shots, as in

Gitksan (Word Precision, Max Coverage, and Mor-
pheme Recall) and Lezgi (chrF Score). Both of
these languages have fairly small corpora, and it is
possible that after a point these strategies run out of
beneficial examples, and any additional examples
simply contribute noise to the prompt.

Effect of Different Granularities Many of the
strategies perform very similarly, but there are
some observable trends across granularity levels
(word, morpheme, and substring). We observe that
the chrF strategy is nearly always the most effec-
tive, outperforming the word- and morpheme-based
strategies in most cases. We hypothesize that this
strategy strikes a balance by selecting examples
with subword similarity, but not introducing error
due to noisy morpheme segmentations.

Word Recall vs Morpheme Recall We observe
mixed results across the Word Recall and Mor-
pheme Recall strategies. We observe a few settings
where there appears to be a significant gap between
the two (Gitksan at 30 shots; Lezgi at 50 shots), but
generally the strategies are close. It is possible that
the words in our evaluation examples often either
are monomorphemic, or contain a combination of
morphemes already observed in the training data,
and thus selecting relevant examples according to
morphemes has little benefit.

Word Recall vsWord Precision While theWord
Recall and Word Precision strategies both seek to
quantify the word-level similarity between the tar-
get and candidate sentences, they are computed
slightly differently and produce different results.
The Word Recall strategy prioritizes candidate sen-
tences that contain a large fraction of the word types
in the target sentence, ignoring repeated words.
Meanwhile, the Word Precision strategy selects
candidates based on the fraction of words within
the candidate that are also in the target.
The Word Recall strategy consistently outper-

forms Word Precision, except for the two largest
settings in Gitksan. This indicates that it is more im-
portant to provide examples which cover the words
in the target than it is to provide several examples
for a single word.

Word Recall vs Max Word Coverage We ex-
perimented with the Max Word Coverage setting,
where we consider the recall of the selected set of
candidates as a whole, rather than individually. We
observe minimal benefits, in fact underperforming
the Word Recall setting in many cases.
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Figure 6: Morpheme accuracy of LLM-based glossing on four languages, varying the number of provided examples
and using different strategies to select relevant examples. Reported values are averages over three runs.

6 Comparison with SOTA

Finally, we compare our best-performing strate-
gies from the prior section with several previous
baseline methods:

• The token classification transformer model
of Ginn et al. (2023), which uses an encoder
model to predict glosses word-by-word

• Tü-CL from Girrbach (2023b), which uses
hard attention to induce latent segmentations
and predict glosses on segmented words

For the LLM-based method, we select the chrF
strategy and test with 30 examples for Gitksan and
100 examples for the other languages. We make
some small prompt optimizations described in sub-
section 3.4, and raise the temperature to 0.2. We
use the following language models:

• Cohere’s Command R+, which was used for
preliminary experiments.

• OpenAI’s GPT-4o, specifically the gpt-
4o-2024-05-13 checkpoint (OpenAI, 2024)

• Meta’sLlama 3.1 8b parameter model (Dubey
et al., 2024), using the 8-bit quantization and
the MLX (Hannun et al., 2023) checkpoint.

• Google’s Gemini 1.5 Pro (Gemini Team,
2024)

We run evaluation on the held out test set and report
results in Figure 7.

6.1 Discussion

We observe that the LLM based glossing strategies
outperform a simple transformer in nearly every
setting, despite using no training whatsoever and
using a small fraction of the training set as ex-
amples. Even the Llama 8b parameter model, an
open-source model that can be run on a laptop, is
competitive.
Of the LLM models, Gemini performs best on

three languages. However, we note that Gem-
ini refuses to produce answers for many exam-
ples, which we count as completely wrong. If we
omit such examples, Gemini’s performance is even
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Figure 7: Morpheme accuracy results on test splits,
comparing several LLMs and baseline systems.

higher, achieving 55.9%, 50.8%, and 63.9% accu-
racy on Lezgi, Natugu, and Uspanteko respectively.

On the other hand, the LLM methods typi-
cally underperform the SOTA method of Girrbach
(2023b), except for Gitksan, where the best LLM
(Gemini) outperforms by 6.5 points. The Girrbach
(2023b) approach explicitly models segmentation
through a learned latent representation, which our
strategy does not utilize. Future work with LLM-
based methods could explore an analogous process,
explicitly prompting the LLM to generate segmen-
tations before producing final glosses.

Furthermore, these methods will likely continue
to improve as LLMs become more capable for rare
(or even completely unseen) languages, as mea-
sured by benchmarks such as Tanzer et al. (2024).
Most trivially, as LLMs with increasingly long con-
texts are developed, we can provide more examples
in-context, which our results indicate will continue
to provide benefits.

7 Conclusion

We find that SOTA large language models struggle
to produce interlinear glosses for the endangered
languages used in our research. However, by select-
ing relevant examples from a training corpus and
providing them as part of the context for each ex-
ample to be glossed, we can significantly improve
performance. We find that the relationship between
performance and the number of few-shot examples
is roughly logarithmic. Performance improves by a
wide margin when we select examples with a high
chrF++ score relative to the target sentence.
Our best systems outperform a standard trans-

former model, despite involving no explicit training
and using a fraction of the training data. How-
ever, they still underperform the SOTA system for
the glossing task on three out of four languages.
Thus, for documentary linguists hoping to use auto-
mated glossing solutions, the use of LLMs may not
achieve ideal accuracy. At the same time, LLMs
may still be a preferrable choice for languages with
very limited data comparable to Gitksan, and the
use of an API is often far more accessible than
training and hosting a neural model. Our results
encourage further exploration of this approach.

Limitations

While we have selected a small set of languages
that we believe give insight into the performance of
automated glossing systems, they are certainly not
representative of all the world’s languages. In par-
ticular, LLMs may struggle more with languages
that use non-Latin writing scripts (Zhang et al.,
2023).
We use a single prompt template for the major-

ity of experiments and do not conduct extensive
prompt engineering. Frameworks such as DSPy
(Khattab et al., 2024) have shown that prompt op-
timization can often greatly improve performance,
so it is entirely possible that we could achieve better
performance on this problem with the same models
and strategies.

We evaluate three popular closed-source LLMs,
and one smaller open-source LLM, but results may
vary across other models.

Ethics Statement

As our work involves documentation data produced
through the combined efforts of documentary lin-
guists and speakers of endangered languages, we
strive to respect their desires and avoid treating
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data as merely a resource to train models with
(Schwartz, 2022).

We do not intend for automated glossing sys-
tems to replace human annotators, which would
drastically impact the quality, novelty, and utility
of annotated corpora, but rather to serve as a tool
available to support documenters.
Finally, we acknowledge that the use of large

language models carries a high environmental cost,
and make efforts to minimize unnecessary API
calls and to track our usage.
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A Example Gloss List

We provide an example list of glosses for Gitksan.
There are some formatting artificats, due to the
automatic extraction of glosses.

#(PROSP), (#COMP), (#PROSP), 1.I, 1.SG
.=, 1PL.II, 1SG, 1SG.II, 2SG, 3.I, 3.
II, 3.III, 3PL, 3PL.II, 3PL.INDP, 3
SG.II, ANTIP, AX, CAUS1, CAUS2, CCNJ
, CN, CNTR, COMP, CONNN, DEM.PROX,
DES, DISTR, DM, DWID, EPIS, FOC, FUT
, FUT=3, IBM, INCEP, INS, IPFV, IPFV
=EPIS=CN, IRR, IRR=3, LOC, LOC=CN,
LVB, MANR, NEG, NEG=FOC, NEG=FOC=3,
NMLZ, OBL, PART, PASS, PCNJ, PN, PR.
EVID, PREP, PREP=CN, PROG=CN, PROG[=
CN], PROSP, PROSP=3, PROSP=3.I, REAS
, SELF, SG, SPT, SX, T, T=PN, TR, TR
=CN, TR=PN, VAL, VER, VERUM, [#(
PROSP), [(#COMP), [(PROSP), [PROG=CN
, [PROSP

We chose to provide just the list of glosses, with-
out any additional information, to replicate the sce-
nario where there are no additional resources other
than glossed examples. Of course, if we had access
to a dictionary or grammar reference, providing
this information could be beneficial.

B Full Results

We present full results across all of our experimen-
tal settings in Table 3.
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# In-Context Examples

Strategy 0 1 2 3 5 10 30 50 100

GITKSAN

Random 0.7±0.0 4.9±1.2 6.9±0.9 8.9±0.9 9.2±0.4 12.7±0.7 16.8±1.1 18.5±1.2 17.1±0.3
Rand +GLOSS 0.8±0.2 5.3±0.9 7.4±1.0 9.3±1.1 11.1±1.8 12.3±0.8 15.7±1.3 16.5±1.7 17.9±0.7
Word Rec. 10.8±0.3 12.4±0.9 16.3±4.6 16.9±1.1 18.3±1.4 18.7±1.3
Word Prec. 8.5±0.3 9.7±0.5 12.2±0.6 14.8±1.1 19.7±0.3 19.4±0.5
MaxWordCov. 11.1±1.9 14.5±1.7 15.1±0.8 15.1±0.5 18.2±1.5 17.7±0.3
chrF 11.7±0.4 13.3±0.3 14.6±1.1 16.8±0.8 20.8±0.4 21.0±0.6
Morph. Rec. 9.8±0.2 13.1±0.5 15.1±0.7 16.2±1.2 20.6±2.2 18.5±0.7

LEZGI

Random 1.0±0.2 4.1±0.6 5.3±0.6 5.3±0.8 6.9±1.6 7.3±0.6 13.7±1.2 14.2±1.4 21.8±6.0
Rand +GLOSS 1.0±0.1 3.4±0.1 5.0±0.7 5.2±1.0 6.1±0.7 9.5±0.7 11.5±1.6 14.7±3.8 18.5±0.1
Word Rec. 17.0±0.7 17.6±2.8 26.5±1.5 30.2±2.1 34.6±1.6 37.6±1.5
Word Prec. 13.7±1.3 13.6±0.8 22.4±1.6 25.9±1.4 30.2±1.7 33.4±1.9
MaxWordCov. 16.3±0.4 20.6±2.6 26.4±0.9 30.2±1.3 33.5±1.2 34.1±1.4
chrF 16.4±1.6 18.7±0.5 26.4±0.8 31.3±0.7 37.9±0.4 34.6±1.1
Morph. Rec. 17.2±0.9 18.1±0.5 27.8±0.1 29.9±3.4 33.6±1.3 38.2±1.9

NATUGU

Random 1.5±0.3 4.7±0.4 5.6±0.3 7.2±0.7 8.1±0.7 10.4±0.3 16.2±1.3 18.2±1.4 21.2±0.3
Rand +GLOSS 2.0±0.2 5.3±0.4 6.1±0.4 7.1±1.0 8.4±0.3 10.2±0.7 15.1±1.4 16.9±1.0 19.4±0.6
Word Rec. 10.4±0.4 13.7±0.6 19.4±1.0 24.5±1.8 27.9±1.6 28.4±2.1
Word Prec. 7.8±0.2 9.9±0.5 16.0±0.2 18.8±1.5 26.9±0.8 27.0±1.0
MaxWordCov. 11.2±0.3 13.8±0.3 20.2±0.3 21.7±1.0 25.2±2.2 25.2±1.0
chrF 11.1±0.4 18.2±0.7 24.8±0.5 29.0±1.4 33.1±0.9 34.0±0.5
Morph. Rec. 8.3±0.5 13.9±0.3 20.2±2.0 24.0±1.9 29.6±1.9 31.0±1.4

USPANTEKO

Random 2.7±0.3 12.1±0.9 14.1±0.6 14.7±1.0 17.1±0.6 19.4±1.1 26.9±1.4 29.1±1.2 33.7±1.5
Rand +GLOSS 2.8±0.4 11.3±0.8 13.9±0.6 14.6±0.9 16.3±0.8 19.4±0.9 26.7±0.9 29.8±0.5 34.1±1.9
Word Rec. 26.7±1.4 30.4±1.6 37.3±1.3 42.4±0.8 50.9±0.2 52.6±0.7
Word Prec. 19.7±0.2 25.3±0.4 31.3±1.0 37.9±0.6 45.7±0.4 47.5±0.8
MaxWordCov. 26.7±1.2 36.7±1.0 43.5±1.7 46.1±1.0 50.7±2.2 52.8±2.0
chrF 28.1±0.7 33.7±0.7 40.4±0.1 46.0±0.2 56.5±0.7 59.5±0.7
Morph. Rec. 26.1±0.7 29.8±0.8 36.6±0.1 41.0±1.3 50.0±0.4 53.4±0.3

Table 3: Full morpheme accuracy results across languages, selection strategies, and number of examples. +GLOSS
indicates the gloss list was included in the prompt.
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