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Seismic monitoring of CO, plume dynamics using
ensemble Kalman filtering
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Abstract—Monitoring carbon dioxide (CQO;) injected and
stored in subsurface reservoirs is critical for avoiding failure
scenarios and enables real-time optimization of CO; injection
rates. Bayesian sequential data assimilation (DA) is a statistical
method for combining information over time from multiple
sources to estimate a hidden state, such as the spread of the
subsurface CO, plume. Existing literature in the seismic-CO;
monitoring domain uses small physical systems with unscalable
DA algorithms, ignores the CO, flow dynamics, or simulates
seismic data without the wave equation or with unrealistic survey
designs. We improve upon existing DA literature in this domain
by applying the scalable ensemble Kalman filter (EnKF) DA
algorithm to a high-dimensional CO; reservoir using two-phase
flow dynamics and time-lapse full waveform seismic data with a
realistic surface-seismic survey design. We show this DA method
is more accurate compared to using either the seismic data
or the fluid physics alone. Furthermore, we show the stability
of this method by testing a range of values for the EnKF
hyperparameters and give guidance on their selection for seismic
CO; reservoir monitoring.

Index Terms—carbon capture and storage, Kalman filters,
nonlinear dynamical systems, seismic measurements

I. INTRODUCTION

ARBON capture and storage is a recently sought-after

technology involving capturing carbon dioxide (CO;)
for long-term storage. Geologic storage sites such as saline
aquifers and depleted oil fields can store large amounts of CO,
due to their size and the naturally high pressure deep under-
ground [1[|-[3]. Monitoring the state of such CO, reservoirs
is critical to avoid failure scenarios, such as leaks or man-
made seismic activity (earthquakes) [4]], [5]. Monitoring also
enables real-time optimization of reservoir performance using
computer simulations. However, due to the limited accessi-
bility of underground reservoirs, traditional measurements of
the reservoir state are confined to the surface and a relatively
small number of boreholes. This limits the predictive power of
simulations that are based on traditional measurements. Since
injected CO, displaces brine in saline aquifers, it affects the
gravitational properties, electromagnetic properties [6]], and
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seismic wave propagation in the rock. Thus, indirect mea-
surements reveal information at otherwise inaccessible points.
Non-intrusive methods for determining the spread of the CO,
in saline aquifers include electromagnetic, gravitational, and
seismic measurements. Seismic methods have been shown to
provide higher resolution estimates than electromagnetic or
gravitational methods [7]-[11]]. Seismic data have been used
to estimate the spread of the injected CO,, such as for the
Sleipner field offshore Norway [12] and the Ketzin pilot site
in Germany [13]]. We work with active-source surface seismic,
but passive seismic monitoring has also been investigated [[14].

The contribution of this research is combining fluid-flow
simulations with time-lapse full waveform seismic data to
predict CO, saturations in underground reservoirs as CO; is
injected. The literature on seismic-CO, monitoring lacks solu-
tions that can be applied to large, complex systems. Existing
literature in this domain makes one or more limiting choices:
(1) uses small physical systems [15], [16] with unscalable data
assimilation (DA) algorithms [17]]; (2) does not use the CO,
flow dynamics [[17]—[20]; or (3) simulates seismic data without
the wave equation [15], [20], [21] or (4) with unrealistic
survey designs [16]. While most seismic-CO, monitoring
approaches use time-lapse seismic data by itself, the combi-
nation of physical simulation and full waveform seismic data
has recently begun to be studied [[15]], [[18]]. Challenges that
hinder progress in this area include the cost of high-resolution
physical simulations and the cost of storing the covariance
matrix necessary for properly combining information from
simulation and from system measurements. These problems
have been tackled in other domains, in particular weather
forecasting, using algorithms such as ensemble Kalman filters,
particle filters, and variational optimization. These methods are
all forms of Bayesian data assimilation.

Bayesian sequential data assimilation aims to estimate a
state vector over time with quantified uncertainty given a
sequence of noisy time-lapse measurements. For our purposes,
the state is the CO, saturation throughout the reservoir, and
the measurements come from seismic waveform data. The
state follows known two-phase flow dynamics with uncer-
tainty coming from the unknown subsurface permeability field,
which describes the rate at which the CO, and brine flow
through the porous rock. In general, there are many Bayesian
sequential data assimilation algorithms for appropriately com-
bining uncertain simulation predictions with noisy time-lapse
measurements. We demonstrate the predictive efficacy of the
ensemble Kalman filter technique on CO, reservoirs with
multiple time-lapse surveyed seismic data.

The main issue with data assimilation for CO, reservoirs is
that the sheer size of the problem makes the simulation and
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the data assimilation computations expensive. CO, reservoirs
are represented in simulation by discretizing the reservoir into
a three-dimensional (3D) grid and associating at the very least
one CO; saturation value and one pressure value at each point
in the grid. The system is governed by nonlinear dynamics,
and thus demands a relatively high-resolution grid in order to
be acceptably accurate. For example, a “small” reservoir can
have a volume of 10'° cubic meters (i.e., a few dozen cubic
kilometers) and be divided into cells on the order of 10% ~ 103
cubic meters. The state vector (the CO, saturation) has 107
degrees of freedom. Seismic measurements are collected by
recording seismic waves with a resolution of about 1073
seconds (i.e., a few milliseconds) for a duration on the order
of a second. A “small” seismic survey records these waves
for 10-100 sources for each of 100-1000 receivers, making
the total length of the observation vector approximately 108.
While this is not prohibitively large for a single vector (a few
hundred megabytes), data assimilation requires storing data
many times that size, which can quickly cause issues with
computation. In our experiments, we model a two-dimensional
(2D) reservoir with volume ~ 108 cubic meters, so the state
vector is of size ~ 10°, and the observation vector is of
size ~ 108. For classical data assimilation techniques that
require storing the square of the data size, this 2D system
requires almost one hundred gigabytes of computer memory.
The three-dimensional 10'° cubic meter system requires more
than one terabyte of memory.

A classical data assimilation technique is the Kalman filter
(KF), which computes the optimal state for a given set of
measurements assuming linear transition and measurement
functions with Gaussian noise. With NV, as the length of the
system state vector and N, as the length of the measurement
vector, the standard KF computes the Gaussian distribution of
the state vector x in O(N? + N;) time and O(N? + N;)
storage, excluding the cost of the simulations [22]. Other
data assimilation research on CQO, reservoirs has handled
the challenge of large covariance matrix sizes from seismic
waveform observations. For example, one can use a hierar-
chical sparse matrix structure [18]], [23]] or use ensemble-
based methods [17] with the neighborhood algorithm [24].
However, these past data assimilation approaches with full
waveform measurements of CO, reservoirs have ignored the
CO; dynamics.

CO; reservoirs, like many real-world systems, are governed
by nonlinear dynamics, thereby invalidating the Gaussianity
assumption of the KF. The KF can be applied to nonlinear
systems (in which case it is called the extended KF) success-
fully if the time between measurements is so small that the
transition is approximately linear. But the high cost of seismic
surveys leads to a long time between reservoir measurements,
which breaks the linear approximation. Furthermore, seismic
observation is a nonlinear operator, further breaking the as-
sumptions of the KF.

Weather forecasting is the well-researched domain that
routinely handles nonlinearity, noise, and large data sizes
for data assimilation. Major weather forecasting centers rely
on various data assimilation algorithms, including variational
methods such as four-dimensional variational assimilation and

ensemble methods such as the ensemble Kalman filter (EnKF).

Variational methods, on the one hand, minimize the obser-
vation error regularized with the distance from the predicted
state. These methods can have a high implementation cost
because they require adjoint operators for computing gradients.
Additionally, for large systems, storing the state covariance
matrix becomes infeasible. Bannister [25]], [26] describes how
weather forecasting models reduce the matrix storage size
by diagonalizing the covariance matrix using a physics-based
transform. However, this transform becomes less accurate as
the model resolutions are increased, and as a result, many
weather systems have switched to an ensemble-based estimate
of the covariance. Furthermore, variational methods do not
inherently estimate the posterior uncertainty, so they must use
expensive Hessian-based approximations or be combined with
ensemble methods to obtain a covariance estimate.

Ensemble methods, on the other hand, are comparatively
much easier to implement because they do not require adjoint
operators. Given past samples of the system state representing
the uncertainty at an earlier time, the basic EnKF predicts
the current state samples using known transition dynamics
and then uses the sample covariance to update the samples
based on observations. Although this algorithm is optimal only
for linear models, it does not rely on linearizing the tran-
sition or observation models and thus handles nonlinearities
much better than the standard KF. Furthermore, using a low-
rank form for the covariance simplifies the update cost to
O(NN?+N,N2) time and O(N,N.+ N, N.) storage for an
ensemble of size N, [27]. The EnKF has been shown to scale
well with N, both in accuracy and computational cost for
many data assimilation problems [27]-[29]. Several variants
of the EnKF exist, such as those described by Evensen [30],
but we leave the application of other variants to future work.

In seismic measurement domains, several variations on
the KF of varying complexity have been used to address
nonlinearity, noise, and large data, but none yet have addressed
the combination of large CO, reservoirs with CO, dynamics
and full waveform seismic measurements. Eikrem et al. [19]
address the issue of observation nonlinearity by using the
iterated extended KF to estimate wave velocities from the full
waveform data. This method linearizes the model at multiple
points, thereby better approximating the nonlinearity, but they
note both that it requires an adjoint observation model and
that the matrix storage causes difficulty for scaling to large
data. Li et al. [31] address the issue of scalability with a
low-rank KF to estimate CO, reservoir state. They show its
performance on seismic travel time measurements or 115 wells
on a small 0.2 square kilometer domain, but this method has
not been shown on high-dimensional seismic data. Alfonzo
and Oliver [20] apply the ensemble transform KF to estimate
porosity based on acoustic impedance inverted from seismic
measurements, but this does not estimate the dynamic state of
the reservoir. Grana et al. [15[], Ma et al. [21]], and Guzman
et al. [32] apply the EnKF to estimate CO, reservoir state
and geological parameters using CO, dynamics but not full
waveform observations. A scalable application of the KF using
full waveform data and CO, dynamics has yet to be achieved.

In the machine-learning (ML) domain, research that uses
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CO; dynamics has focused on building surrogate flow models
for use in Bayesian inversion algorithms. These algorithms
estimate static properties, such as porosity and permeability
or some other parameter for the surrogate model [33]-[40].
The surrogate models are much faster than solving the partial
differential equations (PDEs) governing flow, thus allowing
the use of inversion algorithms that are normally prohibitively
expensive but more accurate than the KF. Such methods
include rejection sampling [33]]; randomized maximum like-
lihood [34]], [35]]; ensemble smoothing with multiple data
assimilation [35]-[37]; and variational methods [38]-[40].
While one reference uses full-waveform seismic data [38]],
most do not, instead relying on less informative data such
as well data [34], [35]], [40] or surface deformation data [33],
[37]. Those using seismic data approximate the seismic image
directly [36], [39]], ignoring the more complex seismic wave
physics. We are also investigating ML-based DA research
using full-waveform seismic data and CO, fluid dynamics; see
[41]-[43] for preliminary results. While ML-based methods
show promise, they have not reached the level of hyperparam-
eter robustness, scalability, and interpretability that the EnKF
has has shown in the field of weather forecasting. In particular,
ML-based methods tend to rely on arbitrary hyperparameter
tuning, making them difficult to apply in practice. The EnKF
relies on the transition and observation physics as well as
estimates of observation noise, all of which are typically not
arbitrary.

The contribution of this research is showing that the EnKF
with full waveform data and CO, dynamics estimates the
CO; reservoir state with higher accuracy than two non-data-
assimilation baselines without needing a prohibitively large
ensemble. We improve upon existing literature by using a
relatively large physical system with full waveform seismic
data, CO, dynamics, and a scalable DA algorithm. The paper
is structured as follows: Section |LI] describes the mathematical
background for DA filters, the CO, dynamics, and seismic
measurements; Sections and explain how we apply
the fluid dynamics and seismic operators in the EnKF; Sec-
tion gives a high-level overview of the workflow for this
method; Sectiondeﬁnes the algorithms we compare with
the EnKF; Section describes the EnKF hyperparameters
that we examine; Section [[V|introduces our high-dimensional
synthetic experiment; Section [V presents the results of our
tests with the EnKF; and Section [VI] concludes.

II. BACKGROUND
A. Filters

Sequential data assimilation is the process of estimating a
hidden system state using available observations as well as
knowledge of the system’s dynamics. The simulated dynamics
are represented with the Markovian transition function f,
which updates the state x™ at time step n to the next time
step. System measurement is represented with the observation
function h. Both functions may depend on noise 1 sampled
at each time step independent of x, which represents any
stochasticity of the system or unknown system dynamics. The
transition and observation operators may depend on time, but

we will typically omit the time parameters as they are clear
in context. We also leave off the noise parameter as necessary
when indicating a non-noisy evaluation. Mathematically, the
operators are written as
x" = FX",mp5tn, tny1) and (1)
1 1
yn+ = h’(xn+ y Mhs tn+1)7 (2)

for time ¢ and noise samples 7, and n,, for f and h.

Using a sequence of observation data vectors
{y',¥?% ... y"}, data assimilation algorithms estimate
the hidden states {x!,x?,...,x"}. Given an observation

with a known noise model, the likelihood p(y|x) could be
maximized to find the best estimate for x. However, we are
typically unable to observe the full hidden state, making
this an ill-posed inverse problem requiring regularization.
Regularization can be expressed as a prior distribution in
Bayes’ formula, which states

p(y[x)p(x)
ply)

The prior p(x) can be chosen based on physics or smoothness
knowledge. In sequential data assimilation, it is conditioned
on previous data and the prediction of a simulation. Let y "
denote all observations up to time step n. Then the condi-
tional distribution p(x™|y'™~1) represents the probability of
a certain value of x at time ¢, given all past observations.
Sequential data assimilation starts from a given prior distri-
bution p(x?), which represents knowledge of the state at the
initial time. We denote this as p(x°|y'") to have the same
form as other conditional distributions. The prior is typically
chosen by trying to be uninformative, trying to be easy to work
with computationally, or using prior knowledge from domain
experts [44]. The distributions at later times can be expressed
based on the transition and observation operators applied to
past distributions. Given a past distribution p(x"~!|ytn=1),
the prior (or predictive or forecast) distribution p(x"|y
conditioned on all data from previous time steps is given by

p(Xn|y1:n—1) — /p(xn|Xn—1)p(Xn—1|y1:n—1) an—l’ (4)

p(xly) = 3)

1:n71)

where p(x™|x" 1) is the probability density determined by the
transition function from Equation (I). This integral is computa-
tionally difficult for high-dimensional probability distributions,
which leads to simplifying assumptions by the Kalman filter
described in the next section. With p(x™|y'"~!) as the prior
defined in Equation (), Bayes’ formula for sequential data
assimilation becomes

p(yn ‘Xn)p(xn |y1:n—1)

p(y" [yt ")
with y1¥ being an empty set and p(x°|y*¥) = p(x°) fixed
to represent the initial knowledge of the system before any
measurements.

Since we always incorporate available measurements, we
simplify the notation by defining the distributions at time
step n to be implicitly conditioned on measurements from
the previous time steps. We define p(x") = p(x"|y*"~!) and
p(x"|y™) = p(x™|y'™). That also allows us to drop the time

p(x"ly'™) = : (5)
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Algorithm 1: Generic data assimilation loop

Input: prior, data y™ at time ¢,

1 posterior « prior
2 t,—1< 0
3 for (y", t,) in observations do
// Equation (@)
4 prior «+ Predict (posterior, t,,_1, t,)
// Equation (7)
posterior < Update (priof, y™)
tnfl — tn

aQ W

step superscript when looking at data at a single time step.
The form of data assimilation in Equations () and (5] can be
written as two repeated phases, shown both in Algorithm [I]
and here mathematically as

predict: p(xn) _ /p(xn|xn—1)p(xn—1‘yn—l) d/xn—l’

(6)
p(y[x)p(x) 7
ply)

with implicit n superscripts in the update phase. The predict
phase advances the distribution p(x™"~!|y"~!) to p(x") using
the transition function from Equation (I). The update phase
updates the prior p(x™) to the posterior p(x™|y™) using
the likelihood p(y™|x™), which is based on the observation
function from Equation (2)). In Section we explain this
update phase for the Kalman filter and the EnKF, with common
EnKF difficulties in Section [[I-C| In Sections |[I-D and [II-E,
we introduce the transition and observation operators we use
with the EnKF.

update: p(x|y) =

B. Kalman filters

The standard Kalman filter (KF) [45] is a sequential applica-
tion of Bayes’ rule that assumes each distribution is Gaussian
in the state x. This requires a linear transitions and a linear
observation y = Hx. For linear operators with Gaussian
noise, an input Gaussian distribution p(x"~!|y"~!) always
transforms to a Gaussian prior p(x™) and posterior p(x"|y™).
That reduces Equations (6) and to linear equations for the
updated Gaussian mean and covariance. The KF is a linear
update to the mean and covariance based on the observation
covariance and the state-observation cross-covariance. Let
the forecast Gaussian p(x) be a Gaussian distribution with
mean p ¢ and covariance By. Then the analysis (or posterior)
distribution is p(x|y) = N (p,, B,), where the moments can
be calculated using the Kalman update equations,

®)
©))

Mo = py+K(y —h(py)) and
B, = (I1- KH)B;.

The Kalman gain matrix K can be expressed in terms of
the covariance of the predicted x; ~ p(xy) and y; = h(xy).
Recall the definition of the covariance cov(-) and the cross-

covariance cov(-,-) as the expectation of the outer product of
the deviations from the mean,

cov(xy,ys) = E

T
— )", (10)
(.5 1 )~p(x7,¥ 4) v

(xp —pp)(yy
where g, is the expectation of y, over p(y). Then the
Kalman gain matrix is

K = cov(xs,y ) cov(y;) " (11)

with cov(y ) = cov(y s, ¥¢)-

For large state data, the state covariance is too large to be
directly stored. Instead, it must be expressed in a low-rank or
sparse form. Similarly, for large observational data, directly
forming K is impossible, and a low-rank or sparse form of
cov(y;) must be used in order to apply K in Equation (]2[)
Furthermore, for nonlinear operators f and h, the distributions
are not Gaussian.

The ensemble Kalman filter (EnKF) [46], [47]] ameliorates
these problems using a Monte-Carlo method. The prior is
represented by an ensemble of samples. The predict phase
advances each sample forward in time using the transition
operator. The update phase simulates observations of each
sample and applies the linear Kalman update from Equa-
tion to each sample to better match the true observations.
The update assumes the state and observation samples are
jointly Gaussian, so this method is optimal only for the linear
KF case. However, because the samples do not have to be
Gaussian, this method has the capability of expressing non-
Gaussian distributions. Specifically, if the transition operator
is nonlinear, the prior ensemble for the update step is not
Gaussian, and if % is nonlinear, the likelihood p(y|x) for the
update step is not Gaussian. Since the update step is linear,
it can only update the non-Gaussian prior to a non-Gaussian
posterior.

Let the ensemble be forecasted samples x¢; indexed by 4
from 1 to N,. They can be described as samples of ' (p 7 Br)
with forecasted sample mean pu; = » Xy ;/N. and sample
covariance By = X fX?, where X is a matrix with the i-th
column being (xf; — pt4)/v/Ne — 1. Equation applies to
each sample to update the samples with the observation y,
written as

Xa,i :Xf,i"‘V_K(y_yf}i) for i € {1723"-7Ne}7 (12)

where y ¢ ; = h(Xy,i,m;,;) is a simulated observation, n,, ; is
a sample of the noise for the observation operator, and x, ; is
a sample of the posterior. Note that the observation operator
here on each sample is simulated with noise, whereas in Equa-
tion , the mean is observed without noise, since the noise
is assumed to have zero mean. Let p,, = >,y ;/Ne be the
sample mean of the predicted observations. Let B, =Y fY;
be the sample observation covariance, where Y ; is a matrix
with the i-th column being (y;, — p,)/v/Ne — 1. Then the
Kalman gain matrix is

K=X;Y[(Y;Y])™, (13)

which requires solving a linear system for each ensemble
member in Equation (I2). Note that the update to each x
resides in the range of Xy, so it is important that X have
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full column rank, requiring the ensemble members to stay
separated.

The ensemble size N, is typically chosen to be as large
as possible for a given computational budget. However, there
there are diminishing returns for increasing ensemble size,
since the error due to limited ensemble size decreases with
O(1/+/N¢) [27]. For large systems, the cost and diminishing
returns limit the ensemble size to a few hundred. In seismic
applications, the observations are typically seismic waves or
seismic images with millions of degrees of freedom V,. Since
we have N, < N,, the sample observation covariance Y szs
is explicitly in a low-rank form and is thus singular.

If true observation noise covariancjg: R* is known, th}:
sample observation covariance is Y fY st R*, where Y fY ¥
is the non-noisy sample observation covariance obtained from
simulating observations without noise. In practice, R” is
not known. Instead, a nonsingular approximation R can be
constructed, e.g., as a diagonal matrix. Then the observation
covariance can be approximated without noise samples as
?fYT + R or with noise samples as YfY? + R, where
Y ;Y7 is the noisy sample observation covariance. In both
cases, the added matrix approximates the components of the
noise covariance not captured in the sample covariance. R is
typically scaled smaller when using the noisy Y fY? to avoid
over-inflating the noise variance in directions captured in the
sample covariance.

The standard way to handle seismic data for parameter esti-
mation is by solving an optimization problem minimizing the
data misfit. To facilitate comparison with the Kalman filters,
we show the optimization formulations of these methods. The
mean g, in the Kalman filter update in Equation (8) minimizes
the linearized optimization problem

min [A(s) +Hx = pg) = ¥llg-s + Ix = pglg-, (14)

and then the covariance estimate B is the inverse Hessian of
the optimization objective at x = . Similarly, the EnKF can
be formulated as updating each ensemble member by solving
N, linearized optimization problems below to yield c;,

15)

: 2
Join Yaq = ylir-s + 1%ai = x4l

2
BV
with x,; = p; + Xypc; and y, ; = p, + Yse; = h(ag).

This linearization is similar to a full-waveform-inversion-
type optimization, which minimizes the nonlinear misfit term
typically with repeated linearized optimizations.

The Kalman filter solves the optimization problem for
the mean using one linear solve, linearizing the observation
operator h about the mean. To get the updated covariance, it
requires solving N, linear systems to apply the Kalman gain
to a matrix.

The EnKF solves N, linear optimization problems, lineariz-
ing the observation operator to best fit the ensemble. The
updated covariance is implicitly represented by the updated
ensemble.

C. EnKF difficulties

Although the EnKF efficiently represents the covariance, the
EnKF encounters similar challenges as other variants of the

KEF, specifically in choosing noise statistics. When noise statis-
tics are underestimated, the filter’s estimated state covariance
becomes increasingly small, such that new observations have
negligible effect on the estimated state and the filter diverges
from the truth. This is especially an issue for the EnKF with
small sample size and small transition uncertainty.

To manage this filter divergence, a conventional approach
is to increase the variance in the state. Covariance inflation,
described by Anderson and Anderson [48], artificially inflates
the covariance of the ensemble by an ad hoc factor. Hamill and
Snyder [49]], Whitaker and Hamill [50], and Whitaker et al.
[S51] showed that this simple, efficient approach improved the
predictive accuracy of atmospheric data assimilation models.
In the context of seismic measurements, Alfonzo and Oliver
[20] increased the state covariance by estimating observation
noise using observation error, thereby avoiding filter diver-
gence.

Filter divergence is especially a problem when observa-
tions are assimilated often. For seismic surveys, we assume
observations are expensive and therefore temporally sparse,
and we do not assimilate enough observations to encounter
filter divergence. Our EnKF simulates reservoir dynamics for
a year with unknown permeability and then assimilates a
seismic survey. The uncertainty in the parameters governing
the reservoir dynamics over this large of a time period is
enough to ensure the filter covariance does not become too
small.

The novelty of this work is applying the EnKF to the
seismic-CO, monitoring domain with reservoir fluid dynamics.
The next two subsections describe the reservoir dynamics and
the seismic observation operator we use for the EnKF.

D. Two-phase flow

Multi-phase porous flow is a standard approximation for
CO; reservoir dynamics. For our purposes, the reservoir con-
sists of briny water and injected supercritical CO, flowing
through porous rock. Simulations may also account for aque-
ous CO,, but for ease of presentation, we consider the two
fluids to be immiscible.

For each fluid, a saturation field describes what proportion
of the pore space is filled with that fluid. Let S, and P, be
the CO, saturation and pressure fields, usually written with no
subscript because they are the main quantities of interest. For
two-phase flow, the water saturation S,, and pressure P,, can
be directly computed as S, = 1 — S, and P, = P, + F.,
where P, is the capillary pressure. Capillary pressure can be
a complex function [52], but we do not attempt to address
that field of research. Instead, we focus on the effects of
permeability and take capillary pressure to be O.

The governing PDE is the mass balance equation with Darcy
flow applied to each fluid <,

% =V (pivi) = pigis (16)
v; = —kvi /i KNV (P, — pigZ), (17)
S;, P; given at t = 0, (18)

with g being gravitational acceleration and Z being depth.
Fluid ¢ has fluid density p;, velocity v;, volume injection
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rate g;, relative permeability k,;, and fluid viscosity p;. The
permeability field K describes the relationship between fluid
flow rate and an applied pressure gradient. The flow rate is
slowed by viscosity and relative permeability. Permeability is
usually expressed in millidarcies and is anisotropic, typically
favoring horizontal directions due to sedimentary layering. We
represent it with a diagonal tensor separated into vertical and
horizontal components,

K=o 2]

0 K (19)

with K} being a heterogeneous scalar field of the horizontal
permeability and K,/ K}, fixed to a constant less than 1. The
porosity ¢ is a scalar field with values in the range 0-1
representing how much of the rock is accessible by the fluids
(typically about 20%). The relative permeability is a nonlinear
function of the saturation. In line with existing literature, we
use a modified Brooks-Corey model with residual saturation
r for both CO, and brine, given by

ki = clamp((1 — 2r) 71 (S; — 7), 0, 1)
1 if S;>1—r
=<0 if §; <r
(1—2r)72(8; —1)? else
Let M represent the nonlinear operator that numerically solves
the PDE in Equations (I6) to (I8) and (20) from time ¢, to

tna1 with (spatially discretized) initial conditions S™ and P",
permeability K, and porosity ¢, written as

Sn+1, Pn+1 — M(Sn, Pn7 K, d); tnatn+1)~

(20)

21

The resulting saturation is then used to simulate seismic
measurements, as described in the next subsection.

E. Seismic observation

Surface-seismic data allows measuring subsurface changes
without drilling wells. In active-source surface seismic, a
seismic source, such as an explosive or air gun, on the surface
sends seismic waves into the reservoir. Spatial differences in
subsurface wave velocity cause the waves to be reflected or
transmitted back to receivers on the surface. The data recorded
for this measurement consists of a time series for each possible
source-receiver pair.

The wave dynamics are governed by the wave equation. To
simulate seismic measurements, the wave equation must be
solved for each source to determine the data collected at the
receiver locations. In terms of the acoustic pressure field 9,
the governing wave dynamics are

m %6, 1 04 q
— N vARN sl vy —r _ 2
)oY (p p) T T

where m is the P-wave squared slowness field, p is the density
field, w is a spatially-varying dampening parameter that is
nonzero only in the absorbing boundary layer, and ¢ is an
acoustic source. The boundary layer is used to simulate an
infinite domain, ensuring any waves that would escape the
system of interest are absorbed by the boundary instead of
being reflected back into the system.

(22)

Seismic measurements can detect CO, because the density
and squared slowness at each point is dependent on the mate-
rial composition at that point, including the rock composition
and the relative concentrations of CO, and brine. This relation
is specified by a rock physics model, and a typical rock physics
model for CO, reservoirs is the patchy-saturation model. Past
research has investigated the effects of pressure in the rock
physics model [53]], [[54]], but we neglect that here to focus on
the leading order effect. The patchy-saturation rock physics
model, described in Chapter 1 of [55]], expresses the density
and squared slowness as a pointwise function of the CO,
saturation and a baseline model representing the density and
squared slowness before injection. This model is a nonlinear
interpolation of the squared slowness with 0% CO, and 100%
CO, in the pore space, based on the P-wave modulus of the
rock and fluids. We use this model to compute the squared
slowness field and density field as the saturation changes.
Details are given in Appendix [Al

Given the spatially discretized squared slowness field m
and density field p from the rock physics model, let d =
H(m, p) + 1 be the waveforms representing simulating the
seismic waves (i.e., solving Equation (22)) and obtaining
measurements at the receivers with noise 7. In terms of the
CO, saturation S,

d(S;n) = H(m(S), p(S)) +n,

where d being a vector with components d;;(t) as the acoustic
pressure measurement at receiver ¢ from source j at time t.
These are the full-waveform measurements used for seismic
monitoring of CO,.

(23)

III. ENKF APPLIED TO CO, PLUME WITH SEISMIC
OBSERVATIONS

We apply the scalable, efficient EnKF to the two-phase flow
system with seismic observations and show that it gives good
estimates of the CO, saturation in a high-dimensional (high-
resolution) system with temporally sparse seismic measure-
ments. As our seismic model does not depend on the CO,
pressure, we focus solely on estimating the CO, saturation
over time. The novelty of this manuscript is that we show
viability of addressing all three issues of (1) relatively large
problem size with (2) CO, dynamics and (3) seismic waveform
data. Details on the transition and observation operators are
below. In this section, we first describe the particular CO, dy-
namics (transition operator) and the seismic calculations (ob-
servation operator) we use, and then we present the ensemble-
based workflow for seismic-CO, monitoring. We then present
simple but comparably scalable algorithms to compare to the
EnKF. Finally, we describe the hyperparameters of the EnKF
that we vary to show how to pick reliable hyperparameters.
Implementation details required for reproducibility are given
in the appendices.

A. Transition operator

We use Equation (21) as the transition operator. We assume
to know all the transition function parameters except for the
saturation S, pressure P, and permeability K. The transition
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function f updates the saturation S and pressure P given
the permeability K and leaves the permeability unchanged.
Using M described by Equation (2I)), the transition operator
for ensemble member i can be written as x!'tt = f(x}),
where x* is a tuple x" = (S}, P, K;) and

SITL P = M(SI P K, di by, tnrr).  (24)
Note that the stochastic term 7, from Equation is not
present. This term must be used in systems with large forecast
uncertainty, such as inherently stochastic systems or chaotic
systems. Specifically, the 17, term represents uncertainty in the
system even when all parameters are known to high precision.
We consider the flow physics to be deterministic, and therefore
we express the uncertainty in the transition explicitly in the
input parameters instead of adding stochasticity. Typically,
when all parameters are known, the physics model is accurate,
and we do not address model misspecification here. Although
there are methods to account for model misspecification (e.g.,
[56]), better results are obtained by including misspecified
parameters as explicit unknowns as we do here.

The permeability and porosity fields cannot be known
exactly, which must be accounted for in our EnKF. As a first
step, we focus on the uncertainty created by the unknown
permeability field and assume the porosity field is known. We
assume that knowledge of the permeability is represented as
a distribution from which we can sample permeability fields.
Accounting for the uncertainty in the permeability amounts to
initializing each ensemble member with a different realization
of the permeability field, with each ensemble member’s per-
meability field fixed across time. In practice, the permeability
can be characterized (but not computed) by seismically mea-
suring the velocity field and correlating this measurement with
permeability measurements along wells. Since permeability is
not a one-to-one function of the velocity or density that can
be measured seismically, this characterization inherently has
uncertainty. In our simulated experiment, we represent this
uncertainty by sampling permeability fields via an empirical
noisy function of perturbations of the ground-truth velocity
model based on the exponential relation described in [57],
with details in Appendix

B. Observation operator

The wave dynamics for the seismic operator take place on a
time scale up to a few seconds with a resolution on the order
of milliseconds. Changes in the CO, saturation occur on a
much longer time scale, so we consider the saturation field to
be static when simulating seismic measurements.

Recall H as the operator mapping from squared slowness
m and density p to receiver waveforms d in Equation (23).
In line with typical seismic imaging techniques, we construct
an approximation of the true pre-injection baseline parameters
mp and p to obtain a smooth baseline model mg and p,. We
compute the reverse-time migration (RTM) image by applying
the adjoint of the background Jacobian J, with a linear post-
processor P that mutes the water layer and scales the image as
a function of depth, as suggested by Herrmann et al. [58]]. The

baseline image is computed by the operator hp, represented
as

dH

Jo = 70(m03p0)7

- (25)

he(vyny) = PIT (mmB,pB) n ugng), 6)

where 7% is true noise with a fixed norm and v controls
the noise magnitude. The noisy monitor image is computed
similarly by operator h on a state x with noise 7 and noise
level v, and a time-lapse image A is obtained by subtracting
the baseline image from the monitor image,

h(x,vn) = PJL <7—L(m(S),p(S)) + Vn), 27

A(x, v, vpnp) = h(x,vn) — hp(VEnp), (28)

where the measurements depend only on the saturation of
the state tuple x = (S,P,K). Note that the image A is a
constant offset from the observation operator h, so it makes
no difference in the filter whether we use h or A as the
observation.

C. Workflow overview

Figure [I] shows the workflow for the EnKF-based moni-
toring workflow. The left half shows the steps taken in the
digitally-simulated system, and the right half shows steps taken
in the physical system. This setup is known as a digital shadow
because the simulated system takes information from the real
system without automatically affecting the real system [59].

In the real system, seismic surveys of an injection site
are conducted. In the simulated system, transitions and ob-
servations of an ensemble of possible subsurface states are
simulated, and the ensemble is updated based on field surveys
using the EnKF update formula. Figure [2] shows the steps
applied independently to each ensemble member to simulate
the transition and the observation.

D. Comparison to other algorithms

For the EnKF, we initialize N, = 256 ensemble members
with different permeability models and zero saturation. These
states represent possibilities for the state of the reservoir at
the initial time. For each ensemble member, we simulate two-
phase flow with CO, injection until the measurement time.
The EnKF uses the ensemble covariance and the measurement
covariance to update the saturations of each ensemble member
towards a value consistent with the observations, according to
Equation (12). Then the predict-update process is repeated.
The fluid flow simulation advances each ensemble member to
the next observation time, at which point a seismic measure-
ment is assimilated that updates the ensemble states.

The EnKF assimilates data from simulations and observa-
tions. In order to be worth the extra computational effort, the
EnKF must perform better than similar algorithms that use
only data from simulations or only data from observations. We
propose a comparison with two baseline ensemble methods of
updating the forecast, referred to as no-observations method
NoObs and a just-observations method JustObs.
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in silico

Set time index n = 1.

|

S;,P;, K; at time ¢,
conditioned on observed y!"~!

For each ensemble member,
simulate time passing to %,
and simulate seismic survey.

S:;, P, K;,y,; at time ¢,

Increment n. o o=
conditioned on observed y!"—!

o
Update ensemble based

on survey at time ¢,,.

S;,P;,K; at time ¢,
conditioned on observed y'"

in situ

Set up injection site.

Set time index n = 1.

Let time pass to .
Conduct seismic survey at time t,,.

field survey y"™

Increment n.

R May use estimates to make decisions
about future injection rates and surveys.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 1: Workflow diagram for sequential data assimilation for seismic monitoring. Distributions are shown as shaded clouds,
and the measurement is shown in a rectangle. The left dashed box contains the steps run in computer simulation. The right
dashed box shows actions to be taken in the field. The dotted lines show where information crosses from one side to the other.
In simulation, an ensemble represents possible states of the reservoir. Known fluid dynamics are used to simulate the ensemble

members forward in time. Known seismic physics are used to
based on the field data, and the predict-update cycle repeats.

The NoObs method does not incorporate observations. In-
stead, it represents the best prediction we can obtain based on
prior physics knowledge. Specifically, it uses the two-phase
flow model along with the probability distribution describing
the permeability field.

The JustObs method does not use the fluid-flow physics
knowledge. Instead, it represents the best prediction we can
obtain based solely on observations. Specifically, it uses wave-
form observations from Equations (38) and (39).

The JustObs optimization is ill-posed and can be sensitive
to the initial guess for optimization, so we initialize it with
the forecasted ensemble mean and add a regularization term
C(x), defined in Appendix |C} A strict JustObs formulation
that just minimizes the observation misfit performs much
worse than the EnKF, but regularization and initialization can

simulate the seismic surveys. Then the ensemble is updated

improve it. Unfortunately, we were unable to achieve feasible
saturation estimates with standard FWI-based regularizations.
A highly-tailored JustObs baseline may perform better than
the EnKF, but designing it for this problem is complex and
not the focus of this paper. We leave the details of our JustObs
implementation in Appendix

The forecast for each method is computed by applying the
transition operator in Equation (24) to each ensemble member
1 of the previous analysis state x, at time step n — 1, written
as

X}, = (=0, (29)

We can see the similarities between three methods by
writing them each as an optimization, dropping the time
superscript from x since they are all at time step n:
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S,;, Pi, Kz at time tn—l

|

(1. Update saturation and pressure using fluid flow model )
from Equation (21).

Sia Pz <~ M(S’L?PHKN ¢;tn—latn)

- J

|

( B B . . N
2. Compute seismic parameters using rock physics model
in Appendix [A] Equations (@3) to {#3).
Ai =A(Si), py=p(Si), mi=p;/X

. J

|

(3. Simulate noisy seismic shots using Equation (23).

d; = H(my, p;) + vn;

k J

|

(4. Compute seismic image using Equation 7).
y; =PJld;

|

S:,P;,K,,y,; at time ¢,

Fig. 2: Operations applied to ensemble member ¢ to advance
time to ¢, and generate observation y,. These steps can be
applied simultaneously to each ensemble member.

NoObs maximizes the probability of x™ given the initial state:

Xo; = arg maxp(x\x%i)
X

)

(30)

= argmin llx — Xf7i||]23;1.

JustObs maximizes the current data likelihood with ad-hoc

regularization C":

Xq,; ~ argmax p(y"|x) exp(—C(x)/2)
x 31
= argm}in”h(x) -y R + C(x). ©1

EnKF maximizes the posterior likelihood by using the forecast
as a prior:

lznfl)

Xo,; = argmax p(x|y"") = arg max p(y" [x)p(x[y

— argmin [[4(x) — y" s + x = xpl3 .
(32)

Recall from Equation that the EnKF uses a linearized ob-
servation operator (written iz(x) here) based on the ensemble
members and constrains x to be expressed by the range of the
ensemble mean deviations. The version here is simplified to
more easily compare to NoObs and JustObs.

Because these are ensemble methods, each ensemble mem-
ber has a separate realization for x;; and X, ;. Each of the
above equations is solved for each ensemble member. Since
each ensemble member has a different x¢;, the NoObs and
EnKF methods include uncertainty in the resulting x, ;. The

NoObs optimization has a simple solution x,; = X ; because
the observations are not included. In JustObs, the resulting
Xgq,; 18 identical for each ensemble member because x; ; does
not appear in the optimization expression. For all methods,
due to each ensemble member’s unique permeability field, the
ensemble states tend to drift away from both each other and
the ground-truth state when the transition function is applied.

E. Noise tests

We additionally test a range of values for the EnKF’s
noise parameters while keeping the transition and observation
models fixed. We show the EnKF’s resiliency to deviations
from the ideal parameters, and we provide guidance on how
to choose some parameters. Specifically, the EnKF algorithm
has choices for how the noise is handled and estimated, and
we are interested in how the accuracy of the EnKF’s state
estimate accuracy changes under incorrect assumptions and
different ways to handle the noise.

Recall that the Kalman update can be written in terms of
covariances, and the EnKF uses sample covariances from the
ensemble, denoted here with cov,

X = Xf4i+ ﬁ(xfyyf)(ﬁ(yf) + R)_l(y - Yf,i)'
(33)
R acts as a regularization in the inversion and is a non-singular
approximation of the covariance of any observation noise not
already represented in cov(y ).

Our seismic data is represented as y;; = h(xy,vn;),
where the norm of 7, is fixed and v determines the signal-
to-noise ratio (SNR), expressed as —20log v dB. If the noise
covariance is known precisely, cov(y ) should be computed
without noise as cov(h(xy,0)), and R should fully represent
the noise covariance.

However, we don’t generally know the covariance of the
noise; instead, we can simulate noise. If we compute @(y f)
with simulated noise as cov(h(xy,vn,,)), then cov(y;) im-
plicitly contains an estimate of the noise covariance. Unfor-
tunately, the number of ensemble members is much smaller
than the observation size, which makes cov(y,) singular.
This necessitates regularization in the inversion of the sample
observation covariance, in which case, the matrix R is ideally
close to the true noise covariance only in the directions that
are not already sampled in cov(y ).

Typical handling of the regularization simply parametrizes
R as a diagonal scaling of the identity, and we follow
suit here. The noise variance is proportional to v2, so we
parametrize R as R(v, ) = v2 3?1, with scaling parameter 3°
being the estimate of the average variance of the observation
vector’s entries when the SNR is 0 dB. If we have the
true observation noise covariance R*, a typical choice is
v?3? = mean(diag(R*)). However, we assume not to know
the ground-truth noise covariance of the seismic images. We
estimate noise covariance R with simulated noisy and non-
noisy observations at the initial time step, thus defining (5 as

R = cov(h(xy,vmy,) — h(xy,0)), (34)
8= % mean(diag(R)). (35)
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For our noise tests, we consider changing the following four
noise parameters: first, 8, which determines the amount of
regularization in the inversion of cov(y); then a € {0,1},
a binary value which determines whether to simulate the
noise in the estimate of a)?(yf); and finally, v and v*,
which determine the magnitude of the noise in the simulation
and in the synthetic ground-truth observations. These scalar
parameters are shown underlined in the update equation as

Xa,i = Xf; + ﬁ(Xf, h(xf,gn))

-1
(v (htxs, awm) +251)
[h(x*,ﬁn*) - h(xf,i,gni)]. (36)

We refer to changing § and « as regularization tests, changing
v as simulated noise tests, and changing v* as true noise tests,
described in more detail below.

Regularization tests: The regularization tests measure
performance with different values of 5 and «, keeping v = v*
fixed. As [ is increased, the update to x; goes to 0, so we
expect the EnKF estimates to approach the NoObs estimates.
For a = 1, the noise is included in the samples for the sample
covariance, and [ is simply a regularization parameter. For
a = 0, R should represent the covariance of the noise in the
observation operator, and § is chosen to make the resulting
variance match the noise covariance on the diagonal.

Simulated noise tests: For these tests, we measure per-
formance when the noise estimate v #* v* while keeping
B, a, and v* fixed. If v equals the true noise v*, then our
ensemble’s observation noise variance is an unbiased estimate
of the true observation noise variance. When the noise estimate
is too high, we expect to regress to the NoObs results, and
when the noise estimate is too low, we expect to fit the noisy
data too closely. In practice, the true noise variance is not
known exactly but can be estimated based on observations and
technical specifications of the sensors. Note that we consider
strictly unbiased (zero-mean) noise. Biased errors typically
occur from incorrect forward models, but we do not address
those here.

True noise tests: Finally, we further measure the EnKF’s
performance with different values of the true noise magnitude
v*. We are especially interested in how the performance
decays for larger values of noise. For these tests, we keep
v = v* and keep § and « fixed. Large noise should simply
give results similar to the NoObs baseline.

IV. TEST SCENARIO

We show the ensemble Kalman filter performance on a
synthetic CO; injection problem based on the Compass model,
which is a synthetic benchmark for seismic full waveform
inversion [|60]. We simulate the CO, injection for 5 years, with
new seismic observations every year. The simulation domain
is shown in Figure 3] and the scalar simulation parameters are
shown in Table [[. We use the fluid and mineral parameters
from Li et al. [61] for brine, supercritical CO,, and quartz.

The Compass model is a large 3D model based on surveys
in the North Sea. It is designed to capture the geological

0.0 > i3 i3 EAS EAS EAS ]
0.5- 88 Sources
= Water layer
E © Receivers
~—1.0- B Reservoir seal
= I Injection range
o
<5
A

2.0-
Horizontal (km)

Fig. 3: The simulation domain consists of seismic sources and
receivers along the sea surface and sea bottom. The reservoir
is approximately 1.5 km deep with an impermeable seal.

Domain size | 4.05 km x 2.125 km
Grid size | 325 x 341
Cell size | 12.5m X 6.25 m

(a) Domain parameters.

Simulation length | 5 years
Injection depth | 1.76 km
Injection extent | 37.5 m

Injection rate | 0.8 Tg/year
Residual saturation | 0.1
K. /Kp | 0.36

(b) CO, plume parameters.

Simulation length | 1.8 s
Source dominant frequency | 24 Hz
Source maximum amplitude | 7.8 MPa
Signal-to-noise ratio | 8 dB
Time step size | 0.004 s
Number of receivers | 200
Number of sources | 8

(c) Seismic survey parameters.

Brine viscosity | 1073 Pa-s
CO, viscosity | 10~* Pa:s
Brine density | 1053.0 kg/m?
CO; density | 776.6 kg/m3
Brine bulk modulus | 2735 MPa
CO;, bulk modulus | 125 MPa
Density reference pressure | 15 MPa

(d) Fluid and mineral parameters.

TABLE I: Simulation parameters for the CO, plume, seismic
survey, and rock physics model.

complexities of seismic behaviors in real systems. Running
simulations with the full model is expensive, so we limit the
domain to a 2D slice, shown in Figure

Each ensemble member has a different permeability model,
which is computed from the ground-truth velocity model as
detailed in Appendix [B] To avoid extremely high pressure,
we choose the simulated injection depth for each permeability
model to be the maximum permeability value in the 120 meter
range labeled in Figure 3] and we initialize the saturation field
with a random-valued octagonal patch of 57 grid cells centered
on that location.

Figure [5] shows the ground truth permeability, an example
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ensemble member’s permeability, and the mean and stan-
dard deviation of the 256 permeability samples used for the
ensemble. Figure (6| shows the ground-truth saturation and
observation at two times. We set the porosity to a constant
25%.

0.0-

2.5
g 2.0
=
e |5 afens
g .
jo
a

rl1.0

0 1 B
Horizontal (km)
(a) Density field
0.0- 5

1

Horizontal (km)
(b) P-wave velocity field

Fig. 4: Seismic field parameters. These come from a 2D slice
of the Compass model, which is based on the subsurface of
the North Sea.

A. Notes on scaling larger

We simulate a relatively small number of sources and
receivers on a 2D system with an ensemble of 256 members.
For large systems, the ensemble size is typically a few hundred
and is independent of the grid size, so we do not expect to
change the ensemble size much when scaling to 3D. The EnKF
scales linearly with the number of degrees of freedom in the
state and observations, so it scales the same as the grid size
for scaling from 2D to 3D. The computational cost of running
the linear Kalman update used in the EnKF is negligible
compared to the computational cost of simulating the transition
and observation for each ensemble member. Fortunately, the
transition and observation operations are trivially parallelizable
across the ensemble.

Compared to 2D, the cost of each flow simulation in 3D is
certainly much higher and may dominate the cost. The cost
of each seismic simulation is proportional to the number of
sources. Increasing the number of sources and receivers affects
only the cost of simulating observations, which is proportional
to the number of sources. With uncorrelated sensor noise,
increasing the number of sources and receivers leads to lower
noise images that better show the plume. This decreases the
observation noise and allows the EnKF to better match the
true plume.

B. Seismic noise

Each frequency component of the noise is drawn from
a zero-centered normal distribution with standard deviation
proportional to the corresponding frequency’s contribution to
the source Ricker wavelet. We express the noise norm in
terms of the signal-to-noise ratio (SNR) v = v~2, typically
expressed in decibels as 10logy. We consider the signal to
be the difference in the observation from the smooth baseline
model observation dg. We scale the noise 7 to have the same
norm as the signal so that ¥n has the signal-to-noise ratio ~,

[ H(m(S),p(S) — o _ 1
[lem]? v
and similarly for 1%, where the norm is defined as ||n|* =

> J mij(t)? dt, summed over the sources and receivers and
integrated over time.

(37)

C. Linearization

The Kalman filter is exact for linear transition and observa-
tion operators with additive Gaussian noise. To avoid introduc-
ing too much complexity at once to this research, we use the
nonlinear rock physics model (see Appendix [A) in conjunction
with a linearized seismic operator H. Nonlinear seismic data
has been successfully assimilated using a machine-learning
method by Gahlot et al. I]Zf;3'|], but for the EnKF, we leave that to
future work. Here, we take the initial step of showing that the
EnKF accommodates the nonlinearity from the two-phase flow
transition and the patchy-saturation model. We use the linear
model to generate our synthetic ground-truth observations and
to simulate observations for the ensemble.

The seismic operator can be re-parameterized in terms of
squared slowness and impedance as H,,.(m,z). We choose
the acoustic impedance, computed pointwise as z = p//m,
because the resulting seismic images (computed with inverse
scattering imaging conditions) lack low-frequency updates,
thereby revealing the shape of the plume better. We linearize
this operator H,,, using the Jacobian Jo with respect to the
acoustic impedance about the smooth baseline zg = po/ \/mo.
Thus, for the linearized model, we replace H(m, p) in Equa-

tions (23)) to and with
gmz(mv Z) = Hmz(mOa ZO) + jO(Z - ZO)) (38)

where the impedance is computed using the patchy-saturation
model (Equations (#3) and (@4)) as

2(S) = Vp(S)A(S), 39)
so that the linearized observation operator is
~T [ ~
xm) =PIy (3o(e(8) ~a0) 40 @)

with ground-truth observation y = h(x*, v*n*).

D. Baseline models

Inverting seismic data itself is difficult, so we do not con-
found that difficulty with extra uncertainty in the rock physics
model. Instead, we assume the pre-injection parameters mpg
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Fig. 5: The permeability fields are computed from perturbations of the velocity field as described in Appendix [B| The ground
truth permeability is chosen as a small perturbation from the ground truth velocity field, while the ensemble permeabilities are
larger, noisier perturbations. The mean ensemble permeability is blurry due to averaging different spatial perturbations.
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Fig. 6: CO; plume evolution over time with states in (a), (b) and corresponding noisy observations in (c), (d). Observation units
for RTM are squared pressure per impedance times depth, with pressure in megapascals, impedance in megarayls (g/cm?®-km/s),

and depth in kilometers.

and pp are known exactly for the patchy-saturation model of
Equations @) and @) For the seismic model, we compute
the smooth baseline model parameters mgy and po from a
Gaussian blur of mpg and pp with standard deviation 62.5 m
depth-wise and 125 m horizontally.

E. Discretization and PDE solution

For the two-phase flow system, we use the JutulDarcy
simulator [62]], [63]. JutulDarcy is implemented in the Jutul
framework [64]]. This code discretizes spatial fields with finite
volumes, discretizes time with an implicit Euler step, and
chooses time step sizes automatically with an adaptive time

stepper. Jutul solves the discretized system with Newton’s
method with the necessary Jacobian obtained via automatic
differentiation.

For the seismic observation, we use the JUDI software
|]5_§]], []5_6[] which solves the wave equation using the Devito
package [67], [68]. The method is an 8th order spatial finite
differencing scheme with 2nd order in time with time step size
chosen based on the CFL conditions described by Lines et al.

Our code will be made open source and available at publi-
cation time.
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F. Limitations

We make several simplifying assumptions in order to apply
the EnKF to the large problem of CO, monitoring with seismic
data. We explicitly define and discuss several limitations here.
To understand how these assumptions limit the results we
show, consider that the sources of error in the EnKF are
sampling error, linearization error, and Gaussianity error. The
sampling error can be decreased by increasing the ensemble
size or by including known information into the covariance es-
timates via methods like covariance deflation and localization.
The errors due to the linearity and Gaussianity assumptions
of the EnKF are problem dependent, and as we increase the
complexity of the problem, this source of error will increase.
Decreasing these two sources of error require a nonlinear
assimilation method, such as the conditional normalizing flow
filter applied to this CO, system in [43].

First, in our two-phase fluid flow model, we assume im-
miscible fluids with a simple relative permeability relation,
zero capillary pressure, fixed temperature, and a homogeneous
porosity. The immiscibility assumption is valid on short time
scales, but dissolution becomes an important trapping mecha-
nism when storing CO; for hundreds of years. Heterogeneous
in the porosity field affects the plume migration and seismic
measurement. Capillary pressure can have a relatively large
effect on CO, plume migration, although estimating it is very
site specific. Introducing capillary pressure adds a nonlinear
term to the governing PDE, which we expect to increase the
error in the EnKF since it implicitly assumes linearity. Future
work should include heterogeneous porosity and the effect of
capillary pressure.

Second, in our seismic model, we use the Born approxima-
tion, which simplifies computation and interpretation of the
results. While the full observation operator is still nonlinear
due to the nonlinear rock physics, the seismic linearization
makes the assimilation problem easier. In real-world sys-
tems, nonlinear effects, e.g., from multiple reflections, must
be accounted for in order to accurately estimate subsurface
parameters. Due to the EnKF’s linearity assumption, we expect
to perform worse on nonlinear seismic data at the noise levels
we show here. This will be addressed in future work.

Third, we account for colored instrumental noise but not
any environmental noise. Instrumental noise is independent for
each receiver. Real-world systems are subject to environmental
noise, which is non-Gaussian and is spatially correlated across
receivers. The EnKF is fit well for correlated Gaussian noise,
but non-Gaussianity introduces error in the analysis step. We
leave testing more complex noise to future work.

V. NUMERICAL RESULTS

First, we define the metrics we use to measure performance.
Since this is a synthetic experiment, we benefit by being
able to compare each saturation estimate S directly to the
ground truth saturation S*. The ensemble mean is the standard
estimate to show and is the best estimate of the true saturation
field in terms of the /5 norm assuming a Gaussian distribution.
Since our transition and observation operators are nonlinear,
our distribution is not Gaussian. Still, there is not a clear choice

for a different function of the ensemble states to use, so we
show the mean and compute error statistics using the mean.
We use root-mean squared error (RMSE) defined as

RMSE(S, S*) = \/|Q1|/Q(S(r) —S*(r)2dA,  (@41)

where ) is the simulation domain, || is the area of the
domain, r is the integration variable and the spatial coordinate
in the domain, dA is the infinitesimal area at coordinate r, S(r)
is the ensemble mean saturation at coordinate r, and S*(r) is
the ground-truth saturation at coordinate r. For our piecewise
constant discretization with fixed cell size, this RMSE can
be computed as the mean of the squared error in each grid
cell. We also computed the structural similarity index measure
(SSIM) metric defined in [[70]. SSIM takes into account edges
as well as values and is strongly correlated with how humans
perceive similarity between two images. For our tests, we
found the SSIM metric to not yield any more information than
the RMSE, so we show only RMSE for most plots.

A. EnKF compared to baselines

Figure [7| shows a comparison of the final plumes for EnKF
and NoObs, and Figure [§| shows the error in the final plumes.
The plume estimates all have similar spatial extents because
they are generated with permeability values in approximately
the same range. However, since the locations of the high
permeability channels are not known, the NoObs and EnKF
predictions cannot capture the interior of the plume. Note
that the ground-truth plume has sharp edges due to the sharp
edges in the true permeability field. The ensemble estimates
are smoother due to each ensemble member having different
realizations of the permeability field with different locations
for the sharp edges. In order from most smooth to least
smooth, we have the NoObs plume, the EnKF prediction,
the EnKF analysis, and the ground-truth. This shows that
assimilating observations achieves sharper plume estimates,
both in forecasting (the EnKF prediction) and filtering (the
EnKF analysis).

The most notable differences occur in areas of low perme-
ability in the ground-truth. Specifically, the ground-truth has
empty pockets that the CO, does not reach due to the low
permeability, and the ground-truth CO, saturation does not
spread out as much. The NoObs estimate misses all except the
single pocket at 1.5 km depth, 0.6 km horizontal. The EnKF
recovers that pocket and shows signs of the 5 pockets along
1.6 km depth from -0.3 km to 0.3 km horizontal. Each time
the transition operator is applied, CO, flows into the pockets
for members that have high permeability there. Thus, it is very
hard to recover these without updating the ensemble members’
permeabilities.

Furthermore, the estimated states show larger plume bound-
aries due to the uncertain permeability allowing the CO,
to spread faster for some permeability samples. The EnKF
estimate shows signs of correcting for this, seen by the noisy
scatterings of minuscule but nonzero saturations on the edge
of the estimate plume. This is due to the EnKF updating the
saturation based on seismic data. Saturation updates outside
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the boundary of the ground-truth plume tend to push the
saturation to be small or even negative, which is then clamped
to zero.

Figure E] shows the error for each method over time, with
discontinuities when observations are assimilated. The x-axis
starts at year 1 when the first observation is assimilated, be-
cause, before observations, each method is identical. JustObs
was unable to reduce the RMSE with noisy observations, so
we show JustObs results solely for non-noisy data. The NoObs
error growth over time shows how much the ensemble’s
distribution of permeability fields causes the mean estimate to
diverge from the ground-truth plume. Comparing the JustObs
error with the typically lower NoObs error, we conclude the
permeability’s uncertainty in this experiment is small enough
that the knowledge of the CO, dynamics is more informative
than seismic measurements. Real applications may have much
higher uncertainty in the CO, dynamics, which may make
JustObs perform better than NoObs.

The EnKF combines the knowledge of the CO, dynamics
with the seismic measurements and consistently achieves
lower error than NoObs and JustObs, thereby showing the
benefit of data assimilation. The uncertainty in the perme-
ability causes a sharp increase in error between observations,
which shows a limited ability for making accurate predictions.
Future research can use the seismic observations to reduce
the uncertainty in the CO, dynamics, which will decrease the
growth in error between observations.

B. EnKF noise parameter tests

By comparing to the baselines, we conclude that the EnKF
with our initial choice of EnKF algorithm parameters performs
well. Now we examine performance when modifying the
EnKF parameters. Figures[10]to[I2] show the results, discussed
below, of testing values for the different noise parameters in
Equation @, duplicated here,

Xa,i = Xf; + ﬁ(Xf', h(xf,gn))
1
(e cum) + 0257

[h(x*, " 0*) — h(xsi,vm;)]. revisited)

Regularization tests: We first vary 8 with v = v* to
ensure the EnKF performance is not sensitive to the magnitude
of regularization. [ scales the regularization covariance R =
12521 in the observation covariance matrix, and has units of
MPa? -km /MRayl. For a = 0 and making the poor assumption
that the seismic image has spatially uncorrelated noise, 123>
should be the variance of the noise. To choose 3, we use noise
samples to form an estimate R of the true noise covariance R*.
We empirically determine the average noise standard deviation
across the seismic observations to be v = 11 for an SNR of 8
dB, which corresponds to v = 10~898/20 ~ (0.4 and 3 ~ 28.
Scaling by the average noise standard deviation is the typical
method for regularizing the observation covariance inversion
in the EnKF, although there are more advanced methods.

Additionally, we compute the largest eigenvalues of the
sample estimate of the true noise covariance. The largest

eigenvalue leads to a more unbiased estimate of the regularized
observation noise covariance when approximating correlated
noise with a multiple of the identity. This leads to an estimate
of 3 ~ 400. This approximation is an extreme case of a low-
rank PCA approximation discussed, for instance, by Woolrich
et al. [71]. More accuracy could be obtained by using the
eigenvectors as part of the regularization, but we attempt a
fair comparison with the typical identity scaling by choosing
the approximation rank to be zero and simply using the largest
eigenvalue.

In Figure [10a, we plot the error as a function of 3 with
simulated noise in the observation covariance (o = 1). A wide
range of /3 values from 10~ to 102 achieve equivalent results.
The error sharply increases for very small 3 corresponding to
v approximately six orders of magnitude smaller than the
standard deviation of the ground truth noise. As S becomes
very large, the post-assimilation error begins to approach the
pre-assimilation error as expected. We conclude that if the
noise is included in the observation covariance (o = 1), then
the choice of regularization magnitude has very little effect
on the results. The regularization should be chosen within
a couple of orders of magnitude of the true noise standard
deviation and err on the side of being smaller.

We then vary § without simulated noise in the observation
covariance (o = 0) to see if simulating the noise gives the
EnKF better performance than fully approximating the noise
covariance as a multiple of the identity matrix. In Figure [T0b]
we plot the error as a function of 8. We find that for oo = 0,
the RMSE is much more sensitive to the magnitude of the
regularization. The minimum RMSE here is not significantly
different than the RMSE for o = 1 over 8 € [107%,10%].
Furthermore, we highlight the range of 3 based on the diagonal
of the observation noise sample covariance and the range of 3
based on the largest eigenvalues. The minimum error for o« = 0
is achieved when choosing the regularization magnitude based
on the largest eigenvalues. This can be useful for systems
where simulating noise is more costly. For example, the
regularization estimate can be computed offline by generating
one set of noise samples and computing the resulting noise
covariance eigenvalues.

For full waveform observations, simulating noise (o« = 1)
is inexpensive compared to the cost of the transition and
observation operators. The benefit from having insensitivity
with regards to the noise scale estimate 3 for a = 1 likely
offsets the low cost of simulating the noise without signifi-
cantly affecting the RMSE. Furthermore, in practice, choosing
B exactly to get the minimum RMSE may not be possible,
especially when the noise is not known exactly. Therefore, we
recommend choosing o = 1 to avoid sensitivity to f.

Simulated noise tests: We then vary v with v* fixed and
simulating the observation noise samples (o« = 1) to ensure
the EnKF performance is not sensitive to the estimate of the
observation noise magnitude. In Figure [T1] we plot the error
versus the simulated SNR in decibels, which is —20log; v.
As expected, when the estimated noise magnitude is chosen
very large (low SNR), the filter approaches the NoObs results,
essentially ignoring observations. On the opposite end, when
the simulated SNR is too high, the filter puts too much weight
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Fig. 7: CO, saturation after five years for NoObs, EnKF, and ground-truth. The NoObs (a) and EnKF (b) predictions have

blurry plume interiors because they are computed from averaging predictions with different permeability models. The EnKF
analysis (c) shows a sharper structure for the plume since it has a current seismic observation.
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Fig. 8: CO, saturation error after 5 years for NoObs and EnKF. The similarity in the errors (a), (b) for the NoObs and the
EnKF predictions show the limitations of forecasting with incorrect permeabilities. The EnKF analysis error (c) that a seismic

survey greatly reduces the error of the estimate.

on the observations, thus overfitting them and raising the error.

Estimating the noise correctly with estimated SNR = ~*
should give the lowest error in the long term. However,
Figure |l 1| shows the optimum estimate is higher than v*, with
evidence that the optimum estimate is shifting towards v* over
time. In Figure [TT] at year 1, the minimum RMSE is achieved
by overestimating the SNR by 10 dB, but by year 5, the
minimum RMSE is achieved by overestimating SNR by 5 dB.
This result can be explained based on the interplay between
the prior and the observations. In particular, overestimating
the SNR is equivalent to the covariance inflation technique

used in Kalman filtering to ensure the state covariance is
not underestimated. The decrease in error that we see here
indicates that the ground-truth is too far from our initial prior.

When the observations are estimated to have high uncer-
tainty compared to the prior distribution, the EnKF posterior
estimate is closer to the prior estimate. Here, we achieve lower
error by estimating lower uncertainty, indicating that the error
in the prior estimate is underestimated by the prior uncertainty.
While the rigorous solution for this is to increase variability
in the prior, it may be beneficial to initially underestimate
observation noise to decrease dependence on the prior. As
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Fig. 9: Error in predicted CO; saturation over time. The error
between observation steps are linearly interpolated. The errors
increase over time when forecasting due to uncertainty in the
permeability field. Yearly observations decrease the error in
the EnKF estimate. These JustObs errors were generated with
non-noisy observations and a hybrid ¢,/¢5 regularization on the
saturation gradient. The SSIM error for JustObs is too high to
be shown on this plot at years 4 and 5.

more observations are collected, the effect of the initial prior
decreases, and the minimum should shift to coincide with the
true SNR ~*.

True noise tests: Finally, we record the RMSE for varing
v*. Here, we keep v = v* and simulate the observation noise
samples (o = 1) to ensure the EnKF can still perform well on
varying levels of noisy data. In Figure we plot the error
versus the true SNR in decibels. As expected, we find that
the EnKF error approaches the NoObs error for large noise
magnitudes (low SNR). Except for the first two time steps,
we find that the error increases as the noise becomes very
small. This can be explained by the results with large SNR in
the v tests in Figure |1 1| that have large error due to overfitting
the noise. As we decrease v* and v together, we see better
results, until we reach a point where the v = v* does not
properly account for the noise. Specifically, for high SNR, we

expect simulation error to dominate the noise, and therefore,
the error increases. This is not a problem in real scenarios as
the real-world seismic noise always dominates floating-point
arithmetic errors.
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Fig. 10: RMSE vs (8 (MPa® - km/MRayl) with 8 dB SNR
(v = v* = 0.4) at three time steps after the EnKF update. In
[(@), the noise covariance includes simulated noise plus a diag-
onal identity scaled by 8. A wide range of 3 achieves similar
error, with a sharp increase in error for small regularization. In
the noise covariance is approximated solely as a diagonal
matrix, causing more sensitivity to the choice of 3. In either
case, the error with large regularization should approach the
NoObs case, which is equivalent to 5 = co.

VI. CONCLUSION

Since the EnKF is known to be capable of scaling to large,
nonlinear geophysical systems, we expect it to be a valuable
tool for seismic monitoring of CO, injection sites. The ex-
isting literature has shown various Kalman filters applied to
monitoring CO, plume on a relatively small scale or without
seismic measurements or without CO, dynamics. We apply
the EnKF to a high-dimensional CO, plume monitored with
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tive. Overestimating the SNR by 10 dB gives lower error as it
relies less on the initial prior distribution, but overestimating
the SNR higher leads to an increase in error as the filter starts
to fit the noise.
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Fig. 12: RMSE vs ground-truth SNR +* = —20log;,v* dB
with v = v* and fixed 3 = 96.5 MPa® - km/MRayl and
a = 1 at three time steps after the EnKF update. Low SNR
(large noise) should approach the NoObs case (SNR = —o0)
in the two-norm (in expectation). The post-assimilated error
increases with SNR at later time steps. That may indicate v*
does not capture all the sources of noise, meaning there may
be noise even when v* = 0 due to numerical simulation. To
avoid this issue, it may be better to overestimate the noise
instead of underestimating it.

seismic measurements. We show that it achieves lower error
than the non-data-assimilation baselines, which ignore the CO,
dynamics or ignore the observations. This difference in error is
small but significant. While the cost of simulating an ensemble
of hundreds of reservoirs is expensive compared to doing a
single forward simulation, it is far outweighed by the cost
of the seismic survey. Conducting a seismic survey is very
expensive, while the computations required for simulating the
seismic survey and flow physics are relatively very cheap.
Field-scale applications may require extra modifications to
the EnKF to work well, but the benefit in requiring fewer
seismic surveys greatly outweighs the computational cost.
By showing the EnKF’s performance on a synthetic CO,
monitoring example, we hope to encourage its application in
field-scale monitoring.

In addition to comparing to the two baselines, we also
examine the sensitivity of the EnKF to the choice of noise
parameters. Lower error is achieved by simulating the observa-
tion noise and implicitly obtaining a sample observation noise
covariance, compared to approximating the observation noise
covariance as a diagonal matrix. Since simulating noise for
seismic waveform measurements is inexpensive, we recom-
mend doing this to increase the robustness with respect to the
choice of regularization magnitude in the EnKF observation
covariance. If the noise is not simulated, we see that the
regularization parameter should be chosen based on the largest
eigenvalues, not the average standard deviation. Regarding
the magnitude of the simulated noise, we find slightly better
performance with overestimating the true noise, but this result
is specific to the case of relatively low uncertainty in the CO,
dynamics and may not apply in the general case.

Future work: We considered all parameters to be known
except for the permeability and the CO, saturation and pres-
sure, and we updated only the CO, saturation when assimilat-
ing observations. Because we do not update the permeability,
the error in the EnKF forecast states is very similar to the error
from ignoring observations. To achieve accurate predictions of
the CO, plume, the geological parameters controlling the flow
must be updated as well. Therefore, we plan to apply the EnKF
to a high-dimensional CO, plume with nonlinear seismic
observations and update the permeability and porosity fields
along with the CO, saturation, following the work of Li et al.
[16] who updated the permeability and CO, saturation with
an EnKF variant, Ma et al. [21] who updated the permeability
and porosity based on the EnKF with approximated seismic
images, and Li et al. [61]] and Yin et al. [[72]] who demonstrated
end-to-end inversion for permeability based on time-lapse FWI
of CO; plumes.

APPENDIX A
PATCHY-SATURATION MODEL

The P-wave modulus ) is related to the density and squared
slowness by A\ = p/m, and the shear wave modulus G is
related to the density and shear wave squared slowness mg
by G = p/m¢. We assume a typical relation of mg = 3m,
but in general, the relation can be more complex. The bulk
modulus B is related to the P-wave and shear wave moduli
by B =X—4/3G.
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Algorithm 2: Pre-computation for patchy-saturation
rock physics model in Equations and (4).
Note that each computation here is done pointwise.

Input: p,,., my,, ¢, By, By, B,

B, < solve Equation for By,
Agr < By, +4G/3

Gassman’s equation for porous media describes the relation
between composite bulk moduli and constituent bulk moduli
based on porosity [73|]. Here, the constituent bulk moduli
are B, for the mineral making up the porous rock, B,
for brine, and B, for CO,. Given the density and velocity
before injection, the bulk modulus B,,, = g p/m of the pre-
injection brine-rock system is computed using the relations
By = Awr — 4/3G, mg = 3m. Then Gassman’s equation
below can be solved for the bulk modulus By, of the rock
fully saturated with CO5,

¢71Bw Bwr _ ¢7lBg Bgr
B.-B, B.—B.,. B.—B, B.—B,’

(42)

Replacing brine with CO, does not change the shear modulus,
so the resulting P-wave modulus of rock saturated with CO; is
Agr = Bgr +4/3G. Algorithm [2| shows the steps to compute
Agr-

The patchy-saturation model uses an arithmetic average for
the density and a harmonic average for the P-wave modulus,

p(S; pwr) = pur + S&(pg — puw), (43)
A(S; Awr) = [(1 = S)AG + 50,17, (44)
where Ay = pur/m with pre-injection density p,,. and

squared slowness m.,,,.. The harmonic average is a result
of assuming the pressure is equalized in the mixed fluid.
Increasing the CO, saturation decreases the density and tends
to decrease the P-wave modulus, depending on porosity. The
squared slowness is a quadratic function of the saturation,

m(S; puwr, Muwr) = p(S)/A(S)

45
— [pur + S6(py — pu)] [(1 - A+ 527 F

APPENDIX B
PERMEABILITY AND VELOCITY RELATION

For each ensemble member, the permeability is a function
of a deformed version of the true velocity field v. The
applied distortion is an elastic deformation provided by the
Augmentor.jl software [74]]. Let L; be the domain extent in
either the vertical or horizontal direction. The deformation is
expressed as a regular coarse grid of displacement vectors
sampled uniformly with components between —L; and L;
and then normalized such that the 2-norm over the grid
along each displacement component of the vectors is 0.2L;.

20

For a displacement field d(r), the deformed velocity field is
expressed as v'(r) = v(r + d(x)).

The dimensions of the coarse grid are chosen uniformly
between 30 and 50, and the distortion vectors along the
boundary are set to 0. Furthermore, a Gaussian kernel with
length scale between L; /15 and L; /25 is applied to smooth the
distortion field. For our grid, the root-mean-squared distortion
is 20.3 meters in the horizontal direction and 10.7 meters in
the vertical direction.

Following [72]], we assume the permeability field follows
a similar heterogeneity as the brine-saturated velocity field,
and we use a pointwise relation to compute permeability
from the deformed velocity field. This relation makes the
logarithm of the permeability be a noisy linear function of
v based on the exponential dependence shown in [57]]. We
modify the relation from [72]] to increase the variability among
samples. We generate the horizontal permeability Kj(r) at
spatial coordinate r as a pointwise random function of a given
velocity field v(r) using

10~ 2¢v—3:5 if v < 3.6
Kj, = 107463:85=v)|¢2(v=335) if 36 < v < 3.85 (46)
|c|ev—3T—w if v > 3.85

where K, is in millidarcies, v is in km/s, and ¢ and w are
random fields representing random coefficients for the relation
defined in [72]. Specifically, ¢ is a Gaussian random field,
fixed across all ensemble samples, with mean 1200, standard
deviation 3000, and a Gaussian covariance kernel with length
scale 62.5 meters in the horizontal direction and 31.25 meters
in the vertical direction. The pointwise random field w is gen-
erated from a discrete uniform distribution between 0 and 1.4
with step size of 0.1. This relation separates the scales of the
permeability such that high velocity sections have about 10°
times higher permeability than low velocity sections. Middling
velocities have highly variable permeabilities. The ground-
truth permeability is generated via the same methodology with
the standard deviation of c replaced with 5.

APPENDIX C
JUSTOBS IMPLEMENTATION NOTES

For the JustObs optimization we use a projected quasi-
Newton algorithm with spectral projected gradient algorithm
described by Schmidt er al. [[75] and implemented in Julia
by Louboutin et al. [76]. For regularization C(x), we use
O(x) = ||\, 'LyS|| + A5 'L, S|, with length scales A, and
Ay and linear operators L, and L,, that compute the horizontal
and vertical gradients of the saturation field .S with finite differ-
ences. We experimented with the following norms to regularize
the gradient of the saturation: ¢1, known as total variation (TV)
regularization [77]]; ¢>, known as Tikhonov regularization [78]];
and a hybrid ¢1/¢2 norm [[79] that benefits from the sparsity
behavior of the ¢; norm without requiring the ¢1-norm projec-
tion. These norms have successfully been used for inverting
seismic velocity. A useful, albeit simplified, characterization of
these regularizations is TV yields piecewise-constant solutions,
Tikhonov yields smoothly-varying solutions, and the hybrid
yields piecewise-smooths solutions. The CO, plume should be
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piecewise-smooth instead of piecewise-constant, so we expect
the hybrid regularization to yield better results. Unfortunately,
the optimization with each of these norms gave very poor
estimates of CQ, saturation, with nonzero CO, saturation
placed across much of the domain even with non-noisy data,
perfect velocity models, and tuned regularization scales. More
work could be done to improve the JustObs algorithm, e.g.,
based on seismic inversion recommendations in [80]. This
research may benefit from attribute analysis such as time-
frequency analysis, e.g., in [81]. However, since the focus of
this paper is the EnKF, comparing a simple JustObs algorithm
to the simplest EnKF algorithm is reasonable.
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