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ABSTRACT

In Topology Optimization (TO) and related engineering ap-
plications, physics-constrained simulations are often used to op-
timize candidate designs given some set of boundary conditions.
However, such models are computationally expensive and do not
guarantee convergence to a desired result, given the frequent non-
convexity of the performance objective. Creating data-based
approaches to warm-start these models—or even replace them
entirely—has thus been a top priority for researchers in this
area of engineering design. In this paper, we present a new
dataset of two-dimensional heat sink designs optimized via Mul-
tiphysics Topology Optimization (MTO). Further, we propose an
augmented Vector-Quantized GAN (VQGAN) that allows for ef-
fective MTO data compression within a discrete latent space,
known as a codebook, while preserving high reconstruction qual-
ity. To concretely assess the benefits of the VOGAN quantization
process, we conduct a latent analysis of its codebook as compared
to the continuous latent space of a deep AutoEncoder (AE). We
find that VOQGAN can more effectively learn topological con-
nections despite a high rate of data compression. Finally, we
leverage the VOGAN codebook to train a small GPT-2 model,
generating thermally performant heat sink designs within a frac-
tion of the time taken by conventional optimization approaches.
We show the transformer-based approach is more effective than
using a Deep Convolutional GAN (DCGAN) due to its elimina-
tion of mode collapse issues, as well as better preservation of
topological connections in MTO and similar applications.

1. INTRODUCTION

In many engineering problems, high-fidelity methods min-
imize some performance objective function through a gradient-
based iterative process, given an initial set of boundary condi-
tions. Calculating these gradient-based iterations can be compu-
tationally expensive. Moreover, human experts are often needed
to warm-start the optimization process with initial designs, with
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the alternative being to use continuation methods that make the
initialization choice less impactful—at the cost of significantly
more optimization iterations. Thus, the area of Inverse Design
(ID), in which problem-specific objectives are directly used to
guide the search for optimal designs, has become a rapidly grow-
ing subset of machine learning research [1-4]. Specifically, gen-
erative models such as Variational Autoencoders (VAEs) [5-9],
Generative Adversarial Networks (GANs) [10-14], and Diffu-
sion Models [15—17] are able to quickly produce novel samples
after training on a sufficiently large dataset of existing designs.
While these models have begun to see success in engineering
contexts, the underlying reasons for this success have remained
largely unexplored.

One particular area with a large potential to benefit from the
resulting balance between physical performance and computa-
tional efficiency is Topology Optimization (TO) [18], which aims
to optimize material distribution within a given design space to
minimize and constrain certain performance objectives of a sys-
tem. Our paper specifically focuses on two-dimensional heat sink
cross-sections with the objective of minimizing mean tempera-
ture and fluid power dissipation. While ordinary GANs may seem
promising for this work, several potential issues arise upon further
inspection. Notably, even a well-performing generator may fail
to produce designs without disconnected pockets of fluid—part
of a broader issue in which topological features cannot easily
be learned by the model. Recent works concerning this issue
have examined various loss functions [19] and data representation
methods such as connectivity graphs [20] for better topological
compliance. Although the results of the latter appear promising,
this work remains in its early stages and requires significant data
preprocessing for larger datasets.

An important development for generative models has been
the adaptation of the popular transformer architecture [21]
to model and create complex images whose distributions
are otherwise too difficult to learn for typical networks with
convolutional architectures. Among the most successful of these
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has been the Vector-Quantized GAN (VQGAN), which presents
a novel two-stage approach: a reconstructive step that encodes
images within a discrete latent space, and a generative step that
trains a transformer to learn detailed representations among these
discrete latent values [22]. VQGAN has achieved state-of-the-art
results in several deep vision benchmarks, but so far has seen
limited use in engineering and design applications. In this
paper, we show how the quantization mechanism of VQGAN
can effectively represent our dataset of two-dimensional heat
sinks within a discrete latent space, or codebook. We further
implement a conditional argument in the transformer stage to
autoregressively generate new heat sink designs given a set of
three specified boundary conditions.

Overall, the contributions of this paper are as follows:

1. We present a dataset of two-dimensional heat sinks which are
generated via a MTO method under various physics-based
constraints. Our dataset acts as one of the first benchmarks
for modeling binary or grey-scale images using the VQGAN
architecture, particularly in the design optimization context.

2. We propose a VQGAN architecture for the inverse design
of two-dimensional heat sinks, with a conditional input of
desired boundary conditions fed to the transformer stage.
We also implement several augmentations to improve train-
ing speed and reconstruction accuracy for modeling two-
dimensional binary or grey-scale images.

3. We conduct a latent space analysis of several VQGAN vari-
ants in comparison to more common generative models,
offering insight into how VQGAN can better preserve the
topological characteristics of heat sink designs and similar
data—even at high compression rates within its codebook.

4. After training on our MTO dataset, we compare the thermal
performance of VQGAN-generated heat sinks to conven-
tional generative model outputs, as well as the MTO test
data itself. Specifically, we analyze the Pareto fronts of
mean temperature and fluid power dissipation for the gen-
erated and test data. We further present several topological
and statistical metrics to contextualize each model’s thermal
performance.

2. RELATED WORKS

The following section reviews the related areas of TO dataset
generation for heat sinks, augmentation of machine learning
frameworks using Vector Quantization, and existing latent space
analysis for such frameworks. We supplement this review with
background information on the Vector Quantization mechanism
itself, and conclude by identifying areas that current research has
not yet explored.

2.1 Generating Heat Sink Datasets Using Topology
Optimization
Past attempts to create optimal solutions for various heat ex-
change problems have typically used a parametric optimization
scheme alongside a multi-physics approach involving fluid flow

and heat transfer approximation [23]. However, these methods
are limited in that they usually require a human-provided param-
eterization of the design space before starting optimization, thus
limiting the flexibility of consequent designs. In contrast, Topol-
ogy Optimization (TO) allows for material to be freely distributed
in the design space without a fixed parameterization [24-26].
Koga et al. first proposed a complete process for optimizing heat
sinks using TO, based on a multi-objective function to minimize
pressure drop and maximize heat transfer [27]. Overall, TO has
become a popular approach for the multi-physics development of
heat sinks [28-31]. These methods have led to improvements in
thermal efficiency and other metrics when compared to conven-
tional designs such as straight-fin heat sinks.

While TO methods are generally robust and effective, they are
also time-consuming due to the iterative process of approximating
solutions. In the case of heat sinks, the nonlinear Navier-Stokes
equations and conjugate heat transfer must be addressed [32].
Thus, one may instead desire a machine learning-based approach
to generate new heat sinks or similar structures, particularly dur-
ing earlier design stages. The vast majority of machine learning
methods—including the models we discuss in this paper—require
a substantial dataset of existing designs in order to produce con-
vincing new outputs. The ability to benchmark the results of
different models trained on a diverse standardized dataset is also
important. As of the writing of this paper, little research has been
conducted to create such a dataset for heat sink designs. Perhaps
the closest related work is that of Parrott er al. , who utilized
existing code to create a dataset of 55,440 coupled thermoelastic
structures with randomly assigned loads, volume fractions, and
other conditions to train a self-attention-based GAN [33]. In this
paper, we create a new, diverse dataset of heat sinks generated via
MTO as a novel benchmark for modern generative models, and
propose several intuitive topological metrics for evaluation [19].
These metrics may be extended to other applications featuring
two-dimensional binary or grey-scale images as well.

2.2 Development of Generative Models Using Vector

Quantization

Researchers have increasingly focused on designing gener-
ative machine learning architectures to bypass the high compu-
tational costs in TO and related applications. Among the most
popular of these are Variational Autoencoders (VAEs) [5-9] and
Generative Adversarial Networks (GANSs) [10-14].

In the context of these generative models, our paper will
focus on the data compression method known as Vector Quanti-
zation (VQ), which allows for a discrete latent representation of
data through optimized embeddings within a container of fixed
dimension—known as a codebook [34-36]. The first major im-
plementation of this method in machine learning was the original
VQVAE [37]. This model offers several benefits to generative
modeling, including the ability to use a more powerful decoder.
In ordinary VAEs, doing so would lead to posterior collapse, i.e.,
the decoder begins to ignore the latents and learns an alternate
representation. A subsequent work proposed VQVAE-2 [38],
which improved on the previous model by learning local and
global information separately through a hierarchical architecture.
However, these early models lack a powerful method for autore-
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gressive prior modeling, and typically rely on a convolutional
method such as PixelCNN [39] to learn and sample from their
latent distributions. Thus, Esser et al. developed VQGAN, the
basis for this paper, which implements a transformer architecture
in the second stage to learn the discrete latent codes [22]. The
use of a transformer eliminates the inductive bias present in con-
volutional models, which favor local patterns over more complex
relationships in the data. This aspect is particularly important for
engineering designs such as heat sinks—which require carefully
interconnected components to function optimally. The VQGAN
also features augmentations to the loss function and the use of an
adversarial training method to promote better-learned represen-
tations in the initial convolutional stage. While some incremental
improvements have been made to the VQGAN over the last few
years [40—42], they offer only marginal benefits considering such
models have rarely been applied to the engineering and design
fields [43]. In this work, we present several augmentations to the
baseline VQGAN architecture to benefit applications featuring
binary and grey-scale images, such as our MTO dataset.

2.3 Latent Space Analysis of VQ-Based Generative Models

Despite the recent success of VQGAN and related devel-
opments, little work has been conducted to explore the various
properties of the resulting discrete latent space. For example,
Parrott er al. recently proposed several effective GANs for mul-
tidisciplinary design optimization (MDO) problems [33, 44], but
did not provide a comprehensive latent analysis for their mod-
els. Meanwhile, Hu et al. inspected the latent space of GANs
by proposing a hypothetical distance between the data and la-
tent distributions—whose minimization corresponds to the least
complex generator necessary to accomplish this mapping [45].
However, little attention has been given to more practical as-
pects of the latent space which may be necessary in engineering
and design applications. For example, it is interesting to con-
sider whether a continuous manifold may be approximated from
a discrete latent space, allowing for the discovery of other near-
optimal designs existing on the manifold. In effect, this would
mimic the sampling methods in traditional GANs without ever di-
rectly learning a continuous latent distribution. Another property
to consider is the robustness of the latent space to distortions—for
example, the switching of two discrete codes—as measured by
their observed impacts when decoded to the data space. In short,
drawing connections between the latent mapping and its output
conditions is a vital task (albeit an application-specific one) if
VQGANS and other generative models are to be adopted for real
design generation tasks. In this paper, we uncover the VQGAN’s
unique latent space properties in the context of two-dimensional
grey-scale datasets via training and evaluation on our MTO data.

3. METHODOLOGY

Our paper’s methodology involves four steps: (1) generating
a diverse set of two-dimensional heat sink designs, (2) training
various augmented VQGAN models and associated transform-
ers, (3) investigating properties of each learned latent space, and
(4) conducting a statistical and thermal performance analysis for
the transformer-generated heat sinks. We group the latter two

steps into a separate Experiments section to present a more con-
cise and understandable set of results.

3.1 Dataset Creation via Multiphysics Topology

Optimization

The generative models’ real dataset consists of optimized
topologies of two-dimensional (2D) heat sinks. To create the
dataset, we perform MTO over a range of input boundary condi-
tions to achieve high-performing 2D heat sink designs. We adapt
an OpenFOAM ' -based MTO solver developed by Yu et al. [46]
to perform density-based topology optimization on fluid-thermal
problems, which are formulated as follows:

1
min ¥Y=— f T7dQ
¥ 12 Jo

1
st. — dQ <V, 0<y<1
|sz|J7 4 (1)
Q

J<J
Equations (6), (7)

where ¥ is the mean temperature, 7T is the temperature field, and
|Q]| is the volume of the computational domain. The first inequal-
ity constraint controls the overall volume fraction V occupied by
the fluid. The density field y € [0, 1] is used to describe the
distribution of material, where y = O represents solid and y = 1
represents fluid. The second inequality constraint requires the
fluid power dissipation J of the fluid device to be below a certain
bound (i.e., J) to prevent unrealistic designs. We note that in
addition to this constraint, we also minimize J itself as part of the
multi-objective problem examined in this work.

Besides these inequality constraints, the MTO problem is
also subject to two sets of governing equality constraints: the
Navier-Stokes equations (Equation (6)) and energy conservation
equations (Equation (7)). The equations of the power dissipation
J and these equality constraints are detailed in Appendix A.

In this work, we optimize the 2D MTO problem as in Fig-
ure 1. The boundary conditions are as follows: (1) Constant
velocity and temperature are applied at the inlet, with zero pres-
sure and thermal isolation at the outlet. (2) No-slip adiabatic
boundary conditions are enforced on all other external walls. (3)
A uniform heat source Q is used throughout the entire domain.

To generate a diverse dataset, we perform MTO over a range
of three boundary conditions: Reynolds number (Re), power dis-
sipation (J), and fluid volume fraction (V). Among the three
boundary conditions, Re is indirectly varied using v, which is
the inlet velocity?. Figure 2 illustrates how the three boundary
conditions independently affect the final designs in the 2D MTO
problem. To create a larger dataset, we expand the ranges of the

Uhttps://www.openfoam.com/. OpenFOAM is the free, open-source CED soft-
ware developed to solve anything from complex fluid flows involving chemical
reactions, turbulence and heat transfer, to acoustics, solid mechanics and electro-
magnetics.

2Re = %, where p is the water density (1000 kg/m?>), v is the inlet velocity,
L is the length of the inlet tube (2 x 1073 m), and  is the dynamic viscosity of
water (1 x 1073 N - s/mz). The range of Re is [50, 190]. Therefore, the inlet
velocity v has a range [-0.095, -0.025]. The negative sign indicates the velocity
direction.
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FIGURE 1: THE MTO PROBLEM SETUP FOR 2D HEAT SINK DE-
SIGNS.

three boundary conditions to J € [5£ , 75£ ], V € [0.25,0.7],

and Re € [50,190], where J; = 1.58 x 1077 is used as a ref-
erence value for the power dissipation. We leverage a High-
Performance Computing (HPC) cluster to generate the dataset by
performing the 2D MTO problem in parallel over 5,000 differ-
ent boundary condition groupings produced via Latin Hypercube
sampling [47]. In the end, we successfully completed 4,579
optimizations, yielding 3,434 training and 1,145 test samples
(75/25%). The remaining 421 samples failed to reach the required
200 optimization steps, likely due to numerical instabilities in the
solver, and were discarded despite satisfying constraints. We also
found about two-thirds of the optimized samples did not fully sat-
isfy the specified power dissipation constraint, although this does
not significantly impact our final results. Future work will fix
these issues via additional tuning of the MTO solver.

3.2 VQGAN

We now discuss our implementation of the VQGAN, which
was originally proposed by Esser ef al. [22]. We first provide
an overview of the architecture and explain its effectiveness in
many applications, including inverse design for MTO. We then
describe a few limitations of the original implementation and the
augmentations we propose to address them. Broadly speaking,
VQGAN consists of two main stages: (1) an AutoEncoder (AE)-
based first stage whose purpose is to learn an information-rich
discrete latent space, or codebook, and (2) a second stage in which
a transformer is trained to autoregressively predict new images
by representing codebook indices as tokens, which may then be
decoded back to the original data space.

3.2.1 Model Architecture and Setup. The first stage of
VQGAN fundamentally relies on a convolutional encoder £ and
decoder G, which translate images into the latent space and
back. The architectures of these modules are very similar to
those of other modern autoencoder-based models, using blocks
composed of simple convolutional layers, an activation function
such as ReLLU, and some form of mini-batch normalization such
as GroupNorm [48]. The first novelty of the first stage comes
in the discrete codebook Z, which in our case represents an im-
age x € REXWx1 a5 a collection of entries z, € RP®*nz We
note that as opposed to the 3 RGB channels of ordinary color
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FIGURE 2: TOP ROW: OPTIMAL DESIGNS FOR J = 15J;, J = 304,
AND J = 45J; (Re = 100 AND V = 0.4). MIDDLE ROW: OPTIMAL
DESIGNS FOR V = 0.3, V = 0.4, AND V = 0.5 (J = 5J; AND
Re = 100). BOTTOM ROW: OPTIMAL DESIGNS FOR Re = 50,
Re = 100, AND Re = 150 (J = 10J; AND V = 0.4).

images, our heat sinks only have a single channel representing a
range from solid (0) to fluid (1) material. Aside from this, the
total number of discrete codes |Z| = 1024 is used as a starting
point from the original VQGAN implementation. We can thus
view the total codebook size as |Z| = n,, given that n, is the
dimension of each code. After the initial image encoding step,
a subsequent quantization step ¢(-) is performed to match each
continuous latent code to its Euclidean nearest neighbor in the
codebook. The final reconstructed image can then be denoted as
X = G(q(E(x))). To address the non-differentiable quantization
step during backpropagation, the decoder gradients are simply
copied to the encoder.

During the training phase of the first stage, several consid-
erations are taken to learn a powerful encoder, codebook, and
decoder. Firstly, the vector quantization loss originally proposed
in VQVAE [37] is as follows:

LVQ(E’GvZ) = Lrec + ”Sg[E(x)] - Zq”%

e
+lisglzq] - E@II3

The first loss term is a reconstruction loss which E and
G both work to optimize. In VQGAN, this is composed of a
simple L1 loss, as well as a perceptual loss term to increase the
perceptual quality of reconstructions [49, 50]. The second loss
term freezes the encoded vectors and pushes them toward the
codebook vectors, with the opposite occurring in the third term.
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In short, E optimizes terms 1 and 3, G optimizes term 1 only,
and the codebook Z optimizes term 2.

Furthermore, VQGAN introduces an adversarial training
approach using a PatchGAN discriminator [13], allowing for a
higher codebook compression rate and therefore shortening the
final latent sequence, which is used to train the transformer in
Stage 2. The overall objective for Stage 1 is therefore:

Q" =argmin maxE,_,x)[Lvo(E,G,Z)
EGz D 3)
+ALgan({E,G,Z}, D)]

where Lgany({E,G,Z}, D) = log(D(x)) +log(1 — D(%)) and
A is an adaptive weight to balance the two main loss terms, as
described in [22].

Once the first stage of VQGAN has been trained to produce a
well-converged encoder, codebook, and decoder, the transformer
stage may then be implemented. In this phase, encoded images
within the codebook are represented by their equivalent codebook
indices, which indicate the positions of codebook vectors most
closely matching the encoded vectors. These indices are then
unfolded from their original matrix form to a linear sequence
and fed into a transformer for autoregressive modeling. That is,
given a sequence of previous tokens, the transformer is tasked
with inferring the correct next token. Once a full sequence is
predicted, the resulting discrete image z, may be decoded back
to the original data space via & = G(z4) by using the pre-trained
decoder from Stage 1. For this paper, we also prepend a condi-
tional term r to the start-of-sequence token, allowing heat sinks
to be generated based on the three boundary conditions described
in Section 3.1. Since r also needs to be a set of discrete indices,
we train another small VQGAN Stage 1 to create a codebook
representing the boundary conditions, which we refer to as the
Conditional VQGAN (C-VQGAN). We further describe the C-
VQGAN implementation in Section 4.

While the default implementation of VQGAN described
above is effective for most image reconstruction and generation
applications, we provide several minor improvements to the ar-
chitecture in the context of modeling binary or grey-scale im-
ages. This is in contrast to nearly all existing VQGAN appli-
cations, which focus on three-channel RGB images. Research
areas which could benefit from these changes include but are not
limited to: topology optimization (i.e., our MTO dataset), road
network modeling, and microstructure generation. In short, we
aim to minimize model complexity while preserving or improv-
ing reconstruction accuracy. This is motivated by the benefits of
reduced training time and computational load, as well as maxi-
mized data compression in the codebook (to provide a simpler
distribution for the transformer to learn in downstream tasks).
Our main changes are as follows:

1. Hidden Layer Modifications (HLM): We reduce the width
of hidden layers to a maximum of 256 as compared to 512 in
the existing PyTorch implementation®. We also remove one
of two attention layers (called Non-Local Blocks), keeping
only the one between the innermost Residual Blocks of the

3https://github.com/dome272/VQGAN-pytorch

encoder and decoder. We find that the second attention layer
is somewhat redundant and unnecessarily increases model
size.

. No Discriminator (ND): Although a discriminator was pro-

posed in VQGAN as an improvement over VQVAE in terms
of perceptual accuracy, we find this addition actually limits
the expressivity of the network in our case. Notably be-
cause our application only features single-channel images
and discourages some fine details like disconnected fluid
channels or intermediate material, it is actually better to
remove adversarial training to stabilize training under the
smaller codebooks and encoder/decoder networks we aim
to utilize. With this change in mind, we still keep a single-
channel perceptual loss (LPIPS) during training to assist in
recognizing local connectivity patterns, but remove it as a
metric because the underlying VGG network is not trained
to properly evaluate such images. As we describe in later
sections, a combination of a simple L1 reconstruction loss
and more advanced topological metrics are used instead.

. Increased learning rate (17): Given we train all models for

100 epochs for the sake of comparison, a higher learning
rate should intuitively lead to quicker convergence. Unfor-
tunately, we find this is not the case while using the discrim-
inator, as it only destabilizes training further. However, the
more stable training regime of ND does benefit from such
a change, with 5 as high as 2e—4 (compared to the original
2.25e-5) leading to faster convergence. Due to the steady
increase in codebook utilization over the course of training,
this results in a more complete codebook given only 100
epochs.

. Minimization of n, and |Z|: Following the other modifica-

tions, we find the base value of n, = 256 is overly large for
the MTO dataset. After halving n, repeatedly, we observe
that a value as low as n, = 4 is acceptable for reconstructing
the MTO samples when removing the discriminator. We
thus use n, = 4 for all further VQGANS in this paper, noting
this value should be carefully chosen based on the dataset
used and desired level of reconstruction accuracy. One inter-
esting observation is that lowering n, also leads to naturally
higher codebook usage, due to the constraint on how ex-
pressive each individual code can be. We take advantage
of this and a higher learning rate to force full codebook
utilization at |Z| = 64, which is greatly reduced from the
unnecessarily high initial value of |Z| = 1024. Overall, this
results in a dense yet compact latent representation that be
learned relatively quickly by a transformer, given its limited
dimensionality.

. Combined model: Considering the above changes, we finally

aim to train a single model which benefits from all of them at
once. After consideration of a few different combinations,
we found the top performer to include HLM, ND, y = 2e—4,
n; =4, and |Z| = 64. While valid concerns exist about over-
compression and over-simplification of such a combined
model, the individual augmentations build on each other
rather than interfering in this case. The end result is a tuned
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VQGAN that not only reduces L1 error by 20 percent and
achieves full codebook utilization, but also trains 40 percent
faster than its predecessor, taking under 90 minutes on a
single NVIDIA H100 GPU. The general ablation procedure
used in this experiment may thus be used as a starting point
for future works using VQGAN to model single-channel,
topologically connected data.

With these baseline changes implemented, we are now ready
to examine the VQGAN latent space properties and transformer
generation capability through a series of detailed experiments.

TABLE 1: ABLATION STUDY FOR THE STAGE 1 VQGAN AUGMEN-
TATIONS IN TERMS OF MEAN ABSOLUTE ERROR (MAE), CODE-
BOOK USAGE, AND TRAINING TIME.

Model MAE | Code Use (%) T Train (min) |
Original 0.105 29 (2.83%) 184
HLM 0.103 33 (3.22%) 108
Ap =0.1 0.108 37 (3.61%) 184
n=2e—4 0.164 128 (12.5%) 184
n=2e-4,1p=0.1 0.076 147 (14.4%) 184
n, =16 0.105 50 (4.88%) 184
n, =16, 1p =0.1 0.111 49 (4.79%) 184
|Z] =128 0.097 40 (31.3%) 184
Combined 0.074 128 (100%0) 108

4. EXPERIMENTS

The following section illustrates the effects of including VQ
in a generative model through comparisons with traditional AE
and GAN architectures that possess only continuous latent spaces.
We begin by detailing our setup for the two stages of VQGAN
and the continuous models for comparison. For Stage 1, we ana-
lyze each model’s reconstruction and topological accuracy when
compared to the test set. We then present the results of the latent
analysis, including interpolation and pixel swapping. For Stage
2, we similarly present the accuracy metrics of each model, sup-
plemented by the results of a warm-start optimization conducted
by our MTO solver. This process uses the same termination cri-
teria as the cold-start optimization that created the MTO dataset.
Finally, we conduct a Pareto analysis to illustrate the thermal
performance of the final generated designs after warm-starting.

4.1 VQGAN Stage 1: Sample Reconstruction And

Topological Characteristics

For the reconstructive portion of VQGAN (Stage 1), we be-
gin with the baseline model as proposed in [22] with our three
main improvements to accommodate the MTO dataset as de-
scribed above. We train all models on a NVIDIA RTX 3090 Ti
GPU for 50 epochs using the Adam optimizer [51], with batch
size 16 and learning rate le—3. In our initial training, we ob-
served that each model’s loss stabilized at around 20 epochs,
with minor improvements thereafter, and thus 50 total epochs
were deemed sufficient. In addition, we train a Conditional VQ-
GAN (C-VQGAN) to be incorporated in the transformer (Stage

2). The C-VQGAN simply converts the boundary conditions to
a miniature discrete codebook, and is trained in a similar way
as VQGAN Stage 1. Precisely, we use 128 embeddings with 4
dimensions each—compared to respective values of 1024 and 16
for the baseline VQGAN. We train this network for 500 epochs,
which allows for convergence to a very high reconstruction accu-
racy given the resulting 4 X 4 latent feature map. In downstream
applications with the VQGAN transformer, we prepend the to-
kens r generated by C-VQGAN to the start-of-sequence token to
enable conditional predictions.

4.1.1 Further Augmentations. The second major set of
augmentations to VQGAN involves altering the codebook dis-
tribution, followed by an assessment of the latent space qual-
ity (Stage 1) and transformer training characteristics (Stage 2).
Firstly, to reduce codebook complexity, we implement a two-step
training process during Stage 1, which was recently proposed as
a “Decoupled Autoencoder” (DAE) method by Hu et al. [45].
In the resulting DAE-VQGAN, the encoder and codebook are
only trained initially with a weak decoder. After this, a more
powerful decoder is trained while the encoder and codebook are
held frozen. In this context, we refer to the weak decoder as one
that utilizes two-dimensional Dropout [52] during the first half
of training epochs. However, other approaches to “weaken” the
decoder may be taken, such as halving the number of channels in
the hidden layers. The idea motivating this change is that before
targeting an accurate reconstruction of the inputs, a simplified yet
accurate latent distribution should be prioritized for the encoder.
This is because, in a single-stage training process, there exists a
trade-off between reconstruction quality (stronger decoder) and
latent space efficiency (weaker decoder) [45]. The proposed two-
step method therefore allows us to mitigate the effects of this
trade-off, resulting in a VQGAN with both desired qualities.

In contrast, one may desire to increase the codebook com-
plexity to model a more difficult dataset and better capture its
underlying properties. This may be important for cases like the
MTO dataset, in which the presence of even a thin fluid channel
might significantly impact thermal performance. We thus utilize a
recently-developed improvement for VQ called the “Online Clus-
tered Codebook” [53]. This approach mitigates the common issue
of dead codebook vectors by re-initializing these vectors based on
anchors sampled from the encoded features. In short, the result-
ing Online-VQGAN encourages all vectors to move closer to the
data distribution and results in full usage of the codebook. We can
leverage this benefit further by halving the codebook size relative
to the baseline model—which is known to have less than 50%
codebook utilization on popular datasets such as ImageNet [53].
In theory, the resulting model should thus still produce good re-
constructions despite a lower specified |Z| value. Later analysis
will explore the precise meanings of a “good” latent space and
“good” reconstruction through comparisons between the baseline
VQGAN and the two major augmentations presented here.

For DAE-VQGAN, we utilize the same general structure
as the baseline, but impose dropout with p = 0.4 in the first
25 epochs. This value of p was found to be more stable for
the MTO case than the original p = 0.5. We then freeze the
encoder and codebook for the final 25 epochs, and allow the
decoder to be trained without dropout. For the Online-VQGAN,
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we simply replace the baseline codebook with the one developed
in [53]. During training, we observe that both the Baseline and
the Online models converge fairly quickly, with the latter having a
slight advantage in the early stages. Meanwhile, the DAE model
experiences some instabilities before settling to an intermediate
loss value until 25 epochs, at which point dropout is removed
from the decoder and the other components are frozen. The DAE
then approaches a loss value very close to that of its counterparts.

In terms of reconstruction performance, there is a significant
difference between each of the VQGANS and the AE, as shown
in Table 2. None of the VQGAN:S are able to reproduce the AE’s
level of perceptual (LPIPS) accuracy. However, their topological
accuracy does not suffer as much in comparison, as measured by
the mean Solid Segment Error (SSE)*. This is particularly true
for the Online model, which notably exhibits 100% codebook
utilization. Intuitively, the accuracy boost makes sense because
the resulting codebook is able to utilize all |Z| = 1024 discrete
codes, allowing for a more fine-grained latent space with a better
ability to reconstruct the original image. Nonetheless, we find
that all VQGANS produce satisfactory outputs, both qualitatively
and with respect to their measured topological error. Even for
the DAE model, most of the error manifests in the form of small
fluid channels only.

The true objective then lies in minimizing codebook size
while preserving adequate reconstruction quality—whose re-
quirements may vary greatly between different design applica-
tions. To better compare the true quality of each latent space, we
thus re-train the Online-VQGAN to match the codebook sizes of
the Baseline and DAE models. We take this approach because the
Online-VQGAN is the only model here with a fully-controllable
codebook size. For the Online model trained to be the same size
as the Baseline (|Z| = 359), we observe the exact same results
in terms of both LPIPS and topological error. While these two
metrics alone are not enough to fully describe the latent quality,
they are a strong indication that both models perform very simi-
larly under such a network size constraint. On the other hand, the
Online-VQGAN trained to mimic the DAE-VQGAN (|Z| = 178)
performs slightly better in the perceptual loss category, yet fares
worse in topological accuracy. It is therefore possible that the
DAE model learns a more complex topological representation in
its first 25 epochs of training, when dropout is imposed on the
decoder and prior to the encoder and codebook being frozen.
We further examine this hypothesis in our latent space testing
in Section 4.2. From now on, we refer to the first reduced-size
Online-VQ model as “Online-359” and the second as “Online-
178,” from their respective number of embeddings. We will also
observe the downstream impacts of codebook size and quality
in Section 4.3, in which we train a transformer on the VQGAN
latent space as described previously.

4.2 Latent Space Analysis

To understand how VQ impacts the learned reconstructive
model, we explore the latent space of each VQGAN, compar-
ing its properties to those of a continuous Deep AutoEncoder

“4For an explanation of SSE and other topological metrics we use in this paper,
please refer to Appendix B.

TABLE 2: RECONSTRUCTION METRICS AND CODEBOOK USAGE
RATES FOR EACH VQGAN TESTED.

*MODEL WITH SAME CODEBOOK SIZE AS BASELINE VQGAN.
*MODEL WITH SAME CODEBOOK SIZE AS DAE-VQGAN.

Model LPIPS | SSE (%) ] Codebook Use (%) T
AE 0.034 32 n/a
Baseline 0.128 6.3 (359/1024) 35.1
DAE-VQ 0.158 7.3 (178/1024) 17.4
Online-VQ 0.117 54 (1024/1024) 100.0
Online-VQ* 0.128 6.3 (359/359) 100.0
Online-VQ**  0.142 8.7 (178/178) 100.0

(AE). We evaluate the latent properties in terms of continuity
and robustness to random changes, using both pixel-based and
topological metrics. Our results provide a convincing case for
the VQGAN architecture despite its minor shortcomings in pure
reconstruction ability. To make fair comparisons, we implement
the same encoder and decoder architecture in the AE as in VQ-
GAN Stage 1, with the same loss functions used during training.
This essentially renders the AE an equivalent model (minus the
discrete codebook).

4.2.1 Interpolation. In many engineering contexts, interpo-
lation between designs yielding other valid designs is critical to
generate a diverse range of initial candidates—which may have
otherwise not been found in traditional optimization approaches.
For example, the optimal heat sink may be difficult to predict via
expert analysis or conventional TO. In this paper, we desire two
main properties of interpolated samples:

1. Topological continuity: Fluid channels should remain in-
terconnected for as long as possible, without any completely
disconnected fluid segments. The number of solid segments
should steadily change as the fluid surrounding them shifts.

2. Lack of intermediate values: All pixels should remain
close to 0 or 1, indicating topological certainty, unless an
end design contains substantial amounts of intermediates.

Beginning with topological continuity, we emphasize the
minimization of disconnected fluid segments. We consider two
initial, model-generated reconstructions that only feature a single
interconnected fluid channel. While interpolation in the AE latent
space is trivial, the process for the VQGAN is restricted by its
discrete codebook. We thus interpolate values directly in the
VQGAN encoded space before quantizing and decoding them
back to the data space.

To better represent how fluid material is distributed, we round
up any pixel value of 0.2 or higher to a value of 1 (fluid), while all
other values are rounded to O (solid). The value of 0.2 is chosen
heuristically by observing the AE’s interpolation behavior. Our
objective in this experiment is to produce a curve which is as close
to a value of 1 as possible for the entire interpolation. In effect, the
integral of this curve can be seen as a scalar performance metric.
Figure 3 shows the results for the AE and each VQGAN. One can
observe that the AE reaches by far the most disconnected channels
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on average, with a sharp but topologically unstable shift in the
design. Though not possible to display within this manuscript,
we confirm the phenomenon by observing an animation of the
design changing in real time, which shows that a large number
of intermediate values appear between the 40th and 60th steps.
Because these intermediates are not well-connected, they produce
many wasteful fluid pockets when their pixel values are rounded
up.

In contrast, all VQGANS fall well below the AE curve, with
the Online model generally exhibiting the best topological behav-
ior. Interestingly, the Online model goes against our previous ex-
pectations of worsening topological performance with decreasing
codebook size; the Online-178 variant actually yields the fewest
disconnected channels in the middle stages of interpolation. This
is in stark contrast to the DAE-VQGAN, which has the same latent
dimensions and yet produces double the number of disconnects
on average. We can now see that pure topological reconstruction
accuracy—as presented in Table 2—does not necessarily relate
to the robustness of the learned topological representation. This
mismatch may be occurring because the topological accuracy
metric is heavily affected by thin channels, which generally have
little effect on thermal performance anyway. We thus find the
interpolation test to be superior in determining the true level of
fluid channel connectivity learned by the VQGAN.
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—— Baseline {359)
—— Online (359)
=—— DAE (178)
Online (178}
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FIGURE 3: AVERAGE NUMBER OF DISCONNECTED FLUID CHAN-

NELS DURING INTERPOLATION WITH CODEBOOK SIZE REPRE-
SENTED BY | Z| IN PARENTHESES.

In the second experiment, we directly measure the amount of
intermediate values produced during interpolation. We measure
the proportion of pixels in the design with values between 0.2 and
0.8—representing values with the highest uncertainty in the final
(binary) design. As shown in Figure 4, the AE once again reaches
the highest value of any model, followed by the DAE and Base-
line VQGAN. Meanwhile, the Online models feature the lowest
variation in this value between the ends and middle of the inter-
polation. However, the Online-178 model suffers a one-percent
increase in its initial amount of intermediate values compared to
its larger counterparts, suggesting its pure reconstruction ability
has started to fall behind given its small codebook.

Finally, we examine the average pixel-wise rate of change
across the heat sink during interpolation. A higher rate of change
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FIGURE 4: AVERAGE INTERMEDIATE VALUE PENALTY INCURRED
DURING INTERPOLATION.

near the start or end of interpolation suggests instability, partic-
ularly in the VQGAN case. This is because small changes in
the continuous encoded space do not necessarily represent small
changes within the codebook (and thus the decoded design as
well). The issue results in fluid channel structures fluctuating
at very early or late interpolation steps. While this likely does
not result in much thermal instability, it is still an undesirable
behavior. Figure 5 shows that the smaller codebooks of the Base-
line and DAE-VQGAN exacerbate this problem. However, the
Online models suffer less as their codebook size decreases, par-
ticularly the Online-359 variant. This model provides the best
stability at either end of the interpolation—approaching that of
the AE—with a sharper upward curve in the center indicating a
more defined topological change.
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FIGURE 5: AVERAGE ABSOLUTE RATE OF PIXEL CHANGE DUR-
ING INTERPOLATION.

Overall, the above interpolation results are an encouraging
sign for the topological capabilities of the VQGAN—particularly
for the Online Codebook augmentation. Given an equal latent size
to the AE and a sufficiently large hidden dimension, the VQGAN
is able to provide significant topological (and as a result, thermal)
benefits when exploring the latent space for new heat sink designs.
The decrease in intermediate material similarly allows for more
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clear-cut designs and reduces the need for post-processing. We
can infer that despite the two smaller Online-VQGANS having
equivalent codebook sizes to their respective Baseline and DAE
counterparts, they are superior in learning topological connec-
tions, which can be generalized to inter-pixel relationships in
related datasets. These models also allow for specification of
their exact codebook size, as they are directly trained to utilize
the entire set of codes. For topology optimization or related ap-
plications, we therefore recommend starting with this variation
of the VQGAN, as it only requires a small change to the Base-
line codebook. One may then experiment with the codebook
dimensions (i.e., the number of embeddings and embedding di-
mension) to find the proper balance of reconstruction accuracy,
learned topology, and model size.

4.2.2 Pixel Swapping. Aside from interpolation, we also
conduct a topological robustness test, which we term “pixel swap-
ping”, to further distinguish the VQGAN from continuous archi-
tectures. From the codebook layout described in Section 3.2.1,
we specify two pixels (A1, wy) and (ha, wy) within z, € R/>*wxnz
and switch their n, values (i.e., their latent codes). We repeat the
process a fixed number of times, specifying an identical set of
swaps for each model to ensure consistency. Using this method,
we produce 64 random pixel swaps in the 16 x 16 latent space,
followed by the same quantization and decoding process used
for interpolation (or simply decoding for the AE). The image-
space equivalent of this operation would be taking two 16 X 16
chunks of the heat sink and swapping them, since we are eval-
uating 256 x 256 images. Clearly, this naive approach has no
topological robustness, as it is entirely pixel-based. In contrast,
a well-performing latent space would preserve other inter-pixel
relationships which it has learned from the training data, such as
fluid channel connectivity in the MTO case.

Figure 7 shows the average change in the number of discon-
nected fluid components after the same 64 swaps are applied to
each test design’s latent space. In most cases, the original design
has only one interconnected fluid component, so the plotted value
essentially represents the number of floating fluid “islands” cre-
ated by the swaps. This is plotted against the original number of
solid segments, which correlates to the fluid channel complexity
of the heat sink. Generally, the values are highest when few solid
segments are present initially—this reflects the behavior of fluid
being transferred into a large chunk of solid material, preventing
it from connecting to any nearby fluid channels. However, all
tested VQGAN models are less prone to this behavior, with a
greater proportion of fluid remaining connected to the main flow.
A prime example of this effect is shown in Figure 6. Note that the
pixel swaps are introduced within a latent space which only mod-
els the left half of the heat sink, and are reflected in image space
to produce the full sample. Overall, we conclude that the learned
topological behavior of each VQGAN is similar in the context of
randomized material placements within the latent space, but quite
different from (and superior to) that of the continuous AE. Future
work may focus on reproducing this behavior in a less random
manner.

4.2.3 Additional Latent Space Characteristics. To fur-
ther uncover possible reasons for the differing latent qualities of
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FIGURE 6: TOP ROW: AN EXAMPLE OF AN AE-RECONSTRUCTED
SAMPLE AFTER 16 LATENT PIXEL SWAPS. BOTTOM ROW: THE
SAME 16 SWAPS DONE IN THE BASELINE VQGAN LATENT SPACE.
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FIGURE 7: AVERAGE CHANGE IN NUMBER OF DISCONNECTED
FLUID COMPONENTS AFTER 64 RANDOM LATENT PIXEL SWAPS.

each tested VQGAN, we examine the distribution of latent codes
more directly. Figure 8 compares the counts of most common
codebook indices between the DAE-VQGAN and Online-178
model, which both feature the same latent size but differ greatly
in learned topology, as discussed above. Similar to the results
in [45], we find that the DAE-VQGAN reduces the redundancy of
certain codes, instead favoring a more balanced distribution. In
fact, the DAE-VQGAN featured by far the most balanced codes
of any model, including the Baseline VQGAN. Meanwhile, a
single index makes up over 7 percent of the Online-178 code-
book. In the context of MTO and related datasets, the simpler
representation of the DAE-VQGAN does not appear to yield any
clear advantage, while the Online-VQGAN better retains topo-
logical features when the latent space is altered. It is possible that
for highly structured binary images, the redundancy of codes is
actually useful—many similar features often exist within a heat
sink design, both in terms of pixel value and topology. However,
such a claim is not easily proven, and thus we recommend that
future work further explores the effects of these discrete code
distributions.
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FIGURE 8: A COMPARISON OF ORDERED LATENT CODE DISTRI-
BUTION FOR THE ONLINE AND DAE MODELS WITH 178 UNIQUE
LATENT CODES.

4.3 Generated Heat Sink Characteristics

While the latent space characteristics and reconstruction per-
formance of the VQGAN and AE are important, they do not
address the main use case of the MTO dataset: novel output
generation. Thus, the transformer portion of the VQGAN (Stage
2) is essential to produce new heat sinks given a desired set of
boundary conditions. In this section, we observe the downstream
impacts of the Stage 1 models in training and evaluation of the
transformer. For this purpose, we use a lightweight version of
GPT-2 [54], implemented within a framework called nanoGPT>.

For additional comparison to continuous architectures, we
implement a Deep Convolutional GAN (DCGAN) [55] trained
on the previous AE latent space. We also train another DCGAN
directly on the VQGAN codebook. Each DCGAN is composed of
anear-symmetrical Generator and Discriminator, both with a hid-
den dimension of 128. The Generator uses blocks composed of a
2D transposed convolutional layer, followed by GroupNorm [48]
and a ReLU activation function. The Discriminator is simi-
lar, but with 2D convolutional layers and LeakyReLU activation.
The network is trained by generating a 13-dimensional normally
distributed noise vector z, which is concatenated with the 3-
dimensional set of boundary conditions ¢ before being passed to
the Generator. Thus, both the Generator input and output are
16-dimensional, since the output also needs to match the Stage 1
model latent dimension. The output is then fed to the Discrim-
inator, alongside the batch of real data, to produce the resulting
Binary Cross-Entropy (BCE) loss. In addition, a reconstruction
and perceptual loss are calculated for the Generator, similar to
the process in Stage 1. Finally, to promote more topologically
compliant designs, we implement an L1 loss between the vol-
ume fractions of the output and real samples. We scale each
loss function such that their magnitudes remain similar during
training.

We mainly follow the procedures of [22] regarding the trans-
former, with the only major change being the addition of the
C-VQGAN described previously. We train a new transformer us-
ing each of the previous VQGAN Stage 1 models for 500 epochs
with learning rate le—3 and batch size 16, using the smallest GPT-

Shttps://github.com/karpathy/nanoGPT
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2 variant with a dropout rate of 0.3. During training, we observe
a clear trend with regard to the original codebook size: the larger
the codebook, the more difficulty our transformer has in mini-
mizing the loss quickly. This makes sense given the transformer
needs to predict a larger range of tokens correctly, and reinforces
the argument for maximizing codebook compression in Stage 1.
Among the models of equal codebook size, the Baseline and
Online-359 models have roughly the same training curves, indi-
cating a similar distribution of codes between them. However,
the DAE suffers from a slower training speed compared to the
Online-178 model, likely due to its more balanced distribution
of codes as seen in Section 4.2.3. While this presents another
potential benefit of using a more redundant codebook, we must
inspect the quality of transformer outputs to make a true judgment
on whether the Online model is superior to the DAE-VQGAN in
the context of the MTO dataset.

Once each transformer is trained, we feed in the conditional
tokens representing the boundary conditions of the test set. To
present more consistent output comparisons, we set k = 1 within
the Top-K sampling algorithm—so that only the most probable
token is chosen at any given step of the transformer’s autoregres-
sive generation sequence. However, practical use cases may raise
this value to allow for some variation in outputs. In either case,
we then obtain the final set of generated designs for each model.
Figure 9 shows examples of designs with the best thermal perfor-
mance. While these generated heat sinks already perform well
on their own, we wish to eliminate the presence of intermediate
material in them. We thus conduct a small warm-starting proce-
dure to demonstrate how these designs could be post-processed
in a real application.

4.4 Warm-Start Optimization And Thermal Analysis of

Generated Samples

After obtaining just over 1100 generated heat sink samples
from each transformer, we use our MTO solver to run 20 addi-
tional adjoint optimization steps on each design. Given the small
amount of steps, the main effect of this warm-starting is to drive
the pixel values closer to O or 1, slightly increasing the final fluid
volume fraction in most cases. The warm-start can be seen as a
minor post-processing step that takes significantly less time than
a full cold-start optimization (i.e., the process that was used to
create the initial MTO dataset). Furthermore, the MTO solver
provides the thermal performance metrics of each final heat sink.

Before analyzing the thermal performance, we examine the
distributions of generated heat sinks and related statistical met-
rics. We measure the maximum mean discrepancy (MMD) to
estimate a distance between each generated distribution and the
MTO distribution [56]. We also measure the Relative Diversity,
or R-Div, which directly compares the diversity ratio between
model outputs and the training data [57]:

trace(cov[Xg, X, )

R-Div =
v trace(cov[Xupro, Xpmrol)

“)

Next, a topological comparison is performed to gauge the
differences in number of connected fluid and solid components
in each set of heat sinks. For example, we expect that any vi-
able generated design will (with rare exceptions) only have one
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interconnected fluid channel, and a similar number of solid seg-
ments to its MTO counterpart. Specifically, we measure Volume
Fraction Error (VFE), Solid Segment Error (SSE), and Number
of Disconnected Fluid Segments (NDFS)—see Appendix B for
an overview of these metrics. Our results show that VQGAN
generally produces designs with a similar number of intercon-
nected solid components compared to the MTO data and few
disconnected fluid components.

With the statistical and topological measurements complete,
we may now observe each sample’s thermal performance. Fig-
ure 10 provides an example distribution of designs plotted with
respect to their power dissipation and mean temperature, and col-
ored by their respective fluid volume fraction (VF). There exists
a tendency for heat sinks of higher VF to perform better with re-
gard to these two metrics, and many of the best points (i.e. those
along the Pareto front) have VF > 0.6. This makes sense because
a higher VF generally corresponds to a larger number of solid
bodies, which have a better surface area-to-volume ratio and thus
allow for more efficient heat transfer. Future work may focus on
an expanded set of heat sinks for which the volume fraction is
narrowed to this better-performing range.

Building on the thermal metric plots, we compare their re-
sulting Pareto fronts to the MTO test data Pareto front. For
a two-dimensional objective space—formed by the minimiza-
tion of mean temperature and fluid power dissipation—let P; =
(PDy,Ty) be the Ideal Point and Py = (PDy,Ty) the Nadir
Point of the Pareto front. PDj is the lowest power dissipation of
any point and 77 is the lowest mean temperature; the opposite is
true for PDy and Ty. Also let P be an arbitrary lower bound on
Py called the “Good Point”, and let Pg be an upper bound on Py
called the “Bad Point” [58]. In the MTO case, we set Pg = (0,0)
and Pg = (75, 50) as the fixed points of reference, based on the
typical performance values observed. To allow for numerically
consistent metrics across different models and datasets, we then
scale the Pareto points along each of the objective dimensions,
such that P becomes (0,0) and Pg becomes (1, 1), with the
entire objective area scaled to 1.

Figure 11 shows the Pareto fronts for each set of heat sinks.
Notably, the DAE-VQGAN Pareto front features several points
which dominate all other curves—that is, they perform better
in terms of both power dissipation and mean temperature. We
measure this dominance by calculating the Pareto-Dominated
Area (PDA), which roughly gauges the distance of the Pareto front
from Pp. This metric is simply the union of rectangular areas
between each Pareto point and Pp, which extend upward and to
the right (given we are minimizing each objective). We refer
to PDA measured in the scaled Pareto space as PDAg, and also
define the Non-Pareto-Dominated Area as 1 — PDA; to produce a
metric which may be thought of as a distance to Pg. An optimal
Pareto front would thus yield a value of zero for this metric.

We observe that based on 1 — PDA;, VQGAN generally
attains a Pareto front which outperforms that of not only the
DCGAN, but also the MTO test data itself. Looking beyond
this at the distribution of all points, we also find that the DAE-
VQGAN features by far the highest power dissipation variance
of any VQGAN. This yields many samples with higher J than
desired. However, it also produces the best designs of any model

11

for a select set of points with J < 30J;. In contrast, we find
that all VQGANSs produce similar distributions to the test data
with respect to mean temperature. Overall, we conclude that
each VQGAN produces a highly diverse set of generated designs
compared to the test data. Many of these are not only valid
designs, but feature near-optimal thermal performance as well.

Table 3 summarizes the overall results of the transformers
and DCGAN:Ss, from which several interesting observations can
be made. For statistical metrics, the DCGAN models yield higher
MMD (Gaussian kernel with o~ = 2) and significantly lower R-Div
values compared to the transformers. From this we hypothesize
that mode collapse is a major issue, even when the latent space
is compressed via quantization (as in DCGAN-VQ). We confirm
this problem is present in generated designs of similar volume
fraction: often each DCGAN produces the exact same output for
slightly different boundary conditions, with Figure 9 illustrating
an example of this. Upon another inspection of Figure 11, we
observe this behavior also translates to a more restricted and sub-
optimal set of Pareto points. Nonetheless, training the DCGAN
on the Baseline VQGAN codebook provides a significant perfor-
mance boost, showing the benefits of a compressed discrete latent
space in generative applications. We find that the DAE-VQGAN-
based transformer achieves the best overall performance, both in
terms of topological and thermal characteristics. Interestingly,
while the smaller codebooks were easier for the transformer to
learn, they did not necessarily yield better results (as in the case
of the Online-178 transformer). We can see that below a certain
codebook size, the output diversity as measured by R-Div begins
to suffer, although the DAE-VQGAN appears significantly more
robust to this issue compared to its Online counterpart. We thus
infer that the distribution of latent codes and decoder quality play
a large role in the performance of transformer outputs.

Given that the DAE-VQGAN was the only Stage 1 model fea-
turing a significant difference in latent space composition com-
pared to the Baseline, this result provides a possible argument for
using the DAE in design generation tasks. However, additional
work needs to be done to clarify exactly how VQGAN latent
space properties impact transformer outputs. We also note that
the Pareto fronts generated are fairly sparse, given a test set of
just over 1100 total samples. A larger sample size would thus
be preferable to confirm our results. Because the DAE-VQGAN
performed worse in latent space tests, the degree of its benefits in
the generative context also remains unclear. However, one take-
away is that all VQGAN-based transformers performed quite well
from the statistical standpoint (i.e., they yielded low MMD and
high R-Div) and are highly capable of producing new, thermally
effective designs. This is despite the fact that we used the smallest
GPT-2 model configuration available in nanoGPT. Furthermore,
we have shown that a large degree of data compression is pos-
sible for binary or grey-scale image datasets such as the MTO
dataset—which are quite repetitive from the pixel-based stand-
point—yet may feature high levels of topological complexity or
other patterns. Overall, we believe the Online-VQGAN presents
the most practical approach to modeling such datasets due to its
fully controllable codebook size and desirable latent properties.
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TABLE 3: PERFORMANCE METRICS FOR EACH TRANSFORMER AND DCGAN, BASED ON THE STAGE 1 MODEL IT WAS TRAINED WITH.

Model (Codebook Size) Training Log-Loss| MMD (o =2)| R-Div]T VFE(%)| SSE(%)| NDFS| 1-PDA;]|
DCGAN-AE (n/a) n/a 0.0621 0.550 1.13 52.6 5.532 0.518
DCGAN-VQ (359) n/a 0.0489 0.652 1.30 27.5 4.782 0.422
Online (1024) 0.209 0.0423 1.003 2.64 29.2 0.992 0.345
Baseline (359) -0.397 0.0426 1.005 2.59 30.9 0.995 0.343
Online (359) -0.452 0.0422 0.991 2.48 28.6 1.097 0.334
DAE (178) -0.709 0.0422 0.976 1.47 229 1.108 0.310
Online (178) -0.989 0.0421 0.912 3.04 30.5 1.004 0.343
. Basenne (359) DAF 178| Onlme (178 DCGAN VQ 50 A -
J“iﬁ % W 065
‘ :i.. 40 0 0.60
-Mf;l. |d‘0ﬁ’ < L 055 <
7 ﬁ-" © 30 <
2 0] g
o S
10 4
0

0 %‘ |
x % e "J' Sitg e
Wc..\"‘;.OA\v ,‘ﬁ.\-p,-:lgh /.. v \

?-‘ *

ll "‘;: 'i‘fl

s vl

16 r-'
'i

FIGURE 9: SAMPLE OUTPUTS FEATURING THE BEST AVER-
AGE THERMAL PERFORMANCE ACROSS EACH TRANSFORMER.
NOTE THAT THE VISIBLE INTERMEDIATE VALUES ARE LARGELY
RESOLVED DURING THE WARM-START PROCESS.
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5. CONCLUSION

In this paper, we introduced a new, two-dimensional dataset
for Multiphysics Topology Optimization (MTO) which presents
a wide range of optimized heat sinks with varying volume frac-
tion, power dissipation, and Reynolds number. We also proposed
several statistical, topological, and thermal metrics to thoroughly
gauge the performance of machine learning models on the MTO
dataset, both in terms of image reconstruction and new design
generation. Importantly, our approach can also be used for other
two-dimensional datasets featuring grey-scale or binary images.
Building on this foundation, we presented the Vector-Quantized
GAN (VQGAN) [22] as a practical solution in heat sink design ap-
plications—which often utilize slow and computationally expen-
sive physics-based models to predict optimal designs. Through
a detailed latent space analysis with comparisons to continuous
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FIGURE 11: THE PARETO FRONTIER FOR EACH TRANS-
FORMER’S SET OF GENERATED SAMPLES ON THE TEST SET.

models such as Autoencoders (AEs) and Deep Convolutional
GANs (DCGANSs), we found VQGAN provides a superior latent
space model and aids in generative design applications.

Moreover, we implemented two recently-proposed augmen-
tations to the VQGAN architecture: the Decoupled Autoencoder
VQGAN (DAE-VQGAN) [45] and VQGAN with Online Clus-
tered Codebook (Online-VQGAN) [53]. We found benefits in
using either model over the Baseline. Firstly, the Online model
guarantees 100% codebook usage by pushing unused codebook

Copyright © 2025 by ASME



vectors closer to encoded features and offers equal or better per-
formance compared to a Baseline VQGAN of the same latent size.
In the MTO context, it also provides more convincing interpola-
tion between samples by preserving a high level of topological
connectivity compared to the other models tested. Secondly, the
DAE-VQGAN balances the latent representation via its decou-
pled training process—which emphasizes codebook quality dur-
ing the first stage and reconstruction quality during the second
stage. The DAE model demonstrates that the MTO dataset can
be reconstructed effectively with just 178 codes given a 16 X 16
latent feature map, preserving all major fluid channel connections
in the test samples. The main benefits of the DAE-VQGAN are
observed in the generative context, as a transformer trained on its
latent space produces more thermally diverse designs while better
retaining the topological characteristics of the original MTO data.
We thus encourage further research of the Online-VQGAN and
DAE-VQGAN for related engineering and design applications.
Despite these promising findings, some limitations exist in
this paper and will be covered in future work. Firstly, we do not
fully address the relationship between latent properties discussed
in Section 4.2 and the downstream performance of the transform-
ers and DCGANSs tested. Additional work should be done to
understand what precise representations the transformer is able
to learn from the tokenized inputs it is trained on. It would also
be helpful to compare our models with additional state-of-the-art
frameworks such as Diffusion models [59] and more recent deep
GAN architectures that better mitigate mode collapse—both as
a direct measure of their performance and to further validate the
MTO dataset as an effective benchmark. However, we would also
need to address some minor problems with the current MTO data
before implementing these new models. In this paper, we made
limited comparisons to the thermal performance of the MTO data
itself due to an issue with power dissipation constraint satisfaction
during cold-start optimization. We are working to regenerate the
affected samples so they fully satisfy all constraints, and will make
the dataset publicly available once this is done. Nonetheless, we
remain confident that our results will be mostly unaffected by this
issue, given the high diversity and strong thermal performance of
current generated samples. Finally, future work will thus expand
this paper’s experiments to a three-dimensional context as well.
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APPENDIX A. GOVERNING EQUATIONS FOR MTO
Power Dissipation

In order to prevent unrealistic designs, the power dissipation
of the fluid device is considered a constraint:

1
Jz—J (p+=zu-wu-ndl’ 5)
Finumlt 2

where J denotes the power dissipation and I is the boundary.

Governing Equations

The thermal-fluid MTO problem is modeled by steady-
state incompressible Navier-Stokes equations and energy balance
equations. The two sets of governing equations are presented
below.

Navier-Stokes equations:

-V-u=0 inQ
p(u-Viu-nV-(Va+Vu')+Vp-F, =0 inQ ©)
u=up onl'}
[n(Va+Vul) - pI] -n=gy on I“f]
Energy conservation equations:

pc(u-VI)=V - (kVT)+Q inQ

T=Tp onI'} (7)

kVT -n=gn on F{,

where Q denotes the computational domain, I" is the boundary,
the subscripts D and N represent the Dirichlet and Neumann
parts of the boundary, and the superscripts F and T represent the
fluid and thermal mechanics problems, respectively. p is the fluid
mass density, and u and p are the velocity and pressure fields,
respectively. 7 is the dynamic viscosity, while F, is the body
force of the fluid. up and gy are the specified velocity and stress
distributions on the boundaries Fg and Ff], respectively. T is
the temperature field, n is the unitary outward normal, c is the
specific heat capacity, k is the thermal conductivity, Q is the heat
source capacity, and Tp and g are the specified temperature and
heat flux on the boundaries I" g and I’ {,, respectively.
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APPENDIX B. TOPOLOGICAL COMPARISON METRICS

We define several intuitive metrics for quantifying the topo-
logical differences between a generated or reconstructed design
and its real counterpart. Note that any grey-scale designs should
be binarized before such an analysis. Let Ng,;;4 be the num-
ber of disconnected solid segments in a design and Ngj,;q the
number of disconnected fluid segments. Also let VF be the fluid
volume fraction of a design. For MTO, we desire Nyjiqg = 1
in all designs, as any other disconnected fluid segments would
amount to a waste of material. The Number of Disconnected
Fluid Segments (NDFS) is thus simply:

NDFS = Nfiuid,gen (3)

No difference is calculated with respect to the real design

16

because a clear minimization objective exists. For more general
cases, the Fluid Segment Error (FSE) may be determined as:

INfiuid,gen — Nfiuid,reatl

FSE = 9)
Nrlid,real
Similarly, the Solid Segment Error (SSE) is:
SSE = |Nsolid,gen - solid,real| (10)
Nsolid,real

In short, SSE and FSE correspond to the Betti errors for the
respective binary regions. The fact that they represent fluid or
solid is an arbitrary specification for our MTO data. Finally, the
volume fraction error (VFE) is also straightforward:

VFE = |VFgen - VFreal| (11)
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