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ABSTRACT
Adjoint-based design optimizations are usually computation-

ally expensive and those costs scale with resolution. To address
this, researchers have proposed machine learning approaches for
inverse design that can predict higher-resolution solutions from
lower cost/resolution ones. Due to the recent success of diffusion
models over traditional generative models, we extend the use of
diffusion models for multi-resolution tasks by proposing the con-
ditional cascaded diffusion model (cCDM). Compared to GANs,
cCDM is more stable to train, and each diffusion model within
the cCDM can be trained independently, thus each model’s pa-
rameters can be tuned separately to maximize the performance of
the pipeline. Our study compares cCDM against a cGAN model
with transfer learning.

Our results demonstrate that the cCDM excels in capturing
finer details, preserving volume fraction constraints, and mini-
mizing compliance errors in multi-resolution tasks when a suf-
ficient amount of high-resolution training data (more than 102
designs) is available. Furthermore, we explore the impact of
training data size on the performance of both models. While
both models show decreased performance with reduced high-
resolution training data, the cCDM loses its superiority to the
cGAN model with transfer learning when training data is lim-
ited (less than 102), and we show the break-even point for this
transition. Also, we highlight that while the diffusion model may
achieve better pixel-wise performance in both low-resolution and
high-resolution scenarios, this does not necessarily guarantee
that the model produces optimal compliance error or constraint
satisfaction.

1. INTRODUCTION
Optimizing designs, especially in the context of adjoint-

based multi-physics shape and topology optimization (TO), can
be a time-intensive process, often requiring costly iterations to
achieve the desired designs [1]. For instance, one of the most
commonly used methods to solve forward TO is Solid Isotropic
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Material with Penalization (SIMP) method [2, 3]. This method
is based on iterative optimization techniques over continuous,
density-based methods to find the optimal material distribution.
Despite the wide popularity of these methods, they suffer from
two main pitfalls: (1) often requiring expensive simulations and
(2) getting trapped in local optima due to their gradient-based
solution approach. To overcome these challenges for TO prob-
lems, previous studies combine TO with inverse design methods
driven by Machine learning. These methods complement adjoint
methods by reducing the time and resources required to explore
a broader range of design solutions compared to optimizing a
single design with an iterative forward model. For instance,
Habibi et al. [4] showed that ML-based inverse design can pre-
dict designs with 95% relative performance improvement for 2D
heat conduction topology optimization problem compared to the
SIMP method and more importantly it can accelerate the topology
optimization even with some small amount of training data.

One of the main uses of ML-based design methods is ad-
dressing TO computational costs which scale with resolution.
Several key questions arise in this context, including identifying
techniques and models that can effectively reduce costs, deter-
mining the volume of data necessary for optimal model perfor-
mance, and finding the right balance between gathering examples
of low and high resolution and dimensions. A common tech-
nique to answer this challenge in the community is producing
high-resolution images from low-resolution data which is also
known as super-resolution [5]. Some researchers used Genera-
tive Adversarial Networks (GANs) trained on low-resolution TO
datasets to perform upscaling to produce high-resolution images.
For instance, Yu et al. implemented a two-stage refinement con-
ditional GAN (cGAN) to predict optimal high-resolution struc-
tures (128x128), leveraging training on 64,000 low-resolution
data samples (32x32) and corresponding high-resolution coun-
terparts [6]. Additionally, other investigators have proposed lever-
aging transfer learning in conjunction with GANs or variational
autoencoders (VAEs) for super-resolution. Behzadi et al., for ex-
ample, used transfer learning and conditional GANs to fine-tune
a model on 11,000 fixed volume fraction low-resolution sam-
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ples (80x40) and 1,500 high-resolution samples (up to 200x400),
contributing valuable insights to the delicate balance between low
and high-resolution examples in the transfer learning context [7].

In this study, we aim to extend Maz et al.’s comparison
of the performance and training simplicity of condition diffu-
sion models versus that of GANS in TO [8], but in the con-
text of multi-resolution problems. Our primary objective is to
quantify the extent to which diffusion-based generative models
surpass their GAN-based counterparts in addressing low to high-
resolution super-resolution challenges. Additionally, we explore
the performance of each model under fixed-cost considerations,
systematically examining their efficacy in handling both seen and
unseen boundary conditions. Specifically, the contributions of
this paper are as follows:

1. We describe a conditional cascaded diffusion model-based
framework for solving low to high-resolution engineering
design problems.

2. We demonstrate the extent to which cascaded diffusion-
based generative models outperform GAN-based generative
models on low to high-resolution inverse design problems.

3. For a given threshold of performance (e.g., constraint vio-
lation, compliance, etc.), we study the comparative sample
efficiency of diffusion models versus GAN models for low to
high-resolution problems, noting a critical high-resolution
sample threshold below which the cGAN model outperforms
the diffusion model, and vice versa.

2. RELATED WORKS

2.1 Inverse Design and Topology Optimization

Inverse design (ID) involves leveraging machine learning
techniques to predict the optimal design, such as an airfoil mesh,
based on specified input conditions, such as a desired Reynolds or
Mach number [9]. ID studies focus on the mapping between the
input conditions and optimal design which can be used in place of
an existing optimizer or as an initial guess for further optimization
(warmstart optimization) [9]. In the field of Mechanical engineer-
ing, ID has been explored in diverse applications, designing and
characterizing materials [9–13], airfoil shape design [9, 14], and
topology optimization [4, 15, 16].

Topology optimization (TO) finds the optimal distribution
of the material in the design domain to optimize one or more
objective functions while satisfying some constraints. Traditional
TO methods rely heavily on Finite element analysis [1]. One of
the most widely used formulations of TO problems are pseudo-
density-based approaches such as the Solid Isotropic Material
with Penalization method (SIMP) [2, 17]. The goal of structural
TO is to identify the optimal material distribution within the
design domain to minimize structural deformation, subject to a
volume constraint and prescribed load condition [18].

The specific minimization problem is formulated as follows:

minimize
𝑥

𝑐(𝑥) = 𝑈𝑇𝐾𝑈

subject to
𝑉 (𝑥)
𝑉0

= 𝑓 ,

𝐾𝑈 = 𝐹,

0 ≤𝑥𝑚𝑖𝑛 ≤ 1

(1)

where 𝑐(𝑥) represents structural compliance, 𝑈 denotes global
displacement, 𝐹 is the force vector, and 𝐾 is the global stiffness
matrix. Additionally, 𝑉 (𝑥) and 𝑉0 represent material volume
and design domain volume, respectively, with 𝑓 representing the
prescribed volume fraction. The vector 𝑥𝑚𝑖𝑛 is introduced to
prevent the singularity condition by specifying minimum relative
densities.

Traditional TO methods usually suffer from two limitations:
(1) often requiring costly iterations and (2) getting trapped in local
optima due to their gradient-based solution approach. To address
these limitations of traditional TO many researchers developed
various deep-learning methods [19–21]. For instance, Sharpe
and Seepersad introduce conditional generative adversarial net-
works (cGANs) to generate a compact latent representation of
structures resulting from traditional TO methods [22]. Further-
more, Guo et al. used variational autoencoder and style transfer
to enhance topology optimization capabilities [23]. Addition-
ally, Nie et al. expand the generalizability of using the condition
generative model by introducing TopologyGAN for more vari-
ant physical and boundary conditions [24]. Moreover, some re-
searchers incorporate physics and generative models to solve the
TO problems [13, 25, 26]. Additionally, reinforcement learning-
based generative design frameworks have been explored by some
researchers to improve the diversity of topology-optimized de-
signs [27, 28].

The aforementioned works showcase diverse approaches to
incorporating deep learning into design optimization. All are
either supervised or unsupervised algorithms that rely on the
use of enough amount of training data to predict acceptable re-
sults. But how much of this expensive high-resolution data is
enough? There are a few papers that consider the limitation
of high-resolution training data amounts [7, 29], typically lever-
aging transfer learning. In this paper, we aim to quantify and
understand how training size affects ML-based inverse design
model performance, but beyond the GAN-based models studied
previously.

2.2 Generative models for Inverse Design using
Super-Resolution
One of the main challenges in solving inverse design prob-

lems, especially TO problems is the computational cost which
scales with the resolution. To tackle this issue, researchers
often refer to super-resolution techniques from computer vi-
sion [19, 30]. Yu et al. [6] used a two-stage refinement, employing
a conditional generative adversarial network (GAN) for upscaling
and predicting near-optimal structures, while Li et al. employed
a Super-Resolution GAN (SRGAN) for refining high-resolution
structures [31].

While various GANs and Variational Autoencoders (VAEs)
have been applied in these methods, an alternative approach in-
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volves transfer learning, a technique transferring knowledge from
one domain to another effectively [32, 33]. Behzadi and Ilies, in-
troduced a transfer learning method based on a convolutional
neural network (CNN) to the topology optimization commu-
nity [29]. Their approach involved training a feed-forward CNN
on low-resolution data, transferring knowledge by locking model
weights, and adding layers for upscaling output resolution. Sub-
sequent work by Behzadi and Ilies, proposed a design exploration
framework leveraging transfer learning and conditional GANs,
surpassing previous generalization capabilities [7].

Dhariwal and Nichol demonstrated that diffusion models ex-
cel in image generation, outperforming GANs, and offer eas-
ier training and adaptability to various tasks [34]. Building on
this, Mazé and Ahmed showcased that a topology-based diffu-
sion model significantly outperforms state-of-the-art conditional
GANs, reducing average errors in physical performance by a fac-
tor of eight and producing fewer infeasible samples [8]. Inspired
by these findings, our study addresses the different problem of
super-resolution in diffusion models, and answers the question “to
what extent do diffusion-based generative models surpass GAN-
based counterparts in low to high-resolution problems, and is
the adoption of diffusion models appropriate for super-resolution
tasks?”

2.3 Diffusion Models
Diffusion models, as introduced by Sohl-Dickstein et al. [35],

represent a class of deep generative models. These models in-
clude two main components: the forward and backward diffusion
processes. The forward diffusion process entails the addition of
noise to sample vectors over 𝑇 steps to a sample from data dis-
tribution 𝑥0 ∽ 𝑞(𝑥0), generating a sequence of noisy samples
𝑥1, 𝑥2, ..., 𝑥𝑇 , following the Markov chain:

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼) (2)

Where 𝑞(𝑥𝑡 |𝑥𝑡−1) the forward process posteriors, 𝛽𝑡 is variance
schedule at time 𝑡. As the forward diffusion progresses, the
initial data sample 𝑥0 gradually loses its features, a phenomenon
controlled by the variance schedule denoted as (𝛽𝑡 )𝑇𝑡=1 ∈ (0, 1).

The reverse process seeks to approximate the true posterior
using a parametric Gaussian process. This involves recreating
the true sample from a Gaussian noise input, expressed as

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝜇𝜃 (𝑥𝑡 ), Σ𝜃 (𝑥𝑡 )) (3)

In the reverse process the new image is generated by sampling a
data from pure noise and removing noise gradually using reverse
process equation. The reverse process involves training the neural
network model to predict the mean and variance of the denoising
process. In our model we assumed variance of the denoising
process Σ𝜃 is fixed and constant and we learn the mean variable
𝜇𝜃 [36]. In summary, the whole intuition behind the diffusion
model is training models to reverse a noise process and mapping
a Gaussian noise distribution to the data distribution. Readers in-
terested in finding out more mathematical details about diffusion
models are directed to [37].

Diffusion models, as demonstrated by Ho et al. [36], show
superior image quality and greater stability compared to GANs.

While Denosing Diffusion Models (DDMs) are relatively novel
in the context of engineering design, there have been notable
studies exploring their application in creating two-dimensional
structures. One noteworthy example is the work of Mazé and
Ahmad [8], who introduced a condition diffusion model-based ar-
chitecture, TopoDiff. This innovative approach was employed for
performance and manufacturability-aware topology optimization,
outperforming state-of-the-art conditional GANs by reducing the
average physical performance by a factor of eight. Building on
this advancement, Giannone et al. [25] proposed a learning dif-
fusion model framework that eliminates the need for expensive
finite element preprocessing, resulting in improved design per-
formance. These studies highlight diverse methodologies for
integrating diffusion models into design optimization, yet a cru-
cial aspect remains unexplored. None of these works have delved
into the potential of super-resolution within diffusion models as
compared to GANs for engineering designs which we aim to
explore in this study.

3. METHODOLOGY
To address the contributions outlined in the introduction we

divide the methodology into the following sections: (1) intro-
ducing the cascaded pipeline, (2) what are the diffusion model
parameters and its architecture, (3) what cGAN model we bench-
marked against our proposed diffusion model, and (4) how we
measure and evaluate our models.

3.1 Conditioned Cascading Pipelines
Inspired by previous studies [38, 39], we introduce a frame-

work for addressing multi-resolution engineering challenges, il-
lustrated in Fig 1. Our core approach lies in conditional cascaded
diffusion (cCDM), which involves a sequence of generative dif-
fusion models. At the lower resolution, we use a generative
diffusion model conditioned on specified boundary conditions.
Following the methodology of prior works [8, 24], we perform
channel-wise concatenation with channels representing the vol-
ume fraction, strain energy density, von Mises stress, and ap-
plied loads on the domain’s boundary. These conditionally aug-
mented features are then integrated with the low-resolution im-
age. Moving to higher resolutions, our framework incorporates
a super-resolution diffusion model conditioned by channel-wise
concatenation. This concatenation involves the low-resolution
image predicted by the preceding diffusion model, which is fur-
ther processed through bilinear upsampling to achieve the de-
sired resolution. Also, the conditioning at the high resolution
includes the given boundary conditions. One important advan-
tage of employing these cascading models is their independence
during training, allowing for separate tuning of hyperparameters
at each stage. This flexibility improves the overall performance of
the pipeline, as parameters can be optimized individually for each
resolution level. We describe the specific network architectures
and diffusion parameters in later sections.

3.2 U-Net Architecture and Diffusion Parameters
We used a UNET architecture as the basis for our diffusion

models implementation, obtained from the following publicly
available repository [40]. We made specific modifications based
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FIGURE 1: PROPOSED CCDM PIPELINE FOR TO SUPER-RESOLUTION. MODEL 1 IS A STANDARD CONDITIONAL DIFFUSION MODEL FOR
TO. L IS THE LOAD APPLIED, REPRESENTED WITH AN ARROW ON THE TOPOLOGY; V IS THE VOLUME FRACTION; F REPRESENTS THE
PHYSICAL FIELD INCLUDING THE STRESS AND STRAIN FIELD. MODEL 2 IS A SUPER-RESOLUTION MODEL CONDITIONED ON BOUNDARY
CONDITIONS AND UPSAMPLED PREDICTION OF MODEL 1.

on our needs, notably, we removed the attention block within the
UNET architecture to reduce the computational complexity and
because including the attention block worsened performance in
our initial tests. For the baseline model, we used a linear variance
𝛽 schedule lineary increasing from 10−4 to 0.02 as it is suggested
in the previous study [36] with a total of 1000 steps where the
1st step represents the lowest amount of noise, and 1000 is the
highest.

3.3 Conditional Generative Adversarial Networks and
Transfer Learning
We adapted the Conditional Generative Adversarial Network

(cGAN) architecture from Behzadi et al. [7], sourced from their
public GitHub repository, to benchmark against our cCDM Our
modifications prioritized improving stability and performance
over our dataset. To address challenges encountered during model
training we used a Wasserstein loss, which reduced mode collapse
issues we found during testing relative to the original implemen-
tation in [7].

3.4 Dataset
To test our models and be comparable to the existing state-of-

the-art we created a dataset via a classical structure compliance
topology optimization problem based on the SIMP approach us-
ing the code provided by Andreassen et al. which we detail be-
low [41]. This problem aims to minimize the structural compli-
ance of a beam (represented by a square domain) while satisfying
the constraints on material volume and boundary conditions, in-
cluding force magnitude, location, and direction.

Consistent with past work, we selected two sets of boundary
conditions, as illustrated in Fig. 2(a), using the first set for
both training and testing, while the second set served as unseen
boundary conditions exclusively for testing purposes. The force
magnitude was set to 5000N, and the design domains included
volume fractions (𝑣) ranging from 0.30 to 0.60, force locations
(ℎ) ranging from 0 to 1, and force directions (𝛼) on the right side
of the design domain.

For the seen boundary conditions, we divided the volume
fraction range into 20 segments and the force location and di-
rection ranges into 10 segments, resulting in 2000 designs for
each boundary condition. For the unseen boundary conditions,
we used 10 segmentations for volume fraction and force loca-
tion and direction, resulting in 1000 designs for each boundary
condition. Within the seen boundary conditions category, we
employed a random selection process to allocate 200 from each
seen boundary condition designs for testing purposes, while the
1500 designs were dedicated to training the model which resulted
in 9000 training data and 1200 testing seen boundary conditions.
Similarly, for the unseen boundary conditions category, we ran-
domly selected 1000 designs for testing, with an equal distribution
of designs across different unseen boundary conditions. These
unseen boundary conditions served as a critical benchmark for
evaluating the model’s ability to test the generalizability of the
models. Also, we generated the dataset at two distinct resolutions:
a low resolution of 64x64 and a high resolution of 128x128.

Inspired by previous studies [8, 24] highlighting the im-
proved prediction accuracy achieved by incorporating physical
fields such as von Mises stress and strain energy density instead
of explicitly representing boundary conditions, we introduced
these fields as additional input channels in the generative models.
Additionally, force and volume fraction channels were included
to enable the network to identify relationships between physical
boundary conditions and fields, focusing on structural patterns
that serve as effective load paths.

The physical representation dataset comprises five channels:

• The first channel is uniform and contains the volume fraction
constraint;

• The second channel includes the von Mises stress values of
the design domain under the given constraints;

• The third channel is the strain energy density of the design
considering both load constraints and boundary conditions.
Strain energy is defined as𝑊 =

𝜎𝑥 𝜖𝑥+𝜎𝑦 𝜖𝑦+2𝜎𝑥𝑦 𝜖𝑥𝑦

2 ;
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FIGURE 2: THE PHYSICAL LAYOUT OF TOPOLOGY OPTIMIZA-
TION PROBLEM OF BEAMS AND CORRESPONDING TRAINING
AND TESTING BOUNDARY CONDITION. DESIGN DOMAIN OF A
CANTILEVER BEAM WITH DESIGN PARAMETERS OF FORCE LO-
CATION (H) AND DIRECTION (α) ON THE RIGHT SIDE OF THE
BEAM. BOUNDARY CONDITIONS: (A)-(F) ARE USED FOR TRAIN-
ING AND TESTING AND (G)–(H) ARE UNSEEN BCS ONLY USED
FOR TESTING.

• The fourth channel represents the load constraints in the
x-direction. Each node indicates the force applied in the
x-direction direction (or 0 if there’s no force applied);

• The fifth channel represents the load constraints in the y-
direction. Each node indicates the force applied in the y-
direction direction (or 0 if there’s no force applied);

Since our study involved the comparison of different models,
variations existed in the input data for each model. Specifically,
the GAN model was trained on the physical representation dataset,
while the diffusion model on low resolution incorporated an extra
channel in the black-and-white image, representing the optimal
topology. Furthermore, the diffusion model on higher resolution
included two extra channels, incorporating topology optimization
on higher resolutions and upsampled topology predictions from
the low-resolution diffusion model.

3.5 Evaluation Metrics
In this study, we use pixel-wise error as a final evaluation

metrics as well as physical objectives since in designing genera-
tive models minimizing objective values is more important than
classical computer vision metrics. As result, we define and use
the following three metrics for our case studies evaluations:

• Mean Squared Error (MSE), which is defined as:

𝑀𝑆𝐸 =
1
𝑛𝑚

𝑛∑︂
𝑖=1

𝑚∑︂
𝑗=1

(︂
𝑦
𝑝𝑟𝑒𝑑

𝑖 𝑗
− 𝑦𝑡𝑟𝑢𝑒𝑖 𝑗

)︂2
, (4)

where 𝑛 and 𝑚 are the number of rows and columns, 𝑦𝑝𝑟𝑒𝑑
𝑖 𝑗

and 𝑦𝑡𝑟𝑢𝑒
𝑖 𝑗

are the predicted and reference values of the ele-
ment located in the 𝑖th row and 𝑗 th column, respectively.

• Volume fraction error (VFE) relative to the input volume
fraction is defined as:

𝑉𝐹𝐸 =
|𝑉𝐹 (𝑦𝑝𝑟𝑒𝑑) −𝑉𝐹 (𝑦𝑡𝑟𝑢𝑒) |

𝑉𝐹 (𝑦𝑡𝑟𝑢𝑒) (5)

where 𝑉𝐹 (𝑦𝑡𝑟𝑢𝑒) and 𝑉𝐹 (𝑦𝑝𝑟𝑒𝑑) represent, respectively,
the prescribed volume fraction and the volume fraction of
the topology generated by our diffusion model.

• Compliance error (CE) in relation to the ground truth is
defined as:

𝐶𝐸 =
𝐶 (𝑦𝑝𝑟𝑒𝑑

𝑓
) − 𝐶 (𝑦𝑡𝑟𝑢𝑒

𝑓
)

𝐶 (𝑦𝑡𝑟𝑢𝑒
𝑓

) (6)

where 𝐶 (𝑦𝑡𝑟𝑢𝑒
𝑓

) and 𝐶 (𝑦𝑝𝑟𝑒𝑑
𝑓

) represent the compliance of
the feasible topology generated by the SIMP method and the
feasible topology generated by the generative models which
do not violate the volume fraction constraints, respectively.
It is important to note that a negative compliance error indi-
cates that generative models produce a topology with lower
compliance than the ground truth. Furthermore, we consid-
ered topologies that satisfy volume fraction constraints and
can be considered feasible designs.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1 How well do different models perform in
low-resolution?

To assess the performance of the diffusion model and the
cGAN model for low-resolution topology optimization, we used
the two test sets described in Section 3.4. Our evaluation focuses
on comparing the models’ performance using pixel-wise error
metrics as well as physical values.

Figure 3 shows examples of a few structures obtained with
(1) the conditional GAN, (2) the conditional diffusion model, and
(3) the SIMP method, which we label as the “Ground Truth” (GT),
for randomly selected constraints from seen and unseen boundary
conditions. As expected, the diffusion model exhibits superior
performance qualitatively in terms of pixel-wise metrics in com-
parison to the cGAN model, aligning with previous research that
showed diffusion models can outperform GANs on image synthe-
sis [34]. However, our previous study has shown that optimizing
solely for MSE values does not necessarily guarantee optimal
design outcomes [15].

To quantitatively validate this observation, we summarize
the performance of the generated structures across seen and un-
seen boundary conditions in Table 1. Our analysis of the MSE
indicates that the diffusion model outperforms the cGAN model
in capturing finer details and minimizing pixel-wise errors across
both seen and unseen boundary conditions. Interestingly, both
models exhibit comparable performance in maintaining volume
fraction constraints. In addition, the diffusion model outperforms
the cGAN model in minimizing compliance for more difficult
test cases (unseen boundary condition test cases) by producing
smaller median compliance errors. It should be noted we used
the median for CE values since the median is less sensitive to out-
liers. This indicates that the topologies generated by the diffusion
model are producing less structural compliance, highlighting its
efficacy in producing feasible optimal designs.

5 Copyright © 2024 by ASME



Model Boundary Condition Average MSE (×10−4) Average VFE (×10−4) Median CE (×10−2)

Diffusion Model Seen 6.67 ± 2.00 81.67 ± 4.02 0.34 ± 0.04
Unseen 324.94 ± 19.12 448.83 ± 30.60 4.18 ± 8.54

cGAN Model Seen 13.58 ± 2.28 183.31 ± 11.13 0.09 ± 0.15
Unseen 327.15 ± 17.24 421.37 ± 24.11 5.86 ± 425.85

TABLE 1: PERFORMANCE METRICS COMPARISON IN LOW RESOLUTION (64X64) ON SEEN AND UNSEEN BOUNDARY CONDITIONS. VAL-
UES AFTER ± INDICATE THE 95 % CONFIDENCE INTERVAL AROUND AVERAGES/MEDIANS. THE VALUES IN BOLD FEATURE ARE THE
BEST ONES FOR EACH BOUNDARY CONDITION.

Seen Boundary Conditions Unseen Boundary Conditions

Diffusion cGAN GT Diffusion cGAN GT

FIGURE 3: COMPARISON OF GENERATED STRUCTURES ON
RANDOMLY SELECTED SAMPLES FROM SEENS AND UNSEEN
BOUNDARY CONDITIONS IN THE LOW-RESOLUTION DATA. THE
GT COLUMN REPRESENTS THE GROUND TRUTH GENERATED BY
THE SIMP METHOD.

cCDM cGAN GT cCDM cGAN GT

Seen Boundary Conditions Unseen Boundary Conditions

FIGURE 4: COMPARISON OF GENERATED STRUCTURES ON
RANDOMLY SELECTED SAMPLES FROM SEENS AND UNSEEN
BOUNDARY CONDITIONS IN THE HIGH-RESOLUTION DATA. THE
GT COLUMN REPRESENT THE GROUND TRUTH GENERATED BY
SIMP METHOD.

4.2 How well do different models perform in
high-resolution with limited training data?
We evaluated the performance of the cCDM and the transfer

of knowledge from low-resolution to high-resolution in the cGAN
model. For this evaluation, we trained the cCDM using a limited
number of training data (350 samples) from each seen boundary
condition, resulting in a total of 2100 training samples for high-
resolution. To provide a benchmark, we fine-tuned the cGAN
model with transfer learning using the same training dataset.

Figure 4 showcases examples of structures generated by the
diffusion model and the cGAN model, along with SIMP method
for randomly selected constraints from both seen and unseen
boundary conditions. Consistent with expectations, qualitative
analysis reveals the superior performance of the cCDM in terms
of pixel-wise metrics compared to the cGAN model with transfer
learning across both seen and unseen boundary condition test
cases.

To quantify these comparisons, Table 2 provides a compre-
hensive overview of our evaluation metrics. The results clearly
demonstrate the diffusion model’s superiority over the cGAN
model in all evaluated metrics for high-resolution topology opti-
mization on both seen and unseen boundary conditions. Specifi-
cally, the diffusion model achieves lower MSE, VFE, and CE val-
ues, indicating its superior ability to capture finer details, preserve
volume fraction constraints, and minimize compliance errors in
super-resolution task.

4.3 How well do models perform in high-resolution as a
function of training data size?
One of the motivations to address this question stems from

the high cost associated with generating high-resolution training
data using the SIMP method. In response, we investigated the
performance of the cGAN with transfer learning and cascaded
diffusion models for high-resolution structures as we decreased
the amount of high-resolution training data. The experiment
aimed to assess how the performance of both models is impacted
by the reduction in training data and to compare their adaptability
to limited training resources, which can be the dominant cost.

The number of training data varied from 24 to 2100. We
excluded seen test boundary conditions and gradually reduced
the size of the high-resolution training data. Each subsequent
training set was obtained by randomly removing data from the
next largest set. For example, the high-resolution dataset initially
included 2100 designs, with 350 designs from each seen boundary
condition. Subsequently, the dataset containing 1050 designs
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Model Boundary Condition Average MSE (×10−4) Average VFE (×10−4) Median CE (×10−2)

cCDM Seen 44.96 ± 6.36 99.11 ± 5.32 0.39 ± 0.20
Unseen 465.14 ± 23.57 464.65 ± 29.27 10.44 ± 5.40

cGAN Model Seen 98.09 ± 8.52 210.54 ± 11.30 3.20 ± 60533.52
Unseen 579.00 ± 21.78 583.75 ± 29.70 × 10−3 17.29 ± 20.30

TABLE 2: PERFORMANCE METRICS COMPARISON IN HIGH RESOLUTION (128X128) ON SEEN AND UNSEEN BOUNDARY CONDITIONS.
VALUES AFTER ± INDICATE THE 95 % CONFIDENCE INTERVAL AROUND AVERAGES/MEDIAN
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FIGURE 5: MEAN MSE OF THE CGAN MODEL WITH TRANS-
FER LEARNING VERSUS THE CASCADED DIFFUSION MODEL
ACROSS TEST DATA WITH SEEN AND UNSEEN BOUNDARY CON-
DITIONS AS THE NUMBER OF HIGH-RESOLUTION TRAINING DATA
CHANGES. ERROR BARS REPRESENT THE 95% CONFIDENCE IN-
TERVALS AROUND THE AVERAGE MSE VALUES, PROVIDING IN-
SIGHTS INTO THE UNCERTAINTY OF THE MEASUREMENTS.
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FIGURE 6: MEAN OF VFE OF THE CGAN MODEL WITH TRANSFER
LEARNING AND CASCADED DIFFUSION MODELS ACROSS TEST
DATA WITH SEEN AND UNSEEN BOUNDARY CONDITIONS AS THE
NUMBER OF HIGH-RESOLUTION TRAINING DATA DECREASES
ARE SHOWED. ERROR BARS REPRESENT THE 95% CONFIDENCE
INTERVALS AROUND THE AVERAGE VFE VALUES, PROVIDING IN-
SIGHTS INTO THE UNCERTAINTY OF THE MEASUREMENTS.
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FIGURE 7: MEDIAN OF CE OF THE CGAN MODEL WITH TRANS-
FER LEARNING AND CASCADED DIFFUSION MODELS ACROSS
TEST DATA WITH SEEN AND UNSEEN BOUNDARY CONDITIONS
FOR FEASIBLE DESIGNS AS THE NUMBER OF HIGH-RESOLUTION
TRAINING DATA DECREASES ARE SHOWED.

was created by removing 175 designs from each previously seen
boundary conditions.

Figure 5 illustrates the MSE performance of the cGAN with
transfer learning and cCDM across seen and unseen boundary
conditions as the number of high-resolution training data de-
creases. The cCDM outperformed the cGAN model, maintaining
its superiority even as the amount of training data decreased for
both sets of test data where the training dataset contains more than
102 samples. When the number of high-resolution data is limited
(less than 102), however, we observe a reversal in performance,
with the cGAN model with transfer learning outperforming the
cascaded diffusion model.

Similarly, Figure 6 shows how volume fraction error changes
across both models as the number of training data decreases.
Remarkably, the performance remains relatively stable up to
360 training data. However, beyond this threshold, a notable
decrease in performance is observed, showcasing the sensitiv-
ity of both models to a low amount of training data. Notably,
the cCDM consistently demonstrates superiority over the cGAN
model, when the training dataset contains more than 102 sam-
ples. However, we observe a reversal in performance when the
amount of high-resolution data is limited (less than 102), with the
cGAN model with transfer learning outperforming the cascaded
diffusion model under these conditions.

Figure 7 illustrates the median values of CE since median
value is less sensitive to outliers. We observed that the median
value of the cCDM demonstrates a smoother trend, with a gradual
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increase as the number of training data decreases. It is worth not-
ing that we only considered feasible designs that do not violate
volume fraction constraints for compliance error calculation in
Fig 7. For completeness, we also compare the median CE across
all designs (both including versus excluding infeasible designs)
and provide this in the supplement material. Figure 7 highlights
the consistent superiority of the diffusion model over the cGAN
model when the training dataset contains more than 102 samples.
However, similar to other metrics the reversal in performance is
observed when the number of high-resolution data is limited (less
than 102), with the cGAN model with transfer learning outper-
forming the cCDM under these conditions. Another important
observation is that with only 48 designs, the median value of
CE for the cascaded diffusion model is eight orders of magni-
tude higher than that of the cGAN model. Moreover, with 24
training data, the cascaded diffusion model failed to predict any
feasible designs. However, as demonstrated in the supplementary
material, considering all predicted designs (ignoring constraint
violations) can lead to misleading conclusions, such as the best
performance with a training size of 24.

4.4 What is the effect of just the high-resolution model if
we use a low-resolution oracle prediction?
While the above results show how both generative models

perform (Low resolution plus subsequent High Resolution), it is
possible that deficiencies in the low-resolution model could be
impacting the overall results. In this section, we try to isolate the
effect of just the super-resolution in cCDM by providing ground
truth low-resolution samples generated by the adjoint solver
(SIMP method) in place of the low-resolution design produced
by the first stage of the conditional generative model—we refer to
this setup as the “Super Resolution (SR) Model using SIMP,” in
constrast to our joint cCDM model. The evaluation focuses on as-
sessing whether the low-resolution generative model’s accuracy
influences the performance of the multi-resolution model. The
motivation for this experiment is both scientific and practical: we
wish to understand the isolated causal effect of the Super Reso-
lution element of the pipeline, and in practice, it might be cheap
to generate good SIMP TO solutions such that the ML methods
may only be needed for higher resolution predictions.

Table 3 compares the error metrics under both scenarios
and shows that when using the upsampled low-resolution data,
both the pixel-wise error and physical metrics improve, except for
the compliance error in seen boundary conditions. Remarkably,
for compliance error in seen boundary conditions, the use of
upsampled low-resolution data results in predicting almost 200
more feasible designs. These observations suggest that improving
the performance of the low-resolution generative model could be
a good start for improving the cascading diffusion pipeline.

4.5 Limitations and Future Work
While our study demonstrates the effectiveness and general-

izability of the cCDM compared to the cGAN model with transfer
learning, several challenges remain. One important pitfall of the
diffusion model, in contrast to the cGAN model, is its computa-
tional inference time. For instance, our low-resolution diffusion
model on NVIDIA GeForce RTX 3080 Ti required 4.81 seconds,

whereas the high-resolution model took 10.93 seconds to gener-
ate a single topology. In comparison, the cGAN model only took
2.09 seconds to produce similar results on the same hardware.
Reducing the computational time of diffusion models is actively
under investigation [42] which could help for effectiveness of
cCDM.

Another significant limitation of our work is its focus on 2D
structural problems. Future research directions could include ex-
tending our model to address three-dimensional or more complex
problems, thereby broadening its applicability and impact. Addi-
tionally, a key challenge in using generative models for topology
optimization lies in incorporating objective values and ensur-
ing feasibility without imposing additional computational costs.
While some researchers have made progress in this area [7, 8, 25],
further investigations are needed to streamline this process and
minimize associated costs.

Furthermore, future work could explore quantifying the
tradeoff between the cost of low-resolution and high-resolution
samples, particularly regarding their impact on generative model
performance. Understanding this tradeoff could provide informa-
tion regarding the optimal ratio of sample types, thereby maxi-
mizing the effectiveness of generative models for multiresolution
tasks.

5. CONCLUSIONS
We proposed the cCDM to investigate the performance of

the diffusion model in the context of the multi-resolution for en-
gineering design problem. We benchmarked our model against
cGAN model with transfer learning. Our results demonstrate that
the cCDM outperforms the cGAN model in terms of capturing
finer details, preserving volume fraction constraints, and mini-
mizing compliance errors in multi-resolution task when there are
enough (more than 102 designs) high-resolution training data.
Furthermore, we studied the impact of training data size on both
models’ performance. While both models showed a decrease in
performance with reduced training data, the cCDM lost its supe-
riority to cGAN model with transfer learning in limited training
data and we found the breakeven point for this change. While
we showed that the diffusion model might produce the best pixel-
wise performance in low-resolution and high-resolution it does
not guarantee the best performance in design metrics. Also, our
experiment isolating the effect of the low-resolution generative
model on the downstream super resolution tasks showed that
meaningful improvements in the low-resolution model can sig-
nificantly improve the joint accuracy of our cascaded pipeline.
In conclusion, our study underscores the potential of cCDM as
effective frameworks for multi-resolution inverse design problem
tasks offering superior performance and generalizability com-
pared to cGAN model with transfer learning when there exists
enough high-resolution training data.
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Model Boundary Condition Average MSE (×10−4) Average VFE (×10−4) Median CE (×10−2)

SR Model using SIMP Seen 42.69 ± 6.51 49.16 ± 2.87 1.13 ± 0.12
Unseen 103.38 ± 9.65 66.9 ± 4.85 1.62 ± 0.26

cCDM Seen 44.96 ± 6.36 99.11 ± 5.32 0.39 ± 0.20
Unseen 465.14 ± 23.57 464.65 ± 29.27 10.44 ± 5.40

TABLE 3: PERFORMANCE METRICS COMPARISON IN HIGH RESOLUTION (128X128) ON SEEN AND UNSEEN BOUNDARY CONDITIONS FOR
MODEL ISOLATED GENERATIVE MODEL AND CASCADED MODEL. VALUES AFTER ± INDICATE THE 95 % CONFIDENCE INTERVAL AROUND
AVERAGES/MEDIANS
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FIGURE 8: COMPARISON THE MEDIAN OF CE BETWEEN THE
CGAN MODEL WITH TRANSFER LEARNING AND THE CASCADED
DIFFUSION MODELS ACROSS SEEN TEST DATASETS WHEN THE
MODELS’ PREDICTION INCLUDES/EXCLUDES INFEASIBLE DE-
SIGNS.
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