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Multi-Agents Cooperative Target Tracking Under
Physical Attacks With Environment-Aware

Dynamic Constraints
Zhongjun Hu , Jesse B. Hoagg , Senior Member, IEEE, and Xu Jin , Senior Member, IEEE

Abstract—In this work, we consider a cooperative target
tracking problem by multi-agents in a 3D space, under dis-
ruptions from multiple physical attackers, where the target and
physical attackers are intelligent, that is, they adjust velocities
based on relative coordinates with agents and agents’ velocities.
Due to the presence of physical attackers, some safety and
performance constraint requirements cannot be merely constant
or time-varying. Specifically, safety constraint requirements on
inter-agent distances and performance constraint requirements
on formation tracking errors are environment-aware and dynamic,
which depend on distances between agents and physical attackers.
We propose a neural network-based adaptive cooperative control
framework for the agents, which incorporates a universal barrier
function to handle safety and performance constraints. We
show that formation tracking errors are uniformly ultimately
bounded, while all safety and performance constraints are met.
A comparative simulation study further illustrates the efficacy of
the proposed framework.

Note to Practitioners—Cooperative target tracking control for
multi-agent systems has gained significant attention due to its
real-world applications. In practice, target-tracking tasks are
often carried out in complex environments, where multiple
physical attackers can fly nearby to disrupt the agents. Moreover,
the target and attackers often possess a certain level of intelli-
gence, making the target more difficult to track, complicating
an already difficult problem. Thus, most control frameworks in
the literature, which assume targets and attackers have constant
or time-varying velocities, are not effective to address real-world
operational complexities. Additionally, in complex environments,
certain constraint requirements need to be environment-aware
and dynamic, instead of being mere constants or time-varying.
To address these practical challenges, this work proposes a
neural network-based adaptive cooperative control framework
that integrates a universal barrier function to ensure that all
safety and performance constraints are met. Finally, we consider
two scenarios in the simulation study to further validate the
efficacy of the proposed control framework.
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NOMENCLATURE

Na Number of attackers (Na ≥ 2).
Nu Number of agents (Nu ≥ 2).
pi Velocity of the ith agent (i ∈ {1, · · · ,Nu}).
qa Center of attacker set defined in (37).
qak Position of the kth physical attacker (k ∈

{1, · · · ,Na}).
qc qc ,

1
Nu

PNu
i=1 qi, centriod of all agents.

qi Position of the ith agent.
qt Position of the target.
qu Center of agent set defined in (35).
ηau, ηti, ηei j Transformed error variables defined in (5)

and (7), respectively.
Ωa Constant constraint in control objective

(CO1).
Ωdtc Environment-aware dynamic performance

constraint in control objective (CO4).
ΩHi j,ΩLi j Environment-aware dynamic safety con-

straints in control objective (CO3).
Ωti Constant constraint in control objective

(CO2).
Πtc Transformed error variable defined in (9).

I. INTRODUCTION

A. Motivation

COOPERATIVE target tracking by multi-agents has a
range of applications, including security management

[1], surveillance [2], environment monitoring [3], and beyond.
In recent years, there has been a fruitful discussion on this
topic, including [4], [5], [6], [7]. In realistic operations of
cooperative target tracking, agents can be disrupted by mul-
tiple physical attackers, making the target more difficult to
track. Such physical attackers not only make the environment
significantly more complex, but also render the handling of
safety/performance constraints critically important. However,
the presence of physical attackers and their effects on the
safety/performance constraints have not been studied in the
aforementioned literature.
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To handle state constraints, common methods include con-
trol barrier functions (CBFs) [8], [9], [10], [11], barrier
functions/barrier Lyapunov functions (BLFs) [12], [13], [14],
[15], and model predictive control (MPC) methods [16], [17],
[18], [19], [20]. However, these algorithms only deal with
constant or time-varying constraint requirements, which are
often conservative and cannot respond to environmental factors
that are not simply time-varying. In the presence of multiple
physical attackers, some constraint requirements need to be
dynamic, in order to quickly adapt to the complex environ-
ment. For example, when there are unruly human drivers
(regarded as physical attackers) disrupting an autonomous
vehicle platoon, safety distance between autonomous vehicles
should adapt to mitigate such attacks. Here the safety distance
is influenced by the presence of physical attackers, which is not
simply constant or time-varying, but instead are environment-
aware and dynamic.

B. Related Work

There are studies considering cooperative target tracking
control for multi-agent systems. For example, [21] proposes
a cooperative target fencing control framework for multi-
ple unmanned aerial vehicles. However, this work does not
account for constraint requirements on the vehicles. In [22],
authors employ a distance-based formation control with a
collision-avoidance potential function to tackle the collabora-
tive target tracking problem for multiple autonomous surface
vehicles. However, this method cannot deal with the coop-
erative target tracking problem when the number of agents
exceeds three. The work in [23] presents a target fencing
control strategy for multiple vehicles, but it only addresses
constant constraint requirements. In [24], BLFs are used to
address safety constraint requirements for each agent with its
neighboring agents rather than all other agents. This limitation
implies that collision avoidance and connectivity between an
agent and rest of the group may not be guaranteed during
the target tracking operation. A safety-critical cooperative
target enclosing control framework for multiple unmanned
surface vehicles is proposed in [25] to handle multiple constant
constraint requirements which requires high computation cost
and faces feasibility problem. In conclusion, none of these
studies can handle the cooperative target tracking problem
of multi-agent systems with environment-aware and dynamic
constraint requirements, especially in the presence of physical
attackers.

C. Contributions

This article considers a 3D cooperative target tracking prob-
lem by a team of autonomous agents with multiple constraint
requirements, in the face of multiple physical attackers. The
goal is to enable agents to perform centriod-based target
tracking (i.e., cooperative target tracking) while maintaining
desired inter-agent distances (i.e., formation tracking). Under
the proposed control framework, formation tracking errors
for the agents are uniformly ultimately bounded, with all
constraint requirements met.

The main contributions can be summarized as follows:

• Environment-aware and dynamic constraints: In this
work, the performance constraint requires that the cen-
triod of agents needs to be close to the target. However,
when attackers move close to the target, agents must
prioritize safety by retreating from the target to avoid
collisions with attackers. In such a scenario, a constant or
time-varying performance constraint may conflict with the
safety constraint requirements. To address this issue, the
proposed control framework introduces an environment-
aware and dynamic performance constraint function that
can be relaxed when the target is close to attackers.
See Remarks 5 and 7, and control objective (CO4) for
more discussion. Moreover, in this work safety constraint
requirements on inter-agent distances depend on the
distances from attackers, hence environment-aware and
dynamic. This consideration is inspired by the concept
of “cohesion tactics” [26], a behavior observed in certain
species, such as antelopes and zebras. In such species,
individuals instinctively stay close together to enhance
safety and protection, thereby decreasing the risk of
being hunted by predators. Similarly, our approach adopts
this principle to enhance group cohesion and improve
resilience in the presence of attackers. See Remark 6,
and control objective (CO3) for more discussion.

• Intelligent behavior modeling: In this work, the target
and attackers possess intelligence and can adjust veloc-
ities based on relative coordinates with the agents and
agents’ velocities. Thus, [23], [24], [25], [27], which con-
sider target and obstacles with time-varying velocity are
inadequate in addressing the cooperative target tracking
problem considered in this work. See Assumptions 3 and
4, and Remarks 2 and 3 for more discussion.

• Neural network-based adaptive constrained control
framework: Universal barrier function (UBF) is utilized
to address different constraint requirements in a unified
framework. Adaptive laws integrated with radical basis
function neural networks (RBFNNs) are designed to
estimate the unknown attacker and target velocities.

D. Difference

Recently there has been some work on “adaptive safety”
using control barrier functions [28], [29], [30], [31], where
the word “adaptive” means “adaptation” to parametric system
uncertainties. These approaches use constant or time-varying
safe sets, which differ fundamentally from the environment-
aware and dynamic constraints that respond to physical
attackers.

It is also worth noting that the cooperative target track-
ing problem in this work differs from traditional multi-
player/multi-agent pursuit-evasion games [32], [33], [34]:
• Pursuit-evasion games aim to obtain optimal strategic

policies for all players. Whereas in this work, the target
and attackers cannot be controlled, and the control design
is focused on the agents.

• Existing pursuit-evasion strategies cannot effectively deal
with environment-aware and dynamic constraint require-
ments in the presence of intelligent physical attackers.
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The problem here is also different from multi-agent planning
in dynamic environment [35], [36], [37] and multi-agent
formation with dynamic obstacles [38], [39], [40], [41]. Major
differences include:
• Planning alone cannot guarantee that the multi-agent sys-

tem can perfectly track the planned trajectory/formation
at all time. In this work, consideration of dynamic envi-
ronment due to physical attackers is integrated into the
environment-aware and dynamic constraint requirements,
so as to ensure satisfaction of constraints at all time.

• “Dynamic environment/obstacles” in the aforementioned
literature only addresses static or time-varying environ-
ment obstacles, where the environment is independent
of the multi-agent system. In this work, the physical
attackers are dynamic and adjust their velocities based on
relative coordinates with agents and agents’ velocities.

E. Organization

The remainder of this work is organized as follows. Sec-
tion II presents notations and lemmas. Section III gives
problem formulation including system kinematics, intro-
duction of agent and attacker sets, and control objective.
Section IV introduces radical basis function neural networks
and universal barrier function, followed by the controller
design and theoretic analysis. Section V presents simulation
studies to illustrate the theoretical results. The Appendix
contains some algebraic details and proof procedures for the
related proposition.

II. NOTATIONS AND LEMMAS

A. Notations

Let R and R+ be the real and positive number sets,
respectively. Define R≥0 , R

+ ∪ {0}, and let Im denote the
m × m identity matrix. Moreover, (·)T is the transpose of (·),
| · | represents absolute values for scalars, and ‖ · ‖ represents
Euclidean norms for vectors and induced norms for matrices.
In addition, ⊗ represents the Kronecker product. For any
matrix A ∈ Rn×m where A = [A1, · · · , Am] and A j ∈ R

n,
j = 1, · · · ,m, the vector operator vec(·) gives vec(A) =

[AT
1 , · · · , A

T
m]T ∈ Rnm. Furthermore, S2 = {x ∈ R3 | ‖x‖ = 1} is

a set of unit vectors in R3. The distance between q1 ∈ R
3

and q2 ∈ R
3 is defined as dist(q1, q2) , ‖q1 − q2‖, the

distance between a point q1 ∈ R
3 and a set S1 ⊆ R

3 is
defined as dist(q1,S1) , inf

˚
‖q1 − ζ1‖

ˇ̌
ζ1 ∈ S1

	
, and the

distance between two sets S1 ⊆ R
3 and S2 ⊆ R

3 is defined
as dist(S1,S2) , inf

˚
‖ζ1 − ζ2‖

ˇ̌
ζ1 ∈ S1, ζ2 ∈ S2

	
.

B. Lemmas

The following lemmas are required.
Lemma 1: ([42]) Let A ∈ Rn×m, B ∈ Rm×l, and C ∈ Rl×k.

Then vec(ABC) = (CT ⊗ A)vec(B).
For the next lemma, let ρ > 0, and consider softminρ :
R× · · ·×R→ R and softmaxρ : R× · · ·×R→ R defined by

softminρ(d1, · · · , dN) , −
1
ρ

ln

"
NX

i=1

exp(−ρdi)

#
,

softmaxρ(d1, · · · , dN) ,
1
ρ

ln

"
NX

i=1

exp(ρdi)

#
,

which are continuously differentiable with respect to di (i =

1, · · · ,N).
Lemma 2: ([43], [44], [45]) Let d1, . . . , dN ∈ R. Then, the

following statements hold:
1) softminρ(d1, · · · , dN) ≤ min{d1, · · · , dN}.
2) max{d1, · · · , dN} ≤ softmaxρ(d1, · · · , dN).
3) limρ→∞ softminρ(d1, · · · , dN) = min{d1, · · · , dN}.
4) limρ→∞ softmaxρ(d1, · · · , dN) = max{d1, · · · , dN}.
In other words, softminρ and softmaxρ are smooth approx-

imations of the minimum and maximum, respectively.

III. PROBLEM FORMULATION

A. System Kinematics

In this subsection, we introduce kinematics for agents, the
target, and physical attackers.

First, consider Nu ≥ 2 agents in the multi-agent system (for
example, unmanned aerial vehicles), where any two agents can
communicate with each other. The ith agent (i = 1, · · · ,Nu)
has the following kinematics

q̇i(t) = pi(t) + ξi(t), qi(0) = qi0, (1)

where t ≥ 0, qi0 ∈ R
3 is the initial position, qi(t) ∈ R3 and

pi(t) ∈ R3 are the agent’s position and control, respectively.
Moreover, ξi(t) ∈ R3 is the external disturbance. Unless
otherwise stated, the subscripts i and j used in this work
belongs to the set i, j ∈ {1, · · · ,Nu}, j , i.

Assumption 1: ([46], [47]) The external disturbance ξi is
continuous with unknown bound (i.e., there exists a positive
constant ξ̄i such that ‖ξi‖ ≤ ξ̄i).

Assumption 2: ([48], [49], [50], [51]) ‖pi‖ > 0.
Remark 1: Assumption 2 comes from practical consid-

erations and is commonly adopted in literature addressing
autonomous vehicles [48], [51], surface/underwater ships [49],
and fixed-wing aerial vehicles [50], etc.

The target to be tracked by agents has the kinematics

q̇t(t) = pt(t), qt(0) = qt0, (2)

where t ≥ 0, qt0 ∈ R
3 is the initial position, qt(t) ∈ R3 and

pt(t) ∈ R3 are the target’s position and velocity, respectively.
Assumption 3: The target’s velocity pt is continuous, subject

to saturation, and dependents on agents’ velocities and relative
positions. Specifically,

pt = sat(ut(Zt)) =

8<:p̄t
ut(Zt)
‖ut(Zt)‖

, ‖ut(Zt)‖ ≥ p̄t,

ut(Zt), ‖ut(Zt)‖ < p̄t,

where Zt = [· · · , q̇T
i , (qi − qt)T, · · ·„ ƒ‚ …

i=1,··· ,Nu

]T ∈ R6Nu , ut : R6Nu → R3,

and p̄t > 0 is the target’s maximum speed. Furthermore, pt
and p̄t are unknown.

Remark 2: Assumption 3 indicates that the target is intel-
ligent. Define the centriod of all agents as qc ,

1
Nu

PNu
i=1 qi.

For instance, if the target wants to escape from qc, then it can
select its strategy as ut = q̇c − Kt(qc − qt) and pt = sat(ut),
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Fig. 1. A graphical illustration for the target velocity in Remark 2.

Fig. 2. A graphical illustration for the kth attacker velocity in Remark 3.

where Kt > 0, as illustrated in Figure 1. Control frameworks
considering the moving targets with either unknown constant
velocity [23] or time-varying velocity [24], [25], [27] are inad-
equate in addressing the cooperative target tracking problem
in this work.

To disrupt the multi-agent system target tracking operation,
Na ≥ 2 physical attackers are present, where the kth attacker
(k = 1, · · · ,Na) has the kinematics

q̇ak(t) = pak(t), qak(0) = qak0, (3)

where t ≥ 0, qak0 ∈ R
3 is the initial position, qak(t) ∈ R3 and

pak(t) ∈ R3 are the position and velocity, respectively. Unless
otherwise stated, subscript k used in this work belongs to the
set k ∈ {1, · · · ,Na}.

Assumption 4: The kth attacker’s velocity pak is continuous,
subject to saturation, and depends on agents’ velocities and
relative positions. Specifically,

pak = sat(uak(Zak))

=

8<:p̄ak
uak(Zak)
‖uak(Zak)‖

, ‖uak(Zak)‖ ≥ p̄ak,

uak(Zak), ‖uak(Zak)‖ < p̄ak,

where Zak = [· · · , q̇T
i , (qi − qak)T, · · ·„ ƒ‚ …

i=1,··· ,Nu

]T ∈ R6Nu , uak : R6Nu →

R3, and p̄ak > 0 is the kth attacker’s maximum speed.
Furthermore, pak and p̄ak are unknown.

Remark 3: Assumption 4 means the attackers are intelligent.
For instance, if the kth attacker intends to collide with the
ith agent, then it can choose its attack strategy as uak =

q̇i + Kak(qi − qak) and pak = sat(uak), where Kak > 0, which
is a strategy similar to the hawk’s hunting/catching behavior
in nature [52] (Figure 2). Well-established obstacle-avoidance
mechanisms that only consider static or time-varying obsta-

Fig. 3. A graphical illustration for agent set Bu(t) and attacker set Ba(t)
where purple crosses represent positions of attackers and black dots represent
positions of agents.

Fig. 4. A brief graphical illustration for multi-agents’ cooperative target
tracking in the presence of multiple physical attackers.

cles [38], [39], [40], [41] cannot effectively deal with such
intelligent attackers.

Assumption 5: Agents can detect positions of the target and
attackers.

Remark 4: This assumption is commonly used in work that
considers collision avoidance such as [53], [54], and [55]. In
practice, this assumption can be met by implementing devices
such as cameras and LiDAR sensors on the agents.

B. Agent and Attacker Sets

In practice, agents and attackers exhibit swarm behaviors.
Therefore, we introduce sets (balls) for agents and attackers.
Specifically, for all t ≥ 0, define Bu(t) ⊆ R3 and Ba(t) ⊆
R3 to include Nu agents and Na attackers, respectively. See
Figure 3 for an illustration (the target is omitted in Figure 3
for graphical simplicity), where expressions for the set centers
qu(t) and qa(t) are given in (35) and (37) in Appendix A, and
expressions for the radii Ru(t) and Ra(t) are given in (36) and
(38) in Appendix A.

C. Control Objective

To track the target cooperatively, the agents need to fence
the target with a desired formation in the presence of physical
attackers (Figure 4), subject to multiple safety and perfor-
mance constraints. Specifically, let Ωa ∈ R

+ and Ωti ∈

R+, such that Ωa < ‖qu(0) − qa(0)‖ − Ru(0) − Ra(0) and
Ωti < ‖qt(0) − qi(0)‖. Moreover, define dai , dist(qi,Ba),
and let ddi j(dai, da j) : R≥0 × R≥0 → R+ be the desired
distance between the ith and jth agents, which is at least once
continuously differentiable with bounded partial derivatives.
Let ΩHi j(dai, da j) : R≥0 × R≥0 → R

+ and ΩLi j(dai, da j) : R≥0 ×
R≥0 → R

+, which are at least once continuously differentiable
with bounded partial derivatives, such that ΩLi j < ddi j < ΩHi j

and ΩLi j(dai(0), da j(0)) < ‖qi(0) − q j(0)‖ < ΩHi j(dai(0), da j(0)).
Furthermore, let ωtc(t) : R≥0 → R+ be bounded and
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at least once continuously differentiable with bounded time
derivatives, such that ‖qc(0) − qt(0)‖ < ωtc(0). Finally, let
Ωdtc(ωtc,Ra,Ωa, qt, qa) : R+ × R+ × R+ × R3 × R3 → R+

be at least once continuously differentiable with bounded
partial derivatives, such that Ωdtc > Ra + Ωa − ‖qt − qa‖ and
‖qc(0) − qt(0)‖ < Ωdtc(ωtc(0),Ra(0),Ωa, qt(0), qa(0)).

The control objective is to design a control framework for
the agents such that

(CO1) ‖qu − qa‖ > Ru + Ra + Ωa, ∀t ≥ 0;
(CO2) ‖qi − qt‖ > Ωti, ∀t ≥ 0;
(CO3) ΩLi j(dai, da j) < ‖qi − q j‖ < ΩHi j(dai, da j), ∀t ≥ 0;
(CO4) ‖qc − qt‖ < Ωdtc(ωtc,Ra,Ωa, qt, qa), ∀t ≥ 0.
(CO5) There exists ε > 0 such that lim supt→∞

ˇ̌
‖qi − q j‖ −

ddi j(dai, da j)
ˇ̌
≤ ε, and ε can be made arbitrarily small by choice

of control parameters.
Control objectives (CO1)–(CO3) are different safety con-

straint requirements. Specifically, (CO1) requires that agents
keep a safe distance from attackers. (CO2) requires that the
ith agent avoids collision with the target. (CO3) requires that
inter-agent distances cannot be either too small or too large. In
addition, (CO4) is a performance requirement, which requires
the centroid of the agents should not be far away from the
target. Finally, (CO5) requires that the formation tracking error
between the ith and jth agents can converge into a region close
to zero as time approaches infinity.

Proposition 1: If (CO1) is satisfied, then ‖qc − qt‖ > Ra +
Ωa − ‖qt − qa‖.

Proof: See Appendix B. �

Remark 5: Proposition 1 implies that if the target is near to
or enclosed by attackers, then the centroid of all agents cannot
be arbitrarily close to the target because of (CO1). This means
(CO1) (safety) has a higher priority over (CO4) (performance).
See Remark 7 for further discussion.

Remark 6: It is worth noting that (CO3) involves
environment-aware and dynamic safety constraint require-
ments, which are attacker-dependent and can adapt to the
complex operation environment. Same is true for the desired
inter-agent distance ddi j(dai, da j). For instance, when attackers
are nearby, agents can employ a more compact formation
to avoid the attackers. Therefore, as attackers get closer, the
desired inter-agent distances need to decrease, and the region
(ΩLi j, ΩHi j) in (CO3) needs to become smaller. In this case,
let ldi j ∈ R

+, λi j ∈ (0, 1), αi j ∈ R
+, ι ∈ R+, Ω̄i j ∈ R

+, and
Ωi j ∈ R

+, such that 0 < Ωi j < Ωi j + 2ι < Ω̄i j. We can select
ddi j as

ddi j = ldi j +
ldi j(λi j − 1)

2
�
exp(−αi jdai) + exp(−αi jda j)

�
,

such that

lim
dai,da j→∞

ddi j = ldi j, lim
dai,da j→0

ddi j = λi jldi j < ldi j.

In (CO3) we can select

ΩHi j = Ω̄i j −
ι

2
�
exp(−αi jdai) + exp(−αi jda j)

�
,

ΩLi j = Ωi j +
ι

2
�
exp(−αi jdai) + exp(−αi jda j)

�
,

Fig. 5. A graphical illustration for the performance constraint function in
Remark 7. When Ra+Ωa−‖qt−qa‖ < ωtc, the performance constraint function
Ωdtc(ωtc,Ra,Ωa, qt, qa) is close to the user-defined time-varying function ωtc.

such that

lim
dai,da j→∞

ΩHi j = Ω̄i j, lim
dai,da j→∞

ΩLi j = Ωi j,

lim
dai,da j→0

ΩHi j = Ω̄i j − ι, lim
dai,da j→0

ΩLi j = Ωi j + ι.

Remark 7: (CO4) involves an environment-aware and
dynamic performance constraint requirement. Note that due
to Proposition 1, if we only require ‖qc − qt‖ < ωtc for some
time-varying ωtc, a conflict between (CO1) and (CO4) can
occur when ωtc < Ra + Ωa − ‖qt − qa‖. Hence, the design
of performance constraint in (CO4) needs to take attacker
positions into consideration, i.e., if attackers are close to the
target, agents need to move away from the target in order
to avoid collisions with attackers. In this case, let µtc ∈ R

+

and ρtc ∈ R
+, we can design Ωdtc as Ωdtc(ωtc,Ra,Ωa, qt, qa) =

softmaxρtc

�
Ra + Ωa − tanh(‖qt − qa‖)‖qt − qa‖ + µtc, ωtc

�
. A

graphical illustration of this design is shown in Figure 5.
Remark 8: The control objective (CO5) implies that the

formation operation in this work aims to maintain desired
inter-agent distances but does not prescribe a fixed geomet-
ric pattern in a global coordinate frame. Thus, the term
“formation” in this work refers specifically to a “distance-
based formation” [22], [56], [57], [58]. When (CO5) is
satisfied, the overall formation may undergo translation or
rotation while preserving its internal structure.

IV. CONTROLLER DESIGN AND MAIN RESULTS

A. Radical Basis Function Neural Networks (RBFNNs)

We will use RBFNNs [59], [60], [61], [62], [63] to estimate
unknown velocities of the target and each attacker. Specifi-
cally, for continuous nonlinear functions pt and pak defined
over a compact set S Zt ⊂ R

6Nu and S Zak ⊂ R
6Nu , respectively,

there exist corresponding RBFNNs WT
t Bt and WT

akBak given as

pt = WT
t Bt(Zt) + εt(Zt),

pak = WT
akBak(Zak) + εak(Zak), (4)

where Wt ∈ R
γ×3 and Wak ∈ Rγ×3 are ideal weight

matrices, with γ ≥ 1 being the number of neural network
nodes, Bt(Zt) = [b1(Zt), · · · , bγ(Zt)]T ∈ Rγ and Bak(Zak) =
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[bk1(Zak), · · · , bkγ(Zak)]T ∈ Rγ are basis function vectors, and
εt(Zt) ∈ R3 and εak(Zak) ∈ R3 are approximation errors
satisfying ‖εt‖ ≤ ε̄t and ‖εak‖ ≤ ε̄ak, where ε̄t > 0 and ε̄ak > 0 are
given precision levels. The basis functions bl(Zt) and bkl(Zak)
are selected as the following Gaussian-like functions [64], [65]

bl(Zt) = exp
�
−

(Zt − νl)T(Zt − νl)
ζ2

l

�
,

bkl(Zak) = exp
�
−

(Zak − νkl)T(Zak − νkl)
ζ2

kl

�
,

with νl ∈ R
6Nu and νkl ∈ R

6Nu being the receptive field’s center
and ζl ∈ R and ζkl ∈ R being the width of the Gaussian-like
functions bl(Zt) and bkl(Zak), respectively.

B. Universal Barrier Function

First, define dau , ‖qu − qa‖, Ωau , Ru + Ra + Ωa, and
dti , ‖qt − qi‖. To address the safety constraints in (CO1) and
(CO2), the following transformed variables are introduced:

ηau =
1

dau −Ωau
, ηti =

1
dti −Ωti

. (5)

Moreover, define dei j , ‖qi − q j‖ − ddi j, ΩeLi j , ddi j − ΩLi j,
and ΩeHi j , ΩHi j − ddi j. Control objective (CO3) is equivalent
to

−ΩeLi j < dei j < ΩeHi j. (6)

Hence, a transformed variable is designed as

ηei j =
ΩeHi jΩeLi jdei j

(ΩeHi j − dei j)(ΩeLi j + dei j)
. (7)

Next, we will consider a transformed variable for the perfor-
mance constraint requirement in (CO4). As well documented
in the literature [66], [67], [68], using target fencing error
‖qt−qc‖ directly in the controller design will cause singularity
issues, since its derivative yields d(‖qt−qc‖)

dt = 1
‖qt−qc‖

(qc−qt)T(q̇c−

q̇t), which is not continuous when ‖qt − qc‖ = 0. To bypass
such a problem, define Dtc ,

1
2‖qt−qc‖

2 and ΩDtc ,
1
2 Ω2

dtc. The
performance constraint requirement in (CO4) is equivalent to

Dtc < ΩDtc. (8)

Therefore, we can design the following transformed variable

Πtc =
ΩDtcDtc

ΩDtc − Dtc
. (9)

Now, we design the UBF as

Vq = Πtc +
1
2
η2

au +

NuX
i=1

0@1
2
η2

ti +

NuX
j=1, j,i

1
2
η2

ei j

1A . (10)

If Vq in (10) is shown to be uniformly bounded through closed-
loop analysis, it implies that the transformed variables Πtc, ηau,
ηti, and ηei j are uniformly bounded, which then implies that
the control objectives (CO1)-(CO4) are satisfied.

More discussion on the UBF and how it compares with
other barrier structures can be seen in details in [69].

Fig. 6. High-level block diagram of the overall control framework.

C. Analysis and Main Results

Here we present the cooperative target tracking controller
design and main theoretical results. Figure 6 presents a brief
overview of the proposed control framework.

For V̇q, from (10) we have

V̇q = Π̇tc + ηauη̇au +

NuX
i=1

0@ηtiη̇ti +

NuX
j=1, j,i

ηei jη̇ei j

1A . (11)

We will analyze the terms in (11) sequentially. First, in (11),
Π̇tc can be written as

Π̇tc =

 
NuX
i=1

∂Πtc

∂qi
q̇i

!
+
∂Πtc

∂qt
q̇t +

∂Πtc

∂ωtc
ω̇tc

+

 
NaX

k=1

∂Πtc

∂qak
q̇ak

!
, (12)

where

∂Πtc

∂qi
= −

1
Nu

∂Πtc

∂Dtc
(qt − qc)T,

∂Πtc

∂qt
=
∂Πtc

∂Dtc
(qt − qc)T +

∂Πtc

∂ΩDtc
Ωdtc

∂Ωdtc

∂qt
,

∂Πtc

∂ωtc
=

∂Πtc

∂ΩDtc
Ωdtc

∂Ωdtc

∂ωtc
,

∂Πtc

∂qak
= Ωdtc

∂Πtc

∂ΩDtc

�
∂Ωdtc

∂Ra

∂Ra

∂qak
+
∂Ωdtc

∂qa

∂qa

∂qak

�
.

Furthermore, let Eau ,
qu−qa

dau
∈ S2, taking time derivative of

ηau in (11) yields

η̇au =

 
NuX
i=1

∂ηau

∂qi
q̇i

!
+

 
NaX

k=1

∂ηau

∂qak
q̇ak

!
, (13)

where

∂ηau

∂qi
=
∂ηau

∂dau
ET

au
∂qu

∂qi
+

∂ηau

∂Ωau

∂Ωau

∂Ru

∂Ru

∂qi
,

∂ηau

∂qak
=
∂ηau

∂Ωau

∂Ωau

∂Ra

∂Ra

∂qak
−
∂ηau

∂dau
ET

au
∂qa

∂qak
.
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Next, let Eti ,
qt−qi

dti
∈ S2, η̇ti in (11) can be expressed as

η̇ti =
∂ηti

∂dti
ET

ti (q̇t − q̇i) =
∂ηti

∂qi
q̇i +

∂ηti

∂qt
q̇t, (14)

where
∂ηti

∂qi
= −

∂ηti

∂dti
ET

ti ,
∂ηti

∂qt
=
∂ηti

∂dti
ET

ti .

Finally, let Edi j ,
qi−q j

‖qi−q j‖
∈ S2, Eai ,

qi−qa
dai
∈ S2, Ea j ,

q j−qa

da j
∈ S2. η̇ei j in (11) yields

η̇ei j =
∂ηei j

∂qi
q̇i +

∂ηei j

∂q j
q̇ j +

NaX
k=1

�
∂ηei j

∂dai

∂dai

∂qak

+
∂ηei j

∂da j

∂da j

∂qak

�
q̇ak, (15)

where
∂ηei j

∂qi
=
� ∂ηei j

∂ΩeHi j

∂ΩeHi j

∂dai
+

∂ηei j

∂ΩeLi j

∂ΩeLi j

∂dai

−
∂ηei j

∂dei j

∂ddi j

∂dai

�
ET

ai +
∂ηei j

∂dei j
ET

di j,

∂ηei j

∂q j
=
� ∂ηei j

∂ΩeHi j

∂ΩeHi j

∂da j
+

∂ηei j

∂ΩeLi j

∂ΩeLi j

∂da j

−
∂ηei j

∂dei j

∂ddi j

∂da j

�
ET

a j −
∂ηei j

∂dei j
ET

di j,

∂ηei j

∂dai

∂dai

∂qak
=
�∂ηei j

∂dei j

∂ddi j

∂dai
−

∂ηei j

∂ΩeHi j

∂ΩeHi j

∂dai

−
∂ηei j

∂ΩeLi j

∂ΩeLi j

∂dai

�� ∂Ra

∂qak
+ ET

ai
∂qa

∂qak

�
,

∂ηei j

∂da j

∂da j

∂qak
=
�∂ηei j

∂dei j

∂ddi j

∂da j
−

∂ηei j

∂ΩeHi j

∂ΩeHi j

∂da j

−
∂ηei j

∂ΩeLi j

∂ΩeLi j

∂da j

�� ∂Ra

∂qak
+ ET

a j
∂qa

∂qak

�
.

Now, we substitute Π̇tc in (12), η̇ti in (14), η̇au in (13), and
η̇ei j in (15) back into (11), which yields

V̇q =

NuX
i=1

 
∂Vq

∂qi
q̇i + GT

ti q̇t + gtcω̇tc +

NaX
k=1

GT
aikq̇ak

!
, (16)

where

∂Vq

∂qi
=
∂Πtc

∂qi
+ ηau

∂ηau

∂qi
+ ηti

∂ηti

∂qi
+

NuX
j=1, j,i

2ηei j
∂ηei j

∂qi
,

Gti ,
1

Nu

�
∂Πtc

∂qt

�T

+ ηti

�
∂ηti

∂qt

�T

, gtc ,
1

Nu

∂Πtc

∂ωtc
,

Gaik ,
1

Nu

�
∂Πtc

∂qak

�T

+
1

Nu
ηau

�
∂ηau

∂qak

�T

+

NuX
j=1, j,i

2ηei j

�
∂ηei j

∂dai

∂dai

∂qak

�T

.

By using (1) and Assumption 1, the term ∂Vq

∂qi
q̇i in (16) is

written as

∂Vq

∂qi
q̇i =

∂Vq

∂qi
(pi + ξi) ≤

∂Vq

∂qi
pi +





∂Vq

∂qi





ξ̄i, (17)

where ξ̄i is the unknown bound for external disturbance ξi

introduced in Assumption 1.
Furthermore, under Assumption 3 and Lemma 1, the term

GT
ti q̇t in (16) can be expressed as

GT
ti q̇t = GT

ti pt = GT
ti

�
WT

t Bt + εt

�
= GT

ti

h
WT

t Bti + WT
t

�
Bt − Bti

�
+ εt

i
= (Bti ⊗Gti)Tvec(WT

t ) + GT
ti

h
WT

t

�
Bt − Bti

�
+ εt

i
≤ (Bti ⊗Gti)Twt + ‖Gti‖(‖Wt‖

√
γ + ε̄t), (18)

where Bti , Bt(Xti) with Xti = qt−qi ∈ R
3, and wt , vec(WT

t ) ∈
R3γ.

Moreover, under Assumption 4 and Lemma 1, the term
GT

aikq̇ak in (16) can be rewritten as

GT
aikq̇ak = GT

aik pak = GT
aik

�
WT

akBak + εak

�
= GT

aik

h
WT

akBaik + WT
ak

�
Bak − Baik

�
+ εak

i
= (Baik ⊗Gaik)Tvec(WT

ak)

+ GT
aik

h
WT

ak

�
Bak − Baik

�
+ εak

i
≤ (Baik ⊗Gaik)Twak + ‖Gaik‖(‖Wak‖

√
γ + ε̄ak), (19)

where Baik , Bak(Xaik) with Xaik = qi − qak ∈ R
3, and wak ,

vec(WT
ak) ∈ R3γ.

Next, taking (17)–(19) into (16), V̇q yields

V̇q ≤

NuX
i=1

�
∂Vq

∂qi
pi + gtcω̇tc + GT

qiδi

�
, (20)

where

Gqi , [gεi, (Bti ⊗Gti)T, · · · , (Baik ⊗Gaik)T, · · ·„ ƒ‚ …
k=1,··· ,Na

]T,

δi , [ε̄i, wT
t , · · · , wT

ak, · · ·„ ƒ‚ …
k=1,··· ,Na

]T,

in which Gqi ∈ R
3γ(Na+1)+1, δi ∈ R

3γ(Na+1)+1, gεi ,




 ∂Vq

∂qi





 +

‖Gti‖ +
PNa

k=1 ‖Gaik‖, and ε̄i , maxk=1,··· ,Na

n
ξ̄i, ‖Wt‖

√
γ +

ε̄t, ‖Wak‖
√
γ+ε̄ak

o
. Note that δi is an unknown constant vector.

Now, consider Vp =
PNu

i=1
1
2 pT

i pi. Let Vqp = Vq + Vp, from
(20) we have

V̇qp ≤

NuX
i=1

(
pT

i

"�
∂Vq

∂qi

�T

+ ṗi

#
+ gtcω̇tc + GT

qiδi

)
, (21)

For the ith agent, the control law pi ∈ R
3 is designed as

ṗi = −Kpi pi −

�
∂Vq

∂qi

�T

−
pi

pT
i pi

�
gtcω̇tc + GT

qiδ̂i + Ktiη
2
ti

+
1

Nu
KtcΠtc +

1
Nu

Kauη
2
au +

NuX
j=1, j,i

Kei jη
2
ei j

�
,

pi =

Z t

0
ṗidτ+ pi0, (22)
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Fig. 7. Block diagram of the overall control algorithm.

where Kpi > 0, Kti > 0, Ktc > 0, Kau > 0, and Kei j > 0.
pi0 ∈ R

3, ‖pi0‖ > 0 is the initial velocity. δ̂i is the estimation
of δi introduced in (20).

Substituting the control law designed in (22) back into (21)
yields

V̇qp ≤

NuX
i=1

0@−Ktiη
2
ti −

NuX
j=1, j,i

Kei jη
2
ei j − Kpi pT

i pi −GT
qiδ̃i

1A
− KtcΠtc − Kauη

2
au, (23)

where δ̃i , δ̂i − δi, with the adaptive law for the estimator δ̂i

designed as
˙̂δi = nδiGqi − σδiδ̂i, (24)

where δ̂i(0) = δ̂i0 with δ̂i0 being the initial condition, nδi > 0,
and σδi > 0.

Now, let Vδ =
PNu

i=1
1

2nδi
δ̃T

i δ̃i, denote VMAS = Vqp + Vδ. For
the time derivative of VMAS we can get

V̇MAS ≤ −κ1VMAS + %1, (25)

where κ1 , mini, j=1,··· ,Nu, j,i
˚
Ktc, 2Kau, 2Kti, 2Kei j, 2Kpi, σδi

	
and %1 ,

PNu
i=1

σδi
2nδi

δT
i δi. The overall control algorithm can be

summarized into the block diagram shown in Figure 7.
The aforementioned design procedure leads to the following

theoretical result.
Theorem 1: With the control laws (22), and adaptive laws

(24), the multi-agent system described by (1) under Assump-
tions 1-5 will have following results:

1) The constraint requirements in (CO1)-(CO4) are met.
2) The target fencing error ‖qc−qt‖ is confined in the range

(26), as shown at the bottom of the next page, for all
time.

3) The transformed relative distance tracking error ηei j will
converge into the following set as t → ∞(

ηei j
ˇ̌
|ηei j| ≤ εe, εe ,

s
2%1

κ1

)
, (27)

which implies that relative distance tracking errors dei j

will converge into the following regionn
dei j | − εeLi j ≤ dei j ≤ εeHi j

o
, (28)

where εeHi j and εeLi j are expressed as

εeHi j

,

0B@ −
�
ΩeHi jΩeLi j − εe

�
ΩeHi j −ΩeLi j

��
+

s
Ω2

eHi jΩ
2
eLi j + ε2

e

�
ΩeHi j + ΩeLi j

�2

−2εeΩeHi jΩeLi j
�
ΩeHi j −ΩeLi j

�
1CA

2εe
,

εeLi j

,

0B@ −
�
ΩeHi jΩeLi j + εe

�
ΩeHi j −ΩeLi j

��
+

s
Ω2

eHi jΩ
2
eLi j + ε2

e

�
ΩeHi j + ΩeLi j

�2

+2εeΩeHi jΩeLi j
�
ΩeHi j −ΩeLi j

�
1CA

2εe
,

hence (CO5) is met.
4) The control laws (22) and adaptive laws (24) are all

uniformly bounded.
Proof: From (25), for t ≥ 0 we have

VMAS(t) ≤
�

VMAS0 −
%1

κ1

�
exp(−κ1t) +

%1

κ1
, (29)

where VMAS0 is the initial value of VMAS(t). The inequal-
ity in (29) implies that VMAS(t) ≤ V̄MAS, ∀t ≥ 0, where
V̄MAS , VMAS0+

%1
κ1

. The uniform boundedness of VMAS implies
boundedness of Πtc (defined in (9)), ηau, ηti (defined in (5)),
and ηei j (defined in (7)). Moreover, boundedness of ηau and
ηti implies (CO1) and (CO2) are met, and boundedness of ηei j

implies that −ΩeLi j < dei j < ΩeHi j, which implies that (CO3)
is achieved. Last but not least, boundedness of Πtc implies
Dtc < ΩDtc, which implies (CO4) is met.

Next, since (CO1) is met, Proposition 1 holds true. Further-
more, since (CO3) is met, the target fencing error is confined
in the range (26).

Moreover, from (25) we have lim supt→∞ VMAS ≤
%1
κ1

, hence

lim supt→∞ |ηei j| ≤

q
2%1
κ1

, therefore ηei j will converge to the
set (27) as time evolves.
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Note that the range in (28) can be arbitrarily small (Details
can be seen in Remarks 9 and 10). Thus, (CO5) can be
achieved with the proposed control framework. Now, recall
that ηei j =

ΩeHi jΩeLi jdei j

(ΩeHi j−dei j)(ΩeLi j+dei j)
, the set in (27) implies the set

(28).
Finally, uniform boundedness of VMAS implies boundedness

of adaptive estimates δ̂i in (22), and variables Gqi in (20).
Moreover, adaptive laws ˙̂δi in (24) are also uniformly bounded
due to the boundedness of δ̂i in (22) and Gqi in (20). �

Remark 9: In Theorem 1, using L’Hôpital’s rule yields

lim
εe→0

εeHi j = 0, lim
εe→0

εeLi j = 0. (30)

This implies that when the transformed error variable ηei j

converges into a small neighborhood of zero, the relative
distance tracking error dei j can converge to a region close to
zero.

Remark 10: To reduce the set size in (27), we need to select
large κ1 and small %1. To make κ1 large, we can select large
control gains Ktc, Kau, Kti, Kei j, and Kpi, and large adaptive
parameter σδi. To make %1 small, we can select large adaptive
parameters nδi.

V. SIMULATION STUDIES

In this section, we conduct simulations with a team of
Nu = 4 agents in the presence of Na = 3 physical attackers.
Units for position and velocity are m and m/s, respectively. The
initial positions of the agents, target, and attackers are q10 =

[0.5, 2.5, 1]T, q20 = [0.5, 0.5, −1]T, q30 = [2.5, −0.5, 2]T,
q40 = [2.5, 2.5, −2]T, qt0 = [5, 5, 12]T, qa10 = [5, 15, 55]T,
qa20 = [−5, 12, 55]T, and qa30 = [0, 11, 105]T. Besides, the
ith agent’s (i = 1, 2, 3, 4) initial velocity is pi0 = [1, 1, −1]T.
Moreover, the unknown disturbances for agents are ξi =

[0.105 sin(0.2t), 0.25 cos(0.2t), 0.3 cos(0.15t)]T, i = 1, 2, 3, 4.
The number of neural network nodes is chosen as γ = 4.

Basis functions in the Subsection IV-A are given as bl =

exp
h
−

(Xti−νl)T(Xti−νl)
ζ2

l

i
and bkl = exp

h
−

(Xaik−νkl)T(Xaik−νkl)
ζ2

kl

i
, where

i = 1, 2, 3, 4 is the index of agents, k = 1, 2, 3 represents the
index of attackers, and l = 1, 2, 3, 4 corresponds to the index
of neural network nodes. For these basis functions, the width
values are given as ζ1 = ζk1 = 2, ζ2 = ζk2 = 1, ζ3 = ζk3 = 0.5,
and ζ4 = ζk4 = 0.25. The receptive field’s centers are selected
as ν1 = νk1 = 20 ·13, ν2 = νk2 = 10 ·13, ν3 = νk3 = −10 ·13, and
ν4 = νk4 = −20 · 13, where 13 , [1, 1, 1]T and k = 1, 2, 3. The
control gains and design parameters are chosen as Ktc = 0.45,
Kau = 0.75, Kti = 0.05, Kei j = 0.75, Kpi = 0.075, nδi = 3.5,
and σδi = 0.35, where i, j = 1, 2, 3, 4, j , i.

For safety constraints, we select Ωa = 2.5 in (CO1), and
Ωti = 1.5 (i = 1, 2, 3, 4) in (CO2). As shown in Remark 6, for
(CO3) and (CO5) we design ΩHi j = Ω̄i j − 0.5ι[exp(−αi jdai) +
exp(−αi jda j)], ΩLi j = Ωi j + 0.5ι[exp(−αi jdai) + exp(−αi jda j)],

Fig. 8. The distance between center of agent set qu and center of attacker
set qa under M1 and M2 with safety constraint Ωau , Ru + Ra + Ωa.

Fig. 9. The distance between each agent and the target ‖qt − qi‖ and safety
constraint Ωti.

and ddi j = ldi j + 0.5 ldi j(λi j − 1)
h
exp

�
− αi j(dai − Ωa)) +

exp(−αi j(da j − Ωa)
�i

where Ω̄i j = 5.05exp(−0.15t) + 14.45,
Ωi j = 12.5exp(−0.25t) + 14.5, ι = 6.3, αi j = 0.1, ldi j = 14,
and λi j = 0.55. Additionally, for (CO4) we design Ωdtc =

softmaxρtc

�
Ra +Ωa − tanh(‖qt − qa‖)‖qt − qa‖+ µtc, ωtc

�
where

µtc = 15, ρtc = 1, and ωtc = 34.4exp(−0.6t) + 0.6.
We consider two simulation scenarios:
(1) Persistent attacks: attackers consistently disrupt agents;
(2) Temporary attacks: attackers disrupt agents for a limited

time before retreating.
In both simulation scenarios, the target’s velocity is pt =

sat(ut), ut = pc − Kt(qc − qt), which is unknown to agents,
where the saturation bound is p̄t = 2.5 and Kt = 500.

In order to show the effectiveness of our proposed control
framework, we conduct a comparative study with a coop-
erative target tracking controller [23] which only considers
constant constraint requirements for vehicles. This controller
is pi = φi+k1(qt−qi)+vi where v̇i = k2(qt−qi), φi = 1

‖qt−qi‖−1.5+P4
j=1, j,i

�
1

‖qi−q j‖−0.55 + 1
25−‖qi−q j‖

�
+
P3

k=1

�
1

‖qi−qak‖−2.5

�
, k1 =

n
‖qc − qt‖

ˇ̌
0 ≤ ‖qc − qt‖ < Ωdtc, when Ra + Ωa − ‖qt − qa‖ < 0;

Ra + Ωa − ‖qt − qa‖ < ‖qc − qt‖ < Ωdtc, when Ra + Ωa − ‖qt − qa‖ ≥ 0
o
. (26)
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Fig. 10. Relative distance between the ith and jth agents ‖qi −q j‖ under M1 and M2 with its desired signal ddi j and safety constraint functions ΩHi j and ΩLi j.

Fig. 11. The target tracking error ‖qt−qc‖ under M1 and M2 with its constraint
functions.

k2 = 0.45, and i = 1, 2, 3, 4. Besides, initial states of the target,
attackers, and agents are identical for both controllers. For
simplicity of expression, we denote our proposed controller as
M1, and the controller designed in [23] as M2 in the following
discussion.

A. Scenario 1: Persistent Attacks

In this scenario, multiple attackers continuously launch
physical attacks on agents. The kth attacker’s velocity (k =

1, 2, 3) is pak = sat(uak), uak = pk − Kak(qak − qk), which is
unknown to agents, where the saturation bound is p̄ak = 2 and
Kak = 1300. Simulation results are presented in Figures 8–
11. A YouTube video for the simulation process can also be
viewed at: https://youtu.be/zF4isCd-sQw (To view the video,
copy and paste the complete URL to a web browser).

Fig. 12. The distance between center of agent set qu and center of attacker
set qa under M1 and M2 with safety constraint Ωau , Ru + Ra + Ωa.

Fig. 13. The distance between each agent and the target ‖qt − qi‖ and safety
constraint Ωti.

Specifically, Figure 8 shows the distance between center
of agent set qu and center of attacker set qa, alongside with
Ωau , Ru + Ra + Ωa under M1 and M2. Under M1, ‖qu −
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Fig. 14. Relative distance between the ith and jth agents ‖qi −q j‖ under M1 and M2 with its desired signal ddi j and safety constraint functions ΩHi j and ΩLi j.

qa‖ remains larger than Ωau, indicating that (CO1) is met. In
contrast, under M2, the safety constraint in (CO1) is violated
during the intervals 8 ≤ t ≤ 14 and 24 ≤ t ≤ 33. Next, Figure 9
presents the distance between the ith agent (i = 1, 2, 3, 4) and
target ‖qt −qi‖, with safety constraint Ωti. Since ‖qt −qi‖ stays
above Ωti, (CO2) is guaranteed.

Moreover, Figure 10 illustrates the relative distance between
the ith and jth agents ‖qi−q j‖, the desired inter-agent distance
ddi j, and safety constraint functions ΩHi j and ΩLi j under M1
and M2, where i, j = 1, 2, 3, 4 and j , i. Under M1, the relative
distances ‖qi − q j‖ can remain bounded between ΩLi j and
ΩHi j, while converging to regions near the desired inter-agent
distances ddi j. This demonstrates that (CO3) and (CO5) are
satisfied. Note that ddi j, ΩHi j, and ΩLi j are environment-aware
and dynamic, as discussed in Remark 6. More specifically,
from Figure 10 we observe that ddi j decreases as attackers
approach agents and increases as attackers move away. Addi-
tionally, ΩHi j and ΩLi j become tightened as attackers approach
agents and are relaxed as attackers move away. Under M2, the
higher safety constraint requirements for relative distances are
violated when t ≥ 7, indicating (CO3) is not satisfied.

Besides, Figure 11 represents the target tracking error
‖qt − qc‖, along with Ra + Ωa − ‖qt − qa‖, performance con-
straint function Ωdtc, and user-defined time-varying function
ωtc under M1 and M2. Under M1, ‖qt − qc‖ remains in the set
defined by (26), hence (CO4) is met. More specifically, when
attackers move close to the target, agents can no longer stay
close to the target without violation of the safety constraint
requirement ‖qu − qa‖ > Ωau. Since (CO1) has a higher
priority than (CO4), Ωdtc should be designed to ensure there
is sufficient feasible space to maintain ‖qu − qa‖ > Ωau,

Fig. 15. The target tracking error ‖qt−qc‖ under M1 and M2 with its constraint
functions.

as discussed in Remarks 5 and 7. In contrast, under M2,
the performance constraint requirement in (CO4) is violated
during the intervals 5 ≤ t ≤ 10 and t ≥ 37.

B. Scenario 2: Temporary Attacks

In this scenario, multiple attackers attempt to first launch
physical attacks on agents, then leave the area. More specif-
ically, when t ≤ 20, the kth attacker’s velocity (k = 1, 2, 3)
is chosen as pak = sat(uak), where uak = pk − Kak(qak − qk)
with the upper bound p̄ak = 2 and Kak = 1300. For t > 20,
the kth attacker’s velocity (k = 1, 2, 3) is chosen as pak =

pak,20exp(−25(t−20))+[1−exp(−25(t−20))]·[2, 5, −2.5, 2.5]T

where pak,20 is the velocity of the kth attacker pak at t = 20.
Simulation results are presented in Figures 12–15. A YouTube
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video for the simulation process can also be viewed at: https://
youtu.be/NpiW8eFdwn4 (To view the video, copy and paste
the complete URL to a web browser).

Specifically, Figure 12 shows the distance between center of
agent set qu and center of attacker set qa, alongside with Ωau ,
Ru +Ra +Ωa under M1 and M2. Under M1, we see that ‖qu −

qa‖ is always above Ωau, which implies (CO1) is ensured. In
contrast, under M2, the safety constraint requirement in (CO1)
is violated when 8 ≤ t ≤ 13. Furthermore, Figure 13 presents
the distance between the ith agent (i = 1, 2, 3, 4) and target
‖qt − qi‖, with the safety constraint constant Ωti. Since ‖qt −

qi‖ remains higher than Ωti, (CO2) is guaranteed. Moreover,
Figure 14 records the relative distance between the ith and
jth agents ‖qi − q j‖, the desired inter-agent distance ddi j, and
safety constraint functions ΩHi j and ΩLi j under M1 and M2,
where i, j = 1, 2, 3, 4, j , i. Under M1, ‖qi − q j‖ is bounded
by ΩHi j and ΩLi j, and it converges to a region close to ddi j,
indicating (CO3) and (CO5) are satisfied. Note that ddi j, ΩHi j,
and ΩLi j are environment-aware and dynamic, as discussed in
Remark 6. On the one hand, we observe that ddi j decreases
and constraint functions ΩHi j and ΩLi j become tightened when
attackers approach agents during 0 ≤ t ≤ 20. On the other
hand, when t > 20, ddi j increase to ldi j, allowing the agents
to maintain a relaxed formation. Under M2, the higher safety
constraints on relative distances are violated during 16 ≤ t ≤
28 and the lower safety constraints are violated for t ≥ 35,
which indicate that (CO3) is not satisfied.

Next, the target tracking error ‖qt − qc‖, along with Ra +
Ωa − ‖qt − qa‖, the performance constraint function Ωdtc, and
user-defined time-varying function ωtc under M1 and M2, are
presented in Figure 15. Under M1, we can observe that ‖qt−qc‖

remains in the set (26), which means (CO4) is achieved. More
specifically, when attackers move close to the target, agents
can no longer stay close to the target without violating the
safety constraint requirement ‖qu − qa‖ > Ωau. Similar to the
first scenario, Ωdtc needs to be designed to ensure there is
sufficient feasible space to maintain ‖qu−qa‖ > Ωau. For t ≥ 20
when attackers leave, Ωdtc decreases to ωtc, as discussed in
Remark 7 and Figure 5. However, under M2, the performance
constraint requirement in (CO4) is violated during the intervals
5 ≤ t ≤ 9 and t ≥ 26.

VI. CONCLUSION

In this work, we proposed a cooperative control framework
for a team of agents to cooperatively track a target, in the
presence of multiple physical attackers. Multiple safety and
performance constraint requirements are taken into consid-
eration. Specifically, on the one hand, to ensure safety we
require that agents keep a safe distance from attackers and the
target, which are formulated as constant constraint require-
ments. On the other hand, due to the presence of intelligent
physical attackers, safety constraint requirements on inter-
agent distances and performance constraint requirements on
formation tracking are environment-aware and dynamic, which
depend on distances between agents and physical attackers
to ensure adequate adaptation of constraints in the presence
of physical attackers. Neural network-based adaptive learning
laws are incorporated to handle unknown target and attacker

velocities. We show that formation tracking errors for the
agents are both uniformly ultimately bounded, while all safety
and performance constraints can be met. For future research
we will explore tracking and capturing of multiple targets, and
take cyber attacks into consideration.

APPENDIX

A. Agent and Attacker Set Radii

First, define

q̄m(t) , softmaxρu (eT
mq1(t), · · · , eT

mqNu (t)),

q
m

(t) , softminρu (eT
mq1(t), · · · , eT

mqNu (t)), (31)

q̄am(t) , softmaxρa (e
T
mqa1(t), · · · , eT

mqaNa (t)),

q
am

(t) , softminρa (e
T
mqa1(t), · · · , eT

mqaNa (t)), (32)

where em ∈ R
3 (m = 1, 2, 3) is the mth column vector of

identity matrix I3, and ρu > 0 and ρa > 0 are introduced in
Lemma 2.

As illustrated in Figure 3, for t ≥ 0 agent and attacker sets
are defined as

Bu(t) ,
n
ζ ∈ R3

ˇ̌
‖ζ − qu(t)‖ ≤ Ru(t)

o
, (33)

Ba(t) ,
n
ζ ∈ R3

ˇ̌
‖ζ − qa(t)‖ ≤ Ra(t)

o
, (34)

where centers and radii of agent and attacker sets are given as

qu(t) ,
1
2

[q̄1(t) + q
1
(t), q̄2(t) + q

2
(t), q̄3(t) + q

3
(t)]T, (35)

Ru(t) ,
1
2

vuut 3X
m=1

(q̄m(t) − q
m

(t))2, (36)

qa(t) ,
1
2

[q̄a1(t) + q
a1

(t), q̄a2(t) + q
a2

(t),

q̄a3(t) + q
a3

(t)]T, (37)

Ra(t) ,
1
2

vuut 3X
m=1

(q̄am(t) − q
am

(t))2. (38)

B. Proof of Proposition 1

Proof: The target tracking error ‖qc − qt‖ satisfies the
following inequality

‖qc − qt‖ = ‖qc − qa − qt + qa‖ ≥ ‖qc − qa‖ − ‖qt − qa‖

= ‖qc − qu + qu − qa‖ − ‖qt − qa‖

≥ ‖qu − qa‖ − ‖qc − qu‖ − ‖qt − qa‖. (39)

For the first term in (39), since (CO1) is met, we have

‖qu − qa‖ > Ra + Ru + Ωa. (40)

For the second term in (39), according to the definitions of
q̄m and q

m
(m = 1, 2, 3) in (31), we can get

q
m

=
1

Nu

NuX
i=1

q
m
≤

1
Nu

NuX
i=1

eT
mqi = eT

mqc

≤
1

Nu

NuX
i=1

q̄m = q̄m,
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therefore, according to the definition of qu in (35), − 1
2 (q̄m −

q
m

) ≤ eT
mqc − eT

mqu ≤
1
2 (q̄m − q

m
). Now, recall the definition of

Ru in (36), the term −‖qc − qu‖ in (39) can be expressed as

−‖qc − qu‖ ≥ −
1
2

vuut 3X
m=1

(q̄m − q
m

)2 = −Ru. (41)

Finally, we can take inequalities (40) and (41) into (39) to
obtain ‖qt − qc‖ > Ra + Ωa − ‖qt − qa‖. �
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