q

Check for
updates

Exoskeleton-Mediated Physical Teacher-Student
Interaction for Gait Training: A Pilot Study

Emek Baris Kﬁg:ijktabakl’z(@), Matthew R. Short!3, Lorenzo Vianello!,
Clément Lhoste!, Kevin M. Lynchz, and Jose L. Pons!23

1 Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
baris.kucuktabak@gmail.com
2 Center for Robotics and Biosystems, Northwestern University, Evanston, IL, USA
3 Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA

Abstract. Recent advancements in physical human-robot-human interaction
allow people to physically interact with each other through the robotic systems that
they are in contact with. This preliminary study explores a potential experimental
setup using exoskeleton-mediated interactions for gait training, where a teacher
provides haptic guidance to a student. The experimental setup involves haptically
coupling the hip and knee joints of pilot users wearing lower-limb exoskeletons,
without visual feedback on the desired gait trajectory for the student. Initial obser-
vations suggest that while the student can potentially learn a new gait pattern
through physical cues alone, several challenges were noted.

1 Introduction

In collaborative motor tasks, people physically interact by exchanging forces to coor-
dinate their movements. This interaction is often seen in physical therapy, where thera-
pists assist patients with sensorimotor deficits by supporting movements necessary for
recovering motor skills, such as helping with foot placement in gait therapy for stroke
survivors. Recent developments in human-robot interfaces have facilitated studies on
complex physical interactions through robotic systems that render physical environ-
ments (e.g., spring-damper systems) between humans [1, 2]. In these systems, individ-
uals interact with distinct robotic tools, moving freely within one or more degrees of
freedom (DoF), and experience forces that reflect their positional or velocity changes
relative to another person’s movements.

Given the favorable results from assistive and resistive training methods [3], collab-
orative and competitive physical interactions between pairs hold substantial potential for
enhancing task performance and individual motor learning [4]. Studies on upper limbs
have demonstrated that individuals can more accurately follow sinusoidal trajectories
when haptically connected with a partner. The extent of these improvements depends
on the participant’s skill level [5—7] and the characteristics of the virtual connection
[8]. Furthermore, research indicates that training in a haptically coupled environment
through a compliant connection can significantly enhance the speed of learning post-
coupling, in scenarios involving 1-DoF position tracking [9] as well as adaptations in
multi-DoF to visuomotor rotations [5].
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Fig. 1. Experimental setup.

In this preliminary work, we explore a potential experimental setup to be used for the
investigation of motor learning with dyadic training in the context of gait rehabilitation.
We tested a teacher-student interaction scheme on pilot users where the student train
together with a teacher to learn a new gait trajectory.

2 Methods

Two lower-limb exoskeletons (ExoMotus-X2, Fourier Intelligence) were worn by two
healthy pilot users, as shown in Fig. 1. Hip and knee joints of their non-dominant legs are
haptically coupled to each other with virtual spring (49 Nm/rad) and damper elements
(7 Nms/rad). Desired interaction torques for each joint are calculated based on the
interaction medium and the states of the robots [1]. Calculated desired interaction torques
are fed into a whole-exoskeleton closed-loop controller (WECC) [10] that compensates
for the whole-body dynamics of the exoskeleton during the whole gait cycle and tracks
the desired interaction in a closed-loop manner. The controllers were implemented on
a ROS and C++ based open-source software stack called CANOpen Robot Controller
(CORC) [11] and were run at 333 Hz on an external PC.

Distinct roles of teacher and student were given to the users. While the student walks
on a treadmill, the teacher stands in front of a monitor. The teacher receives visual
feedback of his own and the student’s instantaneous state, together with a desired gait
profile. While the student is aware that he is haptically connected to a teacher, he does
not have any visual feedback of the desired trajectory, nor is he able to see the teacher.
The desired gait trajectory is designed such that the range of motion of the hip and knees
is scaled up by 20% from the normal gait of the teacher [12]. The teacher is instructed to
correct the student’s ankle trajectory towards the desired one by moving his leg to apply
force. The student tries to learn the new gait trajectory with the physical feedback he is
receiving from the teacher.

The following sessions are run to evaluate how well the student learns the new gait
trajectory via physical interaction with the teacher.

a) Rigid Demonstration (D): The desired trajectory is briefly demonstrated to the student
with a rigid position control on his non-dominant leg for twenty seconds.
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b) Baseline (B): Student tries to replicate the desired trajectory that was demonstrated
in the previous session. The exoskeleton is in haptic transparent mode; this session
takes thirty seconds.

¢) Training (T): Teacher and student are haptically coupled; teacher assists the student
for 90 s.

d) Retention (R): Student tries to replicate the desired trajectory that he has trained on
for thirty seconds. The exoskeleton is in haptic transparent mode.

Single sessions of demonstration and baseline are consecutively followed by six
sessions of training and retention (DBTRTRTRTRTRTR) with a minute of break between
each of them. The tracking error of the student is measured via the dynamic time warping
algorithm [13] such that the actual trajectory is warped in a nonlinear fashion to match
the desired one. This allows calculating the spatial error between two trajectories without
a temporal reference.

3 Results and Discussion

The average deviation between the student’s actual ankle trajectory and the desired one
during the rigid demonstration, baseline, training, and retention sessions are presented
in Fig. 2. Thanks to the stiff position controller, the desired target was successfully
demonstrated to the student with a small mean error (8 mm). The average error during
the training sessions was consistently around 2.2 cm. The baseline retention error was
around 3.5 cm and dropped to 3 cm and 2.8 cm in the first and second retention sessions,
respectively. This indicates some learning of the new gait trajectory with the first two
dyadic training sessions. However, after the third retention session, the tracking error
was increased to 3.5 cm. The student indicated the task was mentally and physically
demanding, which might result in fatigue and deterioration in the performance after the
third session. Another comment from the student user was that the lack of feedback
on the performance during the retention sessions limits the learning significantly. The
teacher reported that only following the desired trajectory was not enough, and he had to
exaggerate the motion at specific points to better assist the student. This made the task
quite challenging for the teacher and required high power to guide the student toward
the desired gait trajectory.
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Fig. 2. Training and retention errors during different sessions.
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4 Conclusion

In this pilot study, we explored an experimental setup of an exoskeleton-mediated phys-
ical teacher-student interaction for gait therapy. We observed that learning an unknown
gait trajectory with only physical cues is a challenging task which makes it a good can-
didate for motor learning experiments to be conducted on healthy users. However, the
lack of feedback during the retention sessions and the significant effort required by the
teacher limits the feasibility of the tested experimental setup. In the future, we will inves-
tigate additional feedback types (e.g., visual, auditory) and haptic interaction mediums
(e.g., asymmetrical) to overcome the observed drawbacks.
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