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Abstract

This work introduces Private Eyes, the �rst zero-leakage biometric

database. The only leakage of the system is unavoidable: 1) the log of

the dataset size and 2) the fact that a query occurred. Private Eyes is

built from oblivious symmetric searchable encryption. Approximate

proximity queries are used: given a noisy reading of a biometric, the

goal is to retrieve all stored records that are close enough according

to a distance metric.

Private Eyes combines locality sensitive-hashing or LSHs (Indyk

andMotwani, STOC 1998) and oblivious maps whichmap keywords

to values. One computes many LSHs of each record in the database

and uses these hashes as keywords in the oblivious map with the

matching biometric readings concatenated as the value. At search

time with a noisy reading, one computes the LSHs and retrieves the

disjunction of the resulting values from the map. The underlying

oblivious map needs to answer disjunction queries e�ciently.

We focus on the iris biometric which requires a large number

of LSHs, approximately 1000. Boldyreva and Tang’s (PoPETS 2021)

design yields a suitable map for a small number of LSHs (their

application was in zero-leakage :-nearest-neighbor search).

Our solution is a zero-leakage disjunctive map designed for the

setting when most clauses do not match any records. For the iris,

on average at most 6% of LSHs match any stored value.

For the largest tested parameters of a 5000 synthetic iris database,

a search requires 18 rounds of communication and 25ms of parallel

computation. Our scheme is implemented and open-sourced.

CCS Concepts

• Security and privacy→ Symmetric cryptography and hash

functions; Mathematical foundations of cryptography; Man-

agement and querying of encrypted data.
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1 Introduction

Biometrics are collected into large databases for search [13, 26,

31]. Learning stored biometric values enables attackers to break

authentication and privacy for a user’s lifetime [3, 36, 46, 61, 70, 74].

To reduce this risk, this article develops new searchable encryption

techniques for biometric databases [23, 71]. See previous reviews

of searchable encryption [10, 35, 50].

Consider a data owner outsourcing a database DB to an honest

but curious server that may learn information called leakage. Prior

work exploits such leakage to reveal sensitive information about

the database or queries (see [50] for an overview). Since biometrics

cannot be replaced or revoked, we focus on a zero-leakage system.

A zero-leakage system reveals only unavoidable information:

1) that a query occurs and 2) |DB| (which we pad to a power

of 2). Our focus is on an e�cient combination of zero-leakage

primitives for this task. Components can be replaced with higher-

leakage alternatives for e�ciency gains.

Most biometric search systems phrase proximity queries as a

large disjunction. For actual biometrics, 1) this disjunction has hun-

dreds or thousands of terms and 2) most clauses will not match any

stored record. Our parameter analysis shows that these speci�cities

of biometrics result in critical ine�ciencies in previous designs. We

propose a new design that avoids these pitfalls.

OurContributions Wepresent PrivateEyes, the �rst zero-leakage

proximity search system for the iris. It is enabled by the following

contributions:

(1) A two-stage design that 1) �nds the non-null clauses (i.e.

clauses that match something in the database), 2) obliviously

searches these non-null clauses only. The �rst stage can be

built with private set intersection (PSI) [32]. The second

stage is built using oblivious tree traversal [77].

(2) A prototype implementation with evaluation on random

data up to 25000 records and synthetic iris data up to 5000

records [15]. On synthetic data, search takes at most 25ms of

parallel computation and 18 rounds of communication. 92%

of the computation and 14 rounds are in the second stage,

the focus of this work.
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To scale beyond the sizes of available iris datasets we also introduce

a synthetic iris generation tool that may be of independent interest.

Organization The rest of this paper is organized as follows: Sec-

tion 2 reviews our design including relevant prior work, Section 3

introduces preliminaries, Section 4 presents the details of our sys-

tem, Section 5 presents the datasets, Section 6 describes our imple-

mentation, Section 7 our evaluation, and Section 8 concludes. The

Appendices present proofs and the generation of synthetic irises.

2 Design Overview

A database is a list of biometricsDB = F1, · · · ,Fℓ where eachF8 ∈

{0, 1}= . The goal of a biometric database is, given some biometric

queryF∗, to �nd all valuesF8 ∈ DB that are close enough toF∗.

For the Hamming metric D and distance threshold C , that means

to �nd allF8 such that D(F8 ,F
∗) ≤ C .1

Like prior work [33, 54, 59, 75], we combine locality-sensitive

hashes (LSHs) [47] with an encrypted map.2

An LSH maps near items to the same value more frequently than

it maps far items to the same value. LetH be a family of LSHs then

Pr
LSH←H

[LSH(F8 ) = LSH(F∗) |F8 ,F
∗ are near] ≥ 1 − ?1,

Pr
LSH←H

[LSH(F 9 ) = LSH(F∗) |F 9 ,F
∗ are far] ≤ 1 − ?2 .

where ?1 < ?2.

Maps associate keywords to values and are used to build inverted

indices. For a map M, we use the notation M[keyw] = value to

denote that keyw is associated with value.

For a database of size ℓ , parameter V ∈ Z+, LSH familyH , and

maps M1, · · · ,MV , one can achieve proximity search as follows:

(1) Sample V LSHs, one per map: LSH1, · · · , LSHV ←H .

(2) In each map, associate all records with the same LSH

output to that LSH output: for 9 = 1, · · · , V , set

M9 [E] = {F8 |LSH9 (F8 ) = E}.3

(3) To search for valueF∗, retrieve all records with at least

one LSH output in common withF∗:

(a) Compute LSH1 (F
∗), · · · , LSHV (F

∗).

(b) Retrieve ∪
V
9=1M9 [LSH9 (F

∗)].

Queries are disjunctions. Boldyreva and Tang [9] constructed a

zero-leakage encrypted map scheme called an oblivious map with

encryption or OMapE. Each clause is submitted to the relevant

OMapE, the results are concatenated as in Step 3b above.

Due to their large noise, biometrics require sampling hun-

dreds or thousands of LSHs to achieve reasonable accuracy (see

analysis in Section 3.1 and Section 7). At the same time, few of

these LSHs match anything in the corresponding map. Construc-

tions frequently perform heavy oblivious operations to hide the

null value.

1This functionality di�ers from :-nearest neighbors where the goal is to retrieve the :
closest records [9]. There have been leakage abuse attacks against :-nearest neighbor
systems that reveal access pattern [52, 53, 56] and resulting systems [18]. These attacks
do not apply to our leakage pro�le.
2We won’t discuss works that use encrypted maps but require work proportional to
the total number of close points, making them impractical for biometrics [8, 57, 76].
3If multiple records share the same LSH value our implementation concatenates the
matching values. This allows us to handle a constant number of values associated to
each keyword. This condition is satis�ed for the accuracy regimes discussed in this
work.

Our design separates the tasks of identifying which values are

null and �nding the associated values. That is, we �rst try to �nd a

small number, called X , of LSHs values that exist in some map, and

then query exactly those X maps in a way that hides which maps

are being queried. For the above design to be successful, one needs

to demonstrate:

(1) Obliviousness One can hide the queried X maps,

(2) Accuracy High accuracy with X < V , and

(3) Speed The approach is faster.

We now provide a more detailed description of the approach, shown

visually in Figure 1.

Oblivious Membership Check An object to check which LSHs’

outputs, LSH9 (F
∗), have matches. For an encrypted stored set -

the oblivious membership check orOMC takes in a set, and returns

a set, ′ of size X . If |, ∩- | ≤ X then, ′ contains, ∩- and X −

|, ∩- | dummy values. If |, ∩- | > X then, ′ contains X randomly

selected values from, ∩ - . In our system, - is the set of all LSHs

values- = {( 9, LSH9 (F8 ))}8, 9 and, = {( 9, E) |LSH9 (F
∗) = E} 9 for

some queryF∗.

We buildOMC using private set intersection and pseudorandom

permutations. We benchmark this design using VolePSI [68]; the

resulting implementation takes 2<B and 4 rounds of communication

for our largest tested parameters.

For each parameter set, we manually �nd a size X where if one

only searches for X items in the second stage, there is only a small

degradation in accuracy.

Disjunctive Oblivious Map An object that searches for the dis-

junction of exactly X items. These X values form a set of LSHs that

exist in the map4. Using an oblivious data structure with a con-

stant number of queries yields a zero-leakage solution. This object

has the same functionality as an oblivious map that takes multiple

clauses but the fact that all clauses are presented together is crucial

for security. We call this object a DOMapE for disjunctive oblivious

map with encryption. Our focus is on designing a DOMapE.

We propose a DOMapE based on oblivious tree traversal, build-

ing on the design principles of Wang et al. [77]. In our approach,

each map corresponds to a tree, so one always performs X tree tra-

versals. We use oblivious RAMs to store tree nodes. The oblivious

RAMs are organized to minimize nodes that are stored together

while ensuring that X tree traversals result in no leakage.

To build the encrypted database (Enc stage in �gure 1) the client

computes the set of all LSH values using theOMC (with their index

9 ). They also create the maps associating LSH values to the corre-

sponding biometric values and build the corresponding DOMapE.

To search for queryF∗ (Find stage in �gure 1), the client computes

the corresponding LSH values and uses OMC.Find to �nd a subset

of those values present in the maps. DOMapE.Find is then used

to retrieve the corresponding non-null values from the maps. The

inputs to both OMC.Find and DOMapE.Find are of constant size,

yielding a zero-leakage solution.

We implemented and analyzed this construction on datasets of

up to 25000 records. Since available iris datasets are not this large,

we created larger synthetic iris datasets up to 5000 records using

4Except for dummy values added when the total number of matches is less than X .
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Enc
C S

OMC.Enc- = {( 9, LSH9 (F8 ))}8, 9

DOMapE.EncM9 [E] = {F8 }

Find

C S

OMC.Find, = {( 9, LSH9 (F
∗))} 9

, ′ ⊆, ∩ -

Pad, ′ so |, ′ | = X

DOMapE.Find
, ′

≤ X results

Figure 1: System Overview ComposingOMC andDOMapE. In

Find one checks which LSH values exist in the database using

the OMC, �nding at most X candidates. If needed OMC pads

this set of candidates with dummy values to reach |, ′ | = X .

DOMapE is designed to have no leakage if the size of the

disjunction is constant (X). See Construction 2 for a formal

description.

generative adversarial networks or GANs [22, 42] and random data

to 25K records. For all tested parameters we have X < 75 (in contrast

to a number of LSHs V > 600), so a server could reasonably process

the ORAM requests at each tree level in parallel. Thus, we report

on both parallel and sequential time.

Comparison with prior work Cachet et al. [1] proposed two non-

interactive iris proximity search schemes based on inner-product

encryption. Both of their constructions have more leakage than our

system. The �rst one leaks the distance between all returned points

and the query. The other leaks whether returned records are the

same distance from the query. For the solution with more leakage,

search took 4minutes on a dataset of size 356. For the solution with

less leakage, the search took 1 hour [14].

Barni et al. [4] and Blanton et al. [6] evaluated their �ngerprints

identi�cation systems on small datasets of 320 readings. They re-

spectively achieved search times of 16 and 0.45 seconds for the

server. Their protocols use Garbled circuits and only a single round

of communication. Blanton et al. [6] also proposed an iris identi�ca-

tion system that compares two 2048 bits iris readings in 0.15B . For a

database of size 356 (our smallest setting) this would amount to 53B .

For face recognition, SciFi [63] online search runtime is linear in

the size of the database: for 100 faces representations search takes

31B . Erkin et al. [28]’s system takes roughly 40B to search over a

dataset of size 320. As a reminder on 5000 irises our search is 25ms

with 18 rounds. For a network delay of 100ms, this corresponds to

an overall time of ≈ 2s.

Recent work [17, 38, 73] extends PSI to the setting where one

considers items a match if their distance is small. A naive use of

fuzzy PSI tells the client if the biometric exists in the database but

not which item it matches. This issue can be solved using labeled

PSI, [19] which associates a label with each set value G ∈ - . This

is the approach used by Uzun et al. [73]. Uzun et al. [73] evaluate

the face biometric. At a technical level, their fuzzy PSI is similar

to our approach; they store LSH outputs in the set - and encrypt

each item before sending it to the server. However, they perform a

threshold version of labeled PSI, only returning a record if there

are enough matches. One match is required in our approach. Their

approach is bandwidth e�cient but requires fully homomorphic

encryption [39] to perform the more complex matching. Uzun et

al’s scheme does not allow the client to learn about non-matching

records which is not a goal of our work. Their scheme uses V = 64

by averaging multiple biometric readings, such techniques can be

applied in our setting as well. Averaging readings is not standard

in the biometric literature so we do not do it.

More work is needed to scale zero-leakage biometric databases.

Our cryptographic storage overhead is around 5000 for all tested

parameters. The required number of LSHs grows with the database

size. Scaling to 106 irises requires 93000 LSHs (using linear interpo-

lation over the number of required LSHs for synthetic data with an

A2 = .88) for an overall storage of 93 billion LSH outputs (roughly

500TB for the cryptographic object). In our current testing, we load

the whole cryptographic object in memory with each query, which

is not possible for larger sizes.

3 Preliminaries

Let _ be the security parameter, we use poly(_) and negl(_) to

denote unspeci�ed functions that are polynomial and negligible in

_, respectively. All de�nitions are indexed by _ but this indexing

is omitted for notational clarity. For some = ∈ N, [=] denotes the

set {1, · · · , =}. Let G ← ( denote sampling G uniformly at random

from the �nite set ( . Let ⊥1,⊥2, ... be a sequence of distinguished

unique symbols. These symbols are allowed inputs to algorithms.

For a mapM, letM.Keywords output the set of all stored keywords.

For interactive protocol Prot between a client C and a server S

we use notation

(

>C

>S

)

← Prot

(

8C

8S

)

with 8C, >C, 8S, >S denoting the

client’s and the server’s inputs and outputs respectively. Protocols

are written from the perspective of the client with underlying

interactive algorithms indicating the server’s role.

Hamming distance is de�ned as the distance between the bit

vectors G and ~ of length =,D(G,~) = |{8 | G8 ≠ ~8 }|. The fractional

Hamming distance is D(G,~)/=.

De�nition 3.1 (Locality-sensitive Hashing). Let C ∈ N, 2 > 1 and

?1, ?2 ∈ [0, 1].H de�nes a (C, 2C, ?1, ?2)-sensitive hash family if for

any G,~ ∈ {0, 1}= , we have:

(1) If D(G,~) ≤ C , PrLSH←H [LSH(G) = LSH(~)] ≥ 1 − ?1 and

(2) If D(G,~) ≥ 2C , PrLSH←H [LSH(G) = LSH(~)] ≤ 1 − ?2.

For G,~ if D(G,~) ≤ C they are called near, if D(G,~) ≥ 2C they are

called far.

We use selection of a single random bit as our LSH. For two

values G,~ the probability this bit will be the same is 1−D(G,~)/=.

That is ?1 ≥ C/= while ?2 ≤ 2C/=. The error rates ?1, ?2 of an

LSH can be increased by randomly sampling several LSHs and

checking that they all match, an U-AND. For U-AND composition,

a (C, 2C, ?1, ?2)-LSH yields a (C, 2C, ?U1 , ?
U
2 )-LSH. For our LSH, this

corresponds to randomly selecting U (with replacement) bits of

the input. Similarly, ?1, ?2 can be decreased by randomly sampling

several LSHs and checking that at least one of them matches, a
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V-OR. For V-OR composition, a (C, 2C, ?1, ?2)-LSH yields a (C, 2C, 1 −

(1 − ?1)
V , 1 − (1 − ?2)

V )-LSH.

3.1 The need for many LSHs in biometric
proximity search

We focus on the iris biometric and use the ND-0405 dataset [11, 66].

The average distance between same irises is C/= ≈ .21, using a

state-of-the-art feature extractor [2]. Section 5 presents the datasets

used in this work. Our discussion applies to other biometrics with

substantive noise such as the face 5.

If one only uses the AND of U LSHs and considers it a match

when at least one LSH out of V corresponds, this LSH can be seen

as the V-OR of the U-AND of LSHs where

?′1 = 1 − (1 − ?U1 )
V and ?′2 = 1 − (1 − ?U2 )

V .

LetF ′8 be a noisy reading ofF8 . When usingF ′8 as a search query,

a true accept is whenF8 is returned and the true accept rate (TAR)

is the fraction of queries where this happens. The fraction of false

accepts (FFA) is the fraction of DB \ {F8 } that is returned on

average.

If one assumes that ?1 = C/= = .21 and ?2 = .5 and all items

have these average distances, then TAR is 1 − ?′1 and FFA is 1 − ?′2.

Under this assumption, achieving a TAR of .95 (?′1 = .05) and an

FFA of .01 (?′2 = .99) requires a number of LSHs 65 ≤ V ≤ 80 for

the minimum U = 13. For a dataset of size 106 if one seeks at most

100 false accepts (that is, FFA of 10−4) this requires 680 ≤ V ≤ 835

at the minimum U = 23.

However, even though the mean distance between readings of

the same biometric is C/= = .21 there is substantial variance in this

distance (see Figure 8(a)), requiring V to be larger as we show in

Table 1.

We call an LSH match good if it ensures the query results in

a true accept and bad otherwise. For the ND-0405 dataset,6 with

a larger V = 225 and U = 15, the average number of total LSH

matches is 23.4.

3.2 Cryptographic De�nitions

This work relies on oblivious RAM (ORAM) [40, 41] to achieve

zero-leakage. In our constructions, we consider static datasets and

ignore write queries. Our ORAM de�nition re�ects this choice. As

we discuss in Section 6, this de�nition is also satis�ed by private

information retrieval schemes (with appropriate encryption). We

discuss other considerations for dynamic data at the end of Sec-

tion 6.

De�nition 3.2 (Oblivious RAM). An Oblivious RAM (ORAM)

scheme is two protocols, Setup and Access:

(

f,

EM

)

← Setup

(

1_,Mem

1_

)

,

(

E, f′

EM′

)

← Access

(

f, 8

EM

)

.

5Deng et al. [27, Figure 6] show analogous statistics for the face.
6This uses the following experiment:

(1) Storage of a single feature extracted reading for the eye for each of the 356
persons. Sample V = 225 LSHs of size U = 15.

(2) Let F′1, ..., F
′
356 be the second stored template in the ND-0405 dataset.

(3) Search for each record F′8 . Record the number of good and bad LSH matches.

RealA,@ (1
_ ) :

(1) Mem← A(1_ ) .

(2) Run

(

f0,

EM0

)

← Setup

(

1_,Mem

⊥

)

. Let ts0 denote the server’s view.

(3) For 1 ≤ 8 ≤ @:

(a) ~8 ← A(ts8−1 ) ,

(b)

(

E8 , f8

EM8

)

← Access

(

f8−1, ~8

EM8−1

)

.

(c) Let ts8 be the server’s view.

(4) Output (ts0, · · · , ts@ ) .

IdealA,Sim,@ (1
_ ) : Output (ts0, ..., ts@ ) ← Sim(@, |Mem |, 1_ ) .

Figure 2: De�nition of Ideal and Real for ORAM security.

Correctness Consider the following correctness experiment:

(1) An adversary A chooses memory Mem.

(2) Consider

(

f0

EM0

)

← Setup

(

1_,Mem

⊥

)

.

(3) For 1 ≤ 8 ≤ @:

(a) Run ~8 ← A(ts8−1).

(b) Run

(

E8 , f8 ,

EM8

)

← Access

(

f8−1, ~8

EM8−1

)

.

The adversary wins if for some 8, E8 ≠ Mem[~8 ]. The ORAM scheme

is correct if the probability of A winning the game is negl(_).

Security An ORAM scheme is secure in the semi-honest model if

for any PPT adversaryA, there exists a PPT simulator Sim such that

the distributions RealA,@ and IdealA,Sim,@ , described in Figure 2,

are computationally indistinguishable.

The above is an adaptive simulation de�nition of ORAM [37], all of

our proofs work naturally for the standard non-adaptive de�nition.

We de�ne generic oblivious searchable encryption (OSE) and in the

rest of the paper, will use speci�c variants of it.

De�nition 3.3 (Oblivious searchable encryption). LetM denote

the records space, Q denote the query space and R denote the result

space. LetDB ⊆ M be a database and ~ ∈ Q be a query. For string

param, let the triple of protocols OSE = (Setup, Enc, Find) have

the following format:

(

sk

pp

)

← Setup

(

1_, param

1_, param

)

,

(

�C,

�S

)

← Enc

(

sk,DB

pp

)

,

(

� , � ′C

� ′S

)

← Find

(

sk, ~, �C,

pp, �S

)

.

OSE is an oblivious searchable encryption if the following hold:

Correctness: The set � is the “same” as the result of the query.

The formal de�nition varies per OSE variant we consider and is

de�ned later.

Security: Let @ = poly(_), LOSE = {LEnc,LFind =⊥} be the

leakage pro�le ofOSE’s algorithms. For any PPT adversaryA, there

exists a simulator Sim such that the distributions RealA,@,param

and IdealA,Sim,@,param, described in Figure 3, are computationally

indistinguishable.
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RealA,@,param (1
_ ) :

(1) Compute

(

sk

pp

)

← Setup

(

1_, param

1_, param

)

.

Let ts0 be the server’s view.

(2) DB ← A(ts0 ) .

(3) Compute

(

�C,1,

�S,1

)

← Enc

(

sk,DB

pp

)

.

Let ts1 be the server’s view.

(4) For 1 ≤ 9 ≤ @:

(a) ~ 9 ← A(ts9 ) .

(b)

(

�9 , �C, 9+1

�S, 9+1

)

← Find

(

sk, ~ 9 , �C, 9

pp, �S, 9

)

.

Let ts9+1 be the server’s transcript.

(5) Output (ts0, ..., ts@+1 ) .

IdealA,Sim,@,param (1
_ ) :

(1) ts0 ← Sim(1_, @, param) .

(2) DB ← A(ts0 ) .

(3) (ts1, ..., ts@+1 ) ← Sim(LEnc (DB) ) .

(4) Output (ts0, ...ts@+1 ) .

Figure 3: De�nition of Ideal and Real for OSE security.

Our goal is to build an OSE scheme for proximity queries, we

de�ne this particular variant of OSE as follows:

De�nition 3.4 (Oblivious Proximity Search). Consider De�nition 3.3

with the following speci�cities. LetM = Q = R = {0, 1}= and

param = C . Consider DB = F1, · · · ,Fℓ where eachF8 ∈ M.

(n, C)-Approximate Correctness: For all DB, ~ ∈ Q de�ne

�DB,near,~ := {F8 |D(F8 , ~) ≤ C}. Let @ = poly(_) and n > 0. For

all DB and all ~1, ..., ~@ de�ne:

(

sk

pp

)

← Setup

(

1_

1_

)

,

(

�1C ,

�1S

)

← Enc

(

sk,DB

pp

)

,

(

� 9 , �C, 9+1

�S, 9+1

)

← Find

(

sk, ~ 9 , �C, 9

pp, �S, 9

)

OSE is n-approximately correct if ∀1 ≤ 9 ≤ @ for all DB

Pr
[

� 9 ⊇ �DB,near,~
]

≥ 1 − n.

De�nition 3.4 doesn’t limit the number of false matches. Further-

more, in Section 4, we never show that our construction satis�es

approximate correctness. Instead, we evaluate approximate correct-

ness using data in Section 7.

Our scheme �rst �nds a list of candidate LSH matches, and then

uses an appropriate oblivious map to �nd the relevant records us-

ing the candidate LSH matches. The �rst stage is called oblivious

membership checking or OMC. An OMC can be built from private

set intersection (PSI), client storage, and full set retrieval (see Sec-

tion 4.2). We are not o�ering constructions of OMC as a technical

contribution. We benchmark separately using PSI, see discussion

in Section 7. In our full implementation we use a local Bloom �lter

to simplify evaluation.

OMC only handles sets, that is, a collection of values without

repeats. In our search system, these values are LSH outputs. It is

possible for two distinct LSHs to have the same output. To avoid

this, we prepend the LSH id to each LSH output value. For LSH 9 ,

the corresponding values to use would then be { 9 | | LSH9 (G)}. We

de�ne OMC as a variant of OSE:

De�nition 3.5 (ObliviousMembership Check). LetOMC = (Enc, Find)

be a pair with stored set size d , query size W , and result size X , ab-

breviated d-ssize, W-qsize, and X-rsize. Consider De�nition 3.3 with

the following speci�cities:

• LetM = Q = R and param = (d,W, V).

• Consider - ⊆ M, such that |- | = W , and . ⊆ Q, such that

|. | = d . Set DB = - and query ~ = . .

Correctness: We use ⊥1, · · · ,⊥V to denote a sequence of unique

symbols that cannot appear in- or. . For all-, |- | = W and., |. | =

V , let
(

��,

�(

)

← Enc

(

1_, -

1_

)

,

(

� ,

⊥

)

← Find

(

��,.

�(

)

.

Then |� | = X and for all 8 ∈ � such that ∀9, 8 ≠⊥9 it holds that

Pr[8 ∈ - ∩ . ] ≥ 1 − negl(_).

Finally, we de�ne the second stage of our system:

De�nition 3.6 (Disjunctive Oblivious Map with Encryption). Let

param = (V, X), such that V, X ∈ N and X ≤ V and let ` ∈ N. Let

DOMapE = (Setup, Enc, Find) be a triple with V maps, ` map size,

and X query size, abbreviated V − nmaps, ` − msize, and X − qsize.

Then DOMapE is a disjunctive oblivious map with encryption if it

satis�es De�nition 3.3 with the following correctness guarantee.

Correctness: LetM = {M8 | M8 : Q ← R}, where M8 denotes

a map such that for 1 ≤ 8 ≤ V, |M.Keywords| ≤ 2` . Set DB =

M1, · · · ,MV . Let n > 0, @, V, X = poly(_) and X ≤ V . Let param =

(V, `, X). Fix some ({M8 }
V
8=1, {~

9 ∈ (X× [1, ℓ])X }
@
9=1) and de�ne for

1 ≤ 9 ≤ @:

(

sk

pp

)

← Setup

(

1_, V, X

1_

)

,

(

f1,

EM1

)

← Enc

(

sk,DB

pp

)

,

(

A 9 , f 9+1,

EM9+1

)

← Find

(

sk, f 9 , ~ 9

pp, EM9

)

.

DOMapE is correct if there exists a set I ⊆ [2` ] where |I | ≤ X

such that :

Pr
[

(∪8A
9
8 ) \ ∅ ⊆ ∪8∈IM:8

[

G
9
8

] ]

≥ 1 − negl(_).

4 Oblivious Proximity Search for Biometrics

This section presents our technical solutions, focusing on the de-

sign of DOMapE. We describe possible constructions of OMC in

Section 4.2. The most relevant related work is by Boldyreva and

Tang [9], whose construction is for the approximate:-nearest neigh-

bors search problem. While Boldyreva and Tang discuss two ways

of implementing OMapE, one using a tree and the other using a

skip list [67], we present a tree based construction. In this work, we

only consider static data. For static data, B-trees and skip lists are

equivalent data structures [55]. However, updates and the resulting

performance di�er.
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Recall the unprotected solution for proximity search from the

Introduction:

(1) Sample V LSHs, LSH1, ..., LSHV ←H .

(2) For 9 = 1, ..., V , set

M9 [keyw] = {F8 |LSH9 (F8 ) = E}.

(3) To search F∗, compute LSH1 (F
∗), ...., LSHV (F

∗), and re-

trieve ∪
V
9=1M9 [LSH9 (F

∗)] .

The maps consists of ~8 , {F8 } pairs. The keywords ~8 are placed

into the map, sorted (lexographically) and used as nodes in a binary

tree (along with {F8 }). Internal nodes have store the minimum

keyword in the right subtree and the location of the two children

LC,RC. We show this design in Figure 5. Let Tr1, ..., TrV be the

output of BIndex on maps M1, ...,MV respectively.

To turn this into an oblivious search algorithm, one can place

each tree in a distinct ORAM. The construction fully traverses every

tree Tr8 meaning that there is a constant number of accesses to each

ORAM with every search. Let `8 be the number of elements in

M8 , de�ne ` = ⌈logmax8 `8 ⌉, by padding each ORAM to length 2`

each ORAM receives exactly ` + 1 accesses with each query ((` +

1)V across the V trees). This corresponds to Boldyreva and Tang’s

approach and is shown in Figure 4(a) . However, since each level

of each map receives a single access per query, one can store each

level of the tree in a separate ORAM. This design is shown visually

in Figure 4(b), with each shaded region representing a separate

ORAM. With this approach, each shaded region sees exactly one

read for each search query. This organization allows higher levels

of the tree to serve as the position map of their child eliminating

the need for a recursive ORAM [77].

Our approach Recall that our goal is a two part construction: First

one queries the OMC to �nd out which X ≤ V LSHs have matches.

Then one queries the relevant X maps M8 to �nd records. In this

new design, one does not query every M1, ...,MV . As such, the set

of queried maps would be leakage. We merge the ORAMs across

maps to prevent this. However, we retain a separate ORAM for

each level of the trees. This is shown visually in Figure 4(c) and

also described by the ApplyO algorithm in Figure 5. This means

that each query now makes X accesses at each ORAM level. There

are ` + 1 levels in total resulting in X (` + 1) ORAM accesses. In

this design, parents store the position map of children, enabling

non-recursive ORAM.

Construction 1. LetX andM be the domain and range of amap,

such that elements in X are comparable with the ≤ operator. De�ne V

mapsM1, ...,MV . Let O = (O.Setup,O.Access) be an oblivious RAM

and let O8 denote its instantiation for level 0 ≤ 8 ≤ `. Consider the

DOMapE construction shown in Figure 6.

Theorem 4.1. For any X, V ∈ N where X ≤ V . Construction 1 de-

scribes an DOMapE for LBIndex (M1, ...,MV ) = ` = max8 ⌈log |M8 |⌉

for V − nmaps, ` − msize, and X − qsize.

The proof of Theorem 4.1 is in the full version of this work [44,

Theorem 1].

4.1 OSE design

Construction 2. For a database DB = (F1, ...,Fℓ ) de�ne ` =

⌈log ℓ⌉. Fix parameters X, a, V ∈ N where X ≤ a ≤ V .

(1) Let DOMapE be a disjunctive oblivious map with encryption

with V − nmaps, ` − msize, and X − qsize,

(2) LetOMC be an obliviousmembership check with 2`∗V−ssize,

V − qsize, and X − rsize, and

(3) LetH be a family of locality sensitive hashes.

For a databaseDB = (F1, ...,Fℓ ), de�neOSE = (OSE.Setup,OSE.Enc,

OSE.Find) as in Figure 7.

Theorem 4.2. Let DOMapE and OMC be as in Construction 2.

Then Construction 2 is an oblivious searchable encryption scheme

with leakage LEnc (M1, ...MV ) = `.

Theorem 4.2’s proof is straightforward and is deferred to the

full version of this work [44, Theorem 2]. Roughly, it shows that

the composition of OMC and the DOMapE is a disjunctive map

that takes in size V queries and returns X records. Theorem 4.2

does not handle correctness. Since there is an overlap between

the histograms for real data in Figure 8 one cannot make strong

correctness claims. We evaluate correctness empirically in Section 7.

4.2 Oblivious membership check constructions

Wediscuss options to implementOMC.We brie�y cover approaches

based on Bloom �lter lookups. In Appendix A, we describe how to

build OMC from private set intersection. This is the tool that we

use for microbenchmarks. In our implementation, we use a local

Bloom �lter to emulate an OMC.

Oblivious Bloom Filter Lookups The client’s set can be stored in

a Bloom [7], Cuckoo [29], or XOR [43] �lters which is then stored

on the server in an ORAM. The client will request the relevant bits

from the ORAM. This prevents the client from having to store the

entire �lter on their side, but requires them to request multiple

ORAM accesses to query the relevant bits. BlindSEER [30, 64] built

a tree of encrypted Bloom �lters for general Boolean search. Search

of each node uses Garbled circuits to decide whether to proceed

to children. One can use a single level of their tree as an OMC

as long as only the client learns the response. This requires some

modi�cation as their system was optimized for circuits that output

a bit, we would need the set of matching locations. Their system

was evaluated on datasets with 108 records [34].

5 Datasets

We test and evaluate our implementation on three datasets:

ND-0405 dataset This dataset [11, 66] is a superset of the NIST

Iris Evaluation Challenge [65]. It consists of the readings of left and

right irises from 356 individuals, each iris having at least 4 distinct

readings. We use the ThirdEye feature extractor [2] to obtain 1024

bits feature vectors from the original iris images. Since the left irises

were used to train the feature extractor, we use the right ones for

testing and evaluation. The �rst reading of each right iris is in the

DB; queries come from the remaining readings. The Hamming

distance distributions are in Figure 8(a).

Synthetic dataset Available irises datasets are of limited size, often

no more than a few hundreds irises (356 individuals for ND-0405).
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(a) Boldyreva and Tang ORAM organization [9].

ORAM root

~14

~12

~8~7

~11

~6~5

~13

~10

~4~3

~9

~2~1

ORAM root

~′14

~′12

~′8~′7

~′11

~′6~′5

~′13

~′10

~′4~′3

~9

~′2~′1

(b) First optimization.
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(c) Our design.

Figure 4: ORAM Organization Strategies. Each shaded region represents data stored together in a single oblivious RAM. In

(a) one uses a separate ORAM for each LSH. In (b) we split this to one ORAM per tree level. Then (c) is our design of DOMapE

where each level across binary trees is stored in a single ORAM. This allows one to hide which trees are accessed.

BIndex(M, ` ) :

(1) Sort map M using the comparator ≤.

Let Leaves = (G8 ,M[G8 ] ) be the sorted result.

(2) Pad Leaves to length 2` with pairs (⊥8 ,⊥8 ) .

(3) Build balanced binary search tree Tr over the values

of G8 and for each internal node, attach pointers to its

left and right child, LC and RC.

(4) Associate M[G8 ] as data for leaf G8 .

ApplyO

(

Tr1, ..., TrV

1_

)

:

(1) For 9 ∈ [0, ` ]:

(a) Level9 =⊥. For all Tr8∈ [V ] , Level9 = Level9 | | Level(Tr8 , 9 ) .

(b)

(

f 9 ,

EM9

)

← O.Setup

(

1_, Level9

,⊥

)

(2) Denote Σ := {f 9 }
`
9=0 and EM = {EM9 }

`
9=0.

Level(Tr, 9 ) : Return all nodes at level 9 in Tr.

Figure 5: Build tree index and apply ORAM algorithms.

Real world systems would store thousands to millions individuals,

depending on the application. Our solution is to generate synthetic

irises templates, that mimic actual ones. As can be seen in Figure

8b, synthetic data same and di�erent distributions are similar to

the ND-0405 ones. The details on synthetic data generation are

in Appendix B. The high level approach is a generative adversar-

ial network (GAN) [42] as in prior approaches on synthetic iris

generation [3].

Random dataset This dataset is made from randomly generated

1024 bits vectors. The Hamming distance between two vectors is

close to 0.5with a small variance. This is visible in the red histogram

from Figure 8c.

Random and synthetic queries generation Contrary to the

ND0405 dataset [11], the random and synthetic datasets do not

include queries. We generate queries from a distribution that resem-

bles the one for ND-0405. We use the common observation that like

irises comparisons have a distribution close to a binomial across

di�erent feature extractors [24, 25, 69]. From Figure 8a, we extract

the mean, ` = 0.21, and the standard deviation, f = 0.056. This

yields a distribution �(=, `)/=, the binomial distribution for = = 53.

This is because for �(=, `) it is true that f2 = ` (1 − `)=. Thus, by

linearity of expectation for �(=, `)/= it is true that f2 = ` (1− `)/=,

thus one can compute = = ⌈` (1 − `)/f2⌉ = ⌈52.9⌉ = 53.

We then generate queries for the random and synthetic datasets

as follows:

(1) Generate a binomial distribution using the mean and stan-

dard deviation of the same iris distribution for the ND-0405.

(2) For each feature vector in the dataset, create a correspond-

ing query by sampling an error fraction from the frac ←

�(53, 0.21)/53.

(3) Flip the number of error bits, frac ∗ 1024, in the feature

vector.

Using this technique, we obtain the same iris distributions (in blue)

for synthetic and random data shown in Figures 8b and 8c. There

are only 54 possible outcomes for a fraction of error bits, this leads

to discontinuities in the histograms presented in Figures 8b and 8c.

6 Implementation

We present an open-source implementation of our algorithms in-

cluding the LSH parameter �nding, tree building, and oblivious

search [15]. This implementation is in Python 3.10 and uses the

PathORAM [72] module [45]. Our experiments use a Bloom �lter

cache on the client as an OMC to focus on the performance of the

developed DOMapE. We separately evaluate an OMC candidate

based on PSI in Section 7. Our implementation supports two main

conclusions.

(1) One can set a X < V size of the query to DOMapE that

supports a high true accept rate. For a query, we de�ne bad

matches to be the number of LSH matches that only result

in incorrectly returned records; setting X to be 1 more than

the 95% of this value. See Table 1 for a comparison of true

accept rate for the setting when X = V and when X < V . In

all analyzed parameters X/V < .06. The value X is higher

for real and synthetic data than for random data; this is

due to the larger variance of distances between readings of
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(

V, a, X

V, a, X

)

← Setup

(

1_, V, a, X

1_

)

Enc

(

M1, · · · ,MV

1_

)

:

(1) Let [8 = |M8 | , de�ne ` = ⌈logmax8 [8 ⌉.

(2) For 8 ∈ [V ], client sets Tr8 ← BIndex(M8 , ` ) .

(3) C initiates

(

Σ,

EM

)

← ApplyO

(

Tr1, ...., TrV

1_

)

.

(4) Server receives EM and client keeps Σ.

Search

(

sk, Σ, ~ ∈ (X × [1, ℓ ] )a

EM

)

:

C does:

(1) Parse ~ = (G1, :1, ..., Ga , :a ) and Σ = f1, · · · , f` .

(2) Set Nodes1 = ( (:1, 1), ..., (:a , 1) ) , Res =⊥.

(3) For 9 = [0, ` − 1] and for 8 in 1 to a :
(

f ′9 , G
′, LC,RC

EM′9

)

← O.Access

(

f 9 ,Nodes9 [8 ],

EM9

)

.

(a) If G ′ ≤ G8 , set

Nodes9+1 = Nodes9+1 | | (:8 , LC) .

(b) Else Nodes9+1 = Nodes9+1 | | (:8 ,RC) .

(4) For 8 in 1 to a :
(

f ′` , G
′,M[G ′ ]

EM8

)

← O.Access

(

f` ,Nodes` [8 ],

EM9

)

.

(a) If G ′ = G8 , Res = Res ∪M[G ′ ].

(5) Return Res and Σ
′
= f ′1, · · · , f

′
` .

Figure 6: DOMAPE Construction. The BIndex algorithm is

shown in Figure 5.

di�erent irises. This increases the number of false matches.

As one exception, we set X for our 25K random parameters

heuristically based on the smaller dataset sizes.

(2) The two stage DOMapE approach improves search perfor-

mance. While setup takes several hours, parallel search is at

most 35ms. Without the two stage approach parallel search

would require a server with hundreds of threads. See further

timing discussion in Section 7.2.

Dataset Modi�cations Our implementation does not allow for

insertion after the initial building of the tree. With ORAM one can

rebuild the trees using techniques of Wang et al. [77].

Alternative to ORAM In the static setting, one can use private

information retrieval (PIR) [20, 21] with encryption. At retrieval,

single server computational PIR and PathORAM [72] with “large”

blocks of size Ω(log2 # ) both achieve communication complexity

of$ (log# ), with # the number of blocks. However, time e�ciency

would probably su�er from this change. Traditional PIR schemes

require work Θ( |DB|) on the server. Doubly e�cient PIR (DE-

PIR) [5] preserves the communication e�ciency of regular PIR

but with > ( |DB|) server work. To achieve this DEPIR relies on a

server pre-processing stage which is allowed in our model. DEPIR

OSE.Setup

(

1_

1_

)

:

(1) Client samples LSH1, ..., LSHV ← H(1
_ ) and runs

(

skOMC

⊥

)

← OMC.Setup

(

1_

⊥

)

,

(

skDOMapE

ppDOMapE

)

← DOMapE.Setup

(

1_

1_

)

.

(2) Denote

pp = ppDOMapE, sk = (skOMC, skDOMapE, LSH1, ..., LSHV ) .

(3) Client sends pp to server and keeps sk.

OSE.Enc

(

sk,DB = (F1, ..., Fℓ )

ppDOMapE

)

:

(1) For 1 ≤ 8 ≤ V , client:

(a) Initializes map M8 .

(b) For 1 ≤ 9 ≤ ℓ sets

M8 [keyword8,9 ] = {F9 |LSH8 (F9 ) = keyword8,9 }.

(c) Adds dummy values to M8 until it is of size ℓ .

(2)
(

⊥

�(

)

← OMC.Enc

(

skOMC,∪
V
8=1 ∪

ℓ
9=1 8 | |keyword8,9

1_

)

,

(

f,

EM

)

← DOMapE.Enc

(

sk,M1, ...,MV

ppDOMapE

)

.

(3) Denote �C = f and �S = (�(, EM) .

OSE.Find

(

sk, ~, �C

�S

)

:

(1) Let �B = (�(, EM) .

(2) Client creates OMC set

�� = (1 | |LSH1 (~), · · · , V | |LSHV (~) ) .

(3)
(

ResOMC

⊥

)

← OMC.Search

(

skOMC, ��

�(

)

,

(

A, f ′

EM′

)

← DOMapE.Search

(

skDOMapE, f, ResOMC

EM

)

.

(4) Denote � = (∪X8=1A8 )\ ⊥, �
′
C
= f ′ and � ′

S
= (�(, EM′ ) .

(5) Client receives � , � ′
C
and server stores � ′

S
.

Figure 7: OSE construction from OMC, DOMapE and LSH.

constructions are based on ring LWE [58] or a non-standard se-

cretly permuted Reed-Muller codes assumption [12, 16]. Currently,

the ring LWE DEPIR is asymptotically e�cient but ine�cient in

practice [62].

7 Evaluation

Evaluation is split into two parts: 1) parameter analysis and accu-

racy, and 2) e�ciency of the resulting cryptographic construction.

Our parameter analysis focuses on the TAR and number of matches.

Our e�ciency analysis focuses on network roundtrips, storage, and

single-threaded computation time.
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(a) Histogram of comparisons for ND0405 dataset. (b) Histogram of comparisons for synthetic dataset. (c) Histogram of comparisons for random data.

Figure 8: Histograms of Hamming distance between readings of the same iris (in blue) and di�erent irises (in red). Di�erent

irises are stored in the database and queries are drawn from a di�erent reading of an iris in the database. The gaps in the

synthetic and random blue histograms are caused by the query generation technique used (see paragraph on random and

synthetic queries generation) in Section 5.

7.1 Accuracy - Parameter analysis

Each experiment is conducted on each dataset. Recall the relevant

parameters: U , the length of the extended LSH, V − nmaps, and

X − qsize.

Finding parameters The �rst part of the experiment was amanual

search across parameters U, V , measuring the TAR and number of

bad matches. Selected parameters had TAR of at least 90%. The

average number of bad matches was at most 10 for random data

and at most 50 for ND and synthetic data. Once U, V were selected

we recorded the histogram of bad matches and set X to be one more

than the 95% of this histogram.

Measuring accuracy We then measured accuracy for a search that

queries all V maps and one that only queries X maps. For these tests,

we only measure the TAR to understand the impact of restricting

the number of searched values on accuracy.

As one exception, due to slow speed and high memory overhead

for the 25K random dataset, we picked X = 20 based on our pa-

rameters from smaller datasets, this dataset naturally had a larger

number of bad matches but still displayed a high TAR of .91 when

restricted to X = 20 maps.

Discussion In proximity search, high TAR requires capturing

the tail of comparisons between di�erent readings of the same iris

(shown in Figure 8). For example, for distance C = .21= and a FAR of

.01, Section 3.1 proposed V = 65 and U = 13. Table 1 shows that even

for random data, we require V = 630 and U = 15. These parameters

increase further on the ND and Synthetic datasets. This leads to

an increase in the selected X . Across dataset sizes, X for synthetic

data is about 5 times X for random data. The ND and synthetic data

statistics align well. This gives some indication that parameters for

larger synthetic dataset sizes would yield comparable performance

on real irises. Across all parameter settings X/V < .06 validating

the overall design. Restricting to only X accesses in the DOMapE

does harm TAR. The worst degradation is for synthetic data with

5000 records where TAR drops from .91 to .83.

7.2 Speed - Cryptographic E�ciency

The implementation was tested on a AMD Ryzen Threadripper PRO

7995WX CPU with 96 cores and 768 GB of RAM, running Ubuntu

22.04. Results are in Table 2. We did not model network delay.

Storage e�ciency Feature vectors are 1024 bit vectors, so 5K

irises is 640 KB. The unprotected (same structure as DOMapE but

without ORAM) index takes approximately 122.3 MB.7 This repre-

sents a storage increase factor of around 22 between raw data and

unprotected index. As shown in Table 2, for our encrypted storage

this amounted to 35.6 GB in storage. ORAM increases storage again

approximately 291 times. As we discuss in the Conclusion, one can

more e�ciently pack ORAM blocks using trees with a branching

factor > 2.

Time e�ciency The time to build the encrypted index is largely

dominated by the ORAM setup time so we only report the later

(column “O.Init”). For small datasets (356 records) ORAM setup

takes hours, while larger datasets take days.

Parallel search time, the sum of the max required time to com-

plete each ORAM read at each level, remains under 35ms on all

tested parameters. We note that parallel search time is less than se-

quential search time divided by X as sequential search time includes

reading all ORAMs from disk at the beginning of each search and

writing them back to disk at the end of each search. This is done

with every query. Only searching X trees is critical to process the

ORAM reads in parallel on a moderately powerful modern server.

Network Round Trips We report on two �gures, the number

of round trips using a purely sequential non-recursive PathORAM

implementation and the number of roundtrips if one is able to fully

batch all requests at the same level. One can store the position map

for ORAMs in the prior tree level [77], enabling non-recursive con-

structions. For the largest synthetic parameter sizes, if one assumes

a fast network with 60<B responses and unbounded bandwidth

then network delays result in .84 seconds in parallel rounds trips,

but slower 1B responses results in 14 seconds.

7Internal node consists of an LSH number, a 22 LSH values, and 2 child identi�ers
(either the node id or the position of the child in the next ORAM). Leaf nodes consist
of a single 32 node identi�er.
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TAR

Dataset Dataset V Matches without X with

size type U nmaps # FA Avg bad Max bad Avg good OMC qsize OMC

356 random 15 630 7.5 7.2 16 32.1 0.98 13 0.94

356 ND 18 850 14.4 16.8 55 21.6 0.95 37 0.89

356 synthetic 18 850 15.5 12.2 37 22.6 0.96 26 0.92

1000 random 18 850 3.6 3.5 11 21.2 0.96 8 0.96

1000 synthetic 19 1000 3.7 22.7 82 20.2 0.95 47 0.96

2500 random 19 1000 5.7 5.6 13 25 0.94 11 0.89

2500 synthetic 21 1200 16 38.4 569 6.6 0.92 56 0.85

5000 random 20 1200 6.9 6.7 14 21.7 0.92 12 0.87

5000 synthetic 22 1300 21.4 44.7 578 6.9 0.91 72 0.83

25000 random 22 3500 8.7 57.2 277 6.1 - 20 0.91

Table 1: TAR/FAR and the number of matches for random, ND0405, and synthetic datasets of di�erent sizes. For 25K dataset, X

was set manually (not 95% of bad matches).

Dataset Dataset V X # ORAM # Roundtrips Time (s) Size EDB

size, ℓ type U nmaps qsize Queries Reads seq. par. O.Init seq. par. (GB)

356 random 15 630 13 356 117 118 10 1.1 × 103 .65 .013 1.1

356 ND 18 850 37 356 333 334 10 1.5 × 103 .91 .013 1.1

356 synthetic 18 850 26 356 234 235 10 1.6 × 103 .85 .013 1.1

1000 random 18 850 8 500 80 81 11 3.1 × 103 1.06 .015 2.2

1000 synthetic 19 1000 47 500 470 471 11 3.6 × 103 1.51 .016 2.2

2500 random 19 1000 11 500 132 133 13 16 × 103 3.44 .018 8.9

2500 synthetic 21 1200 56 500 672 673 13 20 × 103 4.52 .020 17.8

5000 random 20 1200 12 500 156 157 14 42 × 103 7.41 .021 35.6

5000 synthetic 22 1300 72 500 936 937 14 45 × 103 8.82 .023 35.6

25000 random 22 3500 20 100 300 301 16 552 × 103 7.89 .035 285

Table 2: E�ciency results. O.Init is time to initialize all ORAMs. O.Read is average read time (across ORAM layers). Search is

time per query and includes tree traversals. Size EDB denotes the size of the ORAM �les that are stored on the server (OMC

storage is ignored since it is much smaller). Sequential number of roundtrips is 1 + #ORAM Reads and Parallel Rounds trips is

⌈log2 ℓ⌉ + 1. All timing numbers are averaged across the number of queries in # Queries.

Using a batched ORAM implementation Many existing ORAM

schemes including PathORAMnaturally supported batched read/write

operations where the client keeps a larger stash. In the case of

PathORAM, the client repeatedly reads and writes a “random” path

on a tree. One can naturally perform all reads �rst and then perform

all writes, simulating the intermediate storage that would be held

by the server. Parallel ORAM is a more complex solution when the

reads come from di�erent clients [78].

Evaluation of OMC implementation using private set inter-

section On the same hardware as the rest of the evaluation we

deployed the VolePSI implementation [68]. To test the largest syn-

thetic parameters, we deployed this with a server set of size 6.5

million items and a client set of 1300 items. This corresponds to the

largest set of parameters in Table 2. VolePSI is based on OT exten-

sion and requires a setup phase. We benchmarked 32 PSI iterations

with the �rst taking 766ms and the rest taking 2ms of computation.

We note that VolePSI requires 7messages of communication. To get

the results in our abstract and introduction, we add 2ms to Table 2

and four rounds of communication. These results justify the focus

on the design of DOMapE.

8 Conclusion

Private Eyes was tested with parallel response times of at most

35ms on databases of thousands of irises. Our construction com-

bines LSHs and oblivious maps. The unique aspect of our design is

the recognition and mitigation of the cryptographic ine�ciencies

caused by the high noise in biometric data. The statistics of biomet-

ric data inspired a two-stage approach which �lters which LSHs

to query using a lighter-weight membership checking primitive

before the heavy-weight oblivious map.

We used binary trees but one could use trees with a higher

branching factor (or skiplists as in [8]) to reduce the number of

ORAM lookups. Ideally, each node would correspond to a single

ORAM block which is commonly a multiple of 256 bytes. Our cur-

rent estimate is that internal nodes account for ≤ 128 bits of storage

out of the 256 byte block size. As such, one could make the tree into

a 18-ary tree (32 bits for LSH number, 32 bits for left most child,

and 22 + 32 bits for each additional comparison node). This would

reduce the depth of the trees and required number of round trips

by a factor of log2 18 ≈ 4.
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A Building OMC from PSI and pseudorandom
permutations

Private set intersection (PSI) [32] is a form of secure multi-party

computation where a client and server hold sets . and - respec-

tively. They run an interactive computation, at the end, the client

learns - ∩ . . No other information is leaked. In the full version of

this work [44] we show how to buildOMC from honest-but-curious

PSI as follows:

(1) At initialization the client applies a pseudorandom permuta-

tion (PRP) to each element in the set - .

(2) The client sends the set of elements (passed through the PRP)

to the server.

(3) Later when the client has a set . , they apply the pseudoran-

dom permutation to each element of. , and uses the resulting

values as their set for the PSI protocol.

In OMC, the simulator learns the size of both sets -,. , using an

ideal PSI, only the size of - is leaked to the server. Both the sizes

of - and . are global parameter, V · 2` and V respectively.

B Synthetic Data Generation

We brie�y describe the neural network used to produce our syn-

thetic templates, see our full version [44]. Our synthetic templates

are built using a generative adversarial network or GAN. Yadav et

al. [79] uses RaSGAN (relativistic average standard GAN) [49] to

generate synthetic irises for the purpose of studying their e�ects on

presentation attack detection (PAD) algorithms. Irises from the RaS-

GAN perform well against PAD and follow real iris statistics well.

Kohli et al. [51] use the DCGAN architecture to generate synthetic

irises. Synthetic irises can be viewed as irises that must closely

resemble bona�de irises as discussed in [51, 79].

We follow the approach of RESIST [3] which takes inspiration

from synthetic data generation to invert iris templates into realistic

looking images. We use a recently proposed relativistic average dis-

criminator [49] as our discriminator. SYNTH architecture is a small

neural network having only dense (fully connected) layers, there

are �ve generator layers, and three discriminator layers. Each layer

is followed by a LeakyReLU [60] activation and a batch normaliza-

tion [48] layer. The last layers of both sub-networks are unique,

the generator has a tanh activation while the discriminator has a

Sigmoid activation.
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