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Abstract

This work introduces Private Eyes, the first zero-leakage biometric
database. The only leakage of the system is unavoidable: 1) the log of
the dataset size and 2) the fact that a query occurred. Private Eyes is
built from oblivious symmetric searchable encryption. Approximate
proximity queries are used: given a noisy reading of a biometric, the
goal is to retrieve all stored records that are close enough according
to a distance metric.

Private Eyes combines locality sensitive-hashing or LSHs (Indyk
and Motwani, STOC 1998) and oblivious maps which map keywords
to values. One computes many LSHs of each record in the database
and uses these hashes as keywords in the oblivious map with the
matching biometric readings concatenated as the value. At search
time with a noisy reading, one computes the LSHs and retrieves the
disjunction of the resulting values from the map. The underlying
oblivious map needs to answer disjunction queries efficiently.

We focus on the iris biometric which requires a large number
of LSHs, approximately 1000. Boldyreva and Tang’s (PoPETS 2021)
design yields a suitable map for a small number of LSHs (their
application was in zero-leakage k-nearest-neighbor search).

Our solution is a zero-leakage disjunctive map designed for the
setting when most clauses do not match any records. For the iris,
on average at most 6% of LSHs match any stored value.

For the largest tested parameters of a 5000 synthetic iris database,
a search requires 18 rounds of communication and 25ms of parallel
computation. Our scheme is implemented and open-sourced.
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1 Introduction

Biometrics are collected into large databases for search [13, 26,
31]. Learning stored biometric values enables attackers to break
authentication and privacy for a user’s lifetime [3, 36, 46, 61, 70, 74].
To reduce this risk, this article develops new searchable encryption
techniques for biometric databases [23, 71]. See previous reviews
of searchable encryption [10, 35, 50].

Consider a data owner outsourcing a database D5 to an honest
but curious server that may learn information called leakage. Prior
work exploits such leakage to reveal sensitive information about
the database or queries (see [50] for an overview). Since biometrics
cannot be replaced or revoked, we focus on a zero-leakage system.
A zero-leakage system reveals only unavoidable information:
1) that a query occurs and 2) | D38| (which we pad to a power
of 2). Our focus is on an efficient combination of zero-leakage
primitives for this task. Components can be replaced with higher-
leakage alternatives for efficiency gains.

Most biometric search systems phrase proximity queries as a
large disjunction. For actual biometrics, 1) this disjunction has hun-
dreds or thousands of terms and 2) most clauses will not match any
stored record. Our parameter analysis shows that these specificities
of biometrics result in critical inefficiencies in previous designs. We
propose a new design that avoids these pitfalls.

Our Contributions We present PrivateEyes, the first zero-leakage
proximity search system for the iris. It is enabled by the following
contributions:

(1) A two-stage design that 1) finds the non-null clauses (i.e.
clauses that match something in the database), 2) obliviously
searches these non-null clauses only. The first stage can be
built with private set intersection (PSI) [32]. The second
stage is built using oblivious tree traversal [77].

(2) A prototype implementation with evaluation on random
data up to 25000 records and synthetic iris data up to 5000
records [15]. On synthetic data, search takes at most 25ms of
parallel computation and 18 rounds of communication. 92%
of the computation and 14 rounds are in the second stage,
the focus of this work.



CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA.

To scale beyond the sizes of available iris datasets we also introduce
a synthetic iris generation tool that may be of independent interest.

Organization The rest of this paper is organized as follows: Sec-
tion 2 reviews our design including relevant prior work, Section 3
introduces preliminaries, Section 4 presents the details of our sys-
tem, Section 5 presents the datasets, Section 6 describes our imple-
mentation, Section 7 our evaluation, and Section 8 concludes. The
Appendices present proofs and the generation of synthetic irises.

2 Design Overview

A database is a list of biometrics DB = wy, - - - , wp where each w; €
{0,1}™. The goal of a biometric database is, given some biometric
query w”, to find all values w; € DB that are close enough to w*.
For the Hamming metric O and distance threshold ¢, that means
to find all w; such that D (w;, w*) < t.1

Like prior work [33, 54, 59, 75], we combine locality-sensitive
hashes (LSHs) [47] with an encrypted map.?

An LSH maps near items to the same value more frequently than
it maps far items to the same value. Let HH be a family of LSHs then

Pr [LSH(w;j) = LSH(w")|w;, w" are near] > 1 — py,
LSH—H

Pr [LSH(w;) = LSH(w*)|w;, w" are far] < 1 — p,.
LSH(_(H[ (wj) (w*)lw; ] p2

where p1 < pa.

Maps associate keywords to values and are used to build inverted
indices. For a map M, we use the notation M [keyw] = value to
denote that keyw is associated with value.

For a database of size ¢, parameter € Z*, LSH family #, and
maps My, - -, Mg, one can achieve proximity search as follows:

(1) Sample f LSHs, one per map: LSHy, - -+, LSHg « H.

(2) In each map, associate all records with the same LSH

output to that LSH output: for j =1, , f, set

M;[v] = {w;|LSH;(w;) = 0}.3

(3) To search for value w*, retrieve all records with at least
one LSH output in common with w*:
(a) Compute LSHq(w™), -+, LSHg(w").

(b) Retrieve UY_ M;[LSH ;(w")].

Queries are disjunctions. Boldyreva and Tang [9] constructed a
zero-leakage encrypted map scheme called an oblivious map with
encryption or OMapE. Each clause is submitted to the relevant
OMapkE, the results are concatenated as in Step 3b above.

Due to their large noise, biometrics require sampling hun-
dreds or thousands of LSHs to achieve reasonable accuracy (see
analysis in Section 3.1 and Section 7). At the same time, few of
these LSHs match anything in the corresponding map. Construc-
tions frequently perform heavy oblivious operations to hide the
null value.

IThis functionality differs from k-nearest neighbors where the goal is to retrieve the k
closest records [9]. There have been leakage abuse attacks against k-nearest neighbor
systems that reveal access pattern [52, 53, 56] and resulting systems [18]. These attacks
do not apply to our leakage profile.

2We won’t discuss works that use encrypted maps but require work proportional to
the total number of close points, making them impractical for biometrics [8, 57, 76].
31f multiple records share the same LSH value our implementation concatenates the
matching values. This allows us to handle a constant number of values associated to
each keyword. This condition is satisfied for the accuracy regimes discussed in this
work.
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Our design separates the tasks of identifying which values are
null and finding the associated values. That is, we first try to find a
small number, called §, of LSHs values that exist in some map, and
then query exactly those § maps in a way that hides which maps
are being queried. For the above design to be successful, one needs
to demonstrate:

(1) Obliviousness One can hide the queried § maps,
(2) Accuracy High accuracy with § < §, and
(3) Speed The approach is faster.

We now provide a more detailed description of the approach, shown
visually in Figure 1.

Oblivious Membership Check An object to check which LSHs’
outputs, LSH;(w*), have matches. For an encrypted stored set X
the oblivious membership check or OMC takes in a set W and returns
aset W’ of size §. If [W N X| < & then W’ contains W N X and § —
|WNX| dummy values. If [WNX| > § then W’ contains  randomly
selected values from W N X. In our system, X is the set of all LSHs
values X = {(j, LSH;(w;))};j and W = {(j,0)|LSH(w*) = v} for
some query w*.

We build OMC using private set intersection and pseudorandom
permutations. We benchmark this design using VolePSI [68]; the
resulting implementation takes 2ms and 4 rounds of communication
for our largest tested parameters.

For each parameter set, we manually find a size § where if one
only searches for § items in the second stage, there is only a small
degradation in accuracy.

Disjunctive Oblivious Map An object that searches for the dis-
junction of exactly § items. These § values form a set of LSHs that
exist in the map?. Using an oblivious data structure with a con-
stant number of queries yields a zero-leakage solution. This object
has the same functionality as an oblivious map that takes multiple
clauses but the fact that all clauses are presented together is crucial
for security. We call this object a DOMapkE for disjunctive oblivious
map with encryption. Our focus is on designing a DOMapE.

We propose a DOMapE based on oblivious tree traversal, build-
ing on the design principles of Wang et al. [77]. In our approach,
each map corresponds to a tree, so one always performs ¢ tree tra-
versals. We use oblivious RAMs to store tree nodes. The oblivious
RAMs are organized to minimize nodes that are stored together
while ensuring that § tree traversals result in no leakage.

To build the encrypted database (Enc stage in figure 1) the client
computes the set of all LSH values using the OMC (with their index
J)- They also create the maps associating LSH values to the corre-
sponding biometric values and build the corresponding DOMapkE.
To search for query w* (Find stage in figure 1), the client computes
the corresponding LSH values and uses OMC.Find to find a subset
of those values present in the maps. DOMapE.Find is then used
to retrieve the corresponding non-null values from the maps. The
inputs to both OMC.Find and DOMapE.Find are of constant size,
yielding a zero-leakage solution.

We implemented and analyzed this construction on datasets of
up to 25000 records. Since available iris datasets are not this large,
we created larger synthetic iris datasets up to 5000 records using

“Except for dummy values added when the total number of matches is less than .
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Enc
C S

X LGy

M;[o] = {wi}
Find )
C S
W = {(j, LSH;(w"))}; OMC.Find
wcocwnXx

Pad W so [W/| =6

W/
— DOMapE.Find
< § results
A J

Figure 1: System Overview Composing OMC and DOMapE. In
Find one checks which LSH values exist in the database using
the OMC, finding at most § candidates. If needed OMC pads
this set of candidates with dummy values to reach |W’| = §.
DOMapkE is designed to have no leakage if the size of the
disjunction is constant (6). See Construction 2 for a formal
description.

generative adversarial networks or GANs [22, 42] and random data
to 25K records. For all tested parameters we have § < 75 (in contrast
to a number of LSHs f# > 600), so a server could reasonably process
the ORAM requests at each tree level in parallel. Thus, we report
on both parallel and sequential time.

Comparison with prior work Cachet et al. [1] proposed two non-
interactive iris proximity search schemes based on inner-product
encryption. Both of their constructions have more leakage than our
system. The first one leaks the distance between all returned points
and the query. The other leaks whether returned records are the
same distance from the query. For the solution with more leakage,
search took 4 minutes on a dataset of size 356. For the solution with
less leakage, the search took 1 hour [14].

Barni et al. [4] and Blanton et al. [6] evaluated their fingerprints
identification systems on small datasets of 320 readings. They re-
spectively achieved search times of 16 and 0.45 seconds for the
server. Their protocols use Garbled circuits and only a single round
of communication. Blanton et al. [6] also proposed an iris identifica-
tion system that compares two 2048 bits iris readings in 0.15s. For a
database of size 356 (our smallest setting) this would amount to 53s.
For face recognition, SciFi [63] online search runtime is linear in
the size of the database: for 100 faces representations search takes
31s. Erkin et al. [28]’s system takes roughly 40s to search over a
dataset of size 320. As a reminder on 5000 irises our search is 25ms
with 18 rounds. For a network delay of 100ms, this corresponds to
an overall time of ~ 2s.

Recent work [17, 38, 73] extends PSI to the setting where one
considers items a match if their distance is small. A naive use of
fuzzy PSI tells the client if the biometric exists in the database but
not which item it matches. This issue can be solved using labeled
PSI, [19] which associates a label with each set value x € X. This
is the approach used by Uzun et al. [73]. Uzun et al. [73] evaluate
the face biometric. At a technical level, their fuzzy PSI is similar
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to our approach; they store LSH outputs in the set X and encrypt
each item before sending it to the server. However, they perform a
threshold version of labeled PSI, only returning a record if there
are enough matches. One match is required in our approach. Their
approach is bandwidth efficient but requires fully homomorphic
encryption [39] to perform the more complex matching. Uzun et
al’s scheme does not allow the client to learn about non-matching
records which is not a goal of our work. Their scheme uses f = 64
by averaging multiple biometric readings, such techniques can be
applied in our setting as well. Averaging readings is not standard
in the biometric literature so we do not do it.

More work is needed to scale zero-leakage biometric databases.
Our cryptographic storage overhead is around 5000 for all tested
parameters. The required number of LSHs grows with the database
size. Scaling to 10° irises requires 93000 LSHs (using linear interpo-
lation over the number of required LSHs for synthetic data with an
r? = .88) for an overall storage of 93 billion LSH outputs (roughly
500TB for the cryptographic object). In our current testing, we load
the whole cryptographic object in memory with each query, which
is not possible for larger sizes.

3 Preliminaries

Let A be the security parameter, we use poly(4) and negl(}) to
denote unspecified functions that are polynomial and negligible in
A, respectively. All definitions are indexed by A but this indexing
is omitted for notational clarity. For some n € N, [n] denotes the
set {1,---,n}. Let x « S denote sampling x uniformly at random
from the finite set S. Let L1, Ly, ... be a sequence of distinguished
unique symbols. These symbols are allowed inputs to algorithms.
For a map M, let M.Keywords output the set of all stored keywords.

For interactive protocol Prot between a client C and a server S
Ic
is
client’s and the server’s inputs and outputs respectively. Protocols
are written from the perspective of the client with underlying
interactive algorithms indicating the server’s role.

Hamming distance is defined as the distance between the bit
vectors x and y of length n, D(x,y) = |{i | x; # y;}|. The fractional
Hamming distance is D (x, y)/n.

oc
we use notation ( ) « Prot ( ) with ic, oc, is, 0s denoting the
os

Definition 3.1 (Locality-sensitive Hashing). Lett € N, ¢ > 1 and
p1, P2 € [0, 1]. H defines a (t, ct, p1, p2)-sensitive hash family if for
any x,y € {0,1}", we have:

1) ¥D(x,y) <t Prisyegy [LSH(x) = LSH(y)] = 1 - p;1 and
(2) £ D(x,y) = ct, Prigneg [LSH(x) = LSH(y)] <1 - po.
For x, y if D(x,y) < t they are called near, if D(x,y) > ct they are

called far.

We use selection of a single random bit as our LSH. For two
values x, y the probability this bit will be the same is 1 — D (x, y)/n.
That is p1 > t/n while ps < ct/n. The error rates pi, p2 of an
LSH can be increased by randomly sampling several LSHs and
checking that they all match, an ¢-AND. For a-AND composition,
a (t,ct, p1, p2)-LSH yields a (¢, ct,p;",pg‘)—LSH. For our LSH, this
corresponds to randomly selecting o (with replacement) bits of
the input. Similarly, p1, p2 can be decreased by randomly sampling
several LSHs and checking that at least one of them matches, a
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B-OR. For -OR composition, a (¢, ct, p1, p2)-LSH yields a (t,ct, 1 —
(1-p1)P,1- (1= p2)P)-LSH.

3.1 The need for many LSHs in biometric
proximity search

We focus on the iris biometric and use the ND-0405 dataset [11, 66].
The average distance between same irises is t/n ~ .21, using a
state-of-the-art feature extractor [2]. Section 5 presents the datasets
used in this work. Our discussion applies to other biometrics with
substantive noise such as the face °.

If one only uses the AND of @ LSHs and considers it a match
when at least one LSH out of f corresponds, this LSH can be seen
as the $-OR of the a-AND of LSHs where

pr=1-01-p)f pp=1-0-p5).
Let w] be a noisy reading of w;. When using w; as a search query,
a true accept is when w; is returned and the true accept rate (TAR)
is the fraction of queries where this happens. The fraction of false
accepts (FFA) is the fraction of DB \ {w;} that is returned on
average.

If one assumes that p; = t/n = .21 and pp = .5 and all items
have these average distances, then TAR is 1 — p} and FFA is 1 — p;.
Under this assumption, achieving a TAR of .95 (p] = .05) and an
FFA of .01 (p;, = .99) requires a number of LSHs 65 < $ < 80 for
the minimum o = 13. For a dataset of size 10° if one seeks at most
100 false accepts (that is, FFA of 10™%) this requires 680 < f§ < 835
at the minimum « = 23.

However, even though the mean distance between readings of
the same biometric is t/n = .21 there is substantial variance in this
distance (see Figure 8(a)), requiring f to be larger as we show in
Table 1.

We call an LSH match good if it ensures the query results in
a true accept and bad otherwise. For the ND-0405 dataset,’ with
a larger f = 225 and a = 15, the average number of total LSH
matches is 23.4.

and

3.2 Cryptographic Definitions

This work relies on oblivious RAM (ORAM) [40, 41] to achieve
zero-leakage. In our constructions, we consider static datasets and
ignore write queries. Our ORAM definition reflects this choice. As
we discuss in Section 6, this definition is also satisfied by private
information retrieval schemes (with appropriate encryption). We
discuss other considerations for dynamic data at the end of Sec-
tion 6.

Definition 3.2 (Oblivious RAM). An Oblivious RAM (ORAM)
scheme is two protocols, Setup and Access:

o, IA, Mem\ [v,0’ 0,1
(EM) « Setup Al « Access (EM) .

SDeng et al. [27, Figure 6] show analogous statistics for the face.
5This uses the following experiment:
(1) Storage of a single feature extracted reading for the eye for each of the 356
persons. Sample f§ = 225 LSHs of size a = 15.
(2) Let wy, ..., W5, be the second stored template in the ND-0405 dataset.
(3) Search for each record w]. Record the number of good and bad LSH matches.
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Real;q,q(lﬂ):
(1) Mem «— A(11).
00, 1%, Mem
(2) Run « Setup . Let tsg denote the server’s view.
EMg 1

(3) For1 <i<gq:
(@) yi «— Altsi-1),
v;, 0} Oi-1, Yi
(b) ( EM, <—Access( EMil).
(c) Let ts; be the server’s view.
(4) Output (tso, - - - , tsq).
ldealﬂ,Sim)q(lA): Output (tso, ..., tsq) < Sim(g, |[Mem|, 1.

Figure 2: Definition of Ideal and Real for ORAM security.

Correctness Consider the following correctness experiment:

(1) An adversary A chooses memory Mem.
2 Consider [ %)  setup [ Mem
(2) Consider EMo « Setup .

1
(3) For1<i<gq:
(a) Runy; « A(tsj—1).
Vi, O Oi-1,Yi
(b) Run ( EM; EMifl)"
The adversary wins if for some i, v; # Mem[y;]. The ORAM scheme
is correct if the probability of ‘A winning the game is negl(4).

) «— Access (

Security An ORAM scheme is secure in the semi-honest model if
for any PPT adversary (A, there exists a PPT simulator Sim such that
the distributions Real 4 and Ideal #,gim g, described in Figure 2,
are computationally indistinguishable.

The above is an adaptive simulation definition of ORAM [37], all of
our proofs work naturally for the standard non-adaptive definition.
We define generic oblivious searchable encryption (OSE) and in the
rest of the paper, will use specific variants of it.

Definition 3.3 (Oblivious searchable encryption). Let M denote
the records space, Q denote the query space and R denote the result
space. Let DB C M be a database and y € Q be a query. For string
param, let the triple of protocols OSE = (Setup, Enc, Find) have
the following format:

sk 1’1, param
( ) « Setup 2
pp 1%, param

Ic, sk, DB\ (], Ié sk, y, Ic,
( )<—Enc( ), , (—Find( )
Is pp IS pp; Is

OSE is an oblivious searchable encryption if the following hold:

>

Correctness: The set J is the “same” as the result of the query.
The formal definition varies per OSE variant we consider and is
defined later.

Security: Let g = poly(4), Lose = {Lencs Lrind =1} be the
leakage profile of OSE’s algorithms. For any PPT adversary A, there
exists a simulator Sim such that the distributions Real ¢ param
and Ideal # sim,g,param- described in Figure 3, are computationally
indistinguishable.



Private Eyes: Zero-Leakage Iris Searchable Encryption

Real&’l,q,param (1/1 ) :

) sk 14, param
1) Compute « Setu .
p pp Pl

17, param
Let tsg be the server’s view.
2) DB «— A(tsy).
Ic,
(3) Compute «— Enc
Is1
Let ts; be the server’s view.
(4) For1<j<gq:
@ 3y « Alts)).
JisIcjr sk, yj, Ic j
o [ < Find[ 7
Is j+ pp; Is j

Let tsj4; be the server’s transcript.
(5) Output (tso, ..., tsg+1)-

sk, DB
pp

]dealﬂ,Sim,q,param (1)L ) :

(1) tsp « Sim(1%, g, param).

(2) DB — Altsy).

(3) (ts1, ..., tsq+1) = Sim(Lenc (D B)).
(4) Output (tso, ...tsg+1).

Figure 3: Definition of Ideal and Real for OSE security.

Our goal is to build an OSE scheme for proximity queries, we
define this particular variant of OSE as follows:

Definition 3.4 (Oblivious Proximity Search). Consider Definition 3.3
with the following specificities. Let M = Q = R = {0,1}" and
param = t. Consider DB = wy, - - - , wp where each w; € M.
(e,t)-Approximate Correctness: For all DB,y € Q define
JDBnear,y = {wilD(wi,y) < t}. Let g = poly(4) and € > 0. For
all DB and all yy, ..., Yq define:

(sk) S 14
«— Setu s
pp Plp

L, sk, DB\ (], Ic j+1 o (skyjIcj
«— Enc , «— Find
I PP Is j+1 Pp:Is,j

OSE is e-approximately correct if V1 < j < ¢ for all DB

Pr []] 2 ]Z)B,near,y] 21-e.

Definition 3.4 doesn’t limit the number of false matches. Further-
more, in Section 4, we never show that our construction satisfies
approximate correctness. Instead, we evaluate approximate correct-
ness using data in Section 7.

Our scheme first finds a list of candidate LSH matches, and then
uses an appropriate oblivious map to find the relevant records us-
ing the candidate LSH matches. The first stage is called oblivious
membership checking or OMC. An OMC can be built from private
set intersection (PSI), client storage, and full set retrieval (see Sec-
tion 4.2). We are not offering constructions of OMC as a technical
contribution. We benchmark separately using PSI, see discussion
in Section 7. In our full implementation we use a local Bloom filter
to simplify evaluation.
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OMC only handles sets, that is, a collection of values without
repeats. In our search system, these values are LSH outputs. It is
possible for two distinct LSHs to have the same output. To avoid
this, we prepend the LSH id to each LSH output value. For LSH j,
the corresponding values to use would then be {; || LSH;(x)}. We
define OMC as a variant of OSE:

Definition 3.5 (Oblivious Membership Check). Let OMC = (Enc, Find)

be a pair with stored set size p, query size y, and result size §, ab-
breviated p-ssize, y-qsize, and §-rsize. Consider Definition 3.3 with
the following specificities:
o Let M = Q =R and param = (p,y, f).
e Consider X C M, such that |[X| =y, and Y C Q, such that
|Y| = p.Set DB = X and query y =Y.

Correctness: Weuse L1,---,L pto denote a sequence of unique
symbols that cannot appearin X or Y. For all X, |[X| = yand Y, |Y| =
(EC,

B, let
I, ) EC,Y
ES , (J_) « Find ( ES) .

Then |I| = § and for all i € I such that Vj,i #1; it holds that
Prlie XNY] >1-negl(h).

14 x

«— Enc
) 1

Finally, we define the second stage of our system:

Definition 3.6 (Disjunctive Oblivious Map with Encryption). Let
param = (f,0), such that 5,6 € Nand § < f and let y € N. Let
DOMapE = (Setup, Enc, Find) be a triple with f maps, ; map size,
and § query size, abbreviated  — nmaps, y —msize, and § — gsize.
Then DOMapE is a disjunctive oblivious map with encryption if it
satisfies Definition 3.3 with the following correctness guarantee.
Correctness: Let M = {M; | M; : Q «— R}, where M; denotes
a map such that for 1 < i < f,[M.Keywords| < 2. Set DB =
M1, - Mg. Let e > 0, g, f,6 = poly(A) and § < f. Let param =

(B, p1, 6). Fix some ({Mi}iﬁ:l, {y/ e (Xx[1, [])5}j:1) and define for
1<j=sq

sk 148,56
( ) « Setup ,
pp 1

o1, sk, DB\ (rj,0j+1, sk, o,y
R B e ] e
EM; pp/ \ EMjs1 PP, EM;
DOMapE is correct if there exists a set 7 C [2#] where || < §
such that :

Pr [(uir{) \ 0 C Ue My, [x{” > 1-negl(A).

4 Oblivious Proximity Search for Biometrics

This section presents our technical solutions, focusing on the de-
sign of DOMapE. We describe possible constructions of OMC in
Section 4.2. The most relevant related work is by Boldyreva and
Tang [9], whose construction is for the approximate k-nearest neigh-
bors search problem. While Boldyreva and Tang discuss two ways
of implementing OMapE, one using a tree and the other using a
skip list [67], we present a tree based construction. In this work, we
only consider static data. For static data, B-trees and skip lists are
equivalent data structures [55]. However, updates and the resulting
performance differ.
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Recall the unprotected solution for proximity search from the
Introduction:

(1) Sample g LSHs, LSHy, ..., LSH/; — H.
(2) For j=1,..., 3, set

M;[keyw] = {w;|LSH(w;) = v}.

(3) To search w*, compute LSH1(w"),....LSHg(w"), and re-
trieve U)_ M, [LSH,; (w")].

The maps consists of y;, {w;} pairs. The keywords y; are placed
into the map, sorted (lexographically) and used as nodes in a binary
tree (along with {w;}). Internal nodes have store the minimum
keyword in the right subtree and the location of the two children
LC, RC. We show this design in Figure 5. Let Try, ...,Trﬁ be the
output of BIndex on maps My, ..., Mg respectively.

To turn this into an oblivious search algorithm, one can place
each tree in a distinct ORAM. The construction fully traverses every
tree Tr; meaning that there is a constant number of accesses to each
ORAM with every search. Let y; be the number of elements in
M;, define i = [log max; y;], by padding each ORAM to length 2#
each ORAM receives exactly y + 1 accesses with each query ((y +
1) f across the f trees). This corresponds to Boldyreva and Tang’s
approach and is shown in Figure 4(a) . However, since each level
of each map receives a single access per query, one can store each
level of the tree in a separate ORAM. This design is shown visually
in Figure 4(b), with each shaded region representing a separate
ORAM. With this approach, each shaded region sees exactly one
read for each search query. This organization allows higher levels
of the tree to serve as the position map of their child eliminating
the need for a recursive ORAM [77].

Our approach Recall that our goal is a two part construction: First
one queries the OMC to find out which § < f LSHs have matches.
Then one queries the relevant § maps M; to find records. In this
new design, one does not query every My, ..., Mg. As such, the set
of queried maps would be leakage. We merge the ORAMs across
maps to prevent this. However, we retain a separate ORAM for
each level of the trees. This is shown visually in Figure 4(c) and
also described by the ApplyO algorithm in Figure 5. This means
that each query now makes ¢ accesses at each ORAM level. There
are u + 1 levels in total resulting in §(p + 1) ORAM accesses. In
this design, parents store the position map of children, enabling
non-recursive ORAM.

ConsTruUCTION 1. Let X and M be the domain and range of a map,
such that elements in X are comparable with the < operator. Define f3
maps My, ..., Mﬁ. Let O = (O.Setup, O.Access) be an oblivious RAM
and let O; denote its instantiation for level 0 < i < p. Consider the
DOMapkE construction shown in Figure 6.

THEOREM 4.1. For any§, f € N where § < f. Construction 1 de-
scribes an DOMapE for Lpindex(M1, ... Mg) = p = max;[log [M;|]
for B — nmaps, y —msize, and § — gsize.

The proof of Theorem 4.1 is in the full version of this work [44,
Theorem 1].
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4.1 OSE design

CONSTRUCTION 2. For a database DB = (w1, ..., wp) define u =
[log ¢1. Fix parameters 8, v, f € N where § < v < f.
(1) Let DOMapE be a disjunctive oblivious map with encryption
with § — nmaps, y —msize, and § — gsize,
(2) Let OMC be an oblivious membership check with 2#«f—ssize,
B —qsize, and § — rsize, and
(3) Let H be a family of locality sensitive hashes.
Foradatabase DB = (wy, ..., wy), define OSE = (OSE.Setup, OSE.Enc,
OSE.Find) as in Figure 7.

THEOREM 4.2. Let DOMapE and OMC be as in Construction 2.
Then Construction 2 is an oblivious searchable encryption scheme
with leakage Lnc(My, ...Mﬁ) =p.

Theorem 4.2’s proof is straightforward and is deferred to the
full version of this work [44, Theorem 2]. Roughly, it shows that
the composition of OMC and the DOMapkE is a disjunctive map
that takes in size f queries and returns § records. Theorem 4.2
does not handle correctness. Since there is an overlap between
the histograms for real data in Figure 8 one cannot make strong
correctness claims. We evaluate correctness empirically in Section 7.

4.2 Oblivious membership check constructions

We discuss options to implement OMC. We briefly cover approaches
based on Bloom filter lookups. In Appendix A, we describe how to
build OMC from private set intersection. This is the tool that we
use for microbenchmarks. In our implementation, we use a local
Bloom filter to emulate an OMC.

Oblivious Bloom Filter Lookups The client’s set can be stored in
a Bloom [7], Cuckoo [29], or XOR [43] filters which is then stored
on the server in an ORAM. The client will request the relevant bits
from the ORAM. This prevents the client from having to store the
entire filter on their side, but requires them to request multiple
ORAM accesses to query the relevant bits. BlindSEER [30, 64] built
a tree of encrypted Bloom filters for general Boolean search. Search
of each node uses Garbled circuits to decide whether to proceed
to children. One can use a single level of their tree as an OMC
as long as only the client learns the response. This requires some
modification as their system was optimized for circuits that output
a bit, we would need the set of matching locations. Their system
was evaluated on datasets with 10% records [34].

5 Datasets

We test and evaluate our implementation on three datasets:
ND-0405 dataset This dataset [11, 66] is a superset of the NIST
Iris Evaluation Challenge [65]. It consists of the readings of left and
right irises from 356 individuals, each iris having at least 4 distinct
readings. We use the ThirdEye feature extractor [2] to obtain 1024
bits feature vectors from the original iris images. Since the left irises
were used to train the feature extractor, we use the right ones for
testing and evaluation. The first reading of each right iris is in the
DB; queries come from the remaining readings. The Hamming
distance distributions are in Figure 8(a).

Synthetic dataset Available irises datasets are of limited size, often
no more than a few hundreds irises (356 individuals for ND-0405).
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(a) Boldyreva and Tang ORAM organization [9].

(b) First optimization.

(c) Our design.

Figure 4: ORAM Organization Strategies. Each shaded region represents data stored together in a single oblivious RAM. In
(a) one uses a separate ORAM for each LSH. In (b) we split this to one ORAM per tree level. Then (c) is our design of DOMapE
where each level across binary trees is stored in a single ORAM. This allows one to hide which trees are accessed.

Blndex(M, p):

(1) Sort map M using the comparator <.

Let Leaves = (x;, M[x;]) be the sorted result.

(2) Pad Leaves to length 2# with pairs (L, L;).

(3) Build balanced binary search tree Tr over the values
of x; and for each internal node, attach pointers to its
left and right child, LC and RC.

(4) Associate M[x;] as data for leaf x;.

ApplyO

(1) For j € [0, u]:
(a) Levelj =L.Forall Tric[g), Level; = Level; || Level(Try, j).
o'j,
(b) (EMj
(2) Denote % := {o; }j.l:O and EM = {EM; }5.1:0.
Level(Tr, j): Return all nodes at level j in Tr.

Trq, ...,Trﬁ
11

,L

1/1, Level;
«— O.Setup

Figure 5: Build tree index and apply ORAM algorithms.

Real world systems would store thousands to millions individuals,
depending on the application. Our solution is to generate synthetic
irises templates, that mimic actual ones. As can be seen in Figure
8b, synthetic data same and different distributions are similar to
the ND-0405 ones. The details on synthetic data generation are
in Appendix B. The high level approach is a generative adversar-
ial network (GAN) [42] as in prior approaches on synthetic iris
generation [3].

Random dataset This dataset is made from randomly generated
1024 bits vectors. The Hamming distance between two vectors is
close to 0.5 with a small variance. This is visible in the red histogram
from Figure 8c.

Random and synthetic queries generation Contrary to the
ND0405 dataset [11], the random and synthetic datasets do not
include queries. We generate queries from a distribution that resem-
bles the one for ND-0405. We use the common observation that like
irises comparisons have a distribution close to a binomial across
different feature extractors [24, 25, 69]. From Figure 8a, we extract
the mean, p = 0.21, and the standard deviation, o = 0.056. This
yields a distribution B(n, i) /n, the binomial distribution for n = 53.
This is because for B(n, p) it is true that 62 = p(1 — y)n. Thus, by
linearity of expectation for B(n, y1) /n it is true that 62 = pu(1—p)/n,
thus one can compute n = [p(1 — p)/0?] = [52.9] = 53.

We then generate queries for the random and synthetic datasets
as follows:

(1) Generate a binomial distribution using the mean and stan-
dard deviation of the same iris distribution for the ND-0405.
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(2) For each feature vector in the dataset, create a correspond-
ing query by sampling an error fraction from the frac «
B(53,0.21)/53.

(3) Flip the number of error bits, frac = 1024, in the feature
vector.

Using this technique, we obtain the same iris distributions (in blue)
for synthetic and random data shown in Figures 8b and 8c. There
are only 54 possible outcomes for a fraction of error bits, this leads
to discontinuities in the histograms presented in Figures 8b and 8c.

6 Implementation

We present an open-source implementation of our algorithms in-
cluding the LSH parameter finding, tree building, and oblivious
search [15]. This implementation is in Python 3.10 and uses the
PathORAM [72] module [45]. Our experiments use a Bloom filter
cache on the client as an OMC to focus on the performance of the
developed DOMapE. We separately evaluate an OMC candidate
based on PSI in Section 7. Our implementation supports two main
conclusions.

(1) One can set a § < f size of the query to DOMapE that
supports a high true accept rate. For a query, we define bad
matches to be the number of LSH matches that only result
in incorrectly returned records; setting J to be 1 more than
the 95% of this value. See Table 1 for a comparison of true
accept rate for the setting when § = f and when § < . In
all analyzed parameters §/f < .06. The value § is higher
for real and synthetic data than for random data; this is
due to the larger variance of distances between readings of
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B, v, o

Mu- -, Mg
Enc :

Bv,S 1B v, 8
« Setup 2
1

IA

(1) Let n; = |M;], define y = [log max; 1; 1.
(2) Fori € [p], client sets Tr; « Blndex(M;, u).

> Tri, .o, Trg
M «— ApplyO 1l

3) Cinitiates
® es o )

(4) Server receives EM and client keeps X.

sk, 3,y e (X x[L¢])”
Search
EM

C does:
(1) Parse y = (x1,ky, ..., xy,ky) and X = o1, - - - , oy
(2) Set Nodes; = ((ki,1),..., (ky,1)), Res =L.
(3) For j=[0,u—1] andforiin1to v:
a}, x’,LC,RC o, Nodes;[i],
EM, EM;|”

— O.Access (

(a) If x" < x;, set
Nodes 41 = Nodes ;|| (k;, LC).
(b) Else Nodes;;; = Nodes || (ki, RC).
(4) Foriin1to v:

o, x',M[x] oy, Nodes,, [i],
" «— O.Access # " .
EM; EM;
(a) If x" = x;, Res = Res UM[x"].
(5) Return Res and ¥’ = o7, - - - ,0;,.

Figure 6: DOMAPE Construction. The Bindex algorithm is
shown in Figure 5.

different irises. This increases the number of false matches.
As one exception, we set § for our 25K random parameters
heuristically based on the smaller dataset sizes.

(2) The two stage DOMapE approach improves search perfor-
mance. While setup takes several hours, parallel search is at
most 35ms. Without the two stage approach parallel search
would require a server with hundreds of threads. See further
timing discussion in Section 7.2.

Dataset Modifications Our implementation does not allow for
insertion after the initial building of the tree. With ORAM one can
rebuild the trees using techniques of Wang et al. [77].

Alternative to ORAM In the static setting, one can use private
information retrieval (PIR) [20, 21] with encryption. At retrieval,
single server computational PIR and PathORAM [72] with “large”
blocks of size Q(log? N) both achieve communication complexity
of O(log N), with N the number of blocks. However, time efficiency
would probably suffer from this change. Traditional PIR schemes
require work ©(|D8]) on the server. Doubly efficient PIR (DE-
PIR) [5] preserves the communication efficiency of regular PIR
but with o(|DB|) server work. To achieve this DEPIR relies on a
server pre-processing stage which is allowed in our model. DEPIR
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1/1
OSE.Setup :

(1) Client samples LSHy, ..., LSHg « H(1*) and runs
skomc
1

1/\
«— OMC.Setup ( s
4

A
skpomapE 1
< DOMapE.Setup Al
PPpoMapE 1

(2) Denote
PP = PPpOMapE> Sk = (skomc, skpomape: LSH1, ..., LSHg).
(3) Client sends pp to server and keeps sk.

sk, DB = (wy, ..., Wf))

PPpOMapE

OSE.Enc(

(1) For1 < i < p, client:
(a) Initializes map M;.
(b) For1 < j < ¢sets
M;[keyword; ;] = {w;|LSH;(w;) = keyword; ;}.
(c) Adds dummy values to M; until it is of size ¢.

(2
L skomc, Uf{l U(.=1 i||keyword,; ;
« OMC.Enc = 71,
ES A
o, Sk,Ml,..., Mﬂ
< DOMapE.Enc .
EM PPDOMapE
(3) Denote It = o and Is = (ES, EM).
sk, y, I
OSE.Find :
Is

(1) Let I = (ES, EM).
(2) Client creates OMC set

EC = (1]|LSHy (y). - - -, BlILSHg (y)).
®)

(RGSOMC

SkOMCs EC
N «— OMC.Search

ES

5

EM’ EM]"

r,o’ skpomapE, o, Resomc
«— DOMapE.Search
(4) Denote J = (Uilr,—)\ L, Il =0’ and I = (ES,EM").

(5) Client receives J, I/ and server stores I{.

Figure 7: OSE construction from OMC, DOMapE and LSH.

constructions are based on ring LWE [58] or a non-standard se-
cretly permuted Reed-Muller codes assumption [12, 16]. Currently,
the ring LWE DEPIR is asymptotically efficient but inefficient in
practice [62].

7 Evaluation

Evaluation is split into two parts: 1) parameter analysis and accu-
racy, and 2) efficiency of the resulting cryptographic construction.
Our parameter analysis focuses on the TAR and number of matches.
Our efficiency analysis focuses on network roundtrips, storage, and
single-threaded computation time.
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(a) Histogram of comparisons for ND0405 dataset.
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(c) Histogram of comparisons for random data.

Figure 8: Histograms of Hamming distance between readings of the same iris (in blue) and different irises (in red). Different
irises are stored in the database and queries are drawn from a different reading of an iris in the database. The gaps in the
synthetic and random blue histograms are caused by the query generation technique used (see paragraph on random and

synthetic queries generation) in Section 5.

7.1 Accuracy - Parameter analysis

Each experiment is conducted on each dataset. Recall the relevant
parameters: a, the length of the extended LSH,  — nmaps, and
d —gsize.

Finding parameters The first part of the experiment was a manual
search across parameters «, f§, measuring the TAR and number of
bad matches. Selected parameters had TAR of at least 90%. The
average number of bad matches was at most 10 for random data
and at most 50 for ND and synthetic data. Once «, f were selected
we recorded the histogram of bad matches and set § to be one more
than the 95% of this histogram.

Measuring accuracy We then measured accuracy for a search that
queries all f maps and one that only queries § maps. For these tests,
we only measure the TAR to understand the impact of restricting
the number of searched values on accuracy.

As one exception, due to slow speed and high memory overhead
for the 25K random dataset, we picked § = 20 based on our pa-
rameters from smaller datasets, this dataset naturally had a larger
number of bad matches but still displayed a high TAR of .91 when
restricted to § = 20 maps.

Discussion In proximity search, high TAR requires capturing
the tail of comparisons between different readings of the same iris
(shown in Figure 8). For example, for distance ¢ = .21n and a FAR of
.01, Section 3.1 proposed = 65 and a = 13. Table 1 shows that even
for random data, we require f§ = 630 and @ = 15. These parameters
increase further on the ND and Synthetic datasets. This leads to
an increase in the selected §. Across dataset sizes, é for synthetic
data is about 5 times J for random data. The ND and synthetic data
statistics align well. This gives some indication that parameters for
larger synthetic dataset sizes would yield comparable performance
on real irises. Across all parameter settings §/f < .06 validating
the overall design. Restricting to only § accesses in the DOMapE
does harm TAR. The worst degradation is for synthetic data with
5000 records where TAR drops from .91 to .83.
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7.2 Speed - Cryptographic Efficiency

The implementation was tested on a AMD Ryzen Threadripper PRO
7995WX CPU with 96 cores and 768 GB of RAM, running Ubuntu
22.04. Results are in Table 2. We did not model network delay.

Storage efficiency Feature vectors are 1024 bit vectors, so 5K
irises is 640 KB. The unprotected (same structure as DOMapE but
without ORAM) index takes approximately 122.3 MB.” This repre-
sents a storage increase factor of around 22 between raw data and
unprotected index. As shown in Table 2, for our encrypted storage
this amounted to 35.6 GB in storage. ORAM increases storage again
approximately 291 times. As we discuss in the Conclusion, one can
more efficiently pack ORAM blocks using trees with a branching
factor > 2.

Time efficiency The time to build the encrypted index is largely
dominated by the ORAM setup time so we only report the later
(column “O.Init”). For small datasets (356 records) ORAM setup
takes hours, while larger datasets take days.

Parallel search time, the sum of the max required time to com-
plete each ORAM read at each level, remains under 35ms on all
tested parameters. We note that parallel search time is less than se-
quential search time divided by § as sequential search time includes
reading all ORAMs from disk at the beginning of each search and
writing them back to disk at the end of each search. This is done
with every query. Only searching § trees is critical to process the
ORAM reads in parallel on a moderately powerful modern server.

Network Round Trips We report on two figures, the number
of round trips using a purely sequential non-recursive PathORAM
implementation and the number of roundtrips if one is able to fully
batch all requests at the same level. One can store the position map
for ORAMs in the prior tree level [77], enabling non-recursive con-
structions. For the largest synthetic parameter sizes, if one assumes
a fast network with 60ms responses and unbounded bandwidth
then network delays result in .84 seconds in parallel rounds trips,
but slower 1s responses results in 14 seconds.

"Internal node consists of an LSH number, a 22 LSH values, and 2 child identifiers
(either the node id or the position of the child in the next ORAM). Leaf nodes consist
of a single 32 node identifier.
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TAR
Dataset | Dataset B Matches without d | with
size type | « | nmaps | #FA | Avgbad | Max bad | Avg good OMC || gsize | OMC
356 random | 15 630 7.5 7.2 16 32.1 0.98 13 0.94
356 ND | 18 850 | 14.4 16.8 55 21.6 0.95 37 0.89
356 | synthetic | 18 850 | 15.5 12.2 37 22.6 0.96 26 0.92
1000 random | 18 850 3.6 3.5 11 21.2 0.96 8 0.96
1000 | synthetic | 19 1000 3.7 22.7 82 20.2 0.95 47 0.96
2500 random | 19 1000 5.7 5.6 13 25 0.94 11 0.89
2500 | synthetic | 21 1200 16 38.4 569 6.6 0.92 56 0.85
5000 random | 20 1200 6.9 6.7 14 21.7 0.92 12 0.87
5000 | synthetic | 22 1300 | 21.4 44.7 578 6.9 0.91 72 0.83
25000 random | 22 3500 8.7 57.2 277 6.1 - 20 0.91

Table 1: TAR/FAR and the number of matches for random, ND0405, and synthetic datasets of different sizes. For 25K dataset, §

was set manually (not 95% of bad matches).

Dataset | Dataset B é # || ORAM | # Roundtrips Time (s) Size EDB
size, £ type | @ nmaps qgsize | Queries || Reads | seq. par. O.Init | seq. | par. (GB)
356 random | 15 630 13 356 117 | 118 10 1.1x 103 .65 | .013 1.1
356 ND | 18 850 37 356 333 | 334 10 1.5 x 103 91 | .013 1.1
356 | synthetic | 18 850 26 356 234 | 235 10 1.6 x 103 .85 | .013 1.1
1000 random | 18 850 8 500 80 81 11 ]| 3.1x10% | 1.06 | .015 2.2
1000 | synthetic | 19 1000 47 500 470 | 471 11 || 3.6x10% | 1.51 | .016 2.2
2500 random | 19 1000 11 500 132 | 133 13 16 x 103 | 3.44 | 018 8.9
2500 | synthetic | 21 1200 56 500 672 | 673 13 20 X 10° | 4.52 | .020 17.8
5000 random | 20 1200 12 500 156 | 157 14 42x10% | 7.41 | .021 35.6
5000 | synthetic | 22 1300 72 500 936 | 937 14 45x10% | 8.82 | .023 35.6
25000 random | 22 3500 20 100 300 | 301 16 || 552 x 103 | 7.89 | .035 285

Table 2: Efficiency results. O.Init is time to initialize all ORAMs. O.Read is average read time (across ORAM layers). Search is
time per query and includes tree traversals. Size EDB denotes the size of the ORAM files that are stored on the server (OMC
storage is ignored since it is much smaller). Sequential number of roundtrips is 1 + #ORAM Reads and Parallel Rounds trips is
[log, ¢] + 1. All timing numbers are averaged across the number of queries in # Queries.

Using a batched ORAM implementation Many existing ORAM
schemes including PathORAM naturally supported batched read/write
operations where the client keeps a larger stash. In the case of
PathORAM, the client repeatedly reads and writes a “random” path
on a tree. One can naturally perform all reads first and then perform
all writes, simulating the intermediate storage that would be held
by the server. Parallel ORAM is a more complex solution when the
reads come from different clients [78].

Evaluation of OMC implementation using private set inter-
section On the same hardware as the rest of the evaluation we
deployed the VolePSI implementation [68]. To test the largest syn-
thetic parameters, we deployed this with a server set of size 6.5
million items and a client set of 1300 items. This corresponds to the
largest set of parameters in Table 2. VolePSI is based on OT exten-
sion and requires a setup phase. We benchmarked 32 PSI iterations
with the first taking 766ms and the rest taking 2ms of computation.
We note that VolePSI requires 7 messages of communication. To get
the results in our abstract and introduction, we add 2ms to Table 2
and four rounds of communication. These results justify the focus
on the design of DOMapE.

8 Conclusion

Private Eyes was tested with parallel response times of at most
35ms on databases of thousands of irises. Our construction com-
bines LSHs and oblivious maps. The unique aspect of our design is
the recognition and mitigation of the cryptographic inefficiencies
caused by the high noise in biometric data. The statistics of biomet-
ric data inspired a two-stage approach which filters which LSHs
to query using a lighter-weight membership checking primitive
before the heavy-weight oblivious map.

We used binary trees but one could use trees with a higher
branching factor (or skiplists as in [8]) to reduce the number of
ORAM lookups. Ideally, each node would correspond to a single
ORAM block which is commonly a multiple of 256 bytes. Our cur-
rent estimate is that internal nodes account for < 128 bits of storage
out of the 256 byte block size. As such, one could make the tree into
a 18-ary tree (32 bits for LSH number, 32 bits for left most child,
and 22 + 32 bits for each additional comparison node). This would
reduce the depth of the trees and required number of round trips
by a factor of log, 18 ~ 4.
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A Building OMC from PSI and pseudorandom
permutations

Private set intersection (PSI) [32] is a form of secure multi-party
computation where a client and server hold sets Y and X respec-
tively. They run an interactive computation, at the end, the client
learns X N Y. No other information is leaked. In the full version of
this work [44] we show how to build OMC from honest-but-curious
PSI as follows:

(1) At initialization the client applies a pseudorandom permuta-
tion (PRP) to each element in the set X.

(2) The client sends the set of elements (passed through the PRP)
to the server.

(3) Later when the client has a set Y, they apply the pseudoran-
dom permutation to each element of Y, and uses the resulting
values as their set for the PSI protocol.

In OMC, the simulator learns the size of both sets X, Y, using an
ideal PSI, only the size of X is leaked to the server. Both the sizes
of X and Y are global parameter, § - 2# and f respectively.

B Synthetic Data Generation

We briefly describe the neural network used to produce our syn-
thetic templates, see our full version [44]. Our synthetic templates
are built using a generative adversarial network or GAN. Yadav et
al. [79] uses RaSGAN (relativistic average standard GAN) [49] to
generate synthetic irises for the purpose of studying their effects on
presentation attack detection (PAD) algorithms. Irises from the RaS-
GAN perform well against PAD and follow real iris statistics well.
Kohli et al. [51] use the DCGAN architecture to generate synthetic
irises. Synthetic irises can be viewed as irises that must closely
resemble bonafide irises as discussed in [51, 79].

We follow the approach of RESIST [3] which takes inspiration
from synthetic data generation to invert iris templates into realistic
looking images. We use a recently proposed relativistic average dis-
criminator [49] as our discriminator. SYNTH architecture is a small
neural network having only dense (fully connected) layers, there
are five generator layers, and three discriminator layers. Each layer
is followed by a LeakyReLU [60] activation and a batch normaliza-
tion [48] layer. The last layers of both sub-networks are unique,
the generator has a tanh activation while the discriminator has a
Sigmoid activation.
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