Downloaded from https://www.pnas.org by "NEW YORK UNIVERSITY, LIBRARY-SERIALS" on December 3, 2025 from IP address 216.165.95.154.

PNAS

APPLIED PHYSICAL SCIENCES

Check for
updates

Geometrically modulated contact forces enable hula hoop

levitation

Xintong Zhu?, Olivia Pomerenk®{), and Leif Ristroph?®’

Edited by David Weitz, Harvard University, Cambridge, MA; received June 10, 2024; accepted November 4, 2024

Mechanical systems with moving points of contact—including rolling, sliding, and
impacts—are common in engineering applications and everyday experiences. The
challenges in analyzing such systems are compounded when an object dynamically
explores the complex surface shape of a moving structure, as arises in familiar but
poorly understood contexts such as hula hooping. We study this activity as a unique
form of mechanical levitation against gravity and identify the conditions required
for the stable suspension of an object rolling around a gyrating body. We combine
robotic experiments involving hoops twirling on surfaces of various geometries and a
model that links the motions and shape to the contact forces generated. The in-plane
motions of the hoop involve synchronization to the body gyration that is shown to
require damping and sufficiently high launching speed. Further, vertical equilibrium
is achieved only for bodies with “hips” or a critical slope of the surface, while stability
requires an hourglass shape with a “waist” and whose curvature exceeds a critical
value. Analysis of the model reveals dimensionless factors that successfully organize
and unify observations across a wide range of geometries and kinematics. By revealing
and explaining the mechanics of hula hoop levitation, these results motivate strategies
for motion control via geometry-dependent contact forces and for accurately predicting

the resulting equilibria and their stability.

contact forces | rigid-body dynamics | dynamical systems | parametric excitation |
equilibrium and stability

Seemingly simple toys and games often involve surprisingly subtle physics and
mathematics (1-4). A prime example from classical mechanics is the spinning top
as related to three-dimensional (3D) rotations of rigid bodies and complex couplings
between different degrees of freedom, as well as noninertial reference frames and fictitious
forces (5). Hula hooping involves these issues and others associated with the rolling point
of contact on the body surface, which itself is actuated with gyration motions and whose
geometry is expected to strongly affect the hoop dynamics (6, 7). Hence, this familiar
playtime activity can serve as an archetype of the challenging class of problems involving
parametric excitation by driven supports (6-9) and the mechanics of dynamic contact
points with frictional and normal forces (10-13). Such issues are fundamental to related
robotic applications for controlled positioning, transforming motions, and harvesting
energy from vibrations (14-17).

The physics of hula hooping was first studied as an excitation phenomenon soon after
the toy became a fad (6), and more recent interest (8, 18, 19) has come during its renewed
popularity as a form of exercise and performance art (20-22). The challenges presented
by the 3D problem have restricted previous studies to consider idealized planar or 2D
settings without gravity that pertain to an extended mass freely hinged to an oscillating
support (6, 7, 23) or a ring rolling around a moving circle (8, 18, 19). Rich dynamics
are displayed even within such simplified systems, including a multiplicity of motions
for the case of a ring on a circle (8, 18).

While 2D settings can provide insights into planar twirling, they leave unaddressed
such basic issues as how a hoop remains suspended against gravity. Weight support is not
a goal of the classical analysis of tops and related rotational systems, but it is fundamental
to hula hooping and related applications (14—17). At issue is how equilibrium and
stability are determined for a free object whose dynamic point of contact can explore the
potentially complex surface geometry of an actuated structure. Here, we aim to determine
the necessary conditions for levitation through experiments on robotic hula hoopers and
models that relate contact forces to the shapes and motions of the hoop and body. This
relatable and concrete context also provides the opportunity to understand more general
issues involving the geometric modulation of forces on moving contacts and how these
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Fig. 1. Vertical motions of hoops on robotic gyrators of different shapes. In all cases, the body motion is circular gyration of radius Rz = 1 cm, and the hoop
has radius Ry = 7.4 cm and mass M = 15.6 g. Images from high-speed video are overlaid frames selected every 6 gyration cycles. (A) The hoop descends on
a cylindrical body of radius 1 cm and gyration frequency f = w/2z = 9 Hz. (B and C) A hoop on a cone (half-angle 10° and f = 6 Hz) ascends or descends
depending on its initial height upon release. (D) Stable levitation on a hyperboloid (asymptotic half-angle 15°, waist radius 0.5 cm, and f = 5 Hz).

might be exploited to induce motions, position, stably suspend,
or otherwise manipulate objects.

Robotic Experiments and Motion Tracking

Our experimental apparatus consists of bodies of prescribed shape
that are driven with prescribed motions and on which a hoop
is released. We consider rigid, axisymmetric bodies formed as
surfaces of revolution about the vertical axis and which are
manufactured by 3D printing. The surface is rubberized to
achieve high friction with a thin, rigid hoop made of plastic.
A vertical shaft running through the central axis of the body
connects to a motor via appropriate hardware in order to realize
gyration, a term used here to mean purely translational revolution
of the body in a closed trajectory and without any rotation or spin
about its axis. The hoop is launched by hand, and the resulting
motions while in contact with the body are recorded by high-
speed videography and quantified with custom motion tracking
algorithms.

We first ask whether levitation of the hoop can be achieved
by simple body shapes. Shown in Fig. 14 is the case of a circular
cylinder that is driven in circular gyration in which the vertical
axis sweeps out a circular cylinder. Selected images from video
are overlaid to show the gradual descent of the hoop. The faster
orbiting motions of the hoop around the body can be seen in
Movies S1-S3 for this and other representative cases, including
various forms of conical gyration in which the central axis of the
body sweeps out a cone. All trials with a cylindrical body fail
to suspend the hoop. The further tests of Fig. 1 B and C for a
conical body in circular gyration reveal the surprising outcome
that the hoop may descend or ascend depending on its initial
height at release (Movies S4 and S5). The hoop sinks if set free
from a low point on the body and rises if released sufficiently
high, but it never keeps a level.

These failed attempts using shapes and motions that vary
linearly in height motivate more complex geometries. Fig. 1D
shows that an hourglass-shaped body of hyperboloidal form
successfully suspends the hoop. Shown is a case in which the
hoop is released low on the body and thereafter rises up to a
height just below the “waist” or narrowest point. Movies S6 and
S7 show robust trapping for different release locations either
above or below the waist.

To better characterize these results, we compare the dynamics
on conical and hyperboloidal bodies as representative examples
of failed and successful hula hooping. As shown in Movie
S8, overhead and side views of the hoop and body allow
for temporally and spatially resolved motion tracking. The
schematics of Fig. 2 A and B define the key quantities, and
the data are compiled in Fig. 3. The movements of the hoop
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after being launched by hand are initially somewhat erratic but
later show regularity. Notably, the vertical translations of Fig. 1
are corroborated by time-series measurements of the height z of
the hoop. As shown for six trials on a conical body in Fig. 34,
the hoop descends if released low and ascends if released higher.
These motions are reminiscent of an unstable equilibrium point
in the vertical dynamics (24). The case of a hyperboloid is shown
in Fig. 3D. Following release from different heights, the hoop
ascends or descends to arrive at a final location below the waist
(z = 0). These motions are consistent with a stable equilibrium.

Three-dimensional aspects include a slight angle for the plane
of the hoop, which is supported at its contact point while sagging
under gravity and being slung outward by centrifugal action.
The sag angle 0 measured relative to the horizontal is plotted in
Fig. 3 B and E, where small values are attained after transient
fluctuations.

The in-plane motions consist of twitling in which the hoop
center orbits around the body while maintaining continuous
contact by rolling without slipping (8, 18). The hoop orbits
in the same sense as the body gyration, which is termed direct
twirling. Further, our measurements documenta synchronization
phenomenon in which the orbits of the hoop and body eventually
converge toward a state in which the gyration, body, and hoop
centers are nearly colinear throughout the cycle and with the
contact point on the inner side of the body and the hoop center
located outward of the body relative to the gyration center. This
direct outward twirling state is defined by the deviation angle 6
(Fig. 2B) being small in value and nearly constant in time. The
time-series data of Fig. 3 C and F show that, for both body
shapes and over repeated trials, initially large oscillations in (¢)

Fig. 2. Schematics and definitions. (A) An axisymmetric body is defined by
the shape function Rg(z) whose slope determines the local tangent angle
p(z) of the surface. The hoop center has height z, and its plane forms a sag
angle o with the horizontal. (B) The body gyrates around a circle of radius Rg,
where 6 = wt defines the prescribed motion of the body center. The hoop has
radius Ry, and its in-plane location is described by the angle ¢ of deviation
from direct outward twirling, which is the unique state in which the hoop
center remains directly outward throughout the gyration cycle.
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Fig. 3. Measured motions of hoops on a cone (A-C) and hyperboloid (D-F). Six trials for each body are shown in different colors. Hoops exit the cone by either
climbing or descending whereas stable trapping at a height just below the waist is seen for the hyperboloid. Small sag angles ¢ and small deviation angles 6 at
later times are observed for both body types. The body shapes are defined by Ré(z) = Ré + (ztana)2, where the waist radius is Ry = 0 and 0.5 cm for the cone
and hyperboloid, respectively, and the (asymptotic) half-angles are « = 10° and 15°. Here, Rg =1 cm,f =5.5Hz, Ry =7.4cm,and M = 15.6 g.

gradually decay away to small values. These results suggest that
direct outward twirling is an attractor of the planar dynamics,
which corroborates a recent hypothesis (19). Our observations
counter the more common depiction of hula hooping as inward
twirling (8, 18, 25), i.e. with the hoop center located inward of
the body center and the contact point on the outside of the body.

Model of 2D Twirling Dynamics

To explain the experimental observations, we first consider a
two-dimensional (2D) model of a thin ring twirling around a
circular body that is driven to gyrate about a prescribed trajectory.
Such a setting has been considered previously as relating to hula
hoop dynamics in the horizontal plane (8, 18). The goal of our
analysis is to determine whether and for what conditions the
hoop synchronizes to the body gyrations. As such, we derive
an Euler—Lagrange description of the hoop dynamics, with the
key steps summarized here and complete details provided as
Materials and Methods. We assume that the hoop maintains
a single point of contact with the body, which dictates the
choice of dynamical variables, and that it rolls without slipping,
which appears as a constraint arising from high friction against
sliding. The dynamical system of equations is derived from
kinetic energy relations with dissipation included via a model
for rolling resistance. We explore the predictions of the model by
carrying out numerical simulations for conditions relevant to the
experiments.

For the dissipationless case without rolling resistance, the
model predicts five distinct outcomes for the hoop motion
which may be reached for different initial conditions: steady
twirling, oscillatory motions, overtwirling, antitwirling, and
failure. Failures are identified as those trials that at any time
lead to the normal component of the contact force on the hoop
reaching or crossing zero, a condition that can be interpreted as
loss of contact with the body. The cartoons of Fig. 44 illustrate the
remaining four states in a frame that rotates with angular speed @
so that the body remains fixed, and the hoop dynamics relative to
the body can be assessed by 5(#). Steady states have constant 6,
and an example is direct outward twirling with §(#) = 0 which is
displayed in Fig. 4B as a dashed blue line. This state is animated
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in Movie S9. Oscillatory states involve persistent oscillations of
6 (dashed cyan curve) for which the hoop swings back and forth
without looping around the body (Movie S10). Overtwirling and
antitwirling states involve the unbounded increase or decrease of
5(¢) for which the hoop continually loops around the body in
one sense or the other. Examples of each are the pink and purple
curves shown in (B) with an expanded vertical scale (right axis)
and also in Movies S11 and S12.

The map of Fig. 4C summarizes the outcomes reached across
different initial conditions. This is constructed by carrying out
simulations across values of the initial deviation angle (0) and
initial velocity 6(0) and classifying the terminal or long-time
behavior. Colored regions denote the set of initial conditions
leading to each state. As might be expected, overtwirling (pink)
occurs for all sufficiently fast and positive initial velocities, and
antitwirling (purple) occurs for fast and negative initial velocities.
Failures (white) occur for weak launches, which correspond to
8/@ ~ —1 as the body frame speed. An eye-shaped region of
oscillatory states (cyan) is centered on direct outward twirling
(DOT), which is indicated by the filled blue circle at (8, §) =
(0,0). A second steady state is direct inward twirling (DIT),
which is the open blue pointat (£, 0). This state has the contact
point on the outside of the body, and it is singular in the sense
that infinitesimal deviations in initial conditions yield wildly
different motions such as overtwirling, antitwirling, and high-
amplitude oscillations. In contrast, perturbations from DOT lead
only to small-amplitude oscillations about § = 0. This structure
is consistent with the dynamical systems classification of DOT
as a critical point of the center type.

The inclusion of dissipation, even if small, greatly reduces
the available modes. The case with rolling resistance is mapped
out in Fig. 4C, where it can be seen that the mode structure
simplifies to a single steady state (blue) that is reached for all
sufficiently high initial velocities and failure (white) otherwise.
An example showing the dynamics in the approach to this
state is shown as the blue curve in Fig. 4B, where a launch
from some initial conditions leads to decaying oscillations in
5(¢). Movie S13 animates such a case. The system eventually
reaches a small constant §(r — 00) ~ —4° (solid blue line),
with the specific value being dependent on system parameters.
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Fig. 4. Twirling modes from a 2D Euler-Lagrange model. (A) Classes of solutions for the hoop motions displayed in the body frame. Steady states maintain a
fixed posture relative to the body, while oscillatory states involve back-and-forth swings. Over- and antitwirling involve continual looping in the same or opposite
sense to gyration. (B) Representative outputs of the angular dynamics 6(t). Without rolling resistance (dashed curves), a steady state with 6 = 0 (blue dashed
line) arises for isolated initial conditions, and the motions are otherwise oscillatory (cyan), overtwirling (pink), and antitwirling (purple). With rolling resistance
(solid curves), a wide variety of initial conditions converge to a common steady state with small (¢t — co) = 6* < 0. (C) Map of the outcomes (colored regions)
across initial conditions for the dissipationless case without rolling resistance. Failures involve a zero crossing of the normal force at some time, which can be
interpreted as the hoop losing contact with the body. Direct outward twirling [DOT, 6(t) = 0] and direct inward twirling [DIT, 6(t) = +x] are isolated steady
states. (D) Modal map for the case with dissipation via rolling resistance. All sufficiently fast launches lead to decaying oscillations and convergence to a single
steady state with equilibrium value 6*. The parameter values are f = w/2x = 5.5Hz, Rg = 1cm, Ry = 7.4cm, M = 15.6 g, and Rg = 2 cm. The rolling resistance

coefficient Cgpg = 0 and 0.01 for (C and D), respectively.

The correspondence with the measurements of Fig. 3 C and
F is striking, suggesting the interpretation that the experiments
involve convergence to DOT from the various initial conditions
obtained when launching the hoop by hand. Direct outward
twirling therefore seems to be the single attractor in the presence
of dissipation and one whose basin of attraction extends broadly
to all sufficiently fast launches.

Model of 3D Equilibria and Stability

To address the issue of levitation neglected in previous studies,
we propose a model that aims to predict the equilibrium and
stability of the vertical positioning. Our approach is similar in
spirit to that of flight problems in which one is interested in
assessing terminal states such as gliding or hovering (26-29),
the difference of course being that suspension against gravity
is here enabled by solid-on-solid mechanical forces rather than
aerodynamics. An outline of the key assumptions and steps is
given here, with supporting calculations provided as Materials
and Methods. We take as a base state direct outward twirling
with 6 = 0, and the hoop sags at a constant angle o and makes
contact at height z along an axisymmetric body whose shape is
defined by the radius function Rp(z). We further assume that
the equilibrium is determined by a simple arrangement of forces
involving only the hoop weight and the component of the contact
force that is directed normally outward from the body surface.
A frame moving and rotating with the contact point associates
this condition with a balance of the horizontal component of
the normal force against the centrifugal force, and the vertical
component of the contact force balances weight. Further, torque
balance demands that the sag angle match the local slope angle of
the body surface, 6 = #, where tan f = —dRp/dz. These results
combine to yield a simple expression for the “lift” or vertical
component of the contact force

Fy(z) = Ma?[RG — Rp(z) + Ry cos f(z)] tan f(z)  [1]
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that involves the effective radius for the circular motion of the
hoop center about the gyration center. As for hovering flight,
equilibrium is achieved for those locations z* satisfying Fy (z*) =
Mg, a condition that involves the body’s local radius and slope.

We further extend the flight analogy by associating stability (or
instability) with the condition dFy /dz < 0 (or > 0), where this
so-called stability derivative is to be evaluated at any equilibrium.
The analogous criterion is called static stability in flight analyses
(26, 29-31). It is motivated by considerations of how the vertical
force balance is upset by perturbations away from the equilibrium
height, which may be restored or exacerbated depending on the
response of Fiy due to changes in z. Hence, our model does
not treat the full dynamical problem involving all degrees of
freedom and their couplings. Rather, the vertical dynamics are
viewed as evolving gradually and quasi-statically under the forcing
provided by the faster in-plane twirling motions. Similar quasi-
steady analyses of the flapping flight of birds and insects evaluate
the aerodynamic forces due to fast wing motions and accordingly
drive the slower dynamics of the body (28, 31-33).

The model of Eq. 1 explains the observed differences for
cones and hyperboloids. A cone has linearly decreasing Rp(z)
and constant slope angle f, implying that the normal force
and its vertical component Fy/(z) increase linearly with height,
and a representative curve of the latter is shown in Fig. 5A4.
Any equilibrium proves to be unstable due to the mechanism
illustrated in Fig. 5B. If placed somewhat above the equilibrium
height, then Fyy > Mg and the hoop rises. If placed below,
then Fy < Mg and the hoop drops. This unstable fixed point
is associated with a positive stability derivative dFy/dz > 0.
Hyperboloidal bodies, on the other hand, have a more intricate
Fy(z) profile due to the changing radius and slope (Fig. 5A).
Equilibria arise as a pair, one of which is unstable and lower on
the body and the other stable and higher. The unstable point is
like that for the cone. The stable point, however, benefits from
the changing slope of the body that leads to a negative stability
derivative dFy//dz < 0. It remains that Rp(z) decreases, but this
effect is overwhelmed by the slope angle f(z) decreasing rapidly

pnas.org
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near the waist and causing Fy/(z) to decrease. Hence, as shown
in Fig. 5C, upward perturbations lead to weaker Fyy < Mg that
return the hoop toward the equilibrium height, and downward
perturbations are restored by Fiy > Mg.

General Criteria for Levitation and Validation

Further analysis of the model yields general criteria for vertical
equilibrium and stability. The equilibrium condition can be
recast as
5o @? [RG — Rp(z*) + Ry cos f(z*)] tan f(z*) 1
g

which is the vertical component of the contact force on the
hoop normalized by its weight, and where z* denotes the height
attained at equilibrium. The slope factor S can be interpreted as
the appropriate nondimensional form of the surface slope that
indicates whether the body is sufficiently inclined (8 > 0) to
support the hoop against gravity. The criterion explains why
cones and hyperboloids (f > 0) can display behaviors consistent
with equilibria, but cylinders (f = 0 and hence § = 0) do not.
The formula also indicates that vigorous gyration, i.e., larger Rg
and/or higher o, is beneficial in the sense of permitting smaller
slopes. Less intuitive is that a large hoop radius Ry is easier—
a fact used by hula hoop instructors when training beginners
(34)—but the mass M is inconsequential. [Large Ry and M,
however, require large contact forces and thus great effort by the
hula hooper, as is evident from record-setting performances for
hoop size (35, 36).] The formula also suggests an ideal body shape
that is skinny with small radius Rp but with prominent “hips” of
large angle .
Stability of a given equilibrium is dictated by

dF Ma?
EV = _cosg)ﬂ [— sin’ P cos f + (RG — Rp+ Ry cos ﬂ) K] R
(3]
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where the supporting calculations leading to this result are given
as Materials and Methods. The formula reveals the importance
of the body curvature k = —(df/dz)cosf as measured in
a vertical section with positive values denoting concavity. The
stability condition dFy/dz < 0 identifies a critical value of the
curvature that must be exceeded to ensure stability: k > k* =
sin? B cos f/(RG — Rp + Ry cos® B). Equivalently, we form the
curvature factor K = k/k™* and frame the stability criterion as

R — Rp(z") + Ry cos® B(z*)

K
sin? f(z*) cos f(z*)

k(z") > 1, [4]

where the dependencies on z* are included to highlight the
complex ways that the body shape enters. All else being equal,
more vigorous gyration with larger Rz promotes stability, as
does larger hoop radius Ry. A slender, gently tapering body
of small Rp and small f is similarly stabilizing. Crucially, the
body cross-section must be concave or hourglass shaped and
with a sufficiently curvy “waist,” which explains why cones in-
evitably fail whereas hyperboloids may succeed at stably trapping
the hoop.

To quantitatively test these criteria, we conduct further
experiments on hyperboloids of different breadths and for varying
gyration frequency f = w/2x. For each trial, we measure
the terminal equilibrium height z* attained, and these data are
compiled in Fig. 64. The bodies differ in their asymptotic angle
a = lim,—, oo f(z). For each body shape, we find that there is
a critical frequency below which the hoop cannot be suspended
at any location, and there is a critical location below which the
hoop cannot be suspended for any frequency. To explain these
observations, we interrogate the model and plot in Fig. 64 the
predicted equilibria as curves in the space of (£ z*). The solid and
dashed curves indicate stable and unstable solutions, respectively.
The stable solutions of the model capture the general trends in
the experimental data, whose errors in f and z* are shown as bars
that are typically smaller than the marker. The model therefore
explains the form of the data by identifying for each shape a
critical point (marked with a cross) whose value of /* must be
exceeded to ensure equilibrium and whose value of z* must be
exceeded to ensure stability.

The identified slope and curvature factors provide a universal
means for organizing the experimental observations and inter-
preting the outcomes as stable equilibria. In Fig. 6B, the same
data are plotted in the space S and K, whose values and error
bars can be assessed via Eqs. 2 and 4 using the measured values of
z and the imposed values of f and given the prescribed body
geometries (see Materials and Methods). Stable equilibria are
predicted to yield S = 1 and KX > 1, which are highlighted
with dashed lines. Indeed, these factors unify the experimental
measurements across different shapes and motions by collapsing
the data together along the predicted region, which takes the
form of vertical stripe in the space of (S, K). The mean and
SD § = 1.1 4 0.1 show that the experimental data are slightly
greater than the theoretical expectation, and the same discrepancy
shows up in Fig. 64 as the measured values of z* being somewhat
less than predicted. The discrepancy may be attributed to the
model idealizations, e.g. infinitesimal ring thickness, perfect
outward twirling with 6 = 0, and the neglect of friction in
the force balance at equilibrium. Nonetheless, the strong overall
correspondence can be taken as evidence that the model accounts
well for the geometry-dependent contact forces that give rise to
stable levitation.
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Discussion and Conclusions

These results reveal two forms of equilibration that give rise
to steady-state hula hooping. One is a synchronization process
causing the hoop to twirl at the gyration frequency and with its
center directed outward of the gyration center. This outcome is
dominated by in-plane effects and well captured by 2D modeling.
The essential physical requirement is that the hoop be launched
sufficiently fast in the same direction as gyration, after which
the outward pull by centrifugal action and damping from rolling
resistance lead to stable twirling. The second process pertains
to the hoop’s vertical positioning, which is intrinsically 3D and
proves to be strongly dependent on the body profile shape. In
particular, our findings identify a necessary “body type” for stable
hooping that includes an appropriately angled or sloped surface—
i.e., with “hips”—as well as an hourglass-shaped profile with a
sufficiently curvy “waist.” These aspects are captured by slope and
curvature criteria that include the local geometry of the body, the
physical properties of the hoop, and the gyration parameters. If
only the first condition is met, then the hoop can be supported
but will succumb to any perturbation by climbing or falling
away. If both conditions are met, the hoop stably keeps a level.
These results explain hula hooping as a mechanical levitation
phenomenon. More generally, they show how the motion and
positioning of an object can be controlled through the geometry
and kinematics of a surface in which it is in rolling contact.

Our findings suggest interpretations of hooping by humans,
who however differ from our robotic system with respect to
body geometry, deformability, and actuation. Humans have non-
circular cross-sectional shapes and employ noncircular gyration
orbits, both of which are expected to induce unsteady contact
forces. The latter case is assessed as Materials and Methods via an
extension of our 2D model, and the observed weak effects on
the twirling mode map and time-averaged normal forces suggest
hula hooping dynamics is robust to such factors. A first frustration
faced by novices is how to launch the hoop to initiate twirling
(34), and our experiments similarly involve false starts in which
the hoop loses contact with the body if the launch speed is low.
The results of our 2D modeling make sense of these outcomes,
and the map of Fig. 4D suggests that the best strategy is to start
with the hoop and body centers displaced to the same side, i.e.
5(0) =~ 0, and launch at sufficiently high speed in the same
direction as gyration, i.e. 6(0) 2 0. If successfully initiated,
vertical stabilization can then be achieved via the hips and waist
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conditions, which should be understood as applicable generally
to sloped and curved anatomy and therefore explain twirling
on the neck, ankles, wrists, and other hourglass-shaped body
parts (37, 38). The resulting passive stability seems essential
for understanding how advanced practitioners simultaneously
suspend many hoops distributed across the torso and extremities
(39). The criteria identified here, being local conditions, permit
such multiplicity of stable equilibria.

People are presumably capable of using tactile and visual
sensing and motional responses to suspend a hoop even for con-
ditions that are not intrinsically stable. A simple example shows
how our results can be extended to such cases of active control.
Consider a conical body for which there is generically an unstable
equilibrium at height 2 < 0. We seek to control the hoop at such
alocation via a feedback law specifying how the gyration motion is
modified according to the hoop height z. The geometric relations
Rp(z) = —ztan @ and f(z) = a determine via Eq. 1 the vertical
force Fy(z) = Mw?*[Rg(2) + ztana + Ry cos &) tan @ which
here includes a control law of the form R (z). For example, a
linear response R (z) = R (2*)— Cz is readily verified to achieve
stability dFy/dz < 0 so long as C > tana, where R;(z¥)
is the gyration amplitude at equilibrium. This scheme codifies
the intuition that levitation can be accomplished by gyrating less
vigorously when the hoop climbs up from z* and more vigorously
when it descends. The same effect may be attained through other
laws for Rg(z), w(z), and their combination. Ultimately, it is
paramount that the condition dFy/dz < 0 be satisfied, whether
passively or actively.

Our modeling leaves unaddressed many dynamical aspects of
the 3D problem. For one, the dual stabilization processes that
yield outward twirling and levitation are here analyzed separately
butin actuality are concurrent and interactive. Further, it remains
to be understood the mechanics of how exactly the hoop climbs
or falls, these motions taking the form of helical winding of
shallow pitch around the body surface. Explaining such and the
3D dynamics generally will require consideration of all degrees
of freedom of the hoop, their governing equations of motions,
couplings, and constraints. Air friction may also be considered
and may reinforce the effects of rolling resistance. Despite
these complexities, our results show that simplified models of
the contact forces can effectively predict equilibria and their
stability. i.e. whether and where a hoop may eventually levitate.
Such knowledge could be useful in applications for moving,
manipulating, and positioning objects without gripping (15) and
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in problems involving dynamic contact points where it may be
desirable to geometrically modulate forces.

Materials and Methods

Here, we provide supporting calculations regarding 2D twirling and the 3D
model of vertical equilibrium and stability.

Euler-Lagrange Formulation of 2D Twirling. Consider the 2D problem of a
thin hoop twirling about a gyrating body of circular shape (8, 18). The schematic
of Fig. 7A represents an arbitrary configuration at some instant during circular
gyration, and our analysis will be shown to be readily modified to account
for other body trajectories. Geometric quantities of interest include the radii
associated with the hoop Ry, body Rg, and gyration motion R¢. Useful position
vectors include the hoop center ry, the body center rg, and the contact point
rc of the hoop on the body surface, all of which are measured relative to the
origin at the gyration center. Some useful angles are that of the body center

= ot as induced by the gyration, the angular location ¢(t) of the contact
pointaround the body surface, and the rotation angle y (t) of the hoop about its
center. All are measured relative to the x—axis. The normal i = (cos ¢, sin ¢)
and tangent t = (— sin ¢, cos ¢) vectors to the body at the contact point are
defined such that the former is directed outward and latter is counterclockwise.

We assume that the hoop always remains in contact with the body, which can
be generally formulated as the hoop center lying on a certain circle centered on
the body: |ry — rg| = Ry — Rg. As a planar rigid-body dynamics problem,
the hoop in principle has three degrees of freedom, e.g. (xy, yy, w). But by
working with the variables (¢, y), we implicitly assume contact and so the
above constraint is met. A second constraint is that the hoop undergoes pure
rolling along the body without slipping, which idealizes the effect of strong
sliding friction. This can be formulated as a matching of the hoop and body
velocities at the contact point:

Ig =Ty + oy x (rc —ry) [5]

where oy, = yrkisthe angularvelocity of the hoop aboutits center. The above
vector constraint can be decomposed into components tangential and normal
to the body surface, in which case it can be shown that the normal component is

Fig. 7. Schematics and definitions. (A) General configuration for the 2D
problem of a thin ring in rolling contact with a driven circular body. (B) Direct
outward twirling has the contact point, body center, and hoop center all
colinear with the center of gyration, which is the origin of the lab frame. The
hoop is static in the primed frame that follows the contact point and rotates.
(C) Relevant quantities and forces in a side view of the 3D problem. In the
contact point frame, the hoop center is static and the forces balance. (D)
Geometric quantities relating to the sectional shape of the body.
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a redundant, weaker form of the contact constraint. The tangential component
leads to
_ Ry—Re
=%
which is readily understood as the "gearing” expected for rolling without slip.
The constraints can be incorporated into the Euler-Lagrange formulation of
the dynamics involving the coordinates (¢, w). Anticipating that dissipative
forces may be of interest, we consider the governing dynamical equations:

) (6]

aL_dal o of oD
ap dtag Ao 9

oL d al af oD (71
dy  dt oy dy Oy
f(d,w) =0.
The third equation imposes no slip through the constraint function
Ry — R
fbw)=""b—wv, [8]
H

and the Lagrange multiplier A is the associated force of constraint whose
dynamics is part of the solution. The formulation includes energy loss via
nonconservative forcesthrough the Rayleigh dissipation function D(¢, w, &, )
(40). Below we consider D = 0 as appropriate to hooping without dissipation
as well as a case in which D # 0 with a specific form that models the rolling
resistance between the hoop and body. The system Eq. 7 constitutes three
equations for the three dynamical variables (¢, w, 4).

The Lagrangian function L has only kinetic energy contributions and therefore
takes the form:

1.0 1.5 1.
L= M + My + - b

2 2 2
1 .
= SM[—oRsnsinat + (Ry — Rg)dsin )]
[9]
+ %M [@Rg cos wt — (Ry — Rg) b cos d))]z
1
+ EMR’%,II'JZ.

The top line is the general form involving translational energy associated with
motion of the hoop center and rotational energy due to spin about its center.
The expanded form is specific to body motion along an elliptical trajectory, i.e.
Rg(t) = Rg(ncoswt, sinwt), of which circular gyration with n = 1 is the
base case of interest. While here we restrict our attention to elliptical orbits,
the formulation can be readily modified for other types of body motions by
differentiating the hoop position: ry = (xy, y4) = rg — (Ry — Rg)n.

To assess the effect of dissipation, we consider the specific case of rolling
resistance that arises due to material deformation for objects in contact (41). It
is typically modeled as a force that resists motion and which is proportional to
the normal force:

Fre = —Crrfnvpc- [10]

Here, Cgp isthe constant coefficient of rolling resistance that depends on material
parameters, and vge = Fpc = I-c — g = Rpeht is the velocity of the rolling
point of contact as seen from a frame centered on the body. The associated
Rayleigh dissipation function is determined by the velocity gradient relation:

Frp=—VvgeD = D= CpeFnlvpcl [11]

This is incorporated into the Euler-Lagrange system of Eq. 7 through the
general expression for the normal force in terms of the dynamical variables:

FN:MaH~ﬁ:Mi:H-ﬁ

=M [—RGwZ (n cos wt cos ¢ + sinwt sin p) + (Ry — RB)J;Z] .
[12]
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Here, we restrict our attention to rolling resistance. Other dissipative effects,
such as air drag, could be included individually or in combination by summing
dissipation functions similarly derived from models of the nonconservative
forces (40).

Numerical Simulations of 2D Twirling, Including Noncircular Orbits. The
Euler-Lagrange system of equations is solved numerically using MATLAB's built-
in integrator ode15s. The initial conditions are specified by ¢(0) and ¢(0),
from which w(0) and y(0) are determined via the constraint relation Eq. 6.
The numerical solutions for the angle of contact ¢b(t) can be recast in terms of
5(t) = ¢(t) — 0(t) + = = ¢(t) — wt + =, which is the angular position
of the hoop center measured in the body frame. The results summarized in Fig.
4 correspond to the following parameter values that are appropriate to circular
gyration (7 = 1) and typical of those in experiments: f = w/2zx = 5.5 Hz,
Rg=1cem Ry =7.4cm M = 15.6 g, and Rg = 2 cm. Nonsystematic
sweeps through other parameter values show no major qualitative changes in
the results. The behavior without and with rolling resistance is compared in Fig.
4 Cand D by comparing coefficientvalues of Cpe = 0and 0.0, the latter typical
of rubber in contact with a hard surface, e.g. car tire on road (42). The particular
ODE solverode75swas chosen to handle the stiffness of the system that shows up
as highly variable dynamics in some regions of parameter space and especially
for Crr = 0in the vicinity of DIT reached with the initial conditions ¢»(0) = 0
and ¢(0) = w.

The outcomes are not markedly affected if the body trajectory is noncircular.
Fig. 8 A and B show maps for elliptical gyration of aspect ratio = 2 without
and with rolling resistance (Cgr = 0and 0.07), respectively. True steady states
are absentas expected due to the unsteady forcing from the asymmetric motion.
Otherwise, the state-space structures are similar to their circular counterparts.
In the case of no rolling resistance shown in (4), there are new modes classified
as irregular (green) which involve bouts of over- or antitwirling combined with

A Elliptical gyration, no rolling resistance B Elliptical gyration with rolling resistance
1 T T T T T T
i

overtwirling

oscillatory
+ (limit cycle attractor) | L

failure failure

initial velocity, 5(0) /w

antitwirling
L

L L L 1 L
- -0.5m 0 0.5 T -7 -0.5m 0 0.5 s

initial deviation, §(0) initial deviation, §(0)

0
N
N

normalized force, F / F)
T
1

09 - —
7N o=
Y

08 . L] . L
107 10° 10’
aspect ratio, 7)

Fig. 8. Numerical solutions to hoop modes and normal force for elliptical
gyration. (A) Mode map for elliptical body orbit (3 = 2) without rolling
resistance (Cgp = 0). Steady states are absent, and a thin band of irregular
motions (green) surrounds the oscillatory modes. An example of oscillatory
dynamics (6(t), [S(t)) is shown as the gray curve. (B) Mode map with rolling
resistance (Cgp = 0.01). Sufficiently high $(0) leads to a limit cycle attracting
state (cyan region). An example of a converging trajectory is shown in gray.
(C) The normal force depends weakly on the aspect ratio 5 of the elliptical
gyration orbit. The force Fy (t) is unsteady, and shown are its average value Fy
at late times (curve) and its range (shaded band). In all cases, we normalize by
the steady force F,?, produced by DOT for circular gyration at same frequency
» and with an orbit of the same circumferential length.
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oscillations. With the inclusion of rolling resistance in (B), the space simplifies
into two outcomes: failures for low-speed orwrong-way launches and an attractor
forfast launches that here takes the form of limit-cycle oscillations. These results
parallel the circular gyration case of Fig. 4.

The normal force, while necessarily unsteady for elliptical orbits, varies little
in its mean magnitude as compared to circular gyration. The plot of Fig. 8C
summarizes the average value (black curve) and range (gray band) of Fy(t) as
assessed at late times for elliptical gyration across values of the aspect ratio
and for fixed resistance Cgg = 0.01. For each value of #, we normalize the
force by that of DOT for circular gyration at the same w and same circumferential
length of the gyrational orbit. This ensures the same mean speed of the body
motion and thus isolates the effect of the shape of the orbit. The symmetry about
n = 1reflects the expected equivalence for pairs of ellipses with one as wide as
the other is tall. The data show that the mean value differs from the circular case
by at most a few percent over widely varying € [0.7, 10], and the fluctuations
in time are typically on the order of 10%.

Afurther generalization involves noncircular body shapes e.g. ellipses, which
might be viewed as more realistically representing the cross-section of human
hoopers. Preliminary calculations indicate, however, that the constraint Eq. 5
and in particular its tangential component is nonholonomic and nonintegrable.
This presents problems for the Euler-Lagrange formulation (10, 11, 43),
and future work in this direction may consider alternative approaches to
the dynamics.

Contact Force for Direct Outward Twirling in 2D. For the ideal case of
circular gyration and direct outward twirling with §(t) = 0, the normal force is
constant in time. Its dependence on the system parameters is readily derived
from the general expression Eq. 12withn = Tand6 = ¢ — 0 — z = 050
thatp = 0 + = = wt + =

Fy = Mo?(Rg — Rg + Ry). [13]

The same expression can arrived at by considering a reference frame situated
on the contact point and rotating with angular frequency w, in which case the
body and hoop do not translate. This is the primed frame shown in Fig. 7B.
The body and hoop rotate about their respective centers and at rates that lead
to no slipping. The general form of the effective force in such a noninertial
(accelerating and rotating) frame is

F; = Ma; = F—MA — M xr, — M x (2 x 1) —2MQ x v, [14]

Here, F denotes the net force in the inertial or lab frame, A and  are the
translational and rotational accelerations of the moving frame, and r/, v/, and
ay are the position, velocity, and acceleration of the body as seen in the moving
frame. The contact point frame has basis vectors: i’ = (sin wt, — cos wt, 0),
j = (cosat sinwt, 0), and k” = (0,0, 1). Its translational and rotational
accelerations are

A= —a)z(RG — Rg)(cos wt, sin wt, 0) [15]
Q=00 w).

The force relations greatly simplify since 2 = 0 and r, = Ryj’ so that

vy = a; = F; = 0. Noting that the contact or normal force is the only

contributing lab-frame force, one concludes that

F = Fy = —Ma?(Rg — Rg + Ry) (cos ot sinawt, 0).  [16]

This corresponds to a force on the hoop that is directed normally outward from
the body surface and whose constant magnitude matches Eq. 13. From the view
of the lab frame, this contact force provides the centripetal acceleration of the
mass as it undergoes constant-speed circular motion with an effective radius
Rg — Rg + Ry. From the view of the contact point frame, the hoop center is
still and the normal force at the contact point balances the outward-pointing
centrifugal force.
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Model of Equilibria in 3D. The 3D problem involves a thin hoop undergoing
direct outward twirling at some fixed height along an axisymmetric body. The
force diagram relevant to the contact point frame is shown in Fig. 7C, where the
horizontal component of the normal force at the point of contact balances the
centrifugal force, and the vertical component balances the weight of the hoop.
This arrangement of forces, which does not include friction, should be taken as
a conjecture regarding the factors that dictate the equilibrium. We may define
the effective radius R(z) = Rg — Rg(2) + Ry cos &, which is modified from its
2D analog to account for the hoop sagging about its contact point by an angle
o and where the dependence on height z indicates how the body shape enters.
The horizontal and vertical force balances take the form:

Fy = Fy cos f = Mw?’R

. [17]
Fy = Fysin g = Mg.
Incorporating the first into the second, one arrives at
Fy = Mw’Rtan § = Mg [18]

as the basic expression of the vertical force balance. Further, we demand that
torques balance about the point of contact:

MgRy, cos & = Mw?RRyy sin o. [19]
Combining these results yields

Mg

tanc Vo7 tan § [20]
and thus o = B. Therefore, at equilibrium, the hoop sags by an angle equal to
that defining the local inclination of the body surface. Given this result, we may
eliminate o in favor of g in defining R(z) = R; — Rg(z) + Ry cos f(2), where
the body shape enters through its radius function Rg(z) and the slope angle
tan B(z) = —dRp/dz. In such case, the vertical force becomes Eq. 1, and the
vertical force balance condition becomes Eq. 2.

Model of Stability in 3D. Consider an equilibrium away from which the hoop
is perturbed in height, thereby perturbing Rg(z) and #(z) and upsetting the
vertical force balance. We wish to know whether the system responds with a
corrective change in height that restores the hoop to the equilibrium, or not. We
posit that the hoop ascends if F/(z) > Mg, and it descends if Fy(z) < Mg.
Since Fy(z) = Mg at equilibrium, it is therefore sufficient to assess the so-
called stability derivative dFy /dz at equilibrium, where positive values indicate
instability and negative values indicate stability.

The vertical component of the contact force is

—Ma?R(2) dﬁ, [21]

Fy(@) = Mo R(2)tan p(2) = dz

where R(z) = Rg—Rp(z) +Ry cos f(z) andtan f(z) = —dRg/dz. Dropping
the dependencies on z, the stability derivative is

B 2
e <—ddﬁ—RHsmﬂ ﬂ)tan/}—ded/gB}

= —Mao? —(tanﬂ+RHKtanﬁ)tanﬂ+ fic ﬂi|

i R
_—tan ﬁ+<OS3ﬂ—RHtan ﬁ) i|

N _c,:)/IsC;)Z/J [ sin? pos p+ (Rg — Ry -+ Ry cos’ p) .

[22]

I
|
S
el\)

This proves Eq. 3. The simplifications make use of the following geometric
relations for the sectional shape of the surface, its slope and curvature, as
defined in Fig. 7D:
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tanﬂ——dﬁ and COSﬂ—g
T T ds
g dpdz B«
S et and thus 2 wsp [23]
L L
2z dz ~ cos3 g’

The stability condition dFy/dz < O identifies a critical value for the curvature of
the body:
in2
K> Kk = M [24]
R — Rg + Ry cos3 g
Equivalently, this relation can be recast in terms of the dimensionless
curvature factor K given in Eq. 4.

Body Geometries and Formulas. Cylindrical, conical, and hyperboloidal
surfaces can all be described by the radius function

R(2) = R(Z) + (ztana)?, [25]
where Ry can be understood as the minimal orwaist radiusatz = Oand a is the
half angle in the limit of 2 — —o0. Cylinders are the special case with Ry > 0

and @ = 0, cones have Ry = 0 and @ > 0, and hyperboloids have Ry > 0
and a > 0.The slope of the body cross-section when viewed from the side is

dR ztan?
TB L L — [26]
g RE + (ztana)?
and the related local slope angle is
dR —7tan?
tanﬂ_——Bfia. [27]
dz

R + (ztan a)?

One can verify the expected relations that tan g = 0 fora cylinder, and g = «
for the lower half (z < 0) of a cone. Hyperboloids have varying angle 8(z)
given by the above formula, from which the expected asymptotic angle relation
lim;— —o0 B(z) = a can be confirmed.
Further, the second derivative is

d2Rp RE tan?

T [28]
g [Rg + (ztan a)z]

Using Eq. 23, the curvature is

d2R R2 tan? a cos3 3
k= —2 o3 p=—20 """ 32 [29]
[Rg + (ztan a)z]

as relevant to the side-view cross-section of the body and which is signed such
that x > 0 for concave or hourglass-shaped surfaces. The expected results that
x = 0forcylinders (@ = 0) and cones (Ry = 0) are readily verified.

The above formulas are used to assess the slope factor S and curvature factor
K for our experiments on hyperboloids. That is, for each data marker plotted
in Fig. 6B, the measured value of z determines Rg(z) via Eq. 25 and f(2) via
Eq. 27, and these are input into Eq. 2 to yield the displayed value of S. Similarly,
the measured value of z determines Rg(z) via Eq. 25, B(2) via Eq. 27, and
Kk (2) via Eq. 29, and all these are input into Eq. 4 to yield the displayed value
of K.

Data, Materials, and Software Availability. All Study data are included in
the article and/or supporting information.
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