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1. Introduction

This paper focuses on the representation of a random variable as an adapted Lebesgue - as opposed to
stochastic - integral. We start the analysis with statements of our main results and then place them in
the extant literature while offering motivation for their study.

Let (Q, (%):<1,F,P) be a filtered probability space. Given an Fr-measurable random variable &,
we ask whether there exists a progressively-measurable process S such that

T
g‘?:/ Budu, as. (1.1)
0

with B in a given integrability class. We focus on the Lebesgue measure on a finite time-horizon [0, 7T’]
because other settings (alternative measures instead of the Lebesgue measure, alternative horizons, or
the discrete time on an infinite horizon instead of the continuous time) lead to a similar analysis.

Our main results apply to two integrability classes for 8, but we discuss interesting features of some
other classes, too, in Section 4. We say that § is weakly regular if

T
/ ,8124 du <o a.s.,
0

T
/ ,Bidu] < 00,
0

Assuming throughout that all #-local martingales are continuous, we show in Theorem 2.1 that the
representation (1.1) holds for some strongly regular 4 if and only if £ € L! and

and strongly regular if

E

T
E[/O TL_td(M)t] < oo where M; =E[£ | F¢].

In a less restrictive, weakly regular case, our Theorem 3.1 states that (1.1) holds for a weakly regular
B if and only if there exists a probability measure Q equivalent to P and a Q local martingale M with
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Mt = ¢ such that

T
'/0‘ ﬁd(M)t <00, a.s. (12)

Intuitively, an absolutely continuous representation of the form (1.1) with a weakly regular S exists if
and only if £ closes a local martingale whose quadratic variation grows slowly enough at 7'. This prob-
lem has a interesting link with the so-called “fundamental theorem of asset pricing” (see Theorem 1.1,
p. 487 of Delbaen and Schachermayer (1994)). As is well known in the Mathematical Finance com-
munity, this Theorem states that a locally-bounded semimartingale M is a local martingale under some
measure Q equivalent to P if and only if it satisfies the condition of No Free Lunch with Vanishing
Risk (NFLVR in the sequel). NFLVR is a slightly stronger version of the classical NA (No Arbitrage)
condition of Mathematical Finance. We may think, informally, of a process that satisfies NFLVR as a
measure-free version of a local martingale, or, similarly, as a semimartingale whose local-martingale
part is everywhere more active than its finite-variation part.

When focusing on the representation (1.1) of ¢ under the weaker, probability-free, condition on
B, that question boils down to the relationship between &, the set of null events, and the filtration.
Rephrased in financial terms, what we show is that (1.1) holds if and only if & closes a price process
which has the property and moreover is a “slow" local martingale under a suitable Q - in the sense of
(1.2). Such “slow" local martingale that converges to & can be used as a proxy for the good approxima-
bility of & by F;-adapted random variables as t ' T.

Unlike in the case of martingale representation, the question of uniqueness of an absolutely continu-
ous representation admits a trivially negative answer in many interesting integrability classes, including
both weak and strong regularity discussed above. That fact served as a prompt to look for a canonical,

rather than unique 8. When E[ /OT B2 du] < o is required, the 3 that minimizes E[ fOT B2 du] admits
an easy-to-verify explicit form, namely

A1 o
= =M —dM,, t€[0,7T),
fo=pMo+ [ v, 1< 10.7)

where M; = E[£ | #¢]. Unfortunately, we could not identify an analogous natural notion of canonicity
in the weakly regular case.

Absolutely continuous representation issues arise quite easily in applications. For instance, in Aid
and Biagini (2023) the authors deal with a linear-quadratic stochastic control problem on the Wiener
space, arising from carbon regulation. In that problem, the controls are square integrable rates, i.e., state
dynamics involve integrals of these controls with respect to dt. Furthermore, the objective function
contains a terminal penalty term which is a function of an integral of one of the controls, 3, so that

the random variable & = /OT B: dt appears in the objective function. Since the problem is not strictly
convex in S, the authors of Aid and Biagini (2023) were only able to obtain an explicit expression
for the optimal £, and for the associated martingale M, = E[£ | 7;]. They left the problem of finding
an optimal, square integrable, rate 3 that represents the optimal & open (see Aid and Biagini (2023),
Remark 4.1).

Integrable-enough absolutely continuous representations come in handy in other contexts, as well.
For example, they provide useful estimates when proving existence of solutions to stochastic differ-
ential equations. The interested reader can consult Chapter 6 of the Fabbri, Gozzi and Swiech (2017)
for a general treatment, or Biagini, Gozzi and Zanella (2022) for an application to stochastic delayed
differential equations in an optimal investment problem.

The only existing result concerning absolutely-continuous representation we are aware of is the “fac-
torization formula” of Da Prato and Zabczyk (see Theorem 5.2.5, p. 58 in Da Prato and Zabczyk
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(1996)). Set on an abstract Wiener space, it provides an explicit absolutely continuous representation
of a random variable given by a stochastic integral. It relies on a version of a stochastic Fubini theorem
(see Theorem 4.18 of Da Prato and Zabczyk (2014)) but does not address the regularity of the repre-
sentation itself, or provide any necessary conditions. A deeper discussion of why their approach, based
on the stochastic Fubini theorem, does not lead to the kinds of results we are interested in is given in
Remark 3.2.

Our results extend the existing ones in several directions. First, we give necessary and sufficient
conditions on the random variable £ for the representation to exist under both weak and strong regu-
larity. Furthermore, in the strongly regular case we show that the unique martingale solution of the
representation problem arises as the I.2-norm minimizer on the product space.

The paper is organized as follows: Section 2 treats the strongly regular and Section 3 the weakly
regular case; Section 4 contains further examples, results and comments.

Setup and notation. We consider a measurable space (Q, ), together with a maximal family # of
mutually equivalent probability measures on ¥, as well as a right-continuous filtration F = {%; }; (0,77
with Fy P-trivial. When we write that a filtration is generated by a Brownian motion W, we always
have the usual right-continuous and complete augmentation of the natural filtration in mind. On the
other hand, a filtration {#};¢[0,7] is said to support a Brownian motion if there exists an {#7}¢[0,7]-
Brownian motion W.

We say that a process M is a P-local martingale if it is a local martingale under some P € #, and
we denote the set of all P-local martingales by M!°¢. We impose the following, standing, assumption
throughout:

Assumption 1.1. Each P-local martingale is continuous.

In particular, the above assumption implies that for each M € M!°¢ there exists a unique process
(M) such that M? — (M) is also in M€,

Remark 1.2. According to Theorem 5.38, p. 155 in He, Wang and Yan (1992), continuity of all martin-
gales on a filtered probability space is equivalent to the requirement that all {77 };¢[0,7]-Stopping times
be predictable. Since this property stays invariant under equivalent measure changes, we conclude that
Assumption 1.1 holds if we only ask that there exists a single probability measure P € # such that all
P-local martingales are continuous.

For P € P, LP(P) is a shorthand for LP (Q, #,P) while LP-9(P), ¢g € [0, c0) denotes the set of all
{Ft }1e10,11-predictable processes § with /OT |Bul? du € L4 (P). When p > 1, the space LP-! (P) comes
with the norm:

T 1/p
“B“]LP’I(]P) :EP [ L |ﬁu|p dM:| s
while no topology on L”-9(P) will be needed. Since the spaces LO(P),LP-°(P), P € P coincide, we

omit the probability measure from the notation and simply write 1.0, LP-0.
For £ € ¥ and P € P, we set

BPA(£,P) = {ﬁ eLPA(P) : [T Budu=¢ a.s.}.

When g =0, we omit the measure P and write only 87-0(¢).
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2. The strongly regular case

In this section we choose and fix a probability measure P € # and use it as the underlying measure in
all probabilistic statements. In particular, we write: L2 and 2! for L2(P) and L>! (P) respectively; and
B21(£) in place of B>!(£,P).

Theorem 2.1. For & €L}, let {M;}ie10,1) and {Et}te[O,T) be defined by

M; =E[£| %], t€[0,T] 2.1)
A1 L
ﬂt = TMO +‘L mdMu, te [O,T) (22)

The following statements are equivalent under Assumption 1.1:

1. B8%1(&) #0.

2. Be B>1(&).

3. pelL®L

4. E[f) 7 d(M),] <o,

When B%1(&) # 0, the process 3 given by (2.2) is, up to a version,

(a) the unique martingale on [0,T) in B> (¢)
(b) the minimal L*'-norm element in 8> (£).

Proof. 1.— 2. Assuming that 82! (£) is nonempty consider the minimization problem

T
inf E zdu]z inf 2 2.3
peBi(g) [/0 Pudit| = e gt ) WPl -

The set 8%!(£) is convex and closed in L', By intersecting it with a large-enough ball in L>!,
we may assume that it is also bounded in 12!, The Banach Alaoglu theorem ensures then that such
restricted subset of 821 (&) is weakly compact. Since the L>! norm is a weakly lower semicontinuous
function, so is its square and thus there exists a B which attains the minimum in (2.3). This minimizer
is also unique by strict convexity of the objective function.

The rest of the proof of this implication is organized as follows. We start by showing that the min-
imality of § implies that § is orthogonal in L>! to a sufficiently rich class of processes. Using this
result, we prove that / is a martingale. Finally, we apply It6’s formula and find that (a modification of)
A coincides with 3.

In order to show martingality of 3, we perturb it in the direction of a process y € L>! with
/OT ¥udu =0, a.s. By construction, the processes 3 + &y belong to 82! (¢), which implies that:

1B = eyl = 1812,

for each € € R;. Writing down the relevant expectations, the inequality becomes

T T
‘/0 Buyu du +82E[£ yidu

IBIIS ., + 26E

3112
2 2 (|11 -
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Simplifying and sending & to zero, we get the following set of “first-order conditions”

T T
E[ / Buvu du] =0, Vy e L>! with / Yudu=0, as. 2.4)
0 0

Given ¢ < s in [0, T), for each 7;-measurable and random variable y € L> we define

0 ue[0,1]
Yy = ﬁ, u e (t,s],
—)(TL_S, ue(s,T].

so that fOT yX du = 0 for each y. By applying the equality in (2.4) to y* for all ¥;-measurable y € L?
we obtain

Ar — A,
T-5

ANS_ANI

E|
s—1

|-

7—',] a.s.,

where A, = fot Budu. Since f € B>1(¢), At = € = My, with M given by (2.1). Slightly rearranging,
we obtain:
1
s—1

(B[4, | %] - &) = (M, ~ B[4, | 7]) as. 2.5)

Since the right-hand side of (2.5) is a martingale in 7 on [0, 5), so is the left-hand side. In particular,
the finite-variation part in its semimartingale decomposition, given via integration by parts by

/0’ (;(E[As | Fa] = Au) - —

(s —u)? s—u

Bu) du,
must vanish for all ¢ < s, a.s. Consequently,

. :E[AS|7’,]—At

. a.s., foralmostall t < s <T.

s—1

Passing to the limit s T 7 on the right hand side above, we obtain

~ ~ ~ t ~
B_E[ATW,]—At_M,—A,_Mt—/oﬁudu 06
e T—1t T T-t T—t :
It follows that E has a continuous version on [0,7), which we, from now on, adopt. Furthermore, the
right-hand side of (2.6) is a semimartingale on [0, T) so we can use It6’s formula once more to conclude
that

o1 t
ﬁ,sz0+/0 T dM,, fort € [0,T).

—Uu

Therefore, 3 = 3 and statement 2. follows immediately.

2. — 3. Immediate. 3. — 4. With 7, =inf{r > 0 : (M), > n}, Fubini’s theorem implies that



(ﬁw Boy? du| = TE Y
0 (T-1)

_E[/ / Uesn oy )dud<M>] @.7)

:E[/OTHaKM),/t (Ti—t)zdu]:E[/oTnT—_d(M>

Since 3™ is an L>-bounded martingale on [0, ] for each t < T, (8™ — f3y)? is a submartingale on the
same domain, and the optional sampling theorem implies that

E[(BTn/\t —ﬁo)z] < E[(ﬁ, —,30)2] foreachr <T.

Thus, by (2.7),

™o T ola Ry "elig. _ a2 5 — Boll?
E/o L am), =/0 E[(ﬁTnAu—ﬁo)]duS/o B[ (Bu - Bo)?| du= 18 - foll2., <,

and it suffices to let n — oo and use the monotone convergence theorem.

4. — 3. We let n — oo in (2.7) and use Fatou’s lemma on the left-hand side and the monotone
convergence theorem on the right to conclude that
L
—d{M
/O 7= «M),

3. — I It suffices to show that fOT B: dt = ¢, a.s. The definition of 8 in (2.2) and integration by parts
imply that for t € [0,T) we have

1/2
< 00,

181l 21 < 1Bol + I8 = Boll 21 < |Bol +E

t t t
(T—t)ﬁ,zTﬁ0+/ dMu—/ /?uduth—/ Budu. (2.8)
0 0 0

Another round of integration by parts, but this time applied to the stochastic integral fot ﬁ am,,
implies that

S toM,
B = _tMt+/0 (T_u)zdu. (2.9)

Put together, identities (2.8) and (2.9), give

/ du,
T 32
/ Budu == o - “) for r € [0,7),

—z
and the final step is to use I’'Hopital’s rule and the fact that My — &,ast — T.

Concerning the last part of the statement of the theorem, (b) was established in the course of the
proof of 1. — 2. above. For (a), we assume that there exists another martingale 8* in 8%!(£) so that

o[ ]

M; =E ] / B du+ B (T —1).
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The equality (2.8) above implies that

0= /Ot(ﬁ?; — Bu) du+ (B; —B)(T —1) forallr € [0,T), as.

It follows that 8y — B is continuously differentiable for 7 € [0,T), and the conclusion 8* = f3 follows by
differentiation. O

Remark 2.2. As the anonymous referee observes, equation (2.6) can be interpreted as a (pathwise)
Volterra-type equation of the second kind:

T
u(t) = f(1) +/O K(t,s)u(s) ds, where f(t) = TA/itt and K (¢, ) =—%1{sg}.

A formal iterative solution (obtained by repeatedly replacing u(-) on the right-hand side by the whole
right-hand side and then taking the limit) can be written as 3, = lim,, ") (r), where

n
W0 =50+ Y, [Kiwsseas
i=0
and K' is the i-th composition power of K, i.e., K = K and

T T
K‘(t,s):/ / K(t,s1)K(s1,52)...K(s;,s)dsy ... ds; fori > 1. (2.10)
0 0

Substituting the explicit expression K (z,s) = —(T — )~ 1{s<;y into (2.10) above, we obtain

, . r L 1
Kl(f,5)=(—1)l(T—t)_1/ / "'—l{tZle~~~ZS,12s}dsl ...ds;.
0 0 i

T -5 T —s;

The last iterated integral is taken over the simplex A = {(s1,...,s;) € [s,7]""! : 51 < sp--- < s;}, and
the function H;:l (T - sk)‘l inside the integral is symmetric in sy, ..., s;_{, S0, for s < ¢ we have

Ki(t,s)= (- 1)’——/ /(T—sl) V(T =s) Vs ... ds;

~cvipt ([ amwt ) = 2 e =

-5

and consequently,

ZK’(I S)— 1{s<t}

This implies that the formal solution j3; takes the form

5 _ M /t M
= + ———ds, 2.11
Bi T-1" )y (T-s2 S (2.1D)

which, after integrating by parts in the last integral, matches (2.2).
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3. The weakly regular case

Fix an F7 measurable random variable & € L2, and let M!°¢ (&) denote the set of all M € M€ such
that M7 = &. Let P! (&) be the set of probabilities in  which integrate £.! For P € P!(¢), we set

M ¢ =EF[£|F], 1€ [0,T],

taken in its continuous version, so that M®¢ is the unique P-martingale in M€ (¢). Finally, for M €
Mlo¢ we define

N 1 Lo
ﬂfwszo+‘/0 ——dMy, 1€ [0.T). (3.1

Theorem 3.1. For an ¥ measurable random variable ¢ € L°, the following are equivalent:
1. B829(&) #0.
2. B%1(£,Q) # 0 for some Q e PL(&).
3. M e L2 for some M € M€ (¢).

4. foT TL_td<M>t < o0 a.s., for some M € M€ (&).

9

. EQ[/OT ﬁd(MQ"f)t] < oo, for some Q € P1(¢).

Proof. 1. — 2. We pick 8 € 8>0(¢) and P € P, and define Q € P by

aQ _ !
By le+ [T Bdu

where c is the normalizing constant. This way Q € P! (¢) and the process 8 belongs to L>>!(Q), and,
hence, also to 8>!(Q).

2. — 5. This is the content of the implication /. — 4. in Theorem 2.1, but, possibly, under an
equivalent probability measure.

5. — 4. Immediate.

4. — 3. Let M € M!°¢(£) be as in the statement, and let Q € P be such that M is a Q-local martin-
gale. We define the nondecreasing sequence {7}, };nen of stopping times by

. ro
Tmzlnf{lZOI ‘/0 md<M>uZm},
so that Q[T},, < T] — 0, as m — co. The process M, given by (3.1) above, is a continuous local Q-

martingale on [0, T) so there exists another nondecreasing sequence {7, },en of stopping times with the
property that 7, — T, a.s., such that (8™) ™ is an 1.2(Q)-bounded martingale on [0, T]. In particular,

EQ [(/?MMATMAT")Z] =E2[(AM Yyr1, ne, | forall m,n € N and u € [0.T).

I The set P! (&) is not empty, and it can be proved as in the proof of the next Theorem, arrow /. — 2., by setting 8 =0.
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We let n — oo and use Fatou’s lemma together with the monotone convergence theorem to conclude
that

1
(T -r)?

TimnAu
B (B} )7 | <E2[(B™)1,, 0] =B [ / (M), (32)
0

for u < T and m € N. By using the inequality

T T
/ (,BAfy)zduS/ (ﬁ%Au)zdu a.s.,
0 0

integrating (3.2) above in u over [0,7], and applying Fubini’s Theorem under the product measure

du ® d(M), we obtain
g AM 2 Q rrr 1
‘/0 (ﬂTm/\u) d”] =E [/0 /0 l{rswam}md(M)r du]

Tm
|
T T -
:EQ[/O (T_lr)ZdW)’/r du}:EQ/O Tl_rd<M>r]Sm-

0
Since Q[T;, =T] — 1 as m — oo, we conclude that /OT([?]M"[)2 du < o0, a.s.

<EQ

3. — 1. The last argument in the proof of Theorem 2.1 is based only on the integration by parts
formula and on the property 8 € L. Therefore it can be applied here, since M € L>0 c 110, O

Remark 3.2. As it aims for generality, but also operates within specific regularity classes, our proof
of Theorem 3.1 above does not use the stochastic Fubini theorem, a joint name for a class of statements
about the permissibility of the interchange of a Lebesgue and a stochastic integral under different sets
of conditions. We refer the reader to Theorem 4.18 in Da Prato and Zabczyk (2014) or Theorem 2.2 of
Veraar (2012) for two versions referred to later in this paper.

To provide a more detailed explanation, let us start with a brief description of how an argument
based on it would play out. Under Assumption 1.1, it would start with a choice of a measure Q € # as in
Theorem 3.1, item 2. and the associated martingale M Q¢ where we assume, without loss of generality,
that Mo = E2[¢] = 0. When its conditions are satisfied, the stochastic Fubini theorem, applied to the
function ¥ (s, t, w) = ﬁ[ [0,s] (f) and with integrals with respect to dM and ds, yields

T L | T 1 T
/ dS/ _th =/ th / dSZMT =§,
0 o IT'—t 0 T-tJ;

making

s
ﬁs:/o ﬁth (3.3)

an absolutely-continuous representation of £. One of the weakest conditions for the above to hold is
due to Veraar (see Theorem 2.2 of Veraar (2012)), and it can be stated in our case as

T K 1
‘/0(‘/0 md(M)t) ds < 00, a.s. (3.4)

=
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It is superficially related to our condition 4. of Theorem 3.1, but it does not automatically insert  into
our (weak or strong) regularity classes. For example, assume that we are on a filtration generated by
a Brownian motion W, and that & = Wr. In that case (3.4) is clearly satisfied, but, as we will see in
Proposition 4.1 below, W7 does not admit an absolutely continuous representation with a weakly (or
strongly) regular . Put differently:
regularity conditions for the validity of the stochastic
Fubini theorem do not correspond to our regularity classes.

A natural question is whether a condition such as:
#. [T d(M), < oo as., forall M e M€ (&)

can be inserted in Theorem 3.1. An equivalent question is whether the condition 4. of Theorem 3.1
implies the condition 4’. above. We only have a partial (positive) answer to this problem. It states that
under certain regularity conditions, if M" satisfies condition 4 in Theorem 2.1, then all the probability

measures Q ~ P with a finite relative entropy share the property, namely E2[ /OT ﬁ d <M Q>t] < 00,

Proposition 3.3. Suppose that the filtration is generated by a P-Brownian motion W and that & is of
the form

T
&= / o, dW,, for some bounded o .
0

If
1. the martingale M;P =EF[¢| 7] satisfies

r g
P P
E [/O —T_td(M Ve

2. Q is a probability measure equivalent to P with a finite relative entropy, i.e.,

< 00, and

Ep[i%log(i%) < 00, 3.5)
then
r
EQ[/O ﬁd(MQ),]<oo. (3.6)

Proof. With P ~ Q as in the statement, let § be such that the dynamics of the density process Z; =
EP[% |Tt] is given by

dZt = _Zl‘ 91 th

T
/ 6> du] < oo, (3.7)
0

Let us show, first, that

EQ
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Condition (3.5) above, together with the fact that the function x — xlog(x) is convex and bounded
from below, implies that the process Zlog(Z) is a continuous P-submartingale on [0,7]. Hence, there
exists a finite constant C such that

EF[Z-log(Z;)] < C for each [0, T]-valued stopping time T, (3.8)

1td’s formula applied to the semimartingale Z log(Z) yields
T
Z:log(Z:) =N+ %/ Zuei du where N is a local P-martingale.
0

Let {7, }nen is a sequence of stopping times that reduces the process N. The upper bound of (3.8)
above implies that

Tn Tn
C > E*|Z,, log(Zs,)| = $E* [/ Z.9; du] =1EQ [/ 02 du],
0 0

and it remains to use the monotone-convergence theorem to conclude that (3.7) holds.

We continue the proof by using Girsanov’s theorem and the boundedness of o to conclude that the
process:

t t
M; :/ ou (dWy + 6, du) = M;P""/‘ 00 du
0 0

is a Q-martingale. Boundedness of the process o, together with (3.7), implies that the random variable

&= M; =M; - fOT 0,0, du is Q-integrable, so that the Q-martingale M;Q =EQ[£ | ;] is well defined.
Moreover, we have

T
M2 =E2 [M’T - / 0ubu du
0

t
7—;] =M§P’+/ 00y du—L,,
0

T
L, =E2 [/ 0,0, du
0

<MQ>t = <MP - L>t-

where

al

It follows that

Furthermore, since
(M® =Ly, <(M" = Ly, +(M" + L) =2(M"); + 2(L);,

our final goal, namely (3.6), will be reached if we can prove that
0 T 1
E — d{(L 0o, 3.9

. . . T
For that, we note that £’ = Ly admits the absolutely continuous representation Ly = /0 B dt, where

B, = a16,, by its very definition. Since the boundedness of o and (3.7) above imply that 8’ € L>!(Q),
equation (3.9) follows from the implication 1. — 4. of Theorem 2.1. O
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4. Examples and further remarks

4.1. Functions of the terminal value of a Brownian motion W

Our first subsection focuses on the (lack of) absolutely continuous representation property for the ran-
dom variables of the form g(Wr). In contrast with what happens with the martingale representation,
we show that such a £ admits an absolutely continuous representation if and only if it is constant. Infor-
mally speaking: in order to have regular-enough representation, & must be sufficiently path dependent.

We start with a simple argument of limited scope just to provide some intuition. Let & be the terminal

. . . L T .
value Wr itself, and let B8 be its absolutely continuous representation, i.e., & = /0 Bu du. Since the
process W,ﬁ =W; - foz Bu du satisfies Wg =0, it cannot be a martingale under any equivalent measure.
This means that 8 cannot be too regular in the sense that the stochastic exponential exp( fot BudW, —
% /Ot ,83 du) cannot be a martingale, if it is well-defined at all. In fact, as our next Proposition shows,

such a 8 cannot be weakly regular, i.e., /OT B2 du = +0co with positive probability.

Proposition 4.1. Suppose that the filtration supports a Brownian motion W, and that ¢ = g(Wr) for
some g € C2(R). Then B>°(&) # 0 if and only if g is constant.

Proof. The only implication which requires a proof is (=).
We focus, first, on the case where the filtration is generated by the Brownian motion. Since g €

C?(R), the process g’’ (W) is locally bounded so that /OT(g”(Wu))2 du < o0, a.s. 1t6’s formula then

implies that £ admits an absolutely continuous representation under weak regularity, i.e., that 820(¢) #
0, if and only if 8%(€) # 0, where

T
E= /O ¢ (Wy) dW,.

FixaQe®P andcall Z; = E[% | 7—}] its density process. Since the filtration is assumed to be Brow-

nian, there exists a progressively measurable process 6 such that Z = &( foh 0,dW;). Thus,

T T T
5:‘/0 gl(Wt)th=/0 g'(Wt)thZ+/0 g (W)6; dt

where W% = W — fo 0; dt is a Q-Brownian motion. By the continuity of g’ and the paths of W, we

have fOT(g’(W,)Qt)2 dt < oo, a.s. Being deterministic, the quadratic variation of the Brownian motion
has the same distribution across all the probabilities in P, so, by Theorem 3.1, £ is representable if and
only if:

T (g (Wh))?

A s dt < o0, a.s. “.1)

Continuity of g’ and W force g’(W;) — 0 when t — T, i.e., g’(Wr) =0, a.s., whenever (4.1) holds.
Since Wr has full support under any P € £, we conclude that g’ = 0.

The next step in the proof is to relax the assumption that the filtration {7 };c[0,7] is generated by
a Brownian motion. In preparation, let {ﬁw},E[O,T | denote the subfiltration of {77 },c[0,7] generated
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by the Brownian motion W, and let Prog and Prog" denote the progressive o-algebras on [0,T] x F
corresponding to {¥7},¢[0,7] and {ﬁw},e[oj 1> respectively.
We argue by contradiction and assume that some & = g(Wr), with non constant g, can be represented

as /OT Bu du for some S € Prog with fOT ﬁfi du < o0, a.s. With Q denoting a probability measure equiv-

alent to P with the property that EQ[ fOT ﬁ% du] < co, we observe that 8, seen as a Prog-measurable
function on the product space [0,7] X Q, is square integrable with respect to the product probability
measure y = %/l ® Q (where A denotes the Lebesgue measure on [0,7]). Hence, the conditional ex-
pectation 8% of S8, taken on the probability space ([0,7] x Q,Prog, 1), given the o-algebra Prog", is
well defined and satisfies

/,BZV(w) du(u,w) = / Bu(w) du(u, w) for all B € Prog" .
B B

If we set B=[0,T] X A, for A € TTW and remember that & € 7—'TW, we obtain immediately that

fo BY du = ¢, a.s. Moreover, since the conditional expectation preserves square integrability, we have

EQ[/OTwL”)zdu

< 00,

T . .
and, consequently, fo (,8,‘4V )2 du < oo, a.s. It remains to observe that the existence of such 8V contra-
dicts the conclusion of the first part of the proof, and completes the argument. O

4.2. Representations in IL?’! for p <2

The “factorization formula” of Da Prato and Zabczyk when specialized to the case S(¢) =Id and U =
H =R (see Theorem 5.2.5, p. 58 in Da Prato and Zabczyk (1996) for the statement and the paragraph
that precedes it for the necessary definitions and notation) states the following: whenever @ € [0, 1),
and W is a progressively measurable process such that

t K 1/2
/ (t—s)“_l( / (s—r)_Z“E[‘I‘(r)z]dr) ds < 0 as., (4.2)
0 0
we have
t : t
/ ¥ (5) dW, =Sm(ﬂ"”) / (t— ) 1YY () ds as., forall € [0,T], 4.3)
0 0
where

p — ! — )y )
v¥(s) /0 (5= 1)~ W(r) dW,

To see how (4.3) above leads to an interesting absolutely continuous representation, we pick a bounded
progressively measurable process o and apply the factorization formula (4.3) above with t =7 and
¥ =¢o. When a € [0,1/2), so that (4.2) is satisfied, (4.3) yields directly the following absolutely-
continuous representation for the last element & = Mt of the martingale M; = /Ot oy, dW,,:

sin(ar)

T t
g:/ B dt where B; = (T-1)"'R, and R,=/ (t—u)~dM,. (4.4)
0 0
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Note that we can interpret R; as a formal Riemann-Liouville fractional integral of order a of the
noise dM, up to a multiplicative constant. To complete the factorization formula, we then integrate the
result multiplied by (7 —£)@~! with respect to dt, i.e., compute the Riemann-Liouville integral of the
complementary order 1 — @ of the result. The semigroup property of Riemann-Liouville integration
would suggest that the result should coincide with the integral of order @ + (1 — @) =1 of dM, i.e., it
should yield Mt = &, which is precisely the case. We refer the reader to Samko, Kilbas and Marichev
(1993) for details on fractional integration.

Since no restriction other than boundedness is imposed on o it may appear at first glance that (4.4)
contradicts Proposition 4.1 above, in that it provides a representation for ¢ = Wr, for example. The dif-
ference, as in the discussion of the stochastic Fubini theorem in Remark 3.2 above, lies in the regularity
class. As an easy illustration, let us show that in the special case o = 1, the representation 5 given by
(4.4) does not even belong to weak regularity class 82°(¢). In fact, we show below that it satisfies

fOT ﬁi du = 400, a.s. To do that, we focus on the process R from (4.4) which, in this case, takes the
form

t
R,:/ (=)~ dW,. 4.5)
0

Known as the Riemann-Liouville process (up to a multiplicative constant), the process R from (4.5)
above is Gaussian and admits a continuous modification (see Marinucci and Robinson (1999) for a
survey of its properties and its relation to the fractional Brownian motion). Its value R at T is normally
distributed with a nonzero variance, so that, by continuity, we have lim;_,7 R; = Rt # 0, a.s. It follows
that there exists a random variable K such that K > 0, a.s., and

Bl 2 K(T-0)""", as.,

for all ¢ in a (random) neighborhood of T. Since @ < 1/2, i.e., 2a — 2 < —1, we necessarily have

fOT,Bf dt =0, as.

On the other hand, as our next result states, the factorization theorem allows us to construct absolutely
continuous representations of a wide variety of random variables in any one of slightly less regular
classes LP!, p € [1,2).

Proposition 4.2. Suppose that the filtration supports a Brownian motion W and that & = fOT oy dW,,
with o bounded. Then & admits an absolutely continuous representation in LP*' for each p € [1,2).

Proof. Let p € [1,2) be given. We claim that that the representation (4.4) above, with M; = fot oy dW,,

and with a suitably chosen & € (0, 1/2) belongs to L”>!. To see that we use Doob’s maximal inequality
followed by the Burkholder-Davis-Gundy theorem to obtain the following:

p

E[|:|7] = (T—t)p("l)]EH / t(r—ur“dMu
0

K p

/(t—u)_“dMu ]
0

t p/2

( /0 (r—u>-2‘1d<M>u) }

S(T—t)p<“_l)E[sup

s<t

ST -nPle-VE
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where a < b is a shorthand for a < C b, for some constant C > 0 which depends only on p. Allowing
C to depend on o as well, we can go on to conclude that

T T t p/2
E[/ Iﬁflf’dt]S/ (T -nPe=VE (/ (r—u)‘2“d<M>u) di
0 0 0
T t p/2
é/ (T_,)P((z—l)(/ (t—u)_z"du) dt (4.6)
(ap) P02
/ (-t

The last integral is finite if and only if @ € (1 — 1/p, 1/2). Therefore, the choice a = % - 2L in (4.4)
provides an absolutely continuous representation of & in LP-! for p € (1,2). [

Remark 4.3. The result of Proposition 4.2 above should be contrasted with the findings in our Theorem
2.1, which implies that under the same assumptions, a representation of & = fOT o, dW,, is possible in

L>! if and only if, additionally,
T 2
/ Tu dt] < o0,
0 T—-t

E
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