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1. Introduction

This paper focuses on the representation of a random variable as an adapted Lebesgue - as opposed to
stochastic - integral. We start the analysis with statements of our main results and then place them in
the extant literature while offering motivation for their study.

Let (Ω, (FC )C≤) ,F ,P) be a filtered probability space. Given an F) -measurable random variable b,
we ask whether there exists a progressively-measurable process V such that

b =

∫ )

0
VD 3D, a.s. (1.1)

with V in a given integrability class. We focus on the Lebesgue measure on a finite time-horizon [0,)]
because other settings (alternative measures instead of the Lebesgue measure, alternative horizons, or
the discrete time on an infinite horizon instead of the continuous time) lead to a similar analysis.

Our main results apply to two integrability classes for V, but we discuss interesting features of some
other classes, too, in Section 4. We say that V is weakly regular if

∫ )

0
V2
D 3D <∞ 0.B.,

and strongly regular if

E

[∫ )

0
V2
D 3D

]
<∞.

Assuming throughout that all F -local martingales are continuous, we show in Theorem 2.1 that the
representation (1.1) holds for some strongly regular V if and only if b ∈ L1 and

E

[∫ )

0

1
) − C

3⟨"⟩C

]
<∞ where "C = E[b | FC ] .

In a less restrictive, weakly regular case, our Theorem 3.1 states that (1.1) holds for a weakly regular
V if and only if there exists a probability measure Q equivalent to P and a Q local martingale " with
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") = b such that

∫ )

0

1
) − C

3⟨"⟩C <∞, a.s. (1.2)

Intuitively, an absolutely continuous representation of the form (1.1) with a weakly regular V exists if
and only if b closes a local martingale whose quadratic variation grows slowly enough at ) . This prob-
lem has a interesting link with the so-called “fundamental theorem of asset pricing” (see Theorem 1.1,
p. 487 of Delbaen and Schachermayer (1994)). As is well known in the Mathematical Finance com-
munity, this Theorem states that a locally-bounded semimartingale " is a local martingale under some
measure Q equivalent to P if and only if it satisfies the condition of No Free Lunch with Vanishing
Risk (NFLVR in the sequel). NFLVR is a slightly stronger version of the classical NA (No Arbitrage)
condition of Mathematical Finance. We may think, informally, of a process that satisfies NFLVR as a
measure-free version of a local martingale, or, similarly, as a semimartingale whose local-martingale
part is everywhere more active than its finite-variation part.

When focusing on the representation (1.1) of b under the weaker, probability-free, condition on
V, that question boils down to the relationship between b, the set of null events, and the filtration.
Rephrased in financial terms, what we show is that (1.1) holds if and only if b closes a price process
which has the property and moreover is a “slow" local martingale under a suitable Q - in the sense of
(1.2). Such “slow" local martingale that converges to b can be used as a proxy for the good approxima-
bility of b by FC -adapted random variables as C↗ ) .

Unlike in the case of martingale representation, the question of uniqueness of an absolutely continu-
ous representation admits a trivially negative answer in many interesting integrability classes, including
both weak and strong regularity discussed above. That fact served as a prompt to look for a canonical,

rather than unique V. When E[
∫ )

0 V2
D 3D] < ∞ is required, the V that minimizes E[

∫ )

0 V2
D 3D] admits

an easy-to-verify explicit form, namely

V̂C =
1
)
"0 +

∫ C

0

1
) − D

3"D, C ∈ [0,)),

where "C = E[b | FC ]. Unfortunately, we could not identify an analogous natural notion of canonicity
in the weakly regular case.

Absolutely continuous representation issues arise quite easily in applications. For instance, in Aïd
and Biagini (2023) the authors deal with a linear-quadratic stochastic control problem on the Wiener
space, arising from carbon regulation. In that problem, the controls are square integrable rates, i.e., state
dynamics involve integrals of these controls with respect to 3C. Furthermore, the objective function
contains a terminal penalty term which is a function of an integral of one of the controls, V, so that

the random variable b =
∫ )

0 VC 3C appears in the objective function. Since the problem is not strictly
convex in V, the authors of Aïd and Biagini (2023) were only able to obtain an explicit expression
for the optimal b̂, and for the associated martingale "̂C = E[b̂ | FC ]. They left the problem of finding
an optimal, square integrable, rate V̂ that represents the optimal b̂ open (see Aïd and Biagini (2023),
Remark 4.1).

Integrable-enough absolutely continuous representations come in handy in other contexts, as well.
For example, they provide useful estimates when proving existence of solutions to stochastic differ-
ential equations. The interested reader can consult Chapter 6 of the Fabbri, Gozzi and Świech (2017)
for a general treatment, or Biagini, Gozzi and Zanella (2022) for an application to stochastic delayed
differential equations in an optimal investment problem.

The only existing result concerning absolutely-continuous representation we are aware of is the “fac-
torization formula” of Da Prato and Zabczyk (see Theorem 5.2.5, p. 58 in Da Prato and Zabczyk
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(1996)). Set on an abstract Wiener space, it provides an explicit absolutely continuous representation
of a random variable given by a stochastic integral. It relies on a version of a stochastic Fubini theorem
(see Theorem 4.18 of Da Prato and Zabczyk (2014)) but does not address the regularity of the repre-
sentation itself, or provide any necessary conditions. A deeper discussion of why their approach, based
on the stochastic Fubini theorem, does not lead to the kinds of results we are interested in is given in
Remark 3.2.

Our results extend the existing ones in several directions. First, we give necessary and sufficient

conditions on the random variable b for the representation to exist under both weak and strong regu-
larity. Furthermore, in the strongly regular case we show that the unique martingale solution of the
representation problem arises as the L2-norm minimizer on the product space.

The paper is organized as follows: Section 2 treats the strongly regular and Section 3 the weakly
regular case; Section 4 contains further examples, results and comments.

Setup and notation. We consider a measurable space (Ω,F ), together with a maximal family P of
mutually equivalent probability measures on F , as well as a right-continuous filtration F = {FC }C∈[0,) ] ,
with F0 P-trivial. When we write that a filtration is generated by a Brownian motion W, we always
have the usual right-continuous and complete augmentation of the natural filtration in mind. On the
other hand, a filtration {FC }C∈[0,) ] is said to support a Brownian motion if there exists an {FC }C∈[0,) ]-
Brownian motion, .

We say that a process " is a P-local martingale if it is a local martingale under some P ∈ P, and
we denote the set of all P-local martingales by M;>2. We impose the following, standing, assumption
throughout:

Assumption 1.1. Each P-local martingale is continuous.

In particular, the above assumption implies that for each " ∈ M;>2 there exists a unique process
⟨"⟩ such that "2 − ⟨"⟩ is also in M;>2.

Remark 1.2. According to Theorem 5.38, p. 155 in He, Wang and Yan (1992), continuity of all martin-
gales on a filtered probability space is equivalent to the requirement that all {FC }C∈[0,) ]-stopping times
be predictable. Since this property stays invariant under equivalent measure changes, we conclude that
Assumption 1.1 holds if we only ask that there exists a single probability measure P ∈ P such that all
P-local martingales are continuous.

For P ∈ P, L? (P) is a shorthand for L? (Ω,F ,P) while L?,@ (P), @ ∈ [0,∞) denotes the set of all

{FC }C∈[0,) ]-predictable processes V with
∫ )

0 |VD |
? 3D ∈ L@ (P). When ? ≥ 1, the space L?,1 (P) comes

with the norm:

∥V∥L?,1 (P) = E
P

[ ∫ )

0
|VD |

? 3D

]1/?

,

while no topology on L?,0 (P) will be needed. Since the spaces L0 (P),L?,0 (P), P ∈ P coincide, we
omit the probability measure from the notation and simply write L0,L?,0.

For b ∈ F) and P ∈ P, we set

B?,@ (b,P) :=
{
V ∈ L?,@ (P) :

∫ )

0 VD 3D = b a.s.
}
.

When @ = 0, we omit the measure P and write only B?,0 (b).
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2. The strongly regular case

In this section we choose and fix a probability measure P ∈ P and use it as the underlying measure in
all probabilistic statements. In particular, we write: L2 and L2,1 for L2 (P) and L2,1 (P) respectively; and
B2,1 (b) in place of B2,1 (b,P).

Theorem 2.1. For b ∈ L1, let {"C }C∈[0,) ] and { V̂C }C∈[0,) ) be defined by

"C = E[b | FC ], C ∈ [0,)] (2.1)

V̂C =
1
)
"0 +

∫ C

0

1
) − D

3"D, C ∈ [0,)). (2.2)

The following statements are equivalent under Assumption 1.1:

1. B2,1 (b) ≠ ∅.

2. V̂ ∈ B2,1 (b).

3. V̂ ∈ L2,1.

4. E[
∫ )

0
1

)−C 3⟨"⟩C ] <∞.

When B2,1 (b) ≠ ∅, the process V̂ given by (2.2) is, up to a version,

(a) the unique martingale on [0,)) in B2,1 (b)

(b) the minimal L2,1-norm element in B2,1 (b).

Proof. 1.→ 2. Assuming that B2,1 (b) is nonempty consider the minimization problem

inf
V∈B2,1 ( b )

E

[∫ )

0
V2
D 3D

]
= inf

V∈B2,1 ( b )
∥V∥2

L2,1 . (2.3)

The set B2,1 (b) is convex and closed in L2,1. By intersecting it with a large-enough ball in L2,1,
we may assume that it is also bounded in L2,1. The Banach Alaoglu theorem ensures then that such
restricted subset of B2,1 (b) is weakly compact. Since the L2,1 norm is a weakly lower semicontinuous
function, so is its square and thus there exists a Ṽ which attains the minimum in (2.3). This minimizer
is also unique by strict convexity of the objective function.

The rest of the proof of this implication is organized as follows. We start by showing that the min-
imality of Ṽ implies that Ṽ is orthogonal in L2,1 to a sufficiently rich class of processes. Using this
result, we prove that Ṽ is a martingale. Finally, we apply Itô’s formula and find that (a modification of)
Ṽ coincides with V̂.

In order to show martingality of Ṽ, we perturb it in the direction of a process W ∈ L2,1 with∫ )

0 WD 3D = 0, a.s. By construction, the processes Ṽ ± YW belong to B2,1 (b), which implies that:

∥ Ṽ ± YW∥2
L2,1 ≥ ∥ Ṽ∥2

L2,1 ,

for each Y ∈ R+. Writing down the relevant expectations, the inequality becomes

∥ Ṽ∥2
L2,1 ± 2YE

[∫ )

0
ṼDWD 3D

]
+ Y2E

[∫ )

0
W2
D 3D

]
≥ ∥ Ṽ∥2

L2,1 .
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Simplifying and sending Y to zero, we get the following set of “first-order conditions”

E

[∫ )

0
ṼDWD 3D

]
= 0, ∀W ∈ L2,1 with

∫ )

0
WD 3D = 0, a.s. (2.4)

Given C < B in [0,)), for each FC -measurable and random variable j ∈ L2 we define

W
j
D =





0 D ∈ [0, C]

j 1
B−C , D ∈ (C, B],

−j 1
)−B , D ∈ (B,)] .

so that
∫ )

0 W
j
D 3D = 0 for each j. By applying the equality in (2.4) to Wj for all FC -measurable j ∈ L2

we obtain

E

[ �̃B − �̃C
B − C

��� FC
]
= E

[ �̃) − �̃B

) − B

��� FC
]

a.s. ,

where �̃C =
∫ C

0 ṼD 3D. Since Ṽ ∈ B2,1 (b), �̃) = b = ") , with " given by (2.1). Slightly rearranging,
we obtain:

1
B − C

(
E
[
�̃B

�� FC
]
− �̃C

)
=

1
) − B

(
"C − E

[
�̃B

�� FC
] )

a.s. (2.5)

Since the right-hand side of (2.5) is a martingale in C on [0, B), so is the left-hand side. In particular,
the finite-variation part in its semimartingale decomposition, given via integration by parts by

∫ C

0

(
1

(B − D)2

(
E
[
�̃B

�� FD
]
− �̃D

)
−

1
B − D

ṼD

)
3D,

must vanish for all C < B, a.s. Consequently,

ṼC =
E
[
�̃B

�� FC
]
− �̃C

B − C
a.s., for almost all C < B < ).

Passing to the limit B ↑) on the right hand side above, we obtain

ṼC =
E
[
�̃)

�� FC
]
− �̃C

) − C
=
"C − �̃C

) − C
=
"C −

∫ C

0 ṼD 3D

) − C
. (2.6)

It follows that Ṽ has a continuous version on [0,)), which we, from now on, adopt. Furthermore, the
right-hand side of (2.6) is a semimartingale on [0,)) so we can use Itô’s formula once more to conclude
that

ṼC =
1
)
"0 +

∫ C

0

1
) − D

3"D for C ∈ [0,)).

Therefore, V̂ = Ṽ and statement 2. follows immediately.

2. → 3. Immediate. 3. → 4. With g= = inf{C ≥ 0 : ⟨"⟩C ≥ =}, Fubini’s theorem implies that
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E

[∫ )

0
( V̂g=∧D − V̂0)

2 3D

]
=

∫ )

0
E

[∫ g=∧D

0

1

() − C)2
3⟨"⟩C

]
3D

= E

[∫ )

0

∫ )

C

1{C≤g= }
1

() − C)2
3D 3⟨"⟩C

]

= E

[∫ g=

0
3⟨"⟩C

∫ )

C

1

() − C)2
3D

]
= E

[∫ g=

0

1
) − C

3⟨"⟩C

]
.

(2.7)

Since V̂g= is an L2-bounded martingale on [0, C] for each C < ) , ( V̂g= − V̂0)
2 is a submartingale on the

same domain, and the optional sampling theorem implies that

E

[
( V̂g=∧C − V̂0)

2
]
≤ E

[
( V̂C − V̂0)

2
]

for each C < ).

Thus, by (2.7),

E

[∫ g=

0

1
) − C

3⟨"⟩C

]
=

∫ )

0
E

[
( V̂g=∧D − V̂0)

2
]
3D ≤

∫ )

0
E

[
( V̂D − V̂0)

2
]
3D = ∥ V̂ − V̂0∥

2
L2,1 <∞,

and it suffices to let =→∞ and use the monotone convergence theorem.

4. → 3. We let = → ∞ in (2.7) and use Fatou’s lemma on the left-hand side and the monotone
convergence theorem on the right to conclude that

∥ V̂∥L2,1 ≤ | V̂0 | + ∥ V̂ − V̂0∥L2,1 ≤ | V̂0 | + E

[∫ )

0

1
) − C

3⟨"⟩C

]1/2

<∞.

3. → 1. It suffices to show that
∫ )

0 V̂C 3C = b, a.s. The definition of V̂ in (2.2) and integration by parts
imply that for C ∈ [0,)) we have

() − C) V̂C = ) V̂0 +

∫ C

0
3"D −

∫ C

0
V̂D 3D = "C −

∫ C

0
V̂D 3D. (2.8)

Another round of integration by parts, but this time applied to the stochastic integral
∫ C

0
1

)−D 3"D,
implies that

V̂C =
1

) − C
"C +

∫ C

0

"D

() − D)2
3D. (2.9)

Put together, identities (2.8) and (2.9), give

∫ C

0
V̂D 3D =

∫ C

0
"D

()−D)2 3D,

1
)−C

for C ∈ [0,)),

and the final step is to use l’Hôpital’s rule and the fact that "C → b, as C→ ) .
Concerning the last part of the statement of the theorem, (b) was established in the course of the

proof of 1. → 2. above. For (a), we assume that there exists another martingale V∗ in B2,1 (b) so that

"C = E

[∫ )

0
V∗D 3D

���� FC

]
=

∫ C

0
V∗D 3D + V

∗
C () − C).
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The equality (2.8) above implies that

0 =

∫ C

0
(V∗D − V̂D) 3D + (V∗C − V̂C ) () − C) for all C ∈ [0,)), a.s.

It follows that V∗C − V̂C is continuously differentiable for C ∈ [0,)), and the conclusion V∗ = V̂ follows by
differentiation.

Remark 2.2. As the anonymous referee observes, equation (2.6) can be interpreted as a (pathwise)
Volterra-type equation of the second kind:

D(C) = 5 (C) +

∫ )

0
 (C, B)D(B) 3B, where 5 (C) =

"C

) − C
and  (C, B) = −

1
) − C

1{B≤C } .

A formal iterative solution (obtained by repeatedly replacing D(·) on the right-hand side by the whole
right-hand side and then taking the limit) can be written as ṼC = lim= D

(=) (C), where

D (=) (C) = 5 (C) +

=∑

8=0

∫
 8 (C, B) 5 (B) 3B

and  8 is the 8-th composition power of  , i.e.,  0 =  and

 8 (C, B) =

∫ )

0
· · ·

∫ )

0
 (C, B1) (B1, B2) . . .  (B8 , B) 3B1 . . . 3B8 for 8 ≥ 1. (2.10)

Substituting the explicit expression  (C, B) = −() − C)−11{B≤C } into (2.10) above, we obtain

 8 (C, B) = (−1)8 () − C)−1
∫ )

0
· · ·

∫ )

0

1
) − B1

. . .
1

) − B8
1{C≥B1≥···≥B8≥B} 3B1 . . . 3B8 .

The last iterated integral is taken over the simplex Δ = {(B1, . . . , B8) ∈ [B, C]8−1 : B1 ≤ B2 · · · ≤ B8}, and
the function

∏8
9=1 () − B:)

−1 inside the integral is symmetric in B1, . . . , B8−1, so, for B ≤ C we have

 8 (C, B) = (−1)8
1

) − C

1
8!

∫ C

B

· · ·

∫ C

B

() − B1)
−1 . . . () − B8)

−1 3B1 . . . 3B8

= (−1)8
1

) − C

1
8!

( ∫ C

B

() − D)−1 3D
) 8
=

1
) − C

1
8!

(
log

) − C

) − B

) 8
,

and consequently,
∞∑

8=0

 8 (C, B) =
1

) − B
1{B≤C } .

This implies that the formal solution ṼC takes the form

ṼC =
"C

) − C
+

∫ C

0

"B

() − B)2
3B, (2.11)

which, after integrating by parts in the last integral, matches (2.2).



8

3. The weakly regular case

Fix an F) measurable random variable b ∈ L0, and let M;>2 (b) denote the set of all " ∈ M;>2 such
that ") = b. Let P1 (b) be the set of probabilities in P which integrate b.1 For P ∈ P1 (b), we set

"
P, b
C = EP [b | FC ], C ∈ [0,)],

taken in its continuous version, so that "P, b is the unique P-martingale in M;>2 (b). Finally, for " ∈

M;>2 we define

V̂"C =
1
)
"0 +

∫ C

0

1
) − D

3"D, C ∈ [0,)). (3.1)

Theorem 3.1. For an F) measurable random variable b ∈ L0, the following are equivalent:

1. B2,0 (b) ≠ ∅.

2. B2,1 (b,Q) ≠ ∅ for some Q ∈ P1 (b).

3. V̂" ∈ L2,0 for some " ∈M;>2 (b).

4.
∫ )

0
1

)−C 3⟨"⟩C <∞ a.s., for some " ∈M;>2 (b).

5. EQ [
∫ )

0
1

)−C 3
〈
"Q, b

〉
C
] <∞, for some Q ∈ P1 (b).

Proof. 1. → 2. We pick V ∈ B2,0 (b) and P ∈ P, and define Q ∈ P by

3Q

3P
= 2

1

1 + |b | +
∫ )

0 V2
D 3D

,

where 2 is the normalizing constant. This way Q ∈ P1 (b) and the process V belongs to L2,1 (Q), and,
hence, also to B2,1 (Q).

2. → 5. This is the content of the implication 1. → 4. in Theorem 2.1, but, possibly, under an
equivalent probability measure.

5. → 4. Immediate.

4. → 3. Let " ∈M;>2 (b) be as in the statement, and let Q ∈ P be such that " is a Q-local martin-
gale. We define the nondecreasing sequence {)<}<∈N of stopping times by

)< = inf

{
C ≥ 0 :

∫ C

0

1
) − D

3⟨"⟩D ≥ <

}
,

so that Q[)< < )] → 0, as <→∞. The process V̂" , given by (3.1) above, is a continuous local Q-
martingale on [0,)) so there exists another nondecreasing sequence {g=}=∈N of stopping times with the
property that g= → ) , a.s., such that ( V̂" )g= is an L2 (Q)-bounded martingale on [0,)]. In particular,

EQ
[
( V̂"D∧)<∧g=

)2
]
= EQ

[
⟨V̂"⟩D∧)<∧g=

]
for all <, = ∈ N and D ∈ [0,)).

1The set P1 ( b ) is not empty, and it can be proved as in the proof of the next Theorem, arrow 1. → 2., by setting V = 0.



Representation of r.v. as Lebesgue integrals 9

We let =→∞ and use Fatou’s lemma together with the monotone convergence theorem to conclude
that

EQ
[
( V̂")<∧D)

2
]
≤ EQ

[
⟨V̂"⟩)<∧D

]
= EQ

[∫ )<∧D

0

1

() − A)2
3⟨"⟩A

]
(3.2)

for D < ) and < ∈ N. By using the inequality

∫ )<

0
( V̂"D )2 3D ≤

∫ )

0
( V̂")<∧D)

2 3D 0.B.,

integrating (3.2) above in D over [0,)], and applying Fubini’s Theorem under the product measure
3D ⊗ 3⟨"⟩A we obtain

EQ
[∫ )<

0

(
V̂"D

)2
3D

]
≤ EQ

[∫ )

0

(
V̂")<∧D

)2
3D

]
= EQ

[∫ )

0

∫ )

0
1{A≤D∧)< }

1

() − A)2
3⟨"⟩A 3D

]

= EQ
[∫ )<

0

1

() − A)2
3⟨"⟩A

∫ )

A

3D

]
= EQ

[∫ )<

0

1
) − A

3⟨"⟩A

]
≤ <.

Since Q[)< = )] → 1 as <→∞, we conclude that
∫ )

0 ( V̂"D )2 3D <∞, a.s.

3. → 1. The last argument in the proof of Theorem 2.1 is based only on the integration by parts
formula and on the property V̂ ∈ L1,0. Therefore it can be applied here, since V̂" ∈ L2,0 ⊆ L1,0.

Remark 3.2. As it aims for generality, but also operates within specific regularity classes, our proof
of Theorem 3.1 above does not use the stochastic Fubini theorem, a joint name for a class of statements
about the permissibility of the interchange of a Lebesgue and a stochastic integral under different sets
of conditions. We refer the reader to Theorem 4.18 in Da Prato and Zabczyk (2014) or Theorem 2.2 of
Veraar (2012) for two versions referred to later in this paper.

To provide a more detailed explanation, let us start with a brief description of how an argument
based on it would play out. Under Assumption 1.1, it would start with a choice of a measureQ ∈ P as in
Theorem 3.1, item 2. and the associated martingale "Q, b , where we assume, without loss of generality,
that "0 = EQ [b] = 0. When its conditions are satisfied, the stochastic Fubini theorem, applied to the
function k(B, C, l) = 1

)−C �[0,B] (C) and with integrals with respect to 3" and 3B, yields

∫ )

0
3B

∫ B

0

1
) − C

3"C =

∫ )

0
3"C

1
) − C

∫ )

C

3B = ") = b,

making

VB =

∫ B

0

1
) − C

3"C (3.3)

an absolutely-continuous representation of b. One of the weakest conditions for the above to hold is
due to Veraar (see Theorem 2.2 of Veraar (2012)), and it can be stated in our case as

∫ )

0

(∫ B

0

1

() − C)2
3⟨"⟩C

) 1
2
3B <∞, a.s. (3.4)
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It is superficially related to our condition 4. of Theorem 3.1, but it does not automatically insert V into
our (weak or strong) regularity classes. For example, assume that we are on a filtration generated by
a Brownian motion , , and that b =,) . In that case (3.4) is clearly satisfied, but, as we will see in
Proposition 4.1 below, ,) does not admit an absolutely continuous representation with a weakly (or
strongly) regular V. Put differently:

regularity conditions for the validity of the stochastic

Fubini theorem do not correspond to our regularity classes.

A natural question is whether a condition such as:

4’.
∫ )

0
1

)−C 3⟨"⟩C <∞ a.s., for all " ∈M;>2 (b)

can be inserted in Theorem 3.1. An equivalent question is whether the condition 4. of Theorem 3.1
implies the condition 4′. above. We only have a partial (positive) answer to this problem. It states that
under certain regularity conditions, if "P satisfies condition 4 in Theorem 2.1, then all the probability

measures Q ∼ P with a finite relative entropy share the property, namely EQ [
∫ )

0
1

)−C 3
〈
"Q

〉
C
] <∞.

Proposition 3.3. Suppose that the filtration is generated by a P-Brownian motion , and that b is of

the form

b =

∫ )

0
fD 3,D, for some bounded f.

If

1. the martingale "PC = EP [b | FC ] satisfies

EP
[∫ )

0

1
) − C

3⟨"P⟩C

]
<∞, and

2. Q is a probability measure equivalent to P with a finite relative entropy, i.e.,

EP
[
3Q

3P
log

(
3Q

3P

)]
<∞, (3.5)

then

EQ
[∫ )

0

1
) − C

3⟨"Q⟩C

]
<∞. (3.6)

Proof. With P ∼ Q as in the statement, let \ be such that the dynamics of the density process /C =

EP
[
3Q
3P

��� FC
]

is given by

3/C = −/C \C 3,C .

Let us show, first, that

EQ
[∫ )

0
\2
D 3D

]
<∞. (3.7)
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Condition (3.5) above, together with the fact that the function G ↦→ G log(G) is convex and bounded
from below, implies that the process / log(/) is a continuous P-submartingale on [0,)]. Hence, there
exists a finite constant � such that

EP [/g log(/g)] ≤ � for each [0,)]-valued stopping time g, (3.8)

Itô’s formula applied to the semimartingale / log(/) yields

/g log(/g) = #g +
1
2

∫ g

0
/D\

2
D 3D where # is a local P-martingale.

Let {g=}=∈N is a sequence of stopping times that reduces the process # . The upper bound of (3.8)
above implies that

� ≥ EP
[
/g= log(/g= )

]
=

1
2E
P

[∫ g=

0
/D\

2
D 3D

]
=

1
2E
Q

[∫ g=

0
\2
D 3D

]
,

and it remains to use the monotone-convergence theorem to conclude that (3.7) holds.

We continue the proof by using Girsanov’s theorem and the boundedness of f to conclude that the
process:

" ′
C =

∫ C

0
fD (3,D + \D 3D) = "

P
C +

∫ C

0
fD\D 3D

is a Q-martingale. Boundedness of the process f, together with (3.7), implies that the random variable

b = "P
)
= " ′

)
−
∫ )

0 fD\D 3D is Q-integrable, so that the Q-martingale "QC = EQ [b | FC ] is well defined.
Moreover, we have

"
Q
C = EQ

[
" ′

) −

∫ )

0
fD\D 3D

���� FC

]
= "PC +

∫ C

0
fD\D 3D − !C ,

where

!C = E
Q

[∫ )

0
fD\D 3D

���� FC

]
.

It follows that

⟨"Q⟩C = ⟨"P − !⟩C .

Furthermore, since

⟨"P − !⟩C ≤ ⟨"P − !⟩C + ⟨"P + !⟩C = 2⟨"P⟩C + 2⟨!⟩C ,

our final goal, namely (3.6), will be reached if we can prove that

EQ
[∫ )

0

1
) − C

3⟨!⟩C

]
<∞. (3.9)

For that, we note that b′ = !) admits the absolutely continuous representation !) =
∫ )

0 V′C 3C, where

V′C = fC\C , by its very definition. Since the boundedness of f and (3.7) above imply that V′ ∈ L2,1 (Q),
equation (3.9) follows from the implication 1.→ 4. of Theorem 2.1.
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4. Examples and further remarks

4.1. Functions of the terminal value of a Brownian motion W

Our first subsection focuses on the (lack of) absolutely continuous representation property for the ran-
dom variables of the form 6(,) ). In contrast with what happens with the martingale representation,
we show that such a b admits an absolutely continuous representation if and only if it is constant. Infor-
mally speaking: in order to have regular-enough representation, b must be sufficiently path dependent.

We start with a simple argument of limited scope just to provide some intuition. Let b be the terminal

value ,) itself, and let V be its absolutely continuous representation, i.e., b =
∫ )

0 VD 3D. Since the

process,V
C =,C −

∫ C

0 VD 3D satisfies,V

)
= 0, it cannot be a martingale under any equivalent measure.

This means that V cannot be too regular in the sense that the stochastic exponential exp(
∫ C

0 VD 3,D −
1
2

∫ C

0 V2
D 3D) cannot be a martingale, if it is well-defined at all. In fact, as our next Proposition shows,

such a V cannot be weakly regular, i.e.,
∫ )

0 V2
D 3D = +∞ with positive probability.

Proposition 4.1. Suppose that the filtration supports a Brownian motion , , and that b = 6(,) ) for

some 6 ∈ �2 (R). Then B2,0 (b) ≠ ∅ if and only if 6 is constant.

Proof. The only implication which requires a proof is (⇒).
We focus, first, on the case where the filtration is generated by the Brownian motion. Since 6 ∈

�2 (R), the process 6′′ (,) is locally bounded so that
∫ )

0 (6′′ (,D))
2 3D < ∞, a.s. Itô’s formula then

implies that b admits an absolutely continuous representation under weak regularity, i.e., that B2,0 (b) ≠

∅, if and only if B2,0 (b̄) ≠ ∅, where

b̄ =

∫ )

0
6′ (,C ) 3,C .

Fix a Q ∈ P and call /C = E
[
3Q
3P

��� FC
]

its density process. Since the filtration is assumed to be Brow-

nian, there exists a progressively measurable process \ such that / = E(
∫ ·

0 \C3,C ). Thus,

b̄ =

∫ )

0
6′ (,C ) 3,C =

∫ )

0
6′ (,C ) 3,

/
C +

∫ )

0
6′ (,C )\C 3C

where ,/ =, −
∫ ·

0 \C 3C is a Q-Brownian motion. By the continuity of 6′ and the paths of , , we

have
∫ )

0 (6′ (,C )\C )
2 3C <∞, a.s. Being deterministic, the quadratic variation of the Brownian motion

has the same distribution across all the probabilities in P, so, by Theorem 3.1, b̄ is representable if and
only if:

∫ )

0

(6′ (,C ))
2

) − C
3C <∞, a.s. (4.1)

Continuity of 6′ and , force 6′ (,C ) → 0 when C → ) , i.e., 6′ (,) ) = 0, a.s., whenever (4.1) holds.
Since,) has full support under any P ∈ P, we conclude that 6′ ≡ 0.

The next step in the proof is to relax the assumption that the filtration {FC }C∈[0,) ] is generated by
a Brownian motion. In preparation, let {F,

C }C∈[0,) ] denote the subfiltration of {FC }C∈[0,) ] generated
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by the Brownian motion , , and let Prog and Prog, denote the progressive f-algebras on [0,)] × F

corresponding to {FC }C∈[0,) ] and {F,
C }C∈[0,) ] , respectively.

We argue by contradiction and assume that some b = 6(,) ), with non constant 6, can be represented

as
∫ )

0 VD 3D for some V ∈ Prog with
∫ )

0 V2
D 3D <∞, a.s. With Q denoting a probability measure equiv-

alent to P with the property that EQ [
∫ )

0 V2
D 3D] < ∞, we observe that V, seen as a Prog-measurable

function on the product space [0,)] × Ω, is square integrable with respect to the product probability
measure ` =

1
)
_ ⊗ Q (where _ denotes the Lebesgue measure on [0,)]). Hence, the conditional ex-

pectation V, of V, taken on the probability space ( [0,)] ×Ω,Prog, `), given the f-algebra Prog, , is
well defined and satisfies

∫

�

V,D (l) 3`(D,l) =

∫

�

VD (l) 3`(D,l) for all � ∈ Prog, .

If we set � = [0,)] × �, for � ∈ F,
)

and remember that b ∈ F,
)

, we obtain immediately that
∫ )

0 V,D 3D = b, a.s. Moreover, since the conditional expectation preserves square integrability, we have

EQ
[∫ )

0
(V,D )2 3D

]
<∞,

and, consequently,
∫ )

0 (V,D )2 3D <∞, a.s. It remains to observe that the existence of such V, contra-
dicts the conclusion of the first part of the proof, and completes the argument.

4.2. Representations in L p,1 for p < 2

The “factorization formula” of Da Prato and Zabczyk when specialized to the case ((C) = Id and * =

� = R (see Theorem 5.2.5, p. 58 in Da Prato and Zabczyk (1996) for the statement and the paragraph
that precedes it for the necessary definitions and notation) states the following: whenever U ∈ [0,1),
and Ψ is a progressively measurable process such that

∫ C

0
(C − B)U−1

(∫ B

0
(B − A)−2UE

[
Ψ(A)2

]
3A

)1/2

3B <∞ a.s., (4.2)

we have
∫ C

0
Ψ(B) 3,B =

sin(Uc)
c

∫ C

0
(C − B)U−1.Ψ

U (B) 3B a.s., for all C ∈ [0,)], (4.3)

where

.Ψ
U (B) =

∫ C

0
(B − A)−U

Ψ(A) 3,A .

To see how (4.3) above leads to an interesting absolutely continuous representation, we pick a bounded
progressively measurable process f and apply the factorization formula (4.3) above with C = ) and
Ψ = f. When U ∈ [0,1/2), so that (4.2) is satisfied, (4.3) yields directly the following absolutely-
continuous representation for the last element b = ") of the martingale "C =

∫ C

0 fD 3,D:

b =

∫ )

0
VC 3C where VC =

sin(Uc)
c

() − C)U−1'C and 'C =
∫ C

0
(C − D)−U 3"D. (4.4)
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Note that we can interpret 'C as a formal Riemann-Liouville fractional integral of order U of the
noise 3" , up to a multiplicative constant. To complete the factorization formula, we then integrate the
result multiplied by () − C)U−1 with respect to 3C, i.e., compute the Riemann-Liouville integral of the
complementary order 1 − U of the result. The semigroup property of Riemann-Liouville integration
would suggest that the result should coincide with the integral of order U + (1 − U) = 1 of 3" , i.e., it
should yield ") = b, which is precisely the case. We refer the reader to Samko, Kilbas and Marichev
(1993) for details on fractional integration.

Since no restriction other than boundedness is imposed on f it may appear at first glance that (4.4)
contradicts Proposition 4.1 above, in that it provides a representation for b =,) , for example. The dif-
ference, as in the discussion of the stochastic Fubini theorem in Remark 3.2 above, lies in the regularity
class. As an easy illustration, let us show that in the special case f ≡ 1, the representation V given by
(4.4) does not even belong to weak regularity class B2,0 (b). In fact, we show below that it satisfies∫ )

0 V2
D 3D = +∞, a.s. To do that, we focus on the process ' from (4.4) which, in this case, takes the

form

'C =

∫ C

0
(C − B)−U 3,B . (4.5)

Known as the Riemann-Liouville process (up to a multiplicative constant), the process ' from (4.5)
above is Gaussian and admits a continuous modification (see Marinucci and Robinson (1999) for a
survey of its properties and its relation to the fractional Brownian motion). Its value ') at ) is normally
distributed with a nonzero variance, so that, by continuity, we have limC→) 'C = ') ≠ 0, a.s. It follows
that there exists a random variable  such that  > 0, a.s., and

|VC | ≥  () − C)U−1, a.s.,

for all C in a (random) neighborhood of ) . Since U < 1/2, i.e., 2U − 2 < −1, we necessarily have∫ )

0 V2
C 3C =∞, a.s.

On the other hand, as our next result states, the factorization theorem allows us to construct absolutely
continuous representations of a wide variety of random variables in any one of slightly less regular
classes L?,1, ? ∈ [1,2).

Proposition 4.2. Suppose that the filtration supports a Brownian motion , and that b =
∫ )

0 fD 3,D,

with f bounded. Then b admits an absolutely continuous representation in L?,1 for each ? ∈ [1,2).

Proof. Let ? ∈ [1,2) be given. We claim that that the representation (4.4) above, with "C =
∫ C

0 fD 3,D,

and with a suitably chosen U ∈ (0,1/2) belongs to L?,1. To see that we use Doob’s maximal inequality
followed by the Burkholder-Davis-Gundy theorem to obtain the following:

E[|VC |
?] = () − C)? (U−1)E

[����

∫ C

0
(C − D)−U 3"D

����
?]

≤() − C)? (U−1)E

[
sup
B≤C

����

∫ B

0
(C − D)−U 3"D

����
?]

⪅ () − C)? (U−1)E

[(∫ C

0
(C − D)−2U 3⟨"⟩D

) ?/2
]
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where 0 ⪅ 1 is a shorthand for 0 ≤ � 1, for some constant � > 0 which depends only on ?. Allowing
� to depend on f as well, we can go on to conclude that

E

[∫ )

0
|VC |

? 3C

]
≤

∫ )

0
() − C)? (U−1)E

[(∫ C

0
(C − D)−2U 3⟨"⟩D

) ?/2
]

3C

⪅

∫ )

0
() − C)? (U−1)

(∫ C

0
(C − D)−2U 3D

) ?/2

3C

=

∫ )

0
() − C)? (U−1) C

? (1/2−U)

1 − 2U
3C.

(4.6)

The last integral is finite if and only if U ∈ (1 − 1/?,1/2). Therefore, the choice U =
3
4 − 1

2? in (4.4)

provides an absolutely continuous representation of b in L?,1 for ? ∈ (1,2).

Remark 4.3. The result of Proposition 4.2 above should be contrasted with the findings in our Theorem

2.1, which implies that under the same assumptions, a representation of b =
∫ )

0 fD 3,D is possible in

L2,1 if and only if, additionally,

E

[∫ )

0

f2
D

) − C
3C

]
<∞.
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