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Abstract— Solution of the path structured multimarginal
Schrödinger bridge problem (MSBP) is the most-likely
measure-valued trajectory consistent with a sequence of ob-
served probability measures or distributional snapshots. We
leverage recent algorithmic advances in solving such structured
MSBPs for learning stochastic hardware resource usage by
control software. The solution enables predicting the time-
varying distribution of hardware resource availability at a
desired time with guaranteed linear convergence. We demon-
strate the efficacy of our probabilistic learning approach in
a model predictive control software execution case study. The
method exhibits rapid convergence to an accurate prediction
of hardware resource utilization of the controller. The method
can be broadly applied to any software to predict cyber-physical
context-dependent performance at arbitrary time.

I. INTRODUCTION

Control software in safety-critical cyber-physical systems

(CPS) is often designed and verified based on platform

models that do not fully capture the complexity of its

deployment settings. For example, it is common to assume

that the processor is dedicated to the control software and

that overhead is negligible. In practice, hardware resources –

such as last-level shared cache (LLC), memory bandwidth,

and processor cycles – often vary with time and hardware

state, which why we observe varying execution times across

different runs of the same control software [1]. This gap can

lead to inefficient or unsafe design.

Measurement-based approaches and overhead-aware anal-

ysis can reduce the analysis pessimism or ensure safety [2].

The recent work [3] uses fine-grained profiles of the software

execution for dynamic scheduling and resource allocation.

Supervisory algorithms that dynamically switch among a set

of controllers depending on the resource availability also

exist [4]. However, the effectiveness of these techniques is

contingent on the quality of prediction of future resource

availability and on the time horizon of interest.

Hardware resources are not only time-varying and stochas-

tic, but they are also statistically correlated. It is a challenge

to predict the joint stochastic variability of the hardware

resource availability in general, and more so for control
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software, where computational cost depends on additional

context, e.g., a reference trajectory being tracked.

This work proposes learning a joint stochastic process

for hardware resource availability from control software

execution profiles conditioned on CPS contexts (to be made

precise in Sec. III-A, III-B) based on only a small set of mea-

surements. Our proposed method leverages recent advances

in stochastic control – specifically in the multimarginal

Schrödinger bridge (MSBP) – to allow prediction of time-

varying joint statistical distributions of hardware resource

availability at any desired time. For safety-critical CPS such

predictions, as opposed to those of a lumped variable such as

worst-case execution time, can enable the design of improved

dynamic scheduling algorithms.

II. NOTATIONS AND PRELIMINARIES

Square braces are used to denote the components. For

instance, [Xi1,...,ir ] denotes the (i1, . . . , ir)th component

of the order r tensor X , where (i1, . . . , ir) ∈ N
r. We

use the r fold tensor product space notation
(
R

d
)⊗r

:=
R

d ⊗ . . .⊗ R
d

︸ ︷︷ ︸

r times

.

For two tensors X,Y of order r, we define their Hilbert-

Schmidt inner product as

⟨X,Y ⟩ :=
∑

i1,...,ir

[Xi1,...,ir ] [Yi1,...,ir ] . (1)

The operators exp(·) and log(·) are understood element-

wise. We use ⊙ and ⊘ to denote elementwise (Hadamard)

multiplication and division, respectively.

For measures µ, ν defined on two Polish spaces, their prod-

uct measure is denoted by µ⊗ ν. The relative entropy a.k.a.

Kullback-Leibler divergence DKL(·∥·) between probability

measures µ and ν is

DKL(µ∥ν) :=

{∫
log dµ

dν dµ if µ≪ ν,

+∞ otherwise,
(2)

where dµ
dν denotes the Radon-Nikodym derivative, and µ≪ ν

is a shorthand for “µ is absolutely continuous w.r.t. ν”.

The Hilbert (projective) metric (see e.g., [5]) dH (u,v)
between two vectors u,v ∈ R

n
>0 is

dH (u,v) = log

(
maxi=1,...,n ui/vi
mini=1,...,n ui/vi

)

. (3)

We use the term “control cycle” to mean one pass of a

feedback control loop. Due to hardware stochasticity, each

control cycle completion takes variable amount of time.
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III. PROBLEM FORMULATION

A. Context c

We consider a context vector c comprised of separable cyber

and physical context vectors

c :=

(
ccyber
cphys

)

. (4)

In this work, we consider an instance of (4) where

ccyber =

(
allocated last-level cache

allocated memory bandwidth

)

, (5)

where both features are allocated in blocks of some size, and

cphys = ydes(x) ∈ GP([xmin, xmax]) , (6)

where GP denotes a Gaussian process over the domain

[xmin, xmax]. We work with a collection of contexts with

cardinality ncontext, i.e., a sample of contexts {ci}ncontext

i=1 .

B. Hardware Resource State ξ

For concreteness, we define a hardware resource state or

feature vector used in our numerical case study (Sec. IV):

ξ :=





ξ1
ξ2
ξ3



 =





instructions retired

LLC requests

LLC misses



 . (7)

The three elements of ξ denote the number of CPU in-

structions, the number of LLC requests, and the number of

LLC misses in the last time unit (10 ms in our profiling),

respectively.

We emphasize that our proposed method is not limited

by what specific components comprise ξ. To highlight this

flexibility, we describe the proposed approach for ξ ∈ R
d

with suitable interpretations for the specific application.

For a time interval [0, t] of interest, we think of time-

varying ξ as a continuous time vector-valued stochastic

process over subsets of R
d. Suppose that s ∈ N, s ≥ 2

snapshots or observations are made for the stochastic state

ξ(τ), 0 ≤ τ ≤ t, at (possibly non-equispaced) instances

τ1 ≡ 0 < τ2 < . . . < τs−1 < τs ≡ t.

Consider the snapshot index set JsK := {1, . . . , s}. For

a fixed context c, the snapshot observations comprise a

sequence of joint probability measures {µσ}σ∈JsK satisfying
∫
dµσ(ξ(τσ)) = 1. In other words,

ξ(τσ) ∼ µσ ∀σ ∈ JsK. (8)

In our application, the data {µσ}σ∈JsK comes from control

software execution profiles, i.e., by executing the same

control software for the same c with all parameters and initial

conditions fixed. So the stochasticity in ξ(τσ) stems from the

dynamic variability in hardware resource availability.

In particular, for finitely many (say n) execution profiles,

we consider empirical distributions (a.k.a. atomic measures)

µσ :=
1

n

n∑

i=1

δ(ξ − ξi(τσ)), (9)

. . . . . .

Fig. 1: The path tree for sequentially observed {µσ}σ∈JsK.

where δ(ξ − ξi(τσ)) denotes the Dirac delta at sample

location ξi(τσ) where i ∈ JnK, σ ∈ JsK. At any snapshot

index σ ∈ JsK, the set {ξi(τσ)}
n
i=1 is scattered data.

Given the data (8)-(9), we would like to predict the most

likely hardware resource state statistics

ξ(τ) ∼ µτ for any τ ∈ [0, t]. (10)

Without the qualifier “most likely”, the problem is overde-

termined since there are uncountably many measure-valued

continuous curves over [0, t] that are consistent with the

observed data (8)-(9).

C. Multimarginal Schrödinger Bridge

Let Xσ := support (µσ) ⊆ R
d ∀σ ∈ JsK, and consider the

Cartesian product X1 ×X2 × . . .×Xs =: X ⊆
(
R

d
)⊗s

. Let

M (Xσ) and M (X ) denote the collection (i.e., manifold)

of probability measures on Xσ and X , respectively. Define

a ground cost C : X 7→ R≥0.
Following [6, Sec. 3], let

dξ−σ := dξ(τ1)× . . .× dξ(τσ−1)× dξ(τσ+1)× . . .× dξ(τs),
(11a)

X−σ := X1 × . . .×Xσ−1 ×Xσ+1 × . . .×Xs. (11b)

For ε ≥ 0 (not necessarily small), the multimarginal
Schrödinger bridge problem (MSBP) is the following infinite
dimensional convex program:

min
M∈M(X )

∫

X

{

C(ξ(τ1), . . . , ξ(τs)) + ε logM(ξ(τ1), . . . , ξ(τs))
}

M(ξ(τ1), . . . , ξ(τs)) dξ(τ1) . . . dξ(τs) (12a)

subject to

∫

X−σ

M(ξ(τ1), . . . , ξ(τs)) dξ−σ = µσ ∀σ ∈ JsK. (12b)

In particular, M(X ) is a convex set. The objective (12a)

is strictly convex in M , thanks to the ε-regularized negative

entropy term
∫

X
εM logM . The constraints (12b) are linear.

In this work, the measures {µσ}σ∈JsK correspond to se-

quential observation, and we therefore fix the path structured

(Fig. 1) ground cost

C(ξ(τ1), . . . , ξ(τs)) =

s−1∑

σ=1

cσ (ξ(τσ), ξ(τσ+1)) . (13)

In particular, we choose the squared Euclidean distance

sequential cost between two consecutive snapshot indices,

i.e., cσ(·, ·) := ∥ ·−·∥
2
2 ∀σ ∈ JsK. MSBPs with more general

tree structured ground costs have appeared in [7].

When the cardinality of the index set JsK equals 2, then

(12) reduces to the (bi-marginal) Schrödinger bridge problem

(SBP) [8], [9]. In this case, the solution of (12) gives the most

likely evolution between two marginal snapshots µ1, µ2. This

follows from the large deviations [10] interpretation [11, Sec.

II] of SBP using Sanov’s theorem [12], [13, Sec. 2.1].

Specifically, let C
(
[τ1, τ2],R

d
)

denote the collection of

continuous functions on the time interval [τ1, τ2] taking

values in R
d. Let Π(µ1, µ2) be the collection of all path
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measures on C
(
[τ1, τ2],R

d
)

with time τ1 marginal µ1, and

time τ2 marginal µ2. Given a symmetric ground cost (e.g.,

Euclidean distance) C : X1 ×X2 7→ R≥0, let

K(·, ·) := exp

(

−
C(·, ·)

ε

)

, (14)

and consider the bimarginal Gibbs kernel

K (ξ(τ1), ξ(τ2))µ1 ⊗ µ2. (15)

Then, the bimarginal SBP solves

min
π∈Π(µ1,µ2)

εDKL (π∥K (ξ(τ1), ξ(τ2))µ1 ⊗ µ2) , (16)

i.e., the most likely evolution of the path measure consistent

with the observed measure-valued snapshots µ1, µ2.

Under the stated assumptions on the ground cost c, the

existence of minimizer for (16) is guaranteed [14], [15]. The

uniqueness of minimizer follows from strict convexity of the

map π 7→ DKL(π∥ν) for fixed ν.

This relative entropy reformulation, and thereby “the most

likely evolution consistent with observed measures” interpre-

tation, also holds for the MSBP (12) with s ≥ 2 snapshots.

Specifically, for C : X 7→ R≥0 as in (12)-(13), we generalize

(14) as

K(ξ(τ1), . . . , ξ(τs)) := exp

(

−
C(ξ(τ1), . . . , ξ(τs))

ε

)

, (17)

and define the multimarginal Gibbs kernel

K (ξ(τ1), . . . , ξ(τs))µ1 ⊗ . . .⊗ µs. (18)

Problem (16) then generalizes to

min
π∈Π(µ1,...,µs)

εDKL (π∥K (ξ(τ1), . . . , ξ(τs))µ1 ⊗ . . .⊗ µs)

(19)

where Π(µ1, . . . , µs) denotes the collection of all path mea-

sures on C
(
[τ1, τs],R

d
)

with time τσ marginal µσ ∀σ ∈ JsK.

The equivalence between (12) and (19) can be verified

by direct computation. Thus solving (19), or equivalently

(12), yields the most likely evolution of the path measure

consistent with the observed measure-valued snapshots µσ

∀σ ∈ JsK.

We propose to solve the MSBP (12) for learning the time-

varying statistics of the hardware resource state ξ as in (10).

We next detail a discrete formulation to numerically solve the

same for scattered data {ξi(τσ)}
n
i=1 where n is the number

of control software execution profiles.

The minimizer of (12), Mopt (ξ(τ1), . . . , ξ(τs)) can be

used to compute the optimal coupling between snapshot

index pairs (σ1, σ2) ∈ {JsK
⊗2 | σ1 < σ2} as

∫

X−σ1,−σ2

Mopt(ξ(τ1), . . . , ξ(τs)) dξ−σ1,−σ2
(20)

where

dξ−σ1,−σ2
:=

∏

σ∈JsK\{σ1,σ2}

dξ(τσ), (21a)

X−σ1,−σ2
:=

∏

σ∈JsK\{σ1,σ2}

Xσ. (21b)

This will be useful for predicting the statistics of ξ(τ) ∼ µτ

at any (out-of-sample) query time τ ∈ [0, t].

D. Discrete Formulation of MSBP

For finite scattered data {ξi(τσ)}
n
i=1 and {µσ}σ∈JsK as in

(9), we set up a discrete version of (12) as follows.

With slight abuse of notations, we use the same symbol

for the continuum and discrete version of a tensor. The

ground cost in discrete formulation is represented by an

order s tensor C ∈ (Rn)
⊗s
≥0, with components [Ci1,...,is ] =

C (ξi1 , . . . , ξis). The component [Ci1,...,is ] encodes the cost

of transporting unit mass for a tuple (i1, . . . , is).
Likewise, consider the discrete mass tensor M ∈ (Rn)

⊗s
≥0

with components [Mi1,...,is ] = M (ξi1 , . . . , ξis). The com-

ponent [Mi1,...,is ] denotes the amount of transported mass

for a tuple (i1, . . . , is).
For any σ ∈ JsK, the empirical marginals µσ ∈ R

n
≥0

are supported on the finite sets {ξi(τσ)}
n
i=1. We denote

the projection of M ∈ (Rn)
⊗s
≥0 on the σth marginal as

projσ(M). Thus projσ : (Rn)
⊗s
≥0 7→ R

n
≥0, and is given

componentwise as
[

projσ(M)j

]

=
∑

i1,...,iσ−1,iσ+1,...,is

Mi1,...,iσ−1,j,iσ+1,...,is . (22)

Likewise, denote the projection of M ∈ (Rn)
⊗s
≥0 on

the (σ1, σ2)th marginal as projσ1,σ2
(M), i.e., projσ1,σ2

:

(Rn)
⊗s
≥0 7→ R

n×n
≥0 , and is given componentwise as

[

projσ1,σ2
(M)j,ℓ

]

=
∑

iσ|σ∈JsK\{σ1,σ2}

Mi1,...,iσ1−1,j,iσ1+1,...,iσ2−1,ℓ,iσ2+1,...,is . (23)

We note that (22) and (23) are the discrete versions of the

integrals in (12b) and (20), respectively.

With the above notations in place, the discrete version of

(12) becomes

min
M∈(Rn)⊗s

≥0

⟨C + ε logM ,M⟩ (24a)

subject to projσ (M) = µσ ∀σ ∈ JsK. (24b)

The primal formulation (24) has ns decision variables,

and is computationally intractable. Recall that even for the

bimarginal (s = 2) case, a standard approach [16] is to

use Lagrange duality to notice that the optimal mass matrix

Mopt is a diagonal scaling of K := exp(−C/ε) ∈ R
n×n
>0 ,

i.e., Mopt = diag(u1)Kdiag(u2) where u1 := exp(λ1/ε),
u2 := exp(λ2/ε), and λ1,λ2 ∈ R

n are the Lagrange

multipliers associated with respective bimarginal constraints

proj1(M) = µ1, proj2(M) = µ2. The unknowns u1,u2

can be obtained by performing the Sinkhorn iterations

u1 ← µ1 ⊘ (Ku2) , (25a)

u2 ← µ2 ⊘
(
K⊤u1

)
, (25b)

with guaranteed linear convergence [17] wherein the com-

putational cost is governed by two matrix-vector multiplica-

tions.

The duality result holds for the multimarginal (s ≥ 2)

case. Specifically, the optimal mass tensor in (24) admits

a structure Mopt = K ⊙ U where K := exp(−C/ε) ∈
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(Rn)
⊗s
>0, U := ⊗s

σ=1uσ ∈ (Rn)
⊗s
>0, uσ := exp(λσ/ε), and

λσ ∈ R
n are the Lagrange multipliers associated with the

respective multimarginal constraints (24b). The unknowns

uσ can, in principle, be obtained from the multimarginal

Sinkhorn iterations [18]

uσ ← uσ ⊙ µσ ⊘ projσ (K ⊙U) ∀σ ∈ JsK, (26)

which generalize (25). However, computing projσ (K ⊙U)
requires O (ns) operations. Before describing how to avoid

this exponential complexity (Sec. III-F), we point out the

convergence guarantees for (26).

E. Convergence for Multimarginal Sinkhorn Iterations

The iterations (26) can either be derived as alternating

Bregman projections [18] or via block coordinate dual ascent

[6]. Following either viewpoints leads to guaranteed linear

convergence of (26); see [19], [7, Thm. 3.5]. More recent

works have also established [20] guaranteed convergence

for the continuous formulation (12) with linear rate of

convergence [21].

F. Multimarginal Sinkhorn Iterations for Path Structured C

We circumvent the exponential complexity in computing

projσ (K ⊙U) in (26) by leveraging the path structured

ground cost (13). This is enabled by a key result from [6],

rephrased, and reproved in extended version [22].

Proposition 1. ( [6, Prop. 2]) Consider the discrete ground

cost tensor C in (24) induced by a path structured cost

(13) so that [Ci1,...,is ] =
∑s−1

σ=1

[

Cσ→σ+1
iσ,iσ+1

]

where the matrix

Cσ→σ+1 ∈ R
n×n
≥0 encodes the cost of transporting unit mass

between each source-destination pair from the source set

{ξi(τσ)}
n
i=1 to the destination set {ξi(τσ+1)}

n
i=1.

Let Kσ→σ+1 := exp(−Cσ→σ+1/ε) ∈ R
n×n
≥0 , K :=

exp(−C/ε) ∈ (Rn)
⊗s
>0, U := ⊗s

σ=1uσ ∈ (Rn)
⊗s
>0.

Then (22) and (23) can be expressed as

projσ(K ⊙U)=



u⊤1K
1→2

σ−1∏

j=2

diag(uj)K
j→j+1





⊤

⊙ uσ⊙









s−1∏

j=σ+1

Kj−1→jdiag(uj)



Ks−1→sus



 ∀σ ∈ JsK, (27)

and

projσ1,σ2
(K ⊙U) = diag



u⊤
1 K

1→2
σ1−1∏

j=2

diag(uj)K
j→j+1





diag(uσ1
)

σ2∏

j=σ1+1

(
Kj−1→jdiag(uj)

)

diag









s−1∏

j=σ2+1

Kj−1→jdiag(uj)



Ks−1→sus





∀(σ1, σ2) ∈ {JsK
⊗2 | σ1 < σ2}. (28)

Remark 1. Substituting (27) into (26) further simplifies our

multimarginal Sinkhorn recursions to

uσ ← µσ ⊘








u⊤1K
1→2

σ−1∏

j=2

diag(uj)K
j→j+1





⊤

⊙









s−1∏

j=σ+1

Kj−1→jdiag(uj)



Ks−1→sus







 ∀σ ∈ JsK. (29)

Remark 2. (From exponential to linear complexity in s)

Note that (29) involves s−1 matrix-vector multiplications of

O(n2) complexity. So the computational complexity for (29)

becomes O
(
(s− 1)n2

)
which is linear in s – a significant

reduction from O (ns) as mentioned at the end of Sec. III-

D. The recent work [23] further reduces this complexity to

O ((s− 1)n) by approximating the matrix-vector products

using nonuniform fast Fourier transform.

Remark 3. (Linear complexity in d) The dimension d of

the vector ξ only affects the construction of the time-varying

Euclidean distance matrices Cσ→σ+1 ∀σ ∈ Js− 1K in Prop.

1, which has total complexity O(sd). Once constructed, the

recursions (29) are independent of d.

G. Predicting Most Likely Distribution

For the ground cost (13) resulting from sequential infor-

mation structure (Fig. 1), we utilize (28) to decompose

Mopt = K ⊙U of (24) into bimarginal transport plans

Mσ1→σ2 := projσ1,σ2
(Mopt) = projσ1,σ2

(K ⊙U). (30)

Further, when C is squared Euclidean, as we consider here,

the maximum likelihood estimate for µτ in (10) for a query

point τ ∈ [0, t], is (see [6, Sec. 2.2])

µ̂τ :=

n∑

i=1

n∑

j=1

[
Mσ→σ+1

i,j

]
δ(ξ − ξ̂(τ, ξi(τσ), ξ

j(τσ+1))) (31)

where σ ∈ JsK such that τ ∈ [τσ, τσ+1], and

ξ̂(τ, ξi(τσ), ξ
j(τσ+1)):=(1− λ)ξi(τσ)+λξj(τσ+1), (32a)

λ :=
τ − τσ

τσ+1 − τσ
∈ [0, 1]. (32b)

H. Overall Algorithm

Our proposed method comprises of following three steps.

Step 1. Given a collection of contexts (Sec. III-A)

{ci}ncontext

i=1 , execute the control software over [0, t] to gen-

erate hardware resource state sample snapshots (Sec. III-

B) {ξi(τσ)}
n
i=1, and thereby empirical µσ as in (9) for all

σ ∈ JsK, conditional on each of the ncontext context samples.

Step 2. Using data from Step 1, construct Euclidean distance

matrices Cσ→σ+1 from the source set {ξi(τσ)}
n
i=1 to the

destination set {ξi(τσ+1)}
n
i=1 ∀σ ∈ Js− 1K. Perform recur-

sions (29) until convergence (error within desired tolerance).

Step 3. Given a query context c and time τ ∈ [0, t], return

most likely distribution µ̂τ using (31).
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Fig. 2: Components of the measured feature vector ξ in (7) for all

of the five control cycles for 500 executions of the NMPC software,

where c = [15, 15, y1
des(x)].

IV. NUMERICAL CASE STUDY

In this Section, we illustrate the application of the proposed

method for a vehicle path tracking control software.

Control Software. We implemented1 in C language a path

following nonlinear model predictive controller (NMPC)

for a kinematic bicycle model (KBM) [24], [25]. At each

control step (≤ 100ms) the IPOPT nonlinear program solver

[26] solved NMPC optimization problem to make a control

decision. For formulation details, we refer the readers to [27];

for implementation details see footnote and [22].

While closing the control loop incurs minimal computa-

tional overhead, the NMPC is computationally demanding.

When multiple vehicle controllers are available it is of

practical interest to predict their hardware resource usage

for one to several control cycles, conditional on the CPS

context c (Sec. III-A) at a given time. For this we ‘profile’

the NMPC, meaning we run the software many times for

different values of c as in (4), measuring time evolution of

the hardware resource state ξ as in (7). We use these profiles

to generate marginals µσ as in (9) (Step 1, Sec. III-H).

Generating Execution Profiles. For profiling our NMPC

control software, we used an Ubuntu 16.04.7 Linux machine

with an Intel Xeon E5-2683 v4 CPU. We leveraged Intel’s

Cache Allocation Technology (CAT) [28] and Memguard

[29] to control allocation of LLC partitions and memory

bandwidth to the control software (in blocks of 2MB),

respectively. Our application ran on an isolated CPU and

used the Linux perf tool [30] to sample ξ every 10 ms.

For each run of our application, we set the cache and

memory bandwidth to a static allocation and pass as input a

path for the NMPC to follow. We ran the control software for

nc := 5 uninterrupted “control cycles”, wherein the NMPC

gets the KBM state, makes a control decision, and updates

the KBM state. For each of 60 unique contexts c we ran the

software for 500 profiles, for a total of 30,000 profiles.

The sample paths {yides(x)}
12
i=1 in (6) were all generated

using a GP, and the samples {cicyber}
5
i=1 in (5) were [1, 1]⊤,

[5, 5]⊤, [10, 10]⊤, [15, 15]⊤, and [20, 20]⊤, where each entry

represents the number of cache/memory bandwidth partitions

from 1 to 20; see [22, Fig. 2].

Applying the Proposed Algorithm. Given a query context

c, we determine the closest CPS context for which profiling

data is available, using the Euclidean distance between cyber

context vectors (5), and the Fréchet distance [31] between

1Git repo: https://github.com/abhishekhalder/CPS-Frontier-Task3-Collaboration

Fig. 3: Linear convergence of Sinkhorn iterations (29) for sint = 4

w.r.t. the Hilbert’s projective metric dH in (3) between uσ∈JsK at

iteration indices k and k − 1.

Fig. 4: Predicted µ̂τ̂j (blue) vs. measured µτ̂j (red) at times τ̂j∈J5K

during the 3rd control cycle with sint = 4. Distributions at the

control cycle boundaries are in black.

physical context curves (6). In this case study, we consider

a query context with closest ccyber =
[
15, 15

]⊤
and closest

cphys = y1des(x). Profiling data for this c is shown in Fig. 2.

We placed marginals at the boundaries of each of the

nc = 5 control cycles, using a kernel density estimator

(KDE) to find the average end times (see [22, Fig. 4 and

Table I] for details). For empirical distributions at times

between cycle boundaries, we let sint be the number of

marginals equispaced-in-time between each cycle boundary,

and we then set τσ∈JsK to be the control cycle end times,

where s := 1+ nc(sint +1) and τσ(sint+1)+1 is the sampled

mean end time for the σth control cycle.

Our distributions are as per (9), where ξi(τσ) is the sample

of the hardware resource state (7) at time ≈ τσ (within 5ms)

for profile i given context c.

We set ε = 0.1 and solve the discrete MSBP (24) with

squared Euclidean cost C using (29). Fig. 3 shows that

the Sinkhorn iterations converge linearly (Sec. III-E). We

emphasize that the path structure of the information works

to minimize the computational cost of the algorithm – we

solve the MSBP (24) with ns = 50026 decision variables in

approx. 10 s in MATLAB on an Ubuntu 22.04.2 LTS Linux

machine with an AMD Ryzen 7 5800X CPU.

Fig. 4 compares predicted versus observed empirical dis-

tributions. Specifically, Fig. 4 shows sint + 1 = 5 distri-

butional predictions µ̂τ̂j at times τ̂j , temporally equispaced

throughout the duration of the 3rd control cycle, i.e., between

τ2(sint+1)+1 and τ3(sint+1)+1, with

τ̂j = τ2(sint+1)+1 +

(

τ3(sint+1)+1 − τ2(sint+1)+1

sint + 2

)

j,
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sint W1 W2 W3 W4 W5

0 2.0489 - - - -

1 2.2695 1.1750 - - -

2 5.7717 0.9163 0.3794 - -

3 2.2413 1.6432 1.2345 0.6010 -

4 0.6372 1.2691 0.9176 0.6689 0.2111

TABLE I: Number of intracycle marginals sint vs. Wasserstein

distances Wj as in (33). All entries are scaled up by 104.

where j ∈ Jsint+1K. We used (31) with σ = 2(sint+1)+ j,

since τ̂j ∈ [τ2(sint+1)+j , τ2(sint+1)+j+1].
From Fig. 4 it is clear that the measure-valued predictions,

while largely accurate, are prone to error in cases where

the software resource usage behavior changes in bursts too

short to be appear in our observations. Naturally, increasing

the number of snapshots should yield an improvement in

overall accuracy. We demonstrate this by increasing sint.
Table I reports the Wasserstein distances W (·, ·) between

the corresponding predicted and measured distributions:

Wj := W (µ̂τ̂j , µτ̂j ) ∀j ∈ Jsint + 1K. (33)

We computed each of these Wj as the square root of

the optimal value of the corresponding Kantorovich linear

program [32, Ch. 3.1] that results from specializing (24) with

s = 2, ε = 0.

V. CONCLUDING REMARKS

We apply recent algorithmic advances in solving the MSBP

to learn stochastic hardware resource usage by control soft-

ware. The learnt model demonstrates accurate nonparametric

measure-valued predictions for the joint hardware resource

state at a desired time conditioned on CPS context. The

formulation and its solution comes with a maximum like-

lihood guarantee in the space of probability measures, and

the algorithm enjoys a guaranteed linear convergence rate.
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