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Abstract— Solution of the path structured multimarginal
Schrodinger bridge problem (MSBP) is the most-likely
measure-valued trajectory consistent with a sequence of ob-
served probability measures or distributional snapshots. We
leverage recent algorithmic advances in solving such structured
MSBPs for learning stochastic hardware resource usage by
control software. The solution enables predicting the time-
varying distribution of hardware resource availability at a
desired time with guaranteed linear convergence. We demon-
strate the efficacy of our probabilistic learning approach in
a model predictive control software execution case study. The
method exhibits rapid convergence to an accurate prediction
of hardware resource utilization of the controller. The method
can be broadly applied to any software to predict cyber-physical
context-dependent performance at arbitrary time.

I. INTRODUCTION

Control software in safety-critical cyber-physical systems
(CPS) is often designed and verified based on platform
models that do not fully capture the complexity of its
deployment settings. For example, it is common to assume
that the processor is dedicated to the control software and
that overhead is negligible. In practice, hardware resources —
such as last-level shared cache (LLC), memory bandwidth,
and processor cycles — often vary with time and hardware
state, which why we observe varying execution times across
different runs of the same control software [1]. This gap can
lead to inefficient or unsafe design.

Measurement-based approaches and overhead-aware anal-
ysis can reduce the analysis pessimism or ensure safety [2].
The recent work [3] uses fine-grained profiles of the software
execution for dynamic scheduling and resource allocation.
Supervisory algorithms that dynamically switch among a set
of controllers depending on the resource availability also
exist [4]. However, the effectiveness of these techniques is
contingent on the quality of prediction of future resource
availability and on the time horizon of interest.

Hardware resources are not only time-varying and stochas-
tic, but they are also statistically correlated. It is a challenge
to predict the joint stochastic variability of the hardware
resource availability in general, and more so for control
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software, where computational cost depends on additional
context, e.g., a reference trajectory being tracked.

This work proposes learning a joint stochastic process
for hardware resource availability from control software
execution profiles conditioned on CPS contexts (to be made
precise in Sec. III-A, I1I-B) based on only a small set of mea-
surements. Our proposed method leverages recent advances
in stochastic control — specifically in the multimarginal
Schrodinger bridge (MSBP) — to allow prediction of time-
varying joint statistical distributions of hardware resource
availability at any desired time. For safety-critical CPS such
predictions, as opposed to those of a lumped variable such as
worst-case execution time, can enable the design of improved
dynamic scheduling algorithms.

II. NOTATIONS AND PRELIMINARIES

Square braces are used to denote the components. For
instance, [X;, ;] denotes the (i1,...,¢,)th component
of the order r tensor X, where (i1,...,%,) € N". We
use the r fold tensor product space notation (R?) o
R!'®...@R%.

For two tensors X, Y of order r, we define their Hilbert-
Schmidt inner product as

(X, V)= (X, il Vi il ¢))

VL yeeeslpr

The operators exp(-) and log(-) are understood element-
wise. We use ® and © to denote elementwise (Hadamard)
multiplication and division, respectively.

For measures p, v defined on two Polish spaces, their prod-
uct measure is denoted by u ® v. The relative entropy ak.a.
Kullback-Leibler divergence D1, (-||-) between probability
measures p and v is

[ log %du if p<gv,
+o0

Dy (pllv) == ()

otherwise,

where g—’; denotes the Radon-Nikodym derivative, and y < v
is a shorthand for “u is absolutely continuous w.r.t. v”.
The Hilbert (projective) metric (see e.g., [5]) du (u,v)

between two vectors u, v € RZ, is

i () = log (

We use the term ‘“control cycle” to mean one pass of a
feedback control loop. Due to hardware stochasticity, each
control cycle completion takes variable amount of time.

3

maX;=1,...,n Uz/Uz)
ming—i, .., u; /v
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III. PROBLEM FORMULATION
A. Context ¢

We consider a context vector ¢ comprised of separable cyber
and physical context vectors

c:= Cober) )
Cphys
In this work, we consider an instance of (4) where

allocated last-level cache
) ; (5

Ceyber = <allocated memory bandwidth

where both features are allocated in blocks of some size, and

Cphys = ydes(x) e GP ([mminy xmaxD 5 (6)

where GP denotes a Gaussian process over the domain
[Zmin, Tmax)- We work with a collection of contexts with
cardinality ncontext, 1-€., @ sample of contexts {c’}; e,

B. Hardware Resource State &

For concreteness, we define a hardware resource state or
feature vector used in our numerical case study (Sec. IV):

& instructions retired
E=|(& ) = LLC requests . @)
&3 LLC misses

The three elements of £ denote the number of CPU in-
structions, the number of LLC requests, and the number of
LLC misses in the last time unit (10 ms in our profiling),
respectively.

We emphasize that our proposed method is not limited
by what specific components comprise €. To highlight this
flexibility, we describe the proposed approach for £ € R¢
with suitable interpretations for the specific application.

For a time interval [0,¢] of interest, we think of time-
varying £ as a continuous time vector-valued stochastic
process over subsets of R%. Suppose that s € N,s > 2
snapshots or observations are made for the stochastic state
&(7), 0 < 71 <'t, at (possibly non-equispaced) instances

M=0<m<...<Ts1 <Ts =t.

Consider the snapshot index set [s] := {1,...,s}. For
a fixed context c, the snapshot observations comprise a
sequence of joint probability measures {1, }-c[s] Satisfying
[ o (&(75)) = 1. In other words,

&(75) ~ o Vo € [[8]] (3

In our application, the data {jis},c[s) comes from control
software execution profiles, i.e., by executing the same
control software for the same ¢ with all parameters and initial
conditions fixed. So the stochasticity in £(7,) stems from the
dynamic variability in hardware resource availability.

In particular, for finitely many (say n) execution profiles,
we consider empirical distributions (a.k.a. atomic measures)

Fig. 1: The path tree for sequentially observed {iis }oe[s]-

where §(¢ — ¢%(7,)) denotes the Dirac delta at sample
location ¢(7,) where i € [n], o € [s]. At any snapshot
index o € [s], the set {&%(7,)}™, is scattered data.

Given the data (8)-(9), we would like to predict the most
likely hardware resource state statistics

£(T) ~ pr

Without the qualifier “most likely”, the problem is overde-
termined since there are uncountably many measure-valued
continuous curves over [0,t] that are consistent with the
observed data (8)-(9).

for any 7 € [0, ¢]. (10)

C. Multimarginal Schrodinger Bridge

Let X, := support (y,) € R? Vo € [s], and consider the
Cartesian product X; x Xo x ... x X, =1 X C (Rd)®s. Let
M (X,) and M (X) denote the collection (i.e., manifold)
of probability measures on X, and X, respectively. Define

a ground cost C : X — R>.
Following [6, Sec. 3], let

dé_; :=d€(m1) X ... X d€(To—1) X d&(To41) X ... X d&(7s),
(11a)

X_ o =X X...X Xo1 X Xop1 X ... X Xs. (11b)

For ¢ > 0 (not necessarily small), the multimarginal
Schrodinger bridge problem (MSBP) is the following infinite
dimensional convex program:

) /X [C(E(r).....&(r)) + log M(E(m). ... . £(r.))}

min
MeM(x
M(&(71), ..., &(7s)) d&(m) ... d&(7s)  (122)
subject to | M (&(71),...,&(7s)) dé—6 = po Vo € [s]. (12b)
X _o

In particular, M(X) is a convex set. The objective (12a)
is strictly convex in M, thanks to the e-regularized negative
entropy term | x €M log M. The constraints (12b) are linear.

In this work, the measures {jiy},¢[s) correspond to se-
quential observation, and we therefore fix the path structured
(Fig. 1) ground cost

CEm). . ) = Y o (E(r) (o). (13)

In particular, we choose the squared Euclidean distance
sequential cost between two consecutive snapshot indices,
ie., co(+) = |-—||3 Vo € [s]. MSBPs with more general
tree structured ground costs have appeared in [7].

When the cardinality of the index set [s] equals 2, then
(12) reduces to the (bi-marginal) Schrédinger bridge problem
(SBP) [8], [9]. In this case, the solution of (12) gives the most
likely evolution between two marginal snapshots i1, 2. This
follows from the large deviations [10] interpretation [11, Sec.
II] of SBP using Sanov’s theorem [12], [13, Sec. 2.1].

1o 4 Specifically, let C ([r1,72],R?) denote the collection of
lo = 726(5 — &' (15)), (9)  continuous functions on the time interval [ri,7»] taking
"= values in R?. Let IT(uy,u) be the collection of all path
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measures on C ([7'1,7'2},]1@) with time 7; marginal p;, and
time 7o marginal ps. Given a symmetric ground cost (e.g.,
Euclidean distance) C' : &7 x Xy — R, let

K(-+) == exp (—C(s’)> . (14)
and consider the bimarginal Gibbs kernel
K (&(71),&(72)) 11 ® pia. (15)
Then, the bimarginal SBP solves
rermin €D (| K (§(71),&(72)) p1 @ p2) , ~ (16)

i.e., the most likely evolution of the path measure consistent
with the observed measure-valued snapshots i1, pts.

Under the stated assumptions on the ground cost ¢, the
existence of minimizer for (16) is guaranteed [14], [15]. The
uniqueness of minimizer follows from strict convexity of the
map 7w — Dy, (w||v) for fixed v.

This relative entropy reformulation, and thereby “the most
likely evolution consistent with observed measures” interpre-
tation, also holds for the MSBP (12) with s > 2 snapshots.
Specifically, for C' : X — Rxg as in (12)-(13), we generalize

(14) as
KE(m),....E(r) = exp( ’““”) . (7

and define the multimarginal Gibbs kernel

c&(n),...

e

K (&(m), .- &(1s))11 @ ... ® ps. (18)
Problem (16) then generalizes to
min  eDkyp (|| K (&(71), ..., &(Ts)) i1 @ ... @ ps)
TEM(fu1 ;.- p0s)
(19)
where TI(u1, . .., ps) denotes the collection of all path mea-

sures on C ([, 75],R?) with time 7, marginal p, Vo € [s].
The equivalence between (12) and (19) can be verified
by direct computation. Thus solving (19), or equivalently
(12), yields the most likely evolution of the path measure
consistent with the observed measure-valued snapshots (i,
Vo € [3].

We propose to solve the MSBP (12) for learning the time-
varying statistics of the hardware resource state &€ as in (10).
We next detail a discrete formulation to numerically solve the
same for scattered data {£€'(7,)}"_; where n is the number
of control software execution proﬁles

The minimizer of (12), My (€(71),...,&(7s)) can be
used to compute the optimal coupling between snapshot
index pairs (01,02) € {[s]®? | 01 < 02} as

[ M) ) A QO
where |
Ao -0 =[]  dé(r), (21a)
o€ls]\{o1,02}
X oy oy = I - (21b)

oels]\{o1,02}
This will be useful for predicting the statistics of £(7) ~ i,
at any (out-of-sample) query time 7 € [0, ¢].

D. Discrete Formulation of MSBP

For finite scattered data {€'(75)}; and {po}oefs) as in
(9), we set up a discrete version of (12) as follows.

With slight abuse of notations, we use the same symbol
for the continuum and discrete version of a tensor. The
ground cost in discrete formulation is represented by an
order s tensor C € (R”)gg, with components [C;, ;. ] =
C(&,,...,&:.). The component [C}, .. ;.| encodes the cost
of transporting unit mass for a tuple (iy,...,%s).

Likewise, consider the discrete mass tensor M € (R”)§8
with components [M;, . ;.] = M (&;,,...,&.). The com-
ponent [M;, . ;.] denotes the amount of transported mass
for a tuple (i1,...,1s).

For any o € [[s]] the empirical marginals p1, € R%,
are supported on the finite sets {€'(7,)}" ;. We denote
the projection of M € (R”)@’S on the ath marginal as
proj, (M). Thus proj, : (R")ES s RZ,, and is given
componentwise as

[proja(M)j}: Z Mh, gt diassniss (22)

015yl —1,00415-

Likewise, denote the projection of M € (]13R”)>0 on
the (o1,02)th marginal as proj,, ,, (M), ie., proj,, ,, :
(R")‘ias R%”, and is given componentwise as

[projal o2 (M)j Z]
= > M
ic|o€[s]\{o1,02}

We note that (22) and (23) are the discrete versions of the
integrals in (12b) and (20), respectively.

With the above notations in place, the discrete version of
(12) becomes

U15sloq —15Jsfoq 4150w slog—1:0s00g 415 y0s * (23)

min _ (C +¢elog M, M) (24a)
Me®™E;
subject to proj, (M) = p, Vo € [s]. (24b)

The primal formulation (24) has n® decision variables,
and is computationally intractable. Recall that even for the
bimarginal (s = 2) case, a standard approach [16] is to
use Lagrange duality to notice that the optimal mass matrix
Mopy is a diagonal scaling of K := exp(—C/e) € RL",
ie., Mopy = diag(ui)Kdiag(us) where u; := exp(A1/e),
uy = exp(Az/e), and A1,Ay € R™ are the Lagrange
multipliers associated with respective bimarginal constraints
proj; (M) = p1, projo(M) = po. The unknowns wuq, uso
can be obtained by performing the Sinkhorn iterations

(25a)
(25b)

Uy < M1 @ (Ku2)7
uy < p2 @ (K ),

with guaranteed linear convergence [17] wherein the com-
putational cost is governed by two matrix-vector multiplica-
tions.

The duality result holds for the multimarginal (s > 2)
case. Specifically, the optimal mass tensor in (24) admits
a structure Moy = K © U where K := exp(—C/e) €
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(RM%5, U = @5_1u, € (RMZ5, uy == exp(A,/e), and
Ao € R™ are the Lagrange multipliers associated with the
respective multimarginal constraints (24b). The unknowns
u, can, in principle, be obtained from the multimarginal

Sinkhorn iterations [18]

Uy Uy O g @ proj, (K o U) Yo € [s], (26)

which generalize (25). However, computing proj, (K @ U)
requires O (n®) operations. Before describing how to avoid
this exponential complexity (Sec. III-F), we point out the
convergence guarantees for (26).

E. Convergence for Multimarginal Sinkhorn Iterations

The iterations (26) can either be derived as alternating
Bregman projections [18] or via block coordinate dual ascent
[6]. Following either viewpoints leads to guaranteed linear
convergence of (26); see [19], [7, Thm. 3.5]. More recent
works have also established [20] guaranteed convergence
for the continuous formulation (12) with linear rate of
convergence [21].

F. Multimarginal Sinkhorn Iterations for Path Structured C

We circumvent the exponential complexity in computing
proj, (K ®U) in (26) by leveraging the path structured
ground cost (13). This is enabled by a key result from [6],
rephrased, and reproved in extended version [22].

Proposition 1. ( [6, Prop. 2]) Consider the discrete ground
cost tensor C in (24) induced by a path structured cost

(13) so that [Cy, . ;.]=>0_ 1 [Caﬁa%»l}

o=t |Ci i where the matrix
Co7otl € RUS™ encodes the cost of transporting unit mass
between each source-destination pair from the source set
{&1(1,)}; to the destination set {€(Ty11)} .

Let K79l = exp(—Co77t/e) € RY;", K =
exp(—CJe) € R”)QE(S), U:=®5_ju, € (R")gg.
Then (22) and (23) can be expressed as

Remark 1. Substituting (27) into (26) further simplifies our
multimarginal Sinkhorn recursions to

o—1 T
Uy — e O u Klﬁzndlag )KjHjJrl ®
j=2
s—1
H K=" diag(u;) | K571 7 5u,| | Vo € [s]. (29)
Jj=o+1

Remark 2. (From exponential to linear complexity in s)
Note that (29) involves s — 1 matrix-vector multiplications of
O(n?) complexity. So the computational complexity for (29)
becomes O ((s — 1)n2) which is linear in s — a significant
reduction from O (n®) as mentioned at the end of Sec. IlI-
D. The recent work [23] further reduces this complexity to
O ((s — 1)n) by approximating the matrix-vector products
using nonuniform fast Fourier transform.

Remark 3. (Linear complexity in d) The dimension d of
the vector & only affects the construction of the time-varying
Euclidean distance matrices C°~°+1 Vo € [s — 1] in Prop.
1, which has total complexity O(sd). Once constructed, the
recursions (29) are independent of d.

G. Predicting Most Likely Distribution

For the ground cost (13) resulting from sequential infor-
mation structure (Fig. 1), we utilize (28) to decompose
M, = K © U of (24) into bimarginal transport plans

Mo o2 = projo1,02 (Mopt) = projtfl,Uz (K © U) 30)

Further, when C is squared Euclidean, as we consider here,
the maximum likelihood estimate for p, in (10) for a query
point 7 € [0, ¢], is (see [6, Sec. 2.2])

ZZMH’“ (& — €(1,€1(15), 6 (T041))) (BD)

i=1j5=1

where o € [s] such that 7 € [, To41], and

T
o—1 ~ . . . .
proj, (K © U)=[u] K1 T diag(u)) K7 o upe &€ 7)€ (7on)= (1 = NE (7) 408 (rr0), (320
i=2 A= ——T7 < 0,1]. (32b)
s—1 To+1 — To
H K717 diag(uy;) | K57 5us | Yo € [s], (27)
j=o+1 H. Overall Algorithm

and Our proposed method comprises of following three steps.
Step 1. Given a collection of contexts (Sec. III-A)
il {ct}legpiextexecute the control software over [0,1] to gen-

. - T 122 . i—j+1 i=1 4 ’ g
Proj,, o, (K © U) = diag |u; K™ H diag(u;) K7™ erate hardware resource state sample snapshots (Sec. III-
J=2 B) {€¢%(,)}™ ,, and thereby empirical y, as in (9) for all

o2 ..
. 1o s _ o € [s], conditional on each of the n¢ontext context samples.
diag(u,, ) H (K diag(u; )) Step 2. Using data from Step 1, construct Euclidean distance
J=eutl matrices C°7?*! from the source set {£¢'(7,)}" ; to the
s=1 destination set {€*(7,41)}", Vo € [s — 1]. Perform recur-
. 1 s—1 su g i=1
diag H K= diag(u;)| K - sions (29) until convergence (error within desired tolerance).
j=oat+l Step 3. Given a query context ¢ and time 7 € [0, t], return
Y(o1,02) € {[s]®? | 01 < 02} (28)  most likely distribution /i, using (31).
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Fig. 2: Components of the measured feature vector £ in (7) for all

of the five control cycles for 500 executions of the NMPC software,
where ¢ = [15, 15, ydes(2))].

IV. NUMERICAL CASE STUDY

In this Section, we illustrate the application of the proposed
method for a vehicle path tracking control software.
Control Software. We implemented' in C language a path
following nonlinear model predictive controller (NMPC)
for a kinematic bicycle model (KBM) [24], [25]. At each
control step (< 100ms) the IPOPT nonlinear program solver
[26] solved NMPC optimization problem to make a control
decision. For formulation details, we refer the readers to [27];
for implementation details see footnote and [22].

While closing the control loop incurs minimal computa-
tional overhead, the NMPC is computationally demanding.
When multiple vehicle controllers are available it is of
practical interest to predict their hardware resource usage
for one to several control cycles, conditional on the CPS
context ¢ (Sec. III-A) at a given time. For this we ‘profile’
the NMPC, meaning we run the software many times for
different values of ¢ as in (4), measuring time evolution of
the hardware resource state £ as in (7). We use these profiles
to generate marginals p, as in (9) (Step 1, Sec. III-H).
Generating Execution Profiles. For profiling our NMPC
control software, we used an Ubuntu 16.04.7 Linux machine
with an Intel Xeon E5-2683 v4 CPU. We leveraged Intel’s
Cache Allocation Technology (CAT) [28] and Memguard
[29] to control allocation of LLC partitions and memory
bandwidth to the control software (in blocks of 2MB),
respectively. Our application ran on an isolated CPU and
used the Linux perf tool [30] to sample £ every 10 ms.

For each run of our application, we set the cache and
memory bandwidth to a static allocation and pass as input a
path for the NMPC to follow. We ran the control software for
n. := b uninterrupted “control cycles”, wherein the NMPC
gets the KBM state, makes a control decision, and updates
the KBM state. For each of 60 unique contexts ¢ we ran the
software for 500 profiles, for a total of 30,000 profiles.

The sample paths {y’..(z)}12; in (6) were all generated
using a GP, and the samples {c. ;. };—; in (5) were [1, 17,
[5,5] 7, [10,10] T, [15,15] T, and [20,20] T, where each entry
represents the number of cache/memory bandwidth partitions
from 1 to 20; see [22, Fig. 2].

Applying the Proposed Algorithm. Given a query context
¢, we determine the closest CPS context for which profiling
data is available, using the Euclidean distance between cyber
context vectors (5), and the Fréchet distance [31] between

IGit T€PO: https://github.com/abhishekhalder/CPS-Frontier-Task3-Collaboration

0 20 10 60 80 100 120
Tteration index (k)

Fig. 3: Linear convergence of Sinkhorn iterations (29) for sins = 4
w.r.t. the Hilbert’s projective metric du in (3) between u,¢[s] at

iteration indices k and k —
5 [L s sy for j € [5]
0.

k %ﬂ\f\kk

0.3 B
0.25  0.25 0.27 0.29 31 0.33 0.35

0.2

«m/\f\f\/\ A

0.05 095 0.27 0.29 0.31 0.33 0.35

A_g«'\”‘xﬁ‘w\“\k

0.25 0.27 0.29 0.31 0.33 0.35

T

0.04

Fig. 4: Predicted fi+; (blue) vs. measured s, (red) at times 7;¢[5)
during the 3rd control cycle with sins = 4. Distributions at the
control cycle boundaries are in black.

physical context curves (6). In this case study, we consider
a query context with closest Ceyber = [15,15] T and closest
Cphys = Yues (7). Profiling data for this ¢ is shown in Fig. 2.

We placed marginals at the boundaries of each of the
n. = 5 control cycles, using a kernel density estimator
(KDE) to find the average end times (see [22, Fig. 4 and
Table I] for details). For empirical distributions at times
between cycle boundaries, we let sj,; be the number of
marginals equispaced-in-time between each cycle boundary,
and we then set 7,¢[5] to be the control cycle end times,
where s := 1+ n¢(sint +1) and 7,4, 4+1)+1 is the sampled
mean end time for the oth control cycle.

Our distributions are as per (9), where £'(7,) is the sample
of the hardware resource state (7) at time ~ 7, (within 5ms)
for profile ¢ given context c.

We set ¢ = 0.1 and solve the discrete MSBP (24) with
squared Euclidean cost C' using (29). Fig. 3 shows that
the Sinkhorn iterations converge linearly (Sec. III-E). We
emphasize that the path structure of the information works
to minimize the computational cost of the algorithm — we
solve the MSBP (24) with n® = 50026 decision variables in
approx. 10 s in MATLAB on an Ubuntu 22.04.2 LTS Linux
machine with an AMD Ryzen 7 5800X CPU.

Fig. 4 compares predicted versus observed empirical dis-
tributions. Specifically, Fig. 4 shows sj,; + 1 = 5 distri-
butional predictions iz, at times 7;, temporally equispaced
throughout the duration of the 3rd control cycle, i.e., between

To(sime+1)+1 AN T3(g, 41) 41, With

. T3(sint+1)+1 — T2(Sing+1)+1 | .
Tj = To(sim4+1)+1 T J
/ (s o1+ ( Sint + 2 ’
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l Sint [ Wl [ W2 [
0 [2.0489 -
2.2695|1.1750| - - -
5.7717|0.9163|0.3794| -
2.2413|1.6432|1.2345|0.6010| -
0.6372(1.2691|0.9176|0.6689|0.2111

Ws [ Wa | Ws |

| QO N =

TABLE I: Number of intracycle marginals si,s vs. Wasserstein
distances W; as in (33). All entries are scaled up by 10%.

where j € [sint + 1]. We used (31) with o = 2(sine + 1) + 7,
since 7 € [To(si+1)+55 T2(simet+1)+j+1]-

From Fig. 4 it is clear that the measure-valued predictions,
while largely accurate, are prone to error in cases where
the software resource usage behavior changes in bursts too
short to be appear in our observations. Naturally, increasing
the number of snapshots should yield an improvement in
overall accuracy. We demonstrate this by increasing sipt.
Table I reports the Wasserstein distances W(-,-) between
the corresponding predicted and measured distributions:

Wi i= Wiz, p7,) Vi € [sim + 1]

We computed each of these W; as the square root of
the optimal value of the corresponding Kantorovich linear
program [32, Ch. 3.1] that results from specializing (24) with
s=2,e=0.

(33)

V. CONCLUDING REMARKS

We apply recent algorithmic advances in solving the MSBP
to learn stochastic hardware resource usage by control soft-
ware. The learnt model demonstrates accurate nonparametric
measure-valued predictions for the joint hardware resource
state at a desired time conditioned on CPS context. The
formulation and its solution comes with a maximum like-
lihood guarantee in the space of probability measures, and
the algorithm enjoys a guaranteed linear convergence rate.
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