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Weyl Calculus and Exactly Solvable Schrodinger Bridges
with Quadratic State Cost

Alexis M.H. Teter, Wenqing Wang, Abhishek Halder

Abstract— Schrodinger bridge-a stochastic dynamical gener-
alization of optimal mass transport—exhibits a learning-control
duality. Viewed as a stochastic control problem, the Schrodinger
bridge finds an optimal control policy that steers a given joint
state statistics to another while minimizing the total control
effort subject to controlled diffusion and deadline constraints.
Viewed as a stochastic learning problem, the Schrodinger bridge
finds the most-likely distribution-valued trajectory connecting
endpoint distributional observations, i.e., solves the two point
boundary-constrained maximum likelihood problem over the
manifold of probability distributions. Recent works have shown
that solving the Schrodinger bridge problem with state cost
requires finding the Markov kernel associated with a linear
reaction-diffusion PDE where the state cost appears as a state-
dependent reaction rate. We explain how ideas from Weyl
calculus in quantum mechanics, specifically the Weyl operator
and the Weyl symbol, can help determine such Markov kernels.
We illustrate these ideas by explicitly finding the Markov
kernel for the case of convex quadratic state cost via Weyl
calculus, recovering as well as generalizing our earlier results
but avoiding tedious computation with Hermite polynomials.

I. INTRODUCTION

The purpose of this work is to highlight the usefulness of
Weyl calculus tools in computing the kernels or Green’s func-
tions (a.k.a. propagators [1, Ch. 2.6] in quantum mechanics)
for linear PDE initial value problems (IVPs) in diffusion and
control.

The mathematical development of Weyl calculus origi-
nated in quantum mechanics, but its relevance in solving
problems outside quantum mechanics, especially in diffusion
and control problems, appears to be less known.

Common references [2], [3, Ch. 2-3], [4]-[6] on Weyl
calculus appeal to quantum physics and field-theoretic ideas
to introduce the core mathematical concepts, albeit for good
reasons. However, this style of exposition, even when math-
ematically rigorous, can become a barrier to the broader
systems-control audience. Most researchers in systems-
control, barring the cognoscenti, may not be able to afford
the significant time and resource to transfer the mathematical
ideas of Weyl calculus to their specific applications, or are
simply not fortunate enough to be talking with the right
person at the right time.

This work takes a different expository approach: a pur-
posefully less rigorous recipe-style introduction of selective
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Weyl calculus tools with illustrative calculations. The recipe
for finding the kernel that we exemplify, follows the path:

PDE — Weyl operator — Weyl symbol — kernel.

We explain the two middle ingredients: Weyl operator and
symbol, and their connections with the familiar ends: PDE
and kernel.

The technical motivation for this work came from solving
the Schrodinger bridge (SB) problems — a class of stochastic
optimal control problems with deadline, controlled diffusion,
and endpoint distribution constraints. Such problems and
their solutions are finding use in stochastic control [7]-[15]
and in diffusion models in artificial intelligence (AI) [16]—
[20]. The SB problems exhibit a learning-control duality.
Viewed as a stochastic control problem, the SB finds an
optimal control policy that steers a given joint state statistics
to another while minimizing the total control effort subject
to controlled diffusion and deadline constraints. Viewed as
a stochastic learning problem, the SB solves the two point
boundary-constrained maximum likelihood problem over the
manifold of probability distributions. In fact, the latter view-
point led to the original formulation of the SB problem by
Erwin Schrédinger in 1931-32 [21], [22].

Numerically solving the SB problems with state costs for
generic endpoint distributional problem data, require finding
the Markov kernels of certain linear reaction-diffusion PDEs
where the state costs play the role of (nonlinear) reaction
rates'. In such a setting, finding the kernel becomes a non-
trivial task. While laborious specialized argument as in [25]
may work in certain cases, a principled approach remains
desired. As we explain in this work, the Weyl calculus tools
can serve as a promising alternative.

We mention here that despite the authors’ specific moti-
vation of solving SB problems with state cost, the scope of
the Weyl calculus tools are broad. They should be of interest
to the systems-control community for finding or analyzing
linear PDE IVP solutions of interest at large.

Contributions:

e Our primary contribution is pedagogical in that we
explain the general steps to derive the Green’s functions
or kernels of certain linear PDE IVPs using Weyl
calculus tools in a systematic manner.

For brevity, we will not detail the SB formulation and the known
derivation of the reaction-diffusion PDEs using the first order conditions
of optimality followed by the Hopf-Cole transform [23], [24]. Here, these
details are not needed and they will distract us from the main points of this
work. We refer the readers to [8, p. 274-276], [25, Sec. 3] for these details.
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e Our secondary contribution is to analytically recover
the kernel for the SB problem with quadratic state cost
using the Weyl calculus tools.

Organization: In Sec. II, we fix some notations and back-
ground concepts that find use in the following development.
The relevant Weyl calculus ideas and computational steps are
explained in Sec. IIL. In Sec. IV, we put these ideas and tools
in action to analytically compute the kernel for a reaction-
diffusion PDE with quadratic state cost that appeared in the
Schrodinger bridge literature. Concluding remarks in Sec. V
close the paper.

II. NOTATIONS AND BACKGROUND

Poisson bracket. Let Skew (2n, R) denote the set of 2n x 2n
skew-symmetric matrices with real entries. Given sufficiently
smooth functions f,g : R?" — R, define their Poisson
bracket {-,-} as

Uyy:Wﬁﬂwmﬂ:{:L %)e%w@mw,

(1)

where (-,-) denotes the standard Euclidean inner product.
Note that 271 = Q7 = —, and det(Q) = 1. As is well-
known [26, Prop. 2.23], the Poisson bracket is bilinear, skew
symmetric, and satisfies the Jacobi identity.

For x,& € R", we think of f,¢g as mappings which act
on the tuple (x, &), ie., f,g: (x,&) € R?" — R. Following
[27, p. 128-9], let

U oh(@.8) = S g} &), 1=V 1,

where {f, g} is the Poisson bracket. More generally, for any
j €Ny :={0,1,2,...}, let

{f,9}; (x,6) = (211>7 (zn: (ayf;gk a 3I(Z;Vk>>j

k=1
[z, &)g(y,m)| )

In particular, for 7 = 0, definition (2) gives

{f79}0 (mvg) = f(m7€)g(ma€)v

i.e., the product of the two functions.

Standard symplectic form. For x,y, &, € R", the stan-
dard symplectic form associated with the matrix € in (1) is
a bilinear mapping? o : R?" x R?" ++ R, given by

y=z,n=§"

n

o ((@,8);(y,m) =Y (Eryr — mp) - 3)

k=1

The symplectic form o is skew-symmetric (o(v;w) =
v Qw = —o(w;v) Vv, w € R?"), and non-degenerate (for
any v € R?", o(v;w) = 0Vw € R?" = v = 0).

2More generally, the mapping o : C2™ x C?™ + R remains well-defined
as stated here but we will not need this fact.

III. WEYL CALCULUS

In this Section, we explain how Weyl calculus can be used
to determine the Markov kernel associated with a linear PDE
IVP of interest. While we are primarily motivated for the
case when the PDE is reaction-diffusion type, we proceed
formally in this Section in terms of operators. Along the way,
we present necessary ideas and nomenclatures from Weyl
calculus in an accessible manner.

For tp > 0 and & C R", we begin by considering a linear
PDE IVP

a N
o’ =
where the unknown @ : [tp,00) x X — R, and the spatial

operator L is time-independent. Formally, the solution of (4)
can be expressed via the semigroup exp (—(t — to)L) as

—Lp, ot =ty,x)=po(x) (given), (4)

¢ = exp (= (t = to) L£)o- ©)

We seek a kernel representation of the solution @, i.e.,
for 0 <ty < s <t < oo, we seek to explicitly determine
k(s,x,t,y) referred to as the kernel with suitable domain
of definition, such that (5) is expressible as

fta) = [ wtnztwd @y  ©

x

The initial condition @ (t = tg, ) = @Po(x) necessitates that
k(to, ,to,y) = d (x — y) , the Dirac delta. @)

In what follows, we fix X = R" for ease of exposition; the
development goes through for general subsets of R™.
When the PDE in (4) is the forward Kolmogorov a.k.a.
Fokker-Planck PDE, then £ is an advection-diffusion opera-
tor and under mild regularity assumptions on the underlying
drift and diffusion coefficients, the kernel x is a transition
probability density; see e.g., [28, Ch. 1]. However, if £ has
an additional reaction term, then (4) is non-conservative and
x no longer has the interpretation of transition probability
density. In such more generic settings, an analytical handle
on x can still help to numerically compute the solution
of (4) via (6). In the absence of an analytic handle on k,
numerically computing ¢ becomes particularly non-trivial in
the presence of (state dependent) reaction [29, Sec. 5.2, 5.3].

Example 1 (Reaction-diffusion PDE IVP). An instance of
(4) is the reaction-diffusion PDE IVP with L = —Ag+q(x),
wherein A, denotes the Euclidean Laplacian operator, and
q(+) is a given bounded continuous reaction rate. If q is
constant, then a change of variable 3 +— 9 := ep
transforms the problem to the heat PDE IVP:

%19 = Ag9,
for which k is well-known [30, p. 44-47]. However, for state-
dependent q(-), new ideas are needed. In Sec. IV, we will find
k for quadratic q(-) using Weyl calculus tools discussed next.

~

O (t = to, ) = Po(x),
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A. From PDE to Weyl Operator

In pursuit of getting analytic handle on s in (6), we
start by defining the following operators as per the quantum
mechanics convention [2, p. 1]:

X =z Vk € [TL}, (8a)
1 0
Dy = —— k 8b
k 18xk V € [n}v ( )
and let
X = (X x,)", D:= (D, D))"

We then determine a representation of exp (—(t — ¢9)L) in
terms of the operators X and D. This representation is
referred to as the Weyl Operator H(X, D).

Example 2 (Weyl operator for the heat PDE). Ler (4)
be the heat PDE IVP with L = —Ag. Letting Vg =

(7 .- 52;)T,ruﬂethat
ID* := (D, D) = (<) (Va - Va) = —Aq,
i.e., Ay = —|DI|?. So the corresponding Weyl operator is
Hyeas (X, D) = exp (—(t — to)|D[?).

B. From Weyl Operator to Weyl Symbol

After identifying the Weyl operator associated with our
PDE of interest, we seek the corresponding Weyl symbol
denoted as h(x, &).

Note that while the Weyl operator depends on X and D,
the Weyl symbol is dependent on variables = and £. An
approach for determining h(x, &) discussed in [2, p. 32-36]
proceeds as follows:

1) Rewrite the Weyl operator H(X, D) such that all
of the Dj operators are multiplied on the right of
the Xj operators. As the operators in general are
non-commutative, this may require the use of the
commutation relation

[Xk,Dk} = XDy — Di Xy = i, ke [n]

2) Define R(x, &) by replacing the operator X with x
and the operator D with £ in the version of the Weyl
operator H(X, D) satisfying Step 1 above.

3) Calculate the Weyl symbol h(x,&) via one of the
following formulas:

. €)
= R &ew (2ilE 2,6 €))da €,
m R2n
©0a)
o0 1 . m 8m am
IONC- LT
m=0 ’

The differential operators in (9b) are understood as
the mth order mixed partial derivatives. In particular,
(9b) can be seen as the series expansion of

10 0

Example 3 (Weyl symbol for the heat PDE). The Weyl
operator Hyeat (X, D) found in Example 2, does not involve
any multiplication of X with D. Therefore, Steps 1 and 2
mentioned above are reduced to a direct replacement of D
with €. Because the resulting Ryeat(€,€) = Rpeat(§) =
exp (—(t — to)|€|?) is independent of x, so (9b) immediately
yields the Weyl symbol

hieat (, €) = e~ (E710)IE, (10)

This example illustrates that finding the Weyl symbol asso-
ciated with (4) is straightforward when the relevant Weyl
operator depends on either X or D alone.

C. From Weyl Symbol to Kernel

We follow the development in Hormander [31, p. 161], to
obtain the kernel « in (6) from the associated Weyl symbol

h(x,€) as
1 r+y o
h( ==2,¢) = vode. (11
(%)n/n( : ,s)e £ an
The RHS of (11) can be seen as the non-unitary inverse
Fourier transform of £ — h ((x + y) /2, &). Thus, for (7) to
hold, the Weyl symbol h evaluated at ¢, must be equal to
unity (see e.g., the heat symbol (10)). We will make use of
this observation in our computation in Sec. IV-C.

Example 4 (Kernel for the heat PDE). Applying (11) to
the Weyl symbol h = hyeay derived in (10), we obtain

R(t()v x7ta y):

Kheat (t07 x, tv y)

N (271T)n /R exp (—(t = to) |§]) exp (i(z — y, £))d€
- (2;—)71 H (/OO@XP (=& (t —to) +i(xr — yk)ﬁk)d&) .

k=1 N/~

(12)

To evaluate (12), we specialize the Gaussian-like integral®

> 1 2\ !/ 2
/ exp (—=az? +iJz)|dx = il exp S
oo 2 a 2a
with a = 2(t — to), J = xx — yg. This yields
Rheat (t(]v €, ta y)

- <271r>n Il (t—ﬁ to)m o <‘(4<t_—yt§>

k=1

1 |z —y|?
=———exp|——"— ),
At —to)2 “P\ "4t —to)
which is indeed the well-known heat kernel [30, p. 44-47].

In summary, we may derive the solution of a PDE (4) in
the kernel form (6) by first identifying the associated Weyl
operator H(X, D) = exp(—(t —to)L(X, D)) as in Sec.
III-A. This is then followed up with a computation of the
corresponding Weyl symbol A(x, &) as in Sec. III-B. Using

3This integral is simply the Fourier transform of the Gaussian with
appropriate scaling.
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this Weyl symbol h, we then arrive at an expression for the
kernel k via (11).

For pedagogical clarity, our Examples 2-4 so far illustrate
the aforesaid process for the classical heat kernel. Now
the question arises: can these computation be performed
for reaction-diffusion PDEs with quadratic state-dependent
reaction rate that appears in the associated Schrédinger
bridge problem with quadratic state cost?

It turns out that for such problems, the Weyl symbol is
most conveniently determined via a PDE approach [27, p.
130-132] that we detail in Sec. IV. To prepare ground for this
PDE approach, we need the product rule of Weyl calculus,
explained next.

D. Product Rule of Weyl Calculus

With the notations from Sec. III-A, consider a Weyl
operator C'(X, D) which admits a decomposition

C(X,D) = A(X,D)B(X,D) (14)

in terms of two other Weyl operators A, B. Consider the cor-
responding Weyl operator-Weyl symbol pairs (4,a), (B, b)
and (C, ¢). Given the operator decomposition (14), the prod-
uct rule is a recipe to determine the Weyl symbol ¢ from the
Weyl symbols a, b.

It is known that [31, p. 161] if either A or B is a
polynomial, then the Weyl symbol c(x, &) can be exactly
determined via Taylor expansion of*

ex0 (57 (Da Dei Dy, Dy) )l 001y e

with finitely many terms, where o is the standard symplectic
form (3). In this case, we can express c(x, &) as [27, p. 128-
129]

daNdp

(@ &)= Y %{a,b}m,e),

Jj=0

15)

where {a, b};(x,§) is defined as in (2), and da A dp is the
minimum of the degrees d4,dp for the polynomials A, B.
When only one of A, B is a polynomial, the corresponding
polynomial degree is to be used as the upper limit of the
summation index j in (15). The product rule (15) will be
useful in our calculations in Sec. IV-B.

When neither A nor B is polynomial, the equality in
(15) is replaced with asymptotic equivalence: c(x,&) ~

ZjGNO %{av b}j (:127 £)

IV. KERNEL FOR THE SCHRODINGER BRIDGE WITH
QUADRATIC STATE COST

Our recent work [25] highlighted that solving a generic

instance’ of the Schrodinger bridge problem with quadratic

“Here Dy = (Dz;
5

T I
Dy,,) , and likewise for D¢, Dy, Dy,.
i.e., with generic endpoint distributions which have finite second mo-

ments. The special case of Gaussian endpoints has been studied before in
[32, Sec. III].

state cost leads to finding the Markov kernel of the reaction-
diffusion PDE IVP
%f = (Az - ;zTQz> &, P(to,) = %o, (16)

for given Q > 0, wherein z € R” and the unknown § is a
Schrodinger factor. Here and throughout, 0 < ¢y <t < oo.

Problem (16) is indeed of the form (4). The associated
kernel in (6) was derived in [25] via tedious computation with
Hermite polynomials. Since that computation is difficult to
generalize for other state costs (thus for other state-dependent
reaction rates), we explore applying the Weyl calculus ideas
in Sec. III for finding such kernels. Here we show that
the steps outlined in Sec. III indeed recovers the kernel
for (16) in a systematic manner without invoking Hermite
polynomials.

For Q = 0, consider the eigen-decomposition %Q =
VTAV, where A is an n X n diagonal matrix with its main
diagonal comprising the eigenvalues {\;}7_; € R% of 1Q.

Now consider a linear change-of-variable z — x as

x:=Vz. a7

Then,

vit,x)=¢(tz=V'x), (18)

=
and A, $(t, z) = ALD(t, z). Therefore, in the & coordinates,
(16) takes the form
ov
ot

AyU — (:cTAac) v

- — >\k$2> V.
2:: <Bxi k

k=1

19)

A. The Weyl Operator Hx

For notational convenience, we define the Weyl operator

Qa(X,D) =D+ M\ X}.

(20)
k=1
Following Sec. III-A, the Weyl operator of (19) is
HA(X, D) = exp (—(t — t0)Qa(X, D)),  (21)

i.e., the Weyl operator of (19), Ha(X, D), can be seen as
a composite operator.

Note that for the Weyl operator @ 5 in (20), we can readily
find its Weyl symbol ga using (9b) as

aa(x, &) = €7 + > Meai. (22)
k=1
However, for the composite Weyl operator Hp, determin-
ing the corresponding Weyl symbol ha via (9b) becomes
challenging since partial derivatives of Ha (X, D) of any
order are nonzero. To circumvent this issue, we adopt a PDE
approach from [27, p. 130-132] explained next. The main
idea is to derive a PDE IVP for ha (Sec. IV-B) and to solve
the same in closed form (Sec. IV-C).
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B. Deriving the PDE for the Weyl Symbol h
Since the Weyl operator Hp must satisfy (19), we have

0
FHa(X, D) =

Then, applying (15), we note that the Weyl symbol hp
satisfies

—Qa(X,D)HA(X, D).

0

ophalr.€) = Z {an hats(x,€). (23)
Applying (2) and (22), we ﬁnd that
{aa,hatr =0, (24)
and
{aa,hat2

= (Z (2Xk(t — to) — 2A(t — to) 2z} — 2k (t — t0)2§,§)>
k=1
X exp <—(t —tp) <|£|2 + Z )\kwi>>
k=1

= (2(t — to) trace(A) — 2(t — to)* (x T A’z + €T AE))
x exp (—(t — to)qa(x,§)). (25)

Since the second order derivative of hp (x, &) wrt. 2,VEk €
[n], denoted as 82, h(z,¢), equals

(=2Ak(t — to) + 4XZx (t — to)?) exp (—(t — to)qa(, £)),
and likewise 97, ha (&) equals
(=2(t — to) +4&3(t — t0)?) exp (—(t — to)qa(x, £)),

hence (25) can be expressed as

_% <Z i 0Z, ha (@, 8) + 07, ha (=, £)> :
k=1

(26)

{aan, ha}ts =

Combining (23), (24) and (26), we then have

O ia@.€) = ~anlw, Oha (@) — 3 {aa halola,€)

ot
= —qaha + 5 <Z AeOZ ha + 8§khA> :
(27)
We next focus on solving for hp from (27) subject to the

initial condition ha |t=¢, = 1.

C. Solving the PDE for the Weyl Symbol hp

We note that the Weyl symbol ga in (22) is time-invariant.
Let qi, := A\pxh + & Vk € [n], so that ga = > j_, G-
We seek to solve (27) in the form

hA(mag) = g(t7Q1a ce
Substituting (28) into (27) yields

99 _ 3 1 —~( 0 (0g dq
o <; qk) 71 ,;(axk (5'% 31’1)

+n)- (28)

9 (9g 8%))

+A 29
"o, (3% 0k (29)
0 dg Jqi 0 dg

v — 2

Bxk <8qk 5$k) 8£Ek <3qk ( Akxk))

32 8g

and likewise
0 39 qu 0

= ()
¢ \ Oqy, 9& O 3%

the PDE (29) simplifies to

- <Z Qk> g+ (Aquag + /\kag> . (30)
k=1 k=1 T x
To solve (30), we consider the ansatz

g(taqla"'7qn):a eXp( Zﬁk > (31)

for suitably smooth «(t), 81(t),. .., Bn(¢) that are not iden-
tically zero for any fy < t. Recall from Sec. III-C that
halt=t, = 1, and hence from (28) and (31), the initial
conditions for «(-), 51(-), ..., Bn(:) are

a(te) =1, Br(to) =0 VEkeln]
Next, notice that

69 ) n . n
i (a - a};ﬁk%) exp <—

k=1

(32)

ﬁk(ﬂ%) , (33a)

dg -

Bq ~ ~CProxP ( ;/ﬁqu) (33b)
0? -

72 =afiexp | =Y Bt |, (33¢)
Oqj, k=1

where ¢ := 9 3 := 92 Substituting (31) into (30), using
(33), and dividing through by exp (— Y ;_, Bk (t)qx) yields

a—aZﬂka Z

k=1

—agr + AeaBigr + Ak (—aBy)) .

Rearranging the above to collect terms involving gj, in the
RHS, we obtain

n

o+ Z )\kaﬂk = Z (aﬁk — o+ )\kaﬁ]%> qk
k=1

k=1

(34)

As the LHS of (34) is independent of ¢; Vk € [n], we note
that the coefficients of ¢ in the RHS must be zero Vk €
[n]. This observation, together with the fact that «(t) # 0
(otherwise (31) gives trivial solution), results in the nonlinear
ODE IVPs

Be=1-MBi, Brlto)=0 Yken], (35
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where we have imposed the [j(-) initial conditions from
(32).

Separation-of-variables and u substitution with tanh(u) =
VAi: Bk, determine the solution to (35) as

Br(t) = tanh(\/mt_to)), Vk € [n].

1
(36)
VAR
Since all coefficients in the RHS of (34) are zero, combining
(34) and (36) gives
== —Z VA, tanh (\/ (t— t0)>

a(to) =1, (37)

where we have imposed the «(-) initial condition from (32).
Direct integration yields the solution of the ODE IVP (37):

(38)

Combining (28), (31), (36), (38), we have thus determined
that the Weyl symbol ha associated with the Weyl operator
HA, is

n 1
ha(x, &) = <k1:[1 cosh (\/E(t - to)) )

X exp( Z M tanh (@(t — to))>.

- VY
D. The Kernel ka

(39)

Following Sec. III-C, we now apply (11) to determine the
kernel kp corresponding to the Weyl symbol hp given by
(39).

Since (39) is a product of n terms, each with its unique
subscript k& € [n], so (11) can be written as the product of n
univariate integrals, each being

i 1
27 cosh (v Ak (t —to))

X exp (_ VA (iﬂi +z$kyk + yl%) tanh (m(t _ tO)))

X/Jroecxp (— \5)’% tanh(@(t — to))—H(Ik - yk)fk> dér,

— 00

Iy,
(40)

where k € [n].
Invoking (13) with

\/% tanh (m(t - to)) ,

the integral I; in (40) evaluates to

LN 1/2ex —
tanh (v (t — to)) P

a =

J:xk_ykv

V(g — yk)2
4tanh (VAg(t —to)) )

Thus, (40) is the product of a pre-factor and an exponential
term, wherein the pre-factor is

N , /A 1/2
27 cosh (\/E(t — to)) tanh (\/E(t - tO))
A/

(41)

© /2msinh 2V (t —to))
and letting 0y := /i (t —tp), the argument of the exponen-
tial term is

_ V(@R A 2zeyk + y7) VA (zk — yi)®

0 tanh 0y, — 4 tanh 6},
L) (S~ )
)
T, S

Therefore, taking the product of the n integrals of the form
(40) from £ = 1 to k = n, and substituting back 6, =
VAg(t — to), we arrive at the kernel

K:A(t07 Z, t? y)

n 1/4
(,}_[1 \/27T sinh 2\/7 t—to))
Xexp( Zr ) S}IIEQ\/Et_tO)))
1

2V Ak (t — to))
e (Z Vo (G to»))' “

The expression (43) for the kernel matches with that
derived in [25]. Herein, by leveraging the Weyl calculus,
we circumvent the use of Hermite polynomial-based tedious
computation in [25].

Remark 1. The kernel xkp in (43), when specialized to
the case %Q = A = I, is known as the Mehler kernel
[33], [3, Thm. 1] in the quantum mechanics literature
where it appears in the solution of the time-dependent
Schraodinger equation for isotropic quantum harmonic oscil-
lator. There is a substantial literature generalizing this result
for time-independent non-self-adjoint [34], time-dependent
self-adjoint [35]-[37], and time-dependent non-self-adjoint
[38] quadratic Hamiltonians.

Remark 2. For numerical simulation results solving the SB
problem with quadratic state cost using the kernel kp, we
refer the readers to [25, Figs. 1 and 5].

E. Generalization

Formula (43) serves as the kernel or Green’s function for
(19), and helps write the solution for the PDE IVP (16) as

o(t,z) =D (t,x) |w:Vz:/ ka(to, Vz,t,9) vo (VTy) d
Rn
(44)
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We now extend this result for a modified version of (16)
given by

0o 1 PN ~
(A= (z27Qz+7T2+5) )3 Blte,) = Po,
ot 2
45)
where @ = 0, r € R™, s € R. In other words, we generalize

the reaction rate to have additional affine terms, i.e., generic
convex quadratic reaction rate: %ZTQZ +r'z+s

Theorem 1. Given Q > 0, r € R™, s € R, consider
the eigen-decomposition %Q = VTAV, where the main
diagonal entries of the diagonal matrix A are {\,}7_,. Let
vy be the kth column of V' for all k € [n).

The solution for the PDE IVP (45) is

@(tv Z) = / K(A,r,s) (t07 VZ, t, y) ¥o (VTy) dy, (46)
RTI,
where the kernel

R(A,r,s) (tOu x,t, y)

_ (H A exp (—ei(t = 1)) )
Pt /27 sinh (2v/ A (t — to))
"V cosh (2v/ Ak (t — to))
X exp (1?—:1 _T(xi +vi) sinh (2¢/Ag(t — o))
i VAETRYE

sinh (2v/ Ak (t — t0))
@rTvk (zr + yk) + o7 (TTvk)z)tanh(\/E(t —tp))
oy ;
(47)

and the constants

LT

s
ck = 4/\k(r vg)? - vk € [n]. (48)

Proof. We proceed as before by letting « := Vz, U(t, x) :=
P(t,z=VTx), to get

ov - 1 .
n = (Am — Z <)\kxz + TTvkxk + ns)) v.

k=1
The formulae (20), (21) and (22) now become

Qars) (X, D) =5+ D+ > (MX; +7 v Xy)
k=1

H(A,’I‘,S) (X, D) = exp (_(t - tO)Q(A,T,s)(Xa D))u

Q(A,r,s)($7£) =5+ |£|2 + Z ()‘kxi + TTvkxk) .
k=1
The associated Weyl symbol A ) solves an analogue of
(23), given by

0
8th(Ar s (:B é Z {Q(A'r e)ah(Ar e)}](w £)

j= O

from which, direct calculation of the Poisson brackets again
yields (27) with the initial condition h(a ) |t=t, = 1.
Now let
1

Q= E2 + Mzt 47 vy + 8 Vk € [n], (49)
so that >~ ; qx = q(a,r,s). Following (28), we define the
function g via
(50)

76) :g(t>q17"'7qu)7

and using (27), arrive at the PDE (29).
Using the definition (49), we next simplify (29) as

h(A,r,s) (13

0 - og 0
=3 (~aotnp + S vt an). on
k=1

The PDE (51) generalizes (30).

To solve (51), we use the anstaz (31) with initial conditions
(32). Following the same steps as before, we again find that
B (t) are given by (36). However, «(t) now solves a modified
version of (37), given by

—i{ftanh (\ﬁ t—t0)>

k=1

+ ¢, tanh? (m(t - to)) },

By direct integration, the solution for (52) is

N 1
<k1i[1 cosh (v A (t — to))) %
exp <Z (—ck(t —to) + tanh /Ay (t — t0)>> ,

(53)

a(ty) =1. (52)

Ck
vk

which generalizes the earlier formula (38).
Combining these «(t), Br(t) together with (31) and (50),
we obtain the Weyl symbol

h(A,r,s) (wag) = (H COSh t — tO )

k=1

xexp( ch t—t())

)\kxk + £k +rTopry, + (rTo)2/ (4\)
X exp Z
( o VA
% tanh (s//\k(t - to))) : (54)

which generalizes the earlier derived (39).

To derive the kernel r(a ) from the Weyl symbol
h(a,rs), we next apply (11) to (54). Following the com-
putation similar to Sec. IV-D, we arrive at (47). Notice
that for » = 0,s = 0, the kernel (47) reduces to (43), as
expected. ]
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V. CONCLUSIONS

We explained how ideas from Weyl calculus can be useful
to derive the kernels associated with linear reaction-diffusion
PDEs with state dependent reaction rates. Our primary moti-
vation behind solving such PDEs came from the Schrédinger
bridge problems with additive state costs. These state costs
regularize the classical minimum effort Lagrangian, and
encourage the optimally controlled stochastic states to stay
close to a desired level at all times while satisfying the
endpoint distributional constraints. Numerically solving such
problems with generic endpoint distributional data via dy-
namic Sinkhorn recursions, however, requires the Markov
kernel associated with the corresponding reaction-diffusion
PDE. This is where the Weyl calculus tools can be effective.
We outlined the general computation steps:

PDE — Weyl operator — Weyl symbol — kernel,

and worked out the details for convex quadratic state cost.

Our calculations here recovered the recent result in [25]
where computations were not only more tedious but were
also difficult to generalize for other variants of such PDEs.
While Weyl calculus tools were invented to address problems
in quantum mechanics, our contribution here is to highlight
their efficacy in explicitly recovering the kernels of PDEs
arising from diffusion and control problems. We hope this
will foster broader appreciation of Weyl calculus in systems-
control and motivate further applications.
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