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Abstract— Schrödinger bridge–a stochastic dynamical gener-
alization of optimal mass transport–exhibits a learning-control
duality. Viewed as a stochastic control problem, the Schrödinger
bridge finds an optimal control policy that steers a given joint
state statistics to another while minimizing the total control
effort subject to controlled diffusion and deadline constraints.
Viewed as a stochastic learning problem, the Schrödinger bridge
finds the most-likely distribution-valued trajectory connecting
endpoint distributional observations, i.e., solves the two point
boundary-constrained maximum likelihood problem over the
manifold of probability distributions. Recent works have shown
that solving the Schrödinger bridge problem with state cost
requires finding the Markov kernel associated with a linear
reaction-diffusion PDE where the state cost appears as a state-
dependent reaction rate. We explain how ideas from Weyl
calculus in quantum mechanics, specifically the Weyl operator
and the Weyl symbol, can help determine such Markov kernels.
We illustrate these ideas by explicitly finding the Markov
kernel for the case of convex quadratic state cost via Weyl
calculus, recovering as well as generalizing our earlier results
but avoiding tedious computation with Hermite polynomials.

I. INTRODUCTION

The purpose of this work is to highlight the usefulness of

Weyl calculus tools in computing the kernels or Green’s func-

tions (a.k.a. propagators [1, Ch. 2.6] in quantum mechanics)

for linear PDE initial value problems (IVPs) in diffusion and

control.

The mathematical development of Weyl calculus origi-

nated in quantum mechanics, but its relevance in solving

problems outside quantum mechanics, especially in diffusion

and control problems, appears to be less known.

Common references [2], [3, Ch. 2-3], [4]–[6] on Weyl

calculus appeal to quantum physics and field-theoretic ideas

to introduce the core mathematical concepts, albeit for good

reasons. However, this style of exposition, even when math-

ematically rigorous, can become a barrier to the broader

systems-control audience. Most researchers in systems-

control, barring the cognoscenti, may not be able to afford

the significant time and resource to transfer the mathematical

ideas of Weyl calculus to their specific applications, or are

simply not fortunate enough to be talking with the right

person at the right time.

This work takes a different expository approach: a pur-

posefully less rigorous recipe-style introduction of selective
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Weyl calculus tools with illustrative calculations. The recipe

for finding the kernel that we exemplify, follows the path:

PDE −→ Weyl operator −→ Weyl symbol −→ kernel.

We explain the two middle ingredients: Weyl operator and

symbol, and their connections with the familiar ends: PDE

and kernel.

The technical motivation for this work came from solving

the Schrödinger bridge (SB) problems – a class of stochastic

optimal control problems with deadline, controlled diffusion,

and endpoint distribution constraints. Such problems and

their solutions are finding use in stochastic control [7]–[15]

and in diffusion models in artificial intelligence (AI) [16]–

[20]. The SB problems exhibit a learning-control duality.

Viewed as a stochastic control problem, the SB finds an

optimal control policy that steers a given joint state statistics

to another while minimizing the total control effort subject

to controlled diffusion and deadline constraints. Viewed as

a stochastic learning problem, the SB solves the two point

boundary-constrained maximum likelihood problem over the

manifold of probability distributions. In fact, the latter view-

point led to the original formulation of the SB problem by

Erwin Schrödinger in 1931-32 [21], [22].

Numerically solving the SB problems with state costs for

generic endpoint distributional problem data, require finding

the Markov kernels of certain linear reaction-diffusion PDEs

where the state costs play the role of (nonlinear) reaction

rates1. In such a setting, finding the kernel becomes a non-

trivial task. While laborious specialized argument as in [25]

may work in certain cases, a principled approach remains

desired. As we explain in this work, the Weyl calculus tools

can serve as a promising alternative.

We mention here that despite the authors’ specific moti-

vation of solving SB problems with state cost, the scope of

the Weyl calculus tools are broad. They should be of interest

to the systems-control community for finding or analyzing

linear PDE IVP solutions of interest at large.

Contributions:

• Our primary contribution is pedagogical in that we

explain the general steps to derive the Green’s functions

or kernels of certain linear PDE IVPs using Weyl

calculus tools in a systematic manner.

1For brevity, we will not detail the SB formulation and the known
derivation of the reaction-diffusion PDEs using the first order conditions
of optimality followed by the Hopf-Cole transform [23], [24]. Here, these
details are not needed and they will distract us from the main points of this
work. We refer the readers to [8, p. 274-276], [25, Sec. 3] for these details.
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• Our secondary contribution is to analytically recover

the kernel for the SB problem with quadratic state cost

using the Weyl calculus tools.

Organization: In Sec. II, we fix some notations and back-

ground concepts that find use in the following development.

The relevant Weyl calculus ideas and computational steps are

explained in Sec. III. In Sec. IV, we put these ideas and tools

in action to analytically compute the kernel for a reaction-

diffusion PDE with quadratic state cost that appeared in the

Schrödinger bridge literature. Concluding remarks in Sec. V

close the paper.

II. NOTATIONS AND BACKGROUND

Poisson bracket. Let Skew (2n,R) denote the set of 2n×2n
skew-symmetric matrices with real entries. Given sufficiently

smooth functions f, g : R
2n 7→ R, define their Poisson

bracket {·, ·} as

{f, g} := ⟨∇f,Ω∇g⟩, Ω :=

(
0 In

−In 0

)
∈ Skew (2n,R) ,

(1)

where ⟨·, ·⟩ denotes the standard Euclidean inner product.

Note that Ω−1 = Ω
⊤ = −Ω, and det(Ω) = 1. As is well-

known [26, Prop. 2.23], the Poisson bracket is bilinear, skew

symmetric, and satisfies the Jacobi identity.

For x, ξ ∈ R
n, we think of f, g as mappings which act

on the tuple (x, ξ), i.e., f, g : (x, ξ) ∈ R
2n 7→ R. Following

[27, p. 128-9], let

{f, g}1(x, ξ) :=
1

2i
{f, g}(x, ξ), i :=

√
−1,

where {f, g} is the Poisson bracket. More generally, for any

j ∈ N0 := {0, 1, 2, . . .}, let

{f, g}j (x, ξ) :=
(
1

2i

)j
(

n∑

k=1

(
∂2

∂yk∂ξk
− ∂2

∂xk∂νk

))j

f(x, ξ)g(y,η)
∣∣
y=x,η=ξ

. (2)

In particular, for j = 0, definition (2) gives

{f, g}0 (x, ξ) = f (x, ξ) g (x, ξ) ,

i.e., the product of the two functions.

Standard symplectic form. For x,y, ξ,η ∈ R
n, the stan-

dard symplectic form associated with the matrix Ω in (1) is

a bilinear mapping2 σ : R2n × R
2n 7→ R, given by

σ ((x, ξ) ; (y,η)) :=

n∑

k=1

(ξkyk − xkηk) . (3)

The symplectic form σ is skew-symmetric (σ(v;w) =
v⊤

Ωw = −σ(w;v) ∀v,w ∈ R
2n), and non-degenerate (for

any v ∈ R
2n, σ(v;w) = 0 ∀w ∈ R

2n ⇒ v = 0).

2More generally, the mapping σ : C2n
×C2n

7→ R remains well-defined
as stated here but we will not need this fact.

III. WEYL CALCULUS

In this Section, we explain how Weyl calculus can be used

to determine the Markov kernel associated with a linear PDE

IVP of interest. While we are primarily motivated for the

case when the PDE is reaction-diffusion type, we proceed

formally in this Section in terms of operators. Along the way,

we present necessary ideas and nomenclatures from Weyl

calculus in an accessible manner.

For t0 ≥ 0 and X ⊆ R
n, we begin by considering a linear

PDE IVP

∂

∂t
φ̂ = −Lφ̂, φ̂ (t = t0,x) = φ̂0(x) (given), (4)

where the unknown φ̂ : [t0,∞) × X 7→ R, and the spatial

operator L is time-independent. Formally, the solution of (4)

can be expressed via the semigroup exp (−(t− t0)L) as

φ̂ = exp (− (t− t0)L)φ̂0. (5)

We seek a kernel representation of the solution φ̂, i.e.,

for 0 ≤ t0 ≤ s ≤ t < ∞, we seek to explicitly determine

κ(s,x, t,y) referred to as the kernel with suitable domain

of definition, such that (5) is expressible as

φ̂(t,x) =

∫

X

κ(t0,x, t,y)φ̂0 (y) dy. (6)

The initial condition φ̂ (t = t0,x) = φ̂0(x) necessitates that

κ(t0,x, t0,y) = δ (x− y) , the Dirac delta. (7)

In what follows, we fix X ≡ R
n for ease of exposition; the

development goes through for general subsets of Rn.

When the PDE in (4) is the forward Kolmogorov a.k.a.

Fokker-Planck PDE, then L is an advection-diffusion opera-

tor and under mild regularity assumptions on the underlying

drift and diffusion coefficients, the kernel κ is a transition

probability density; see e.g., [28, Ch. 1]. However, if L has

an additional reaction term, then (4) is non-conservative and

κ no longer has the interpretation of transition probability

density. In such more generic settings, an analytical handle

on κ can still help to numerically compute the solution

of (4) via (6). In the absence of an analytic handle on κ,

numerically computing φ̂ becomes particularly non-trivial in

the presence of (state dependent) reaction [29, Sec. 5.2, 5.3].

Example 1 (Reaction-diffusion PDE IVP). An instance of

(4) is the reaction-diffusion PDE IVP with L ≡ −∆x+q(x),
wherein ∆x denotes the Euclidean Laplacian operator, and

q(·) is a given bounded continuous reaction rate. If q is

constant, then a change of variable φ̂ 7→ ϑ̂ := etqφ̂
transforms the problem to the heat PDE IVP:

∂

∂t
ϑ̂ = ∆xϑ̂, ϑ̂ (t = t0,x) = φ̂0(x),

for which κ is well-known [30, p. 44-47]. However, for state-

dependent q(·), new ideas are needed. In Sec. IV, we will find

κ for quadratic q(·) using Weyl calculus tools discussed next.
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A. From PDE to Weyl Operator

In pursuit of getting analytic handle on κ in (6), we

start by defining the following operators as per the quantum

mechanics convention [2, p. 1]:

Xk := xk ∀k ∈ [n], (8a)

Dk :=
1

i

∂

∂xk
∀k ∈ [n], (8b)

and let

X :=
(
X1 . . . Xn

)⊤
, D :=

(
D1 . . . Dn

)⊤
.

We then determine a representation of exp (−(t− t0)L) in

terms of the operators X and D. This representation is

referred to as the Weyl Operator H(X,D).

Example 2 (Weyl operator for the heat PDE). Let (4)

be the heat PDE IVP with L ≡ −∆x. Letting ∇x :=(
∂

∂x1

. . . ∂
∂xn

)⊤
, note that

|D|2 := ⟨D,D⟩ = (−i)
2
(∇x · ∇x) = −∆x,

i.e., ∆x = −|D|2. So the corresponding Weyl operator is

Hheat (X,D) = exp
(
−(t− t0)|D|2

)
.

B. From Weyl Operator to Weyl Symbol

After identifying the Weyl operator associated with our

PDE of interest, we seek the corresponding Weyl symbol

denoted as h(x, ξ).
Note that while the Weyl operator depends on X and D,

the Weyl symbol is dependent on variables x and ξ. An

approach for determining h(x, ξ) discussed in [2, p. 32-36]

proceeds as follows:

1) Rewrite the Weyl operator H(X,D) such that all

of the Dk operators are multiplied on the right of

the Xk operators. As the operators in general are

non-commutative, this may require the use of the

commutation relation

[Xk, Dk] := XkDk −DkXk = i, k ∈ [n].

2) Define R(x, ξ) by replacing the operator X with x

and the operator D with ξ in the version of the Weyl

operator H(X,D) satisfying Step 1 above.

3) Calculate the Weyl symbol h(x, ξ) via one of the

following formulas:

h(x, ξ)

=
1

πn

∫

R2n

R(x̃, ξ̃) exp
(
2i⟨x̃− x, ξ̃ − ξ⟩

)
dx̃ dξ̃,

(9a)

=

∞∑

m=0

1

m!

(
i

2

)m(
∂m

∂xm
· ∂m

∂ξm

)
R(x, ξ). (9b)

The differential operators in (9b) are understood as

the mth order mixed partial derivatives. In particular,

(9b) can be seen as the series expansion of

exp

(
− 1

2i

∂

∂x
· ∂

∂ξ

)
R(x, ξ).

Example 3 (Weyl symbol for the heat PDE). The Weyl

operator Hheat(X,D) found in Example 2, does not involve

any multiplication of X with D. Therefore, Steps 1 and 2

mentioned above are reduced to a direct replacement of D

with ξ. Because the resulting Rheat(x, ξ) = Rheat(ξ) =
exp

(
−(t− t0)|ξ|2

)
is independent of x, so (9b) immediately

yields the Weyl symbol

hheat(x, ξ) = e−(t−t0)|ξ|
2

. (10)

This example illustrates that finding the Weyl symbol asso-

ciated with (4) is straightforward when the relevant Weyl

operator depends on either X or D alone.

C. From Weyl Symbol to Kernel

We follow the development in Hörmander [31, p. 161], to

obtain the kernel κ in (6) from the associated Weyl symbol

h (x, ξ) as

κ(t0,x, t,y)=
1

(2π)n

∫

Rn

h

(
x+ y

2
, ξ

)
ei⟨x−y,ξ⟩dξ. (11)

The RHS of (11) can be seen as the non-unitary inverse

Fourier transform of ξ 7→ h ((x+ y) /2, ξ). Thus, for (7) to

hold, the Weyl symbol h evaluated at t0 must be equal to

unity (see e.g., the heat symbol (10)). We will make use of

this observation in our computation in Sec. IV-C.

Example 4 (Kernel for the heat PDE). Applying (11) to

the Weyl symbol h ≡ hheat derived in (10), we obtain

κheat(t0,x, t,y)

=
1

(2π)n

∫

Rn

exp
(
−(t− t0)|ξ|2

)
exp (i⟨x− y, ξ⟩)dξ

=
1

(2π)n

n∏

k=1

(∫ ∞

−∞

exp
(
−ξ2k(t− t0) + i(xk − yk)ξk

)
dξk

)
.

(12)

To evaluate (12), we specialize the Gaussian-like integral3

∫ ∞

−∞

exp

(
−1

2
ax2 + iJx

)
dx =

(
2π

a

)1/2
exp

(
−J2

2a

)
(13)

with a = 2(t− t0), J = xk − yk. This yields

κheat(t0,x, t,y)

=
1

(2π)n

n∏

k=1

(
π

t− t0

)1/2

exp

(
− (xk − yk)

2

4(t− t0)

)

=
1

(4π(t− t0))n/2
exp

(
− |x− y|2
4(t− t0)

)
,

which is indeed the well-known heat kernel [30, p. 44-47].

In summary, we may derive the solution of a PDE (4) in

the kernel form (6) by first identifying the associated Weyl

operator H(X,D) = exp (−(t− t0)L(X,D)) as in Sec.

III-A. This is then followed up with a computation of the

corresponding Weyl symbol h(x, ξ) as in Sec. III-B. Using

3This integral is simply the Fourier transform of the Gaussian with
appropriate scaling.
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this Weyl symbol h, we then arrive at an expression for the

kernel κ via (11).

For pedagogical clarity, our Examples 2-4 so far illustrate

the aforesaid process for the classical heat kernel. Now

the question arises: can these computation be performed

for reaction-diffusion PDEs with quadratic state-dependent

reaction rate that appears in the associated Schrödinger

bridge problem with quadratic state cost?

It turns out that for such problems, the Weyl symbol is

most conveniently determined via a PDE approach [27, p.

130-132] that we detail in Sec. IV. To prepare ground for this

PDE approach, we need the product rule of Weyl calculus,

explained next.

D. Product Rule of Weyl Calculus

With the notations from Sec. III-A, consider a Weyl

operator C(X,D) which admits a decomposition

C(X,D) = A(X,D)B(X,D) (14)

in terms of two other Weyl operators A,B. Consider the cor-

responding Weyl operator-Weyl symbol pairs (A, a) , (B, b)
and (C, c). Given the operator decomposition (14), the prod-

uct rule is a recipe to determine the Weyl symbol c from the

Weyl symbols a, b.
It is known that [31, p. 161] if either A or B is a

polynomial, then the Weyl symbol c(x, ξ) can be exactly

determined via Taylor expansion of4

exp

(
i

2
σ (Dx,Dξ;Dy,Dη)

)
(a(x, ξ)b(y,η))

∣∣
y=x,η=ξ

with finitely many terms, where σ is the standard symplectic

form (3). In this case, we can express c(x, ξ) as [27, p. 128-

129]

c(x, ξ) =

dA∧dB∑

j=0

1

j!
{a, b}j(x, ξ), (15)

where {a, b}j(x, ξ) is defined as in (2), and dA ∧ dB is the

minimum of the degrees dA, dB for the polynomials A,B.

When only one of A,B is a polynomial, the corresponding

polynomial degree is to be used as the upper limit of the

summation index j in (15). The product rule (15) will be

useful in our calculations in Sec. IV-B.

When neither A nor B is polynomial, the equality in

(15) is replaced with asymptotic equivalence: c(x, ξ) ∼∑
j∈N0

1
j!{a, b}j(x, ξ).

IV. KERNEL FOR THE SCHRÖDINGER BRIDGE WITH

QUADRATIC STATE COST

Our recent work [25] highlighted that solving a generic

instance5 of the Schrödinger bridge problem with quadratic

4Here Dx :=
(

Dx1
. . . Dxn

)

⊤
, and likewise for Dξ,Dy ,Dη .

5i.e., with generic endpoint distributions which have finite second mo-
ments. The special case of Gaussian endpoints has been studied before in
[32, Sec. III].

state cost leads to finding the Markov kernel of the reaction-

diffusion PDE IVP

∂φ̂

∂t
=

(
∆z − 1

2
z⊤Qz

)
φ̂, φ̂(t0, ·) = φ̂0, (16)

for given Q ⪰ 0, wherein z ∈ R
n and the unknown φ̂ is a

Schrödinger factor. Here and throughout, 0 ≤ t0 ≤ t < ∞.

Problem (16) is indeed of the form (4). The associated

kernel in (6) was derived in [25] via tedious computation with

Hermite polynomials. Since that computation is difficult to

generalize for other state costs (thus for other state-dependent

reaction rates), we explore applying the Weyl calculus ideas

in Sec. III for finding such kernels. Here we show that

the steps outlined in Sec. III indeed recovers the kernel

for (16) in a systematic manner without invoking Hermite

polynomials.

For Q ⪰ 0, consider the eigen-decomposition 1
2Q =

V ⊤
ΛV , where Λ is an n×n diagonal matrix with its main

diagonal comprising the eigenvalues {λk}nk=1 ∈ R
n
≥0 of 1

2Q.

Now consider a linear change-of-variable z 7→ x as

x := V z. (17)

Then,

ν̂(t,x) := φ̂
(
t, z = V ⊤x

)
, (18)

and ∆zφ̂(t, z) = ∆xν̂(t,x). Therefore, in the x coordinates,

(16) takes the form

∂ν̂

∂t
= ∆xν̂ −

(
x⊤

Λx
)
ν̂

=

n∑

k=1

(
∂2

∂x2
k

− λkx
2
k

)
ν̂. (19)

A. The Weyl Operator HΛ

For notational convenience, we define the Weyl operator

QΛ(X,D) := |D|2 +
n∑

k=1

λkX
2
k . (20)

Following Sec. III-A, the Weyl operator of (19) is

HΛ(X,D) = exp (−(t− t0)QΛ(X,D)), (21)

i.e., the Weyl operator of (19), HΛ(X,D), can be seen as

a composite operator.

Note that for the Weyl operator QΛ in (20), we can readily

find its Weyl symbol qΛ using (9b) as

qΛ(x, ξ) = |ξ|2 +
n∑

k=1

λkx
2
k. (22)

However, for the composite Weyl operator HΛ, determin-

ing the corresponding Weyl symbol hΛ via (9b) becomes

challenging since partial derivatives of HΛ(X,D) of any

order are nonzero. To circumvent this issue, we adopt a PDE

approach from [27, p. 130-132] explained next. The main

idea is to derive a PDE IVP for hΛ (Sec. IV-B) and to solve

the same in closed form (Sec. IV-C).

Authorized licensed use limited to: Iowa State University. Downloaded on December 03,2025 at 21:16:28 UTC from IEEE Xplore.  Restrictions apply. 



B. Deriving the PDE for the Weyl Symbol hΛ

Since the Weyl operator HΛ must satisfy (19), we have

∂

∂t
HΛ(X,D) = −QΛ(X,D)HΛ(X,D).

Then, applying (15), we note that the Weyl symbol hΛ

satisfies

∂

∂t
hΛ(x, ξ) = −

2∑

j=0

1

j!
{qΛ, hΛ}j(x, ξ). (23)

Applying (2) and (22), we find that

{qΛ, hΛ}1 = 0, (24)

and

{qΛ, hΛ}2

=

(
n∑

k=1

(
2λk(t− t0)− 2λ2

k(t− t0)
2x2

k − 2λk(t− t0)
2ξ2k
)
)

× exp

(
−(t− t0)

(
|ξ|2 +

n∑

k=1

λkx
2
k

))

=
(
2(t− t0) trace(Λ)− 2(t− t0)

2
(
x⊤

Λ
2x+ ξ⊤Λξ

))

× exp (−(t− t0)qΛ(x, ξ)). (25)

Since the second order derivative of hΛ(x, ξ) w.r.t. xk∀ k ∈
[n], denoted as ∂2

xk
h(x, ξ), equals

(
−2λk(t− t0) + 4λ2

kx
2
k(t− t0)

2
)
exp (−(t− t0)qΛ(x, ξ)),

and likewise ∂2
ξk
hΛ(x, ξ) equals

(
−2(t− t0) + 4ξ2k(t− t0)

2
)
exp (−(t− t0)qΛ(x, ξ)),

hence (25) can be expressed as

{qΛ, hΛ}2 = −1

2

(
n∑

k=1

dk∂
2
ξk
hΛ(x, ξ) + ∂2

xk
hΛ(x, ξ)

)
.

(26)

Combining (23), (24) and (26), we then have

∂

∂t
hΛ(x, ξ) = −qΛ(x, ξ)hΛ(x, ξ)−

1

2
{qΛ, hΛ}2(x, ξ)

= −qΛhΛ +
1

4

(
n∑

k=1

λk∂
2
ξk
hΛ + ∂2

xk
hΛ

)
.

(27)

We next focus on solving for hΛ from (27) subject to the

initial condition hΛ|t=t0 = 1.

C. Solving the PDE for the Weyl Symbol hΛ

We note that the Weyl symbol qΛ in (22) is time-invariant.

Let qk := λkx
2
k + ξ2k ∀k ∈ [n], so that qΛ =

∑n
k=1 qk.

We seek to solve (27) in the form

hΛ(x, ξ) = g(t, q1, . . . , qn). (28)

Substituting (28) into (27) yields

∂g

∂t
= −

(
n∑

k=1

qk

)
g +

1

4

n∑

k=1

(
∂

∂xk

(
∂g

∂qk

∂qk
∂xk

)

+λk
∂

∂ξk

(
∂g

∂qk

∂qk
∂ξk

))
. (29)

As

∂

∂xk

(
∂g

∂qk

∂qk
∂xk

)
=

∂

∂xk

(
∂g

∂qk
(2λkxk)

)

=
∂2g

∂q2k

(
4λ2

kx
2
k

)
+ 2λk

∂g

∂qk
,

and likewise

∂

∂ξk

(
∂g

∂qk

∂qk
∂ξk

)
=

∂

∂ξk

(
∂g

∂qk
(2ξk)

)

= 4ξ2k
∂2g

∂q2k
+ 2

∂g

∂qk
,

the PDE (29) simplifies to

∂g

∂t
= −

(
n∑

k=1

qk

)
g +

n∑

k=1

(
λkqk

∂2g

∂q2k
+ λk

∂g

∂qk

)
. (30)

To solve (30), we consider the ansatz

g(t, q1, . . . , qn) = α(t) exp

(
−

n∑

k=1

βk(t)qk

)
(31)

for suitably smooth α(t), β1(t), . . . , βn(t) that are not iden-

tically zero for any t0 < t. Recall from Sec. III-C that

hΛ|t=t0 = 1, and hence from (28) and (31), the initial

conditions for α(·), β1(·), . . . , βn(·) are

α (t0) = 1, βk (t0) = 0 ∀ k ∈ [n]. (32)

Next, notice that

∂g

∂t
=

(
α̇− α

n∑

k=1

β̇kqk

)
exp

(
−

n∑

k=1

βk(t)qk

)
, (33a)

∂g

∂qk
= −αβk exp

(
−

n∑

k=1

βkqk

)
, (33b)

∂2g

∂q2k
= αβ2

k exp

(
−

n∑

k=1

βkqk

)
, (33c)

where α̇ := dα
dt , β̇ := dβ

dt . Substituting (31) into (30), using

(33), and dividing through by exp (−
∑n

k=1 βk(t)qk) yields

α̇− α

n∑

k=1

β̇kqk =

n∑

k=1

(
−αqk + λkαβ

2
kqk + λk (−αβk)

)
.

Rearranging the above to collect terms involving qk in the

RHS, we obtain

α̇+

n∑

k=1

λkαβk =

n∑

k=1

(
αβ̇k − α+ λkαβ

2
k

)
qk. (34)

As the LHS of (34) is independent of qk ∀k ∈ [n], we note

that the coefficients of qk in the RHS must be zero ∀k ∈
[n]. This observation, together with the fact that α(t) ̸= 0
(otherwise (31) gives trivial solution), results in the nonlinear

ODE IVPs

β̇k = 1− λkβ
2
k, βk (t0) = 0 ∀k ∈ [n], (35)
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where we have imposed the βk(·) initial conditions from

(32).

Separation-of-variables and u substitution with tanh(u) =√
λkβk, determine the solution to (35) as

βk(t) =
1√
λk

tanh
(√

λk(t− t0)
)
, ∀k ∈ [n]. (36)

Since all coefficients in the RHS of (34) are zero, combining

(34) and (36) gives

α̇

α
= −

n∑

k=1

√
λk tanh

(√
λk(t− t0)

)
, α (t0) = 1, (37)

where we have imposed the α(·) initial condition from (32).

Direct integration yields the solution of the ODE IVP (37):

α(t) =

n∏

k=1

1

cosh
(√

λk(t− t0)
) . (38)

Combining (28), (31), (36), (38), we have thus determined

that the Weyl symbol hΛ associated with the Weyl operator

HΛ, is

hΛ(x, ξ) =

(
n∏

k=1

1

cosh
(√

λk(t− t0)
)
)

× exp

(
−

n∑

k=1

λkx
2
k + ξ2k√
λk

tanh
(√

λk(t− t0)
))

.

(39)

D. The Kernel κΛ

Following Sec. III-C, we now apply (11) to determine the

kernel κΛ corresponding to the Weyl symbol hΛ given by

(39).

Since (39) is a product of n terms, each with its unique

subscript k ∈ [n], so (11) can be written as the product of n
univariate integrals, each being

1

2π

1

cosh
(√

λk(t− t0)
)

× exp

(
−
√
λk

(
x2
k + 2xkyk + y2k

)

4
tanh

(√
λk(t− t0)

))

×
∫ +∞

−∞

exp

(
− ξ2k√

λk

tanh
(√

λk(t− t0)
)
+i(xk − yk)ξk

)
dξk

︸ ︷︷ ︸
Ik

,

(40)

where k ∈ [n].
Invoking (13) with

a =
2√
λk

tanh
(√

λk(t− t0)
)
, J = xk − yk,

the integral Ik in (40) evaluates to

(
π
√
λk

tanh
(√

λk(t− t0)
)
)1/2

exp

(
−

√
λk(xk − yk)

2

4 tanh
(√

λk(t− t0)
)
)
.

Thus, (40) is the product of a pre-factor and an exponential

term, wherein the pre-factor is

1

2π

1

cosh
(√

λk(t− t0)
)
(

π
√
λk

tanh
(√

λk(t− t0)
)
)1/2

=
λ
1/4
k√

2π sinh (2
√
λk(t− t0))

, (41)

and letting θk :=
√
λk(t− t0), the argument of the exponen-

tial term is

−
√
λk(x

2
k + 2xkyk + y2k)

4
tanh θk −

√
λk(xk − yk)

2

4 tanh θk

= −
√
λk

4

{(
x2
k + y2k

)( sinh θk
cosh θk

+
cosh θk
sinh θk

)

+ 2xkyk

(
sinh θk
cosh θk

− cosh θk
sinh θk

)}

= −
√
λk

2
(x2

k + y2k)
cosh (2θk)

sinh (2θk)
+

√
λkxkyk

sinh (2θk)
. (42)

Therefore, taking the product of the n integrals of the form

(40) from k = 1 to k = n, and substituting back θk =√
λk(t− t0), we arrive at the kernel

κΛ(t0,x, t,y)

=

(
n∏

k=1

λ
1/4
k√

2π sinh (2
√
λk(t− t0))

)

× exp

(
−

n∑

k=1

√
λk

2
(x2

k + y2k)
cosh (2

√
λk(t− t0))

sinh (2
√
λk(t− t0))

)

× exp

(
n∑

k=1

√
λkxkyk

(
1

sinh (2
√
λk(t− t0))

))
. (43)

The expression (43) for the kernel matches with that

derived in [25]. Herein, by leveraging the Weyl calculus,

we circumvent the use of Hermite polynomial-based tedious

computation in [25].

Remark 1. The kernel κΛ in (43), when specialized to

the case 1
2Q = Λ = In, is known as the Mehler kernel

[33], [3, Thm. 1] in the quantum mechanics literature

where it appears in the solution of the time-dependent

Schrödinger equation for isotropic quantum harmonic oscil-

lator. There is a substantial literature generalizing this result

for time-independent non-self-adjoint [34], time-dependent

self-adjoint [35]–[37], and time-dependent non-self-adjoint

[38] quadratic Hamiltonians.

Remark 2. For numerical simulation results solving the SB

problem with quadratic state cost using the kernel κΛ, we

refer the readers to [25, Figs. 1 and 5].

E. Generalization

Formula (43) serves as the kernel or Green’s function for

(19), and helps write the solution for the PDE IVP (16) as

φ̂(t, z) = ν̂ (t,x)
∣∣
x=V z

=

∫

Rn

κΛ(t0,V z, t,y)φ0

(
V ⊤y

)
dy.

(44)
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We now extend this result for a modified version of (16)

given by

∂φ̂

∂t
=

(
∆z −

(
1

2
z⊤Qz + r⊤z + s

))
φ̂, φ̂(t0, ·) = φ̂0,

(45)

where Q ⪰ 0, r ∈ R
n, s ∈ R. In other words, we generalize

the reaction rate to have additional affine terms, i.e., generic

convex quadratic reaction rate: 1
2z

⊤Qz + r⊤z + s.

Theorem 1. Given Q ⪰ 0, r ∈ R
n, s ∈ R, consider

the eigen-decomposition 1
2Q = V ⊤

ΛV , where the main

diagonal entries of the diagonal matrix Λ are {λk}nk=1. Let

vk be the kth column of V ⊤ for all k ∈ [n].
The solution for the PDE IVP (45) is

φ̂(t, z) =

∫

Rn

κ(Λ,r,s)(t0,V z, t,y)φ0

(
V ⊤y

)
dy, (46)

where the kernel

κ(Λ,r,s)(t0,x, t,y)

=

(
n∏

k=1

λ
1/4
k exp (−ck(t− t0))√
2π sinh (2

√
λk(t− t0))

)

× exp

(
n∑

k=1

−
√
λk

2
(x2

k + y2k)
cosh (2

√
λk(t− t0))

sinh (2
√
λk(t− t0))

+

√
λkxkyk

sinh (2
√
λk(t− t0))

−

(
1
2r

⊤vk (xk + yk) +
1

4λk

(
r⊤vk

)2)
tanh(

√
λk(t− t0))

√
λk


 ,

(47)

and the constants

ck :=
1

4λk
(r⊤vk)

2 − s

n
, ∀k ∈ [n]. (48)

Proof. We proceed as before by letting x := V z, ν̂(t,x) :=
φ̂(t, z = V ⊤x), to get

∂ν̂

∂t
=

(
∆x −

n∑

k=1

(
λkx

2
k + r⊤vkxk +

1

n
s

))
ν̂.

The formulae (20), (21) and (22) now become

Q(Λ,r,s)(X,D) = s+ |D|2 +
n∑

k=1

(
λkX

2
k + r⊤vkXk

)
,

H(Λ,r,s)(X,D) = exp
(
−(t− t0)Q(Λ,r,s)(X,D)

)
,

q(Λ,r,s)(x, ξ) = s+ |ξ|2 +
n∑

k=1

(
λkx

2
k + r⊤vkxk

)
.

The associated Weyl symbol h(Λ,r,s) solves an analogue of

(23), given by

∂

∂t
h(Λ,r,s)(x, ξ) = −

2∑

j=0

1

j!
{q(Λ,r,s), h(Λ,r,s)}j(x, ξ),

from which, direct calculation of the Poisson brackets again

yields (27) with the initial condition h(Λ,r,s)|t=t0 = 1.

Now let

qk := ξ2k + λkx
2
k + r⊤vkxk +

1

n
s, ∀k ∈ [n], (49)

so that
∑n

k=1 qk = q(Λ,r,s). Following (28), we define the

function g via

h(Λ,r,s)(x, ξ) = g(t, q1, . . . , qn), (50)

and using (27), arrive at the PDE (29).

Using the definition (49), we next simplify (29) as

∂g

∂t
=

n∑

k=1

(
−qkg + λk

∂g

∂qk
+

∂2g

∂q2k
(λk (qk + ck))

)
. (51)

The PDE (51) generalizes (30).

To solve (51), we use the anstaz (31) with initial conditions

(32). Following the same steps as before, we again find that

βk(t) are given by (36). However, α(t) now solves a modified

version of (37), given by

α̇

α
= −

n∑

k=1

{√
λk tanh

(√
λk(t− t0)

)

+ ck tanh
2
(√

λk(t− t0)
)}

, α (t0) = 1. (52)

By direct integration, the solution for (52) is

α(t) =

(
n∏

k=1

1

cosh
(√

λk(t− t0)
)
)
×

exp

(
n∑

k=1

(
−ck(t− t0) +

ck√
λk

tanh
√
λk(t− t0)

))
,

(53)

which generalizes the earlier formula (38).

Combining these α(t), βk(t) together with (31) and (50),

we obtain the Weyl symbol

h(Λ,r,s)(x, ξ) =

(
n∏

k=1

1

cosh
(√

λk(t− t0)
)
)

× exp

(
−

n∑

k=1

ck(t− t0)

)

× exp

(
−

n∑

k=1

λkx
2
k + ξ2k + r⊤vkxk + (r⊤vk)

2/ (4λk)√
λk

× tanh
(√

λk(t− t0)
))

, (54)

which generalizes the earlier derived (39).

To derive the kernel κ(Λ,r,s) from the Weyl symbol

h(Λ,r,s), we next apply (11) to (54). Following the com-

putation similar to Sec. IV-D, we arrive at (47). Notice

that for r = 0, s = 0, the kernel (47) reduces to (43), as

expected. ■

Authorized licensed use limited to: Iowa State University. Downloaded on December 03,2025 at 21:16:28 UTC from IEEE Xplore.  Restrictions apply. 



V. CONCLUSIONS

We explained how ideas from Weyl calculus can be useful

to derive the kernels associated with linear reaction-diffusion

PDEs with state dependent reaction rates. Our primary moti-

vation behind solving such PDEs came from the Schrödinger

bridge problems with additive state costs. These state costs

regularize the classical minimum effort Lagrangian, and

encourage the optimally controlled stochastic states to stay

close to a desired level at all times while satisfying the

endpoint distributional constraints. Numerically solving such

problems with generic endpoint distributional data via dy-

namic Sinkhorn recursions, however, requires the Markov

kernel associated with the corresponding reaction-diffusion

PDE. This is where the Weyl calculus tools can be effective.

We outlined the general computation steps:

PDE −→ Weyl operator −→ Weyl symbol −→ kernel,

and worked out the details for convex quadratic state cost.

Our calculations here recovered the recent result in [25]

where computations were not only more tedious but were

also difficult to generalize for other variants of such PDEs.

While Weyl calculus tools were invented to address problems

in quantum mechanics, our contribution here is to highlight

their efficacy in explicitly recovering the kernels of PDEs

arising from diffusion and control problems. We hope this

will foster broader appreciation of Weyl calculus in systems-

control and motivate further applications.
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