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Relationships among spider families that lack support through other lines of evidence (e.g., morphology) 
have recently been uncovered through molecular phylogenetics. One such group is the “marronoid” clade, 
which contains about 3,400 described species in 9 families. Marronoids run the gamut of life history strat-
egies, with social species, species producing a variety of silk types, and species occurring in a range of 
extreme environments. Despite recognition of the ecological variability in the group, there remains un-
certainty about family- level relationships, leaving diverse ecologies without an evolutionary context. The 
phylogenies produced to date have relatively low nodal support, there are few defined morphological syn-
apomorphies, and the internal relationships of many families remain unclear. We use 93 exemplars from 
all marronoid families and ultraconserved element loci captured in silico from a combination of 48 novel 
low-coverage whole genomes and genomic data from the Sequence Read Archive (SRA) to produce a 50% 
occupancy matrix of 1,277 loci from a set of ultraconserved element probes. These loci were used to infer 
a phylogeny of the marronoid clade and to evaluate the familial relationships within the clade, and were 
combined with single-locus (Sanger) legacy data to further increase taxonomic sampling. Our results in-
dicate a clearly defined and well-supported marronoid clade and provide evidence for both monophyly 
and paraphyly within the currently defined families of the clade. We propose taxonomic changes in ac-
cordance with the resulting phylogenetic hypothesis, including elevating Cicurinidae (restored status) and 
Macrobunidae (new rank).
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Introduction

The use of multilocus genetic data in phylogenetics has allowed for 
the resolution of long-standing questions regarding the higher-level 
phylogenetic relationships of spiders. The first molecular phylogeny 
of all spider families (Araneae excluding Synotaxidae Simon, 1895) 
was recently published, supporting the monophyly of many major 
groups (Wheeler et al. 2017). This seminal study also identified dark 
nodes within the spider tree of life—novel relationships among fam-
ilies or groups of families without clearly discernible morphological 

synapomorphies. One such dark node is the “marronoid” clade, 
a group coined by Wheeler et al. (2017) from the Spanish word 
for brown (marrón), a reference to the fact that an overwhelming 
number of species in the clade are brown and generally morpho-
logically nondescript. This moniker also serves as a statement to 
how little attention this group has received historically—brown is 
the most appropriate identifier. Whereas the marronoids include 
some families that have been grouped together in superfamilies  
(Fig. 1; e.g., the Amaurobioidea and Dictynoidea; sensu Lehtinen 
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1967, Forster and Wilton 1973, Griswold et al. 1999, 2005), the 
specific combination of families to the exclusion of other families 
previously hypothesized to be morphologically associated was a 
novel hypothesis (Wheeler et al. 2017), corroborated by Crews et al. 
(2020). In subsequent studies using genomic data, the marronoids 
were also recovered as a clade, sister to the Sparassidae Bertkau, 
1872(Kulkarni et al. 2020, Kallal et al. 2021, Azevedo et al. 2022), 
and part of the speciose retrolateral tibial apophysis (RTA) clade 
(Coddington and Levi 1991).

The Marronoid Clade: A Cryptic Lineage with a 
Messy History
In part, the uncertainty among the relationships of marronoids re-
lates to the seemingly endless rearrangement of lineages within its 
families that has occurred throughout the history of spider tax-
onomy (Fig. 2, and for a written summary of the changes illustrated 
in this figure, see the Supplementary Material). One of the driving 
factors for this messy history is that this clade contains both cri-
bellate and ecribellate members. Cribellate spiders are defined 
by the presence of a cribellum, a spinning organ on the abdomen 
from which silk is combed out via a calamistrum, a structure on the 
metatarsus of the fourth leg. Ecribellate spiders lack this structure 
and may instead have a colulus, thought to be a vestige of the cri-
bellum. There are implications for the type of silk spiders can pro-
duce with and without a cribellum: in cribellate spiders, the capture 
thread, though dry, is elastic and has mechanical adhesive properties 

through entanglement, while in ecribellate spiders, glue assists the 
silk in prey capture. It has been suggested the loss of the cribellum 
has led to a reduced dependency on a prey capture web (Forster 
and Wilton 1973), and it is possible this lessened dependency has 
led to greater diversity in many clades, such as the most speciose 
spider family, the Salticidae Blackwall 1841. Marronoids, while they 
contain ecribellate and cribellate species, do not make orb webs, 
placing them at a potentially interesting evolutionary transition. 
The idea that closely related spiders could be both ecribellate and 
cribellate was initially suggested by Lehtinen (1967) and upended 
much of spider taxonomy to that point. Until this hypothesis was 
raised, the designation of being either cribellate or ecribellate was 
considered of key importance for distinguishing major groups of 
spiders. It is now hypothesized that the cribellum (and therefore, 
cribellate silk) is ancestral to araneomorphs and was subsequently 
lost in many lineages (Blackledge et al. 2009, Spagna and Gillespie 
2008). However, within the marronoid clade, the presence and ab-
sence of a cribellum is so varied that in some cases it is the main 
delimiter between sister species, such as in the genus Mahura Forster 
& Wilton, 1973 (Forster and Wilton 1973). Four marronoid fam-
ilies contain both cribellate and ecribellate members (Dictynidae 
O. Pickard-Cambridge, 1871, Desidae Pocock, 1895, Toxopidae 
Hickman, 1940, Stiphidiidae Dalmas, 1917). Additionally, the only 
unifying morphological characters for marronoids proposed to date 
are the presence of 3 tarsal claws and an RTA, which are not syn-
apomorphies. In the absence of concrete, unifying morphological 

Fig. 1.  Recent phylogenetic hypotheses of family relationships within the marronoid clade (in color) from 1991 to 2020 (Platnick et al. 1991, Griswold et al. 1999, 
2005, Spagna and Gillespie 2008, Miller et al. 2010, Spagna et al. 2010, Wheeler et al. 2017, Crews et al. 2020).
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characteristics beyond simple descriptors, or a well-resolved phylo-
genetic backbone, the marronoids collectively represent RTA spider 
families, many of which have historically served as a taxonomic 
waste bin for generally small, and usually brown, spiders.

Families currently considered to be part of the marronoid 
clade include Agelenidae C.L. Koch 1837, Amaurobiidae Thorell 
1869, Cybaeidae Banks 1892, Cycloctenidae Simon 1898, Desidae, 
Dictynidae, Hahniidae Bertkau 1878, Stiphidiidae, and Toxopidae. 
Although the marronoid clade was recovered in all constrained in-
ferences in Wheeler et al. (2017), support was consistently very low 
(constrained maximum likelihood tree bootstrap value = 28), and 
unconstrained maximum likelihood inferences additionally included 
Sparassidae. It is important to note, however, that the Bayesian un-
constrained inference in Wheeler et al. (2017) recovered a marronoid 
clade with high support (posterior probability = 0.9853). Castellucci 
et al. (2023) subsequently inferred a phylogeny of marronoid 
spiders, but used extensive backbone constraints from Wheeler et 
al. (2017), such that no major conclusions could be made about 

family-level relationships, the monophyly of the marronoids, or 
the internal relationships of the group. In an unconstrained tree in 
Castellucci et al. (2023), the marronoid clade was not recovered as 
monophyletic, with multiple families within also paraphyletic. While 
higher support for the clade has been recovered in other subsequent 
phylogenomic analyses (Kulkarni et al. 2020, Kallal et al. 2021, 
both ≥95% ultrafast bootstrap (UFBoot) support sensu Hoang et al. 
2018), its monophyly has not been evaluated at a genomic level with 
taxonomic coverage comparable to that of the most representative 
Sanger locus phylogeny in Crews et al. (2020).

Interfamilial Relationships of the Marronoid Clade
Kishida (1930) was the first to propose any association of marronoid 
families, and classified Hahniidae, Agelenidae, Lycosidae Sundevall, 
1833 (including Cycloctenus L. Koch, 1878), and Argyronetidae 
Thorell, 1870 in the Argiopoidea (now considered Araneoidea) 
and Psechridae Simon, 1990 (including subfamilies Matachiinae 

Fig. 2.  Timeline depicting significant rearrangements in the marronoid clade from the inception of each family. Families currently contained in the marronoid 
clade are indicated by the same colors as in Fig. 1. Solid lines indicate movements by the indicated author, arrows, and colors indicate the destination family. 
Dotted lines indicate families originally described as subfamilies, or taxonomic suggestions that did not result in a formal taxonomic action. Movements in red 
indicate taxonomic changes that were not accepted by subsequent authors. Positions are illustrative and not to scale. Any papers referenced in this figure and 
not in the main text are referenced in Appendix A. 
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Dalmas, 1917 and Stiphidiinae), Dictynidae, and Amaurobiidae 
in the Amaurobioidea. At this point, marronoid families were still 
split between distinct superfamilies that also contained many non-
marronoid families.

When Lehtinen (1967) reviewed the classification of the 
araneomorphae, a form of the present marronoid clade was estab-
lished within what he referred to as the “branch” Amaurobiides, 
the superfamily Amaurobioidea, including the following fam-
ilies: Miturgidae Simon, 1886 (including Tengellidae Dahl, 1908, 
now a synonym of Zoropsidae Bertkau, 1882), Amaurobiidae 
(including Stiphidiidae, Phyxelididae Lehtinen, 1967, and Desidae), 
Liocranidae Simon, 1897, Agelenidae, Dictynidae (including 
Cybaeidae), Hahniidae, and Toxopidae. Other superfamilies of the 
“branch” Amaurobiides include Lycosoidea (including Lycosidae, 
Cycloctenidae, Dolomedidae Lehtinen, 1967 [now Pisauridae 
Simon, 1890], Zoridae F.O. Pickard-Cambridge, 1893 [now 
Miturgidae], Ctenidae Keyserling, 1877, and Selenopidae Simon, 
1897), Pisauroidea (including Pisauridae Simon, 1890, Oxyopidae 
Thorell, 1869, Senoculidae Simon, 1890, and Homalonychidae 
Marx, 1891), Sparassoidea (including Sparassidae and Clubionidae 
Wagner, 1887), and Gnaphosoidea (including Gnaphosidae Banks, 
1892, Platoridae Simon, 1897 [a synonym of Trochanteriidae Karsch, 
1879], and Prodidomidae Simon, 1884), as well as unassigned fam-
ilies Titanoecidae Lehtinen, 1967, Anyphaenidae Bertkau, 1878, and 
Psechridae. Lehtinen (1967) observed that many characteristics used 
traditionally to distinguish taxa were uninformative for taxa found 
outside of Europe. Lehtinen (1967) further commented that “limi-
tation of taxa at a family group level in Amaurobiides is more of a 
matter of opinion than in any other group treated in this paper…”, 
and considered them an “exceptionally homogeneous group”. 
Regarding the extensive taxonomic changes made in this work, 
Lehtinen (1967) commented that many of his families now included 
both ecribellate and cribellate species, in effect “dissolving the course 
of evolution of the cribellum”.

The next taxonomic treatment of the group was in 1973, 
when Forster and Wilton (1973) identified 2 superfamilies: 
Dictynoidea (consisting of Dictynidae, Hahniidae, Desidae, 
Cybaeidae, Argyronetidae, Amaurobioididae, and Anyphaenidae) 
and the Amaurobioidea (consisting of Amaurobiidae, Agelenidae, 
Stiphidiidae, Amphinectidae Forster & Wilton, 1973, Neolanidae 
Forster & Wilton, 1973, Psechridae, Ctenidae, and Cycloctenidae). 
The genus Aorangia Forster & Wilton 1973 established in this work 
is considered incertae sedis but allied with Amphinectidae. Forster 
and Wilton (1973) emphasized that, consistent with Lehtinen 
(1967), every family placement contained both ecribellate and cribel-
late genera and that the cribellate phase had reverted to ecribellate 
many times, so much so that sometimes this character is the main 
way to distinguish closely related species of the same genus. Further 
reading of the history of family-level classification of spiders in the 
marronoid clade may be found in Appendix A of the Supplementary 
Material.

The Ecology of Spiders in the Marronoid Clade
The marronoids are distributed worldwide, with certain clades, such 
as the Fused Paracribellar Clade (FPC; Griswold et al. 1999, Spagna 
and Gillespie 2008), restricted to, or primarily found in a certain re-
gion of the world (i.e., the FPC is primarily Australasian in distribu-
tion). Marronoids can occur in a variety of specialized microhabitats 
including tundra, deserts, caves, intertidal areas (including coral reef 
habitats), salt flats, and seasonally flooded regions (Lee and Baust 
1985, Blest and Taylor 1995, Baehr et al. 2017). Despite the con-
fusion regarding phylogenetic placement and relationships of the 

marronoid clade within the spider tree of life, many species within 
the group are of particular interest due to their diverse ecological 
adaptations. For example, Crews et al. (2020), using a Sanger-locus 
dataset and the broadest sampling of dictynids and closely related 
marronoids, identified multiple independent origins of aquatic asso-
ciations. If any single descriptor could be assigned to marronoids, it 
would be that they are extreme: including specialization in extreme 
temperatures (high and low) along huge latitudinal and elevational 
ranges, and along both aquatic and saline gradients (Crews and 
Gillespie 2014, Crews et al. 2020). For example, the genus Cicurina 
Bertkau, 1878 contains several eyeless cave specialists, with 3 species 
listed as Federally Endangered according to the US Fish & Wildlife 
Service (Endangered Species List 2023). All of these adaptations 
make the marronoids an excellent candidate model-clade for under-
standing the mechanisms allowing them to live in such novel envir-
onments (Sanger and Rajakumar 2019). Aside from the range of silk 
and web-behaviors in marronoids, there are also several species in 
4 marronoid families that exhibit some degree of social behavior: 
Agelenidae (Agelena consociata Denis, 1965, Coelotes terrestris 
(Wider 1834), Eratigena atrica (C.L. Koch, 1843)), Amaurobiidae 
(Amaurobius fenestralis (Ström, 1768), A. ferox (Walckenaer, 1830), 
A. similis (Blackwall, 1861)), Desidae (Badumna socialis (Rainbow, 
1905), Phryganoporus candidus (L. Koch, 1872)), and Dictynidae 
(Aebutina binotata Simon, 1892, Dictyna albopilosa Franganillo, 
1936, D. calcarata Banks, 1904, D. follicola Bösenberg & Strand, 
1906, Mallos gregalis (Simon, 1909), Mexitlia trivittata (Banks, 
1901)) (Jackson 1979, Riechert et al. 1986, Avilés 1993, Yip and 
Rayor 2014).

There exists a contradiction in that the natural history and 
ecology of marronoids is a wellspring, yet there remains a poor 
understanding of the systematics of the clade. This contrast is best 
described by Lehtinen (1967), who when referring to his concept 
of the Amaurobioidea (to which many families now considered 
marronoids belong), described the group as being “characterized 
by conservatism as regards general appearance”, but noted that 
the “structural variation in some details…is exceptionally large…
and the range of habitats occupied by [the] Amaurobioidea is…
wider than the ecological amplitude of any other superfamily of 
Araneomorpha”. Understanding the evolution of this group to better 
understand this broad “ecological amplitude” is of paramount im-
portance in spider biology.

Hypotheses about Potential Areas of Diversification 
in the Marronoid  Tree of Life
While the ecology of marronoids is not fully understood, there are 
several species that have aquatic habitat associations, including 
the only fully aquatic spider, Argyroneta aquatica (Clerck, 1757) 
(Dictynidae). Previous work has suggested that aquatic dictynids 
may share some degree of evolutionary history and may even 
form a clade, but thus far the evidence for this has been incon-
clusive (Spagna et al. 2010, Crews et al. 2020). In addition to the 
dictynids, aquatic associations occur in other marronoids, such as 
Desis Walckenaer, 1837 (Baehr et al. 2017). If aquatic-associated 
clades occur across the marronoids, we hypothesize that this associ-
ation may correspond to a rate shift (or shifts) because of expansion 
into a novel niche space. Bayesian Analysis of Macroevolutionary 
Mixtures (BAMM) permits the inference of diversification rates on 
phylogenetic trees (Rabosky 2014, Rabosky et al. 2014). Paired with 
a strong understanding of the biology, biogeography, or ecology of a 
clade, these analyses can provide additional context. As an example, 
Garrison et al. (2016), found that BAMM indicated the highest rates 
of diversification occurred within the RTA clade.
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Museum Genomics as a Solution
Museums serve as libraries of biodiversity on Earth. How this library 
is utilized has changed with advanced imaging technologies and the 
internet, permitting widespread digitization and dissemination of 
data. Similarly sequencing technology has revealed potential to un-
lock the genetic biodiversity in these collections, often in cases when 
the specimens were not collected with genetic data in mind (Yeates 
et al. 2016). The utility of museum specimens for phylogenetics has 
been widely recognized since Sanger sequencing of individually amp-
lified loci began to be used as a tool in phylogenetics (Wandeler et al. 
2007). This has led to efforts such as the Barcode of Life Database 
to generate a DNA sequence barcode (in metazoans, cytochrome c 
oxidase subunit I, or COI) for every species, with a corresponding 
specimen vouchered (Ratnasingham and Hebert 2007), though 
often these initiatives have relied heavily on freshly collected ma-
terial. High-throughput sequencing technologies have further al-
lowed for rapid, and comparatively less expensive, sequencing of 
whole genome data (in some cases from museum specimens), pro-
viding finer resolution for phylogenetic study (Young and Gillung 
2020). Over the past decade, pipelines using archival museum spe-
cimens have been developed for a variety of types of genomic data 
useful in phylogenomics, including restriction-site associated digest 
sequencing and sequence capture approaches (such as anchored hy-
brid enrichment (AHE) and ultraconserved elements (UCEs) (Tin 
et al. 2014, Derkarabetian et al. 2019, Zhang et al. 2019b)). In 
many cases, destructive sampling is necessary to obtain DNA. By 
obtaining whole-genome data from museum specimens, instead of 
a few loci using Sanger sequencing, we are able to maximize the 
data we can access from these specimens. Zhang et al. (2019a) pro-
posed harvesting ultraconserved elements in silico (computationally) 
from low-coverage whole genome sequencing data and provided an 
example with hexapods. We propose and hypothesize that this ap-
proach will provide a model for successfully extracting UCE loci 
and legacy Sanger loci in tandem, from archival arachnid specimens 
preserved in ethanol, further allowing for future use of genomic in-
formation like functional genes under selection that may not be used 
for phylogenetic inference.

Methods

Using an exemplar approach, 1–15 representatives from the following 
families were selected for sequencing: Agelenidae, Amaurobiidae, 
Desidae, Cybaeidae, Cycloctenidae, Dictynidae, Hahniidae, 
Stiphidiidae, and Toxopidae. These specimens were selected from a 
combination of availability of holdings at the California Academy 
of Sciences, recency of collection (to improve concentration of 
DNA extracted), and were sought to represent the diversity across 
the families, including taxa known to render some families para-
phyletic in previous analyses such as Wheeler et al. (2017) and 
Crews et al. (2020). This study contains 48 newly sequenced taxa 
(Supplementary Table S1), and paired-end raw Illumina reads are 
available under BioProject PRJNA996962 from the National 
Center for Biotechnology Information (NCBI) SRA. An additional 
56 terminals (taxa) were downloaded from the SRA in split read 
format using the SRA Toolkit version 3.0.0, and original accession 
numbers are provided in Supplementary Table S2 (Fernández et 
al. 2014, Garrison et al. 2016, Carlson and Hedin, 2017, Starrett 
et al. 2017, Wood et al. 2018, Wu et al. 2020, Kallal et al. 2021, 
Arakawa et al. 2022, Azevedo et al. 2022, Li et al. 2022). Sanger loci 
for COI, H3, 12S ribosomal RNA (12SrRNA), 16S ribosomal RNA 
(16SrRNA), 18S ribosomal RNA (18SrRNA), 28S ribosomal RNA 
(28SrRNA) were downloaded from GenBank (Supplementary Table 

S3; Croucher et al. 2004, Bi et al. 2005, Ratnasingham and Hebert 
2007, Spagna and Gillespie 2008, Blackledge et al. 2009, Copley et 
al. 2009, Miller et al. 2010, Spagna et al. 2010, Arabi et al. 2012, 
Bayer and Schönhofer 2013, Bolzern et al. 2013, Telfer et al. 2015, 
Blagoev et al. 2016, Okumura et al. 2017, Sikes et al. 2017, Wheeler 
et al. 2017, Crews et al. 2020, Macías-Hernández et al. 2020, Walker 
et al. 2020, Domènech et al. 2022, Gorneau et al. 2022, Kuralt et al. 
2022, Roslin et al. 2022, Castellucci et al. 2023) and integrated into 
a combined UCE and Sanger locus matrix as described below.

Depending on the physical size of the sample and availability of 
tissue from the specimen, anywhere from a single leg fragment to all 
4 legs on one side were removed for extraction, with all legs on one 
side generally removed from smaller specimens to maximize DNA 
yield. Legs were placed directly in 180 µl of ATL buffer with no 
maceration of the tissue performed. DNA was extracted using the 
QIAGEN QIAamp Micro DNA extraction kit (Hilden, Germany) 
modifying the standard protocol by increasing the proteinase K 
from 20 µl to 60 µl and including the optional step of adding 1 
µl of 1 ng/µl carrier RNA. The first soak in proteinase K and ATL 
buffer was completed overnight in a VWR thermomixer (Radnor, 
PA, USA) at 900 rpm at 56 °C. Extracted DNA was eluted using the 
AE elution buffer provided by the extraction kit in a single elution of 
50–55 µl. DNA was quantified using the High Sensitivity Assay Kit 
on a Qubit Fluorometer, and quality for some samples was assessed 
using 260/280 and 260/230 ratios with a Nanodrop spectropho-
tometer (both from ThermoFisher Scientific, Waltham, MA, USA). 
Starting DNA inputs ranged from 27.7 to 5,280 ng. For 41 sam-
ples, extracted DNA was sent to MedGenome (Hayward, CA, USA) 
for library preparation and Illumina NovaSeq 2 x 150 (paired-end) 
low-coverage whole genome sequencing (lcWGS). Seven samples, 
CASENT9024965 (Penestomus egazini Miller, Griswold & Haddad, 
2010), CASENT9031755 and CASENT9031736 (Saltonia incerta 
(Banks, 1898)), CASENT9112234 (Cybaeolus pusillus Simon, 
1884), CASENT9081477 and CASENT9118873 (Brommella 
punctosparsa (Oi, 1957)), and CASENT9112257 (Funny valentine 
Lin & Li, 2022) (Lin et al. 2022), were part of a library made using 
the NEBNext UltraTM II DNA Library Prep Kit (New England 
BioLabs, Ipswich, MA, USA) and sequenced by Novogene (West 
Coast: Sacramento, CA, USA) for Illumina NovaSeq 2 x 150 (paired-
end) lcWGS. For all samples except P. egazini, the standard library 
preparation protocol was modified to include 12–20 cycles of PCR 
and an additional 0.9× bead wash.

Illumina raw reads were run through the program fastp version 
0.22.0 in compressed format (Chen et al. 2018) to remove adapters, 
oligos, and perform a quality check. All reads were then assembled 
de novo (i.e., without a reference genome) using the program SPAdes 
version 3.14.1 (Bankevich et al. 2012). These reads were then con-
verted to 2bit format using the tool FaToTwoBit (Kent 2002).

Our UCE dataset included 93 ingroup terminals and eleven 
outgroups from the families Uloboridae Thorell, 1869, Deinopidae 
C.L. Koch 1850, Oecobiidae Blackwall, 1862, Hersiliidae Thorell, 
1869, Titanoecidae, Zodariidae Thorell, 1881, and Sparassidae, 
based on previously recovered putative relationships for a final 
UCE matrix of 104 terminals. Ultraconserved elements were har-
vested from the assembled low-coverage genomes using PHYLUCE 
version 1.7.1 (Faircloth 2016), with the UCE probe set for spiders 
designed by Kulkarni et al. (2020), heretofore referred to as spider 
probes, and the UCE probe set for spiders in the RTA clade designed 
by Zhang et al. (2023), heretofore referred to as RTA probes. To 
accomplish this, the following commands were run sequentially: 
phyluce_probe_run_multiple_lastzs_sqlite, phyluce_probe_slice_se-
quence_from_genomes (from PHYLUCE Tutorial III: Harvesting 
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UCE Loci From Genomes), and then the process returned to the 
extracting UCE loci step at phyluce_assembly_match_contigs_to_
probes, phyluce_assembly_get_match_counts, and phyluce_as-
sembly_get_fastas_from_match_counts, (from PHYLUCE Tutorial 
I: Extracting UCE loci). The UCEs were then assembled and aligned 
in MAFFT (Katoh and Standley 2013) using internal trimming in 
GBlocks version 0.91b (Castresana 2000, Talavera and Castresana 
2007) as recommended by the PHYLUCE documentation for lin-
eages >50 mya divergence using phyluce_align_seqcap_align, 
phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed, 
and phyluce_align_get_align_summary_data. Aligned UCE loci were 
then cleaned using phyluce_align_remove_locus_name_from_files. 
Final data matrices of 25% and 50% gene occupancy (the percent 
of terminals with sequence data for each locus) were created using 
phyluce_align_get_only_loci_with_min_taxa, and concatenated 
using phyluce_align_concatenate_alignments.

The RTA probe alignment produced a matrix of 104 taxa with 
1,277 loci at 50% gene occupancy. For the matrix representing 25% 
gene occupancy, RTA probe alignment produced a matrix of 104 
taxa with 3,164 loci. The spider probe alignment produced a matrix 
of 104 taxa with 515 loci at 50% gene occupancy. For the matrix 
representing 25% gene occupancy, the spider probe alignment pro-
duced a matrix of 104 taxa with 1,225 loci.

The partition file was converted to NEXUS format and was 
input along with the PHYLIP matrix for phylogenetic inference in 
IQ-TREE2 version 2.1.2 (Nguyen et al. 2015). Models of molecular 
evolution were selected using the built-in program ModelFinder for 
each locus (Kalyaanamoorthy et al. 2017). An IQ-TREE2 maximum 
likelihood phylogeny was inferred with 10,000 UFboot (Nguyen et al. 
2015, Hoang et al. 2018) and SH-like approximate likelihood ratio 
test (SH-aLRT) replicates using the command iqtree2 -s [PHYLIP 
matrix here] -p [NEXUS partition here] -bb 10000 -alrt 10000. For 
the 50% taxa represented per locus phylogeny, gene and site con-
cordance factors (gene concordance factor (gCF) and site concord-
ance factor (sCF), respectively) were calculated in IQ-TREE2 as in 
Minh et al. (2020). For the sCF analysis, the assumed species tree 
(the maximum likelihood tree inferred in IQ-TREE2), is compared 
with the alignment file to identify the fraction of phylogenetically 
informative sites that support a particular node using the command 
iqtree2 -te [maximum likelihood tree here] -s [PHYLIP matrix here] 
--scfl 100 --prefix concord. For the gCF analysis, individual trees for 
each locus were recovered using the command iqtree2 -s [PHYLIP 
matrix here] -S [NEXUS partition here] --prefix loci -T AUTO, 
which models each locus using ModelFinder (Kalyaanamoorthy et 
al. 2017) and infers a maximum likelihood tree using IQ-TREE2 
from this. Each individual locus tree was then compared with the 
assumed species tree (the maximum likelihood tree inferred) using 
the command iqtree2 -t [maximum likelihood tree here] --gcf loci.
treefile --prefix concord.

To broaden taxon representation, legacy Sanger loci were 
harvested from the lcWGs. Sanger sequences of Agelenopsis 
pennsylvanica (C.L. Koch, 1843) were downloaded for the following 
loci: COI (accession number KY017545), H3 (accession number 
KY018083), 12SrRNA (accession number KY015266), 16SrRNA 
(accession number KY01569), 18SrRNA (accession number 
KY016263), 28SrRNA (accession number KY016881), and used 
as reference sequences. A single FASTA file with these sequences, 
as well as every contigs.fasta file for each SPAdes assembly was 
input into Geneious Prime (2023) version 2023.0.2. The function 
“Map to Reference” in Geneious was then used to map the contigs.
fasta sequences to the A. pennsylvanica sequences, with all default 
parameters maintained (i.e., Mapper set at Geneious, Sensitivity 

set at Highest Sensitivity/Slow, Fine Tuning set at None (fast/read 
mapping)). Once all Sanger data were harvested from the genomic 
data, these data were exported as a FASTA file and integrated with 
a FASTA file containing 97 terminals with Sanger-only data down-
loaded from GenBank (Supplementary Table S3). These sequences 
were then aligned using the program AliView (Larsson 2014) which 
employs MUSCLE (Edgar 2004), and the program GBlocks ver-
sion 0.91b (Castresana 2000) for the rRNA sequences. Alignments 
were exported as a FASTA file for each gene and then imported to 
Mesquite (Maddison and Maddison 2021) for concatenation. These 
files were exported in PHYLIP format for concatenation of the 
Sanger dataset and the UCE dataset in Geneious, and a concaten-
ated file was exported from Geneious for analysis in IQ-TREE2. The 
partition file was amended to include the partition information re-
garding the additional 6 Sanger loci. The combined UCE and Sanger 
datasets resulted in 201 terminals (189 ingroup taxa), and was ana-
lyzed using the same parameters as for the UCE-only dataset above, 
including model optimization using ModelFinder (Kalyaanamoorthy 
et al. 2017).

To identify heterogeneous patterns in evolutionary rates, BAMM 
v. 2.5.0 was implemented (Rabosky 2014), consistent with the 
methods of Bond et al. (2020). The program requires an ultrametric 
tree, which was converted from the resulting maximum likelihood 
tree using the chronos function in the R package ape (Paradis and 
Schliep 2019). Priors were set using the function setBAMMprior, 
which requires an input ultrametric tree and the total number of 
taxa used in the clade. For the total number of taxa, a conversion of 
current family-level species counts from the World Spider Catalog 
with the taxonomy reflected by this work as well as as the supple-
mentary material and methods of Gorneau et al. (2023) to calcu-
late an estimate of the species diversity of each family were used.A 
control file specifying inputs included the following specifications: 
100,000,000 Markov chain Monte Carlo generations, expected 
shifts = 1.0. Specific, clade-level species estimates at the family level 
were used to determine the amount of missing representatives in the 
phylogeny, and involved 2 methods: (i) direct counts from species in 
the World Spider Catalog (2023) for each family, and (ii) estimates 
of described plus undescribed species for each family adapted from 
Gorneau et al. (2023). Two metrics were calculated to evaluate the 
effect of these 2 methods on the rate shifts inferred. Analyses were 
conducted using both the maximum likelihood tree from the RTA 
probe plus Sanger locus analysis, and a tree with Sanger only ter-
minals dropped, for a total of 4 analyses. The program was run in 
the command line and outputs were visualized using BAMMtools 
version 2.1.10 in RStudio (Rabosky et al. 2014), using the command 
getBestShiftConfiguration. R code is available from Zenodo [https://
doi.org/10.5281/zenodo.8360942].

Results

Of the newly generated sequence data, a median value of 985.5 UCEs 
were recovered (mean 880.4), ranging from 6 to 1,121 UCEs per 
sample for the spider probes. From the RTA probes, a median value 
of 2,541 UCEs were recovered (mean 2,280.9), ranging from 23 to 
2,920 UCEs per sample. Of the 56 remaining samples downloaded 
from the SRA, a median value of 456.5 UCEs was recovered (mean 
448.8), ranging from 11 to 833 UCEs per sample from the spider 
probes. From the RTA probes, a median value of 954.5 UCEs were 
recovered (mean 952.5), ranging from 29 to 1,771 UCEs per sample. 
Overall, for the spider probes, a median value of 619 UCEs was re-
covered (mean 648), ranging from 6 to 1,121 UCEs per sample. For 
the RTA probes, a median value of 1,323 UCEs was recovered (mean 
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1,565.6), ranging from 23 to 2,920 UCEs per sample. Counts per 
sample are available in Supplementary Table S4.

Phylogeny Inferred from UCEs
Rooted with the “UDOH grade” (Fernández et al. 2018), Sparassidae 
+ the marronoids were recovered as monophyletic (Figs. 3 and 4, RTA 
probe UFBoot = 100, spider probe UFBoot = 100), and marronoids 
were recovered as monophyletic (RTA probe UFBoot = 100, spider 
probe UFBoot = 100). Within the marronoids, the Amaurobiidae 
was recovered as paraphyletic with the subfamily Amaurobiinae 
recovered as monophyletic (RTA probe UFBoot = 100, spider 
probe UFBoot = 100) and sister to the rest of the marronoids, and 
the Macrobuninae Lehtinen, 1967 recovered as monophyletic and 
sister to the hahniids, cybaeids, toxopids, and dictynids (RTA probe 
UFBoot = 100, spider probe UFboot = 100). Agelenidae was re-
covered as monophyletic (RTA probe UFBoot = 100, spider probe 
UFBoot = 100), with Tamgrinia Lehtinen, 1967 sister to the rest of 
the agelenids, and subfamilies Ageleninae, less Eratigena Bolzern, 
Burckhardt & Hänggi, 2013, (RTA probe UFBoot = 100, spider probe 
UFBoot = 100) and Coelotinae F.O. Pickard-Cambridge (RTA probe 
UFBoot = 100, spider probe UFBoot = 100) were also recovered as 
monophyletic. The Cycloctenidae were recovered as monophyletic 
(RTA probe UFBoot = 100, spider probe UFBoot = 100). A group 
containing Stiphidiidae and Desidae was recovered as monophyletic 
(RTA probe UFBoot = 100, spider probe UFBoot = 100), though 
neither the stiphidiids nor the desids are reciprocally monophyletic. 
Rather, Aorangia Forster & Wilton, 1973 is recovered as sister to all 
other stiphidiids and desids. Within this clade, we recover a primarily 

stiphidiid monophyletic grouping containing Neoramia Forster & 
Wilton, 1973, Stiphidion, Forsterina Lehtinen, 1967, and Taurongia 
Hogg, 1901 and a primarily desid monophyletic grouping containing 
Desis (Desinae) as sister to all other desids (RTA probe UFBoot = 
100, spider probe UFBoot = 100). Within the desids, Ischaleinae 
Davies, 1990 (here Badumna Thorell, 1890, Paramatachia Dalmas, 
1918, and Ischalea L. Koch, 1872) was rendered paraphyletic by 
the inclusion of the Metaltellinae Lehtinen, 1967 (Metaltella simoni 
Keyserling, 1878, RTA probe UFBoot = 100, spider probe UFBoot 
= 100) and the monophyletic Amphinectinae (here Amphinecta and 
Mamoea Forster & Wilton, 1973, RTA probe UFBoot = 100, spider 
probe UFBoot = 100). A clade containing Badumna, cf. Badumna, 
Otagoa Forster, 1970, cf. Desis, and Paramatachia was recovered 
as monophyletic (RTA probe UFBoot = 100, spider probe UFBoot 
= 100). The Porteriinae Lehtinen, 1967 was recovered as monophy-
letic (here Porteria Simon, 1904, Cambridgea L. Koch, 1872, and 
Corasoides Butler, 1929, RTA probe UFBoot = 100, spider probe 
UFBoot = 100). A primary clade of Hahniidae was recovered as 
monophyletic to the exclusion of Cicurina and Mastigusa Menge, 
1854 (Koch and Berendt 1854) (RTA probe UFBoot = 100, spider 
probe UFBoot = 100). Mastigusa was recovered within the Cybaeidae 
with the spider probes (UFBoot = 66), but sister to the Toxopidae 
and Dictynidae and with low support in the RTA probes (UFBoot 
= 42). Cybaeidae, excluding Mastigusa, was recovered as mono-
phyletic (here Blabomma Chamberlin & Ivie, 1937, Cybaeozyga 
Chamberlin & Ivie, 1937, Cybaeus L. Koch, 1868, and Calymmaria 
Chamberlin & Ivie, 1937, RTA probe UFBoot = 100, spider probe 
UFBoot = 100). A group containing Cicurina (currently Hahniidae) 

Fig. 3.  Summary tree of marronoid families from maximum likelihood inference in IQ-TREE2 of UCE loci, and UCE locicombined with legacy Sanger loci. Grids 
at the nodes correspond to support values in various analyses as indicated in the legend to the lower left. Images to the right of the phylogeny are of marronoid 
spiders observed on iNaturalist, used with permission from contributors. First column, top to bottom: Amaurobius fenestralis by iNaturalist user wp-polzin, 
Cycloctenus sp. by Dustin LaMont, Badumna longinqua by Andrès Costa, Neoantistea magna by Ruan Booysen, Cicurina cicur by Julien C., Toxopsoides huttoni 
by Cameron Rodda. Second column, top to bottom: Amaurobius ferox in typical web by Caveman, Stiphidion facetum by Linda Coster, Desis martensi by 
Marcus F.C. Ng, Cybaeus sp. by Tony Iwane, Argyroneta aquatica by Ben Williams, Nigma puella male and female in web by David Gil Pérez. Third column, top 
to bottom: Agelena labyrinthica by Sabine Gasparitz, Agelena labyrinthica web by Lenni Gottlieb, Stiphidion facetum web by iNaturalist user davidkaipatiki, 
Malenella nana by Matías Gargiulo, Calymmaria persica in web by Candice Talbot, Nigma walckenaeri by Ewelina Oszust. 
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and Brommella (currently Dictynidae; RTA probe UFBoot = 100, 
spider probe UFBoot = 100) was also recovered as monophyletic. 
A group of Toxopidae + Dictynidae was recovered as monophyletic 
(RTA probe UFBoot = 100, spider probe UFBoot = 100). Toxopidae 
and Dictynidae were both recovered as reciprocally monophyletic 
(to the exclusion of Brommella, RTA probe UFBoot = 100, spider 
probe UFBoot = 100). The genus Lathys Simon, 1884 is recovered as 
sister to all other dictynids (RTA probe UFBoot = 100, spider probe 
UFBoot = 100).

The results from the 25% taxa represented per locus matrix had 
a nearly concordant topology with the 50% matrix for both the RTA 
and spider probes described above (see Appendix B, Supplemenatary 
Figures S1 and S2 comparison).

Integrated UCE and Sanger Phylogeny
The matrix integrating the 50% gene occupancy matrix of UCEs 
with Sanger data resulted in a topology largely congruent with that 
of the UCE-only trees. The additional sampling effort resulted in ex-
panded taxon sampling in support of subfamilial relationships and 
additional taxon sampling for Stiphidiidae, as well as confidently 
placing Mastigusa in Cybaeidae with high support (Figs. 3 and 4, 
Sanger and RTA probe UFBoot = 100, Sanger and spider probe 
UFBoot = 100).

Results of SH-aLRT, sCF, gCF Analysis
Except for the movement of Mastigusa in some analyses, and the 
relative position of Toxopidae and Dictynidae in 1 analysis, all 
SH-aLRT values at each familial and backbone node were greater 
than 85%.

For the RTA and spider probe 50% occupancy matrix trees, 
the sCF analysis resulted in a median value of 46.25% (mean: 
49.8%) with the highest value (97%) at the node containing both 
representatives of Metaltella simoni, and the lowest for a subset of 
Saltonia incerta (sample numbers 1746 and 1726, 0%). The gCF 
analysis for these trees resulted in a median value of 50% (mean: 
51.1%) with the highest value (100%) at the node containing all 
Saltonia incerta and the lowest for the genus Amaurobius C.L. 
Koch 1837 (0%).

For the Sanger-RTA and Sanger-spider probe 50% occupancy 
matrix trees, the sCF analysis resulted in a median value of 42.15% 
(mean: 47.5%) with the highest value (98.1%) at the node con-
taining an Amaurobius fenestralis and Am. similis, and the lowest 
for 2 Sanger-only representatives of Ischalea and a node containing 
Mamoea rufa (Berland, 1931) and M. pilosa (Bryant, 1935) (0%). 
The gCF analysis for these trees resulted in a median value of 41.7% 
(mean: 44.9%) with multiple nodes represented by each the highest 
value (100%) and the lowest value (0%).

Fig. 4.  Phylogeny of the marronoids from IQ-TREE2 maximum likelihood inference after 10,000 UFboot replicates (support are UFboot values) for 50% gene 
occupancy matrix of RTA spider probes combined with Sanger loci (COI, H3, 12SrRNA, 16SrRNA, 18SrRNA, 28SrRNA). Tips with data for UCE and Sanger loci in 
bold, and tips with only legacy Sanger loci not in bold. Families in the marronoid clade are indicated by color. Numbers at nodes correspond to SH-aLRT value/
UFBoot value. 
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BAMM
The BAMM analysis detected a single rate shift in the family 
Agelenidae, less Tegenaria Latreille, 1804 and Textrix Sundevall, 
1833, in all analyses (Fig. 5, Appendix B, Supplementary Figures S3 

and S4) except the RTA plus Sanger analysis where the proportion 
of missing taxa was based on species estimates from Gorneau et al. 
(2023) (Appendix B, Supplementary Figure S5).

Fig. 5.  Result of BAMM inference best rate shift configuration for the RTA probe plus Sanger loci maximum likelihood tree with sampling estimates based on 
species totals from the World Spider Catalog (2023), plotted in BAMMtools. Red indicates significant evolutionary rate shifts. Photo of Agelenopsis sp. uploaded 
to Flickrby Judy Gallagher, used with permission. 
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Taxonomy

Family Amaurobiidae Thorell, 1869 (new 
circumscription)

Type genus.  Amaurobius C. L. Koch, 1837 (type species: Aranea 
fenestralis Ström, 1768).

Diagnosis.  Amaurobiidae can be distinguished by having a 
“pseudocalamistrum” (Wheeler et al. 2017, Lehtinen 1967, Jocqué 
and Dippenaar-Schoeman 2006 (Figure 8F)); the trichobothrial 
bases are transversely ridged (Griswold et al. 2005 (Figures 147B, 
156D)); the conductor short, usually hyaline or partially sclerotized; 
at least 1 tegular apophysis plus a tegular median apophysis, and a 
cribellum usually divided into 2 fields of strobilate spigots (Griswold 
et al. 2005 (Figures 88A, 96A–B)).

Composition.  After removing Macrobuninae, 4 subfamilies re-
main in Amaurobiidae: Altellopsinae Lehtinen, 1967 (Neotropical), 
Amaurobiinae Thorell, 1869 (Holarctic), Arctobiinae Leech, 
1972 (Holarctic), and Ovtchinnikoviinae Marusik, Kovblyuk, & 
Ponomarev, 2010 (Palearctic).

Remarks.  See Wheeler et al. (2017).
List of included subfamilies and genera:

Altellopsinae Lehtinen, 1967: Altellopsis Simon, 1905, Yacolla 
Lehtinen, 1967, Neuquenia Mello-Leitão, 1940, Rhoicinaria 
Exline, 1950, Tugana Chamberlin, 1948.
Amaurobiinae Thorell, 1869: Amaurobius C. L. Koch, 1837, 
Auhunga Forster & Wilton, 1973, Callobius Chamberlin, 1947, 
Cybaeopsis Strand, 1907, Dardurus Davies, 1976, Daviesa 
Koçak & Kemal, 2008, Ecurobius Zamani & Marusik, 2021, 
Himalmartensus Wang & Zhu, 2008, Maloides Forster & 
Wilton, 1989 (Platnick 1989), Muritaia Forster & Wilton, 1973, 
Otira Forster & Wilton, 1973, Oztira Milledge, 2011, Pimus 
Chamberlin, 1947, Storenosoma Hogg, 1900, Taira Lehtinen, 
1967, Tymbira Mello-Leitão, 1944, Virgilus Roth, 1967, Wabarra 
Davies, 1996, Waitetola Forster & Wilton, 1973.
Arctobiinae Leech, 1972: Arctobius Lehtinen, 1967.
Ovtchinnikoviinae Marusik, Kovblyuk, & Ponomarev, 2010: 
Ovtchinnikovia Marusik, Kovblyuk & Ponomarev, 2010.

Family Macrobunidae Petrunkevitch, 1928 (new rank)

Type genus:  Macrobunus Tullgren, 1901 (type species: Myro 
backhauseni Simon, 1896).

Diagnosis.  Macrobunidae new rank can be distinguished from other 
families by usually having multiple apophysis (e.g., VTA, RvTA, 
RdTA, DTA) on the male palpal tibiae, including an RTA bearing 
an internal branch related to a stridulatory area at the cymbium; 
reduced anterior median eyes (Griswold et al. 2005, Almeida-Silva 
et al. 2015 (Figures 1A, 2A–B), Wheeler et al. 2017); retromarginal 
side of cheliceral fang furrow with 1 to several differential denticles 
(Griswold et al. 2005, Almeida-Silva et al. 2015); chilum, when pre-
sent, entire or divided; single row of tarsal trichobothria with bases 
smooth to longitudinally striate (Griswold et al. 2005 (Figure 151C, 
156E), Almeida-Silva et al. 2015), except in Chumma Jocqué, 2001 
in which it is transversely striate; one or more tegular apophyses 
plus a tegular median apophysis, and in some cases an embolar 

apophysis. Additionally, some genera have an enlarged male palpal 
tibiae, sometimes bearing an internal gland suspected to be connected 
to an opening on the DTA (Wheeler et al. 2017). Typical cribellate 
Macrobunidae have an entire cribellum; however, in some repre-
sentatives, the cribellum is divided into 2 fields of strobilate spigots 
(Griswold et al. 2005 (Figures 88A, 96A–B)). In the ecribellate 
Macrobunidae, the cribellum is lost and a colulus is present (e.g., 
Emmenomma Simon, 1884, Chresiona Simon, 1903, Chumma, 
Hicanodon Tullgren, 1901, some Macrobunus, Neoporteria Mello-
Leitão, 1943, Naevius Roth, 1967, Rubrius Simon, 1887, Urepus 
Roth, 1967, and some Yupanquia Lehtinen, 1967).

Composition.  As in Macrobuninae, sensu Wheeler et al. (2017).

Remarks.  Wheeler et al. (2017) refer to the author of Macrobuninae 
as Lehtinen 1967, but in Lehtinen (1967, p. 333), it is attributed to 
Petrunkevitch (1928). Almeida-Silva (2013, unpublished thesis) pro-
vided diagnostic characters and putative synapomorphies to allow 
the definition of Macrobuninae in Wheeler et al. (2017) and sug-
gested a provisional position within Amaurobiidae. Our phylogeny 
strongly supports the new rank of Macrobunidae, and we incorp-
orate diagnostic characters from Griswold et al. (2005), Wheeler et 
al. (2017), and Almeida-Silva et al. (2013, unpublished thesis; 2015).

List of included genera:

Anisacate Mello-Leitão, 1941, Auximella Strand, 1908, 
Callevopsis Tullgren, 1902, Cavernocymbium Ubick, 2005, 
Chresiona Simon, 1903, Chumma Jocqué, 2001, Emmenomma 
Simon, 1884, Funny Lin & Li, 2022, Hicanodon Tullgren, 1901, 
Livius Roth, 1967, Macrobunus Tullgren, 1901, Malenella 
Ramírez, 1995, Naevius Roth, 1967, Neoporteria Mello-Leitão, 
1943, Obatala Lehtinen, 1967, Parazanomys Ubick, 2005, 
Pseudauximus Simon, 1902, Retiro Mello-Leitão, 1915, Rubrius 
Simon, 1887, Tasmarubrius Davies, 1998, Tasmabrochus Davies, 
2002, Teeatta Davies, 2005, Urepus Roth, 1967, Yupanquia 
Lehtinen, 1967, Zanomys Chamberlin, 1948.

Family Desidae Pocock, 1895 (new circumscription)

Type genus:  Desis Walckenaer, 1837 (type species: Desis dysderoides 
Walckenaer, 1837; syn. of Desis maxillosa (Fabricius, 1793)).

Diagnosis.  Following Wheeler et al. (2017), representatives of 
Desidae have 3 claws, tarsal trichobothria, and also comprise cribel-
late or ecribellate genera. Additionally, the palpal tibia of the male 
can have a complex RTA (e.g., Matachiinae with multiple, separate 
processes; Metaltellinae and Amphinectinae [in part] with distal and 
proximal processes).

Composition.  Current circumscription in Wheeler et al. (2017), less 
Forsterina and Taurongia (transferred to Stiphidiidae), and with the 
inclusion of the Cedicinae Marusik, Zonstein & Koponen, 2023 to 
include 3 genera previously included in Cybaeidae (Cedicus Simon, 
1875, Cedicoides Charitonov, 1946, Paracedicus Fet, 1993).

Remarks.  See Wheeler et al. (2017).
List of included subfamilies and genera:

Amphinectinae Forster & Wilton, 1973: Amphinecta Simon, 
1898, Barahna Davies, 2003, Mamoea Forster & Wilton, 1973, 
Maniho Marples, 1959, Paramamoea Forster & Wilton, 1973, 
Rangitata Forster & Wilton, 1973.
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Cedicinae Marusik, Zonstein & Koponen, 2023: Cedicus Simon, 
1875, Cedicoides Charitonov, 1946, Paracedicus Fet, 1993.
Desinae Walckenaer, 1837: Desis Walckenaer, 1837, Poaka For-
ster & Wilton, 1973.
Ischaleinae Davies 1990: Bakala Davies, 1990, Ischalea L. Koch, 
1872, Manjala Davies, 1990.
Porteriinae Lehtinen, 1967: Baiami Lehtinen, 1967, Cambridgea 
L. Koch, 1872, Corasoides Butler, 1929, Nanocambridgea For-
ster & Wilton, 1973, Porteria Simon, 1904.
Matachiinae Lehtinen, 1967: Badumna Thorell, 1890, Goyenia For-
ster, 1970, Paramatachia Dalmas, 1918, Matachia Dalmas, 1917, 
Notomatachia Forster, 1970, Nuisiana Forster & Wilton, 1973.
Metaltellinae Lehtinen, 1967: Austmusia Gray, 1983, Buyina 
Davies, 1998, Calacadia Exline, 1960, Cunnawarra Davies, 
1998, Jalkaraburra Davies, 1998, Keera Davies, 1998, Magua 
Davies, 1998, Metaltella Mello-Leitão, 1931, Penaoola Davies, 
1998, Quemusia Davies, 1998.

Family Stiphidiidae Dalmas, 1917 (new 
circumscription)

Type genus  Stiphidion Simon, 1902 (type species: Stiphidion 
facetum Simon, 1902).

Diagnosis.  Following the inconclusive diagnosis of Wheeler et al. 
(2017), Stiphidiidae can be distinguished from other marronoids by 
having a simple posterior respiratory system of 4 tubes and may be 
cribellate or ecribellate; the cribellate taxa have posterior median 
spinneret paracribellars with multiple shafts arising from single, 
enlarged bases. We recovered Stiphidiidae as paraphyletic, and 
more thorough molecular sampling will be necessary to further de-
limit the family. Aorangia Forster & Wilton, 1973 is an ecribellate 
taxon, with trochanters deeply notched; the tarsal organ subdistal; 
the trichobothria in a double row on the tibia and a single row on 
the metatarsi and tarsi; with 2 retromarginal teeth, and usually 2 
promarginal teeth; and the male palp with processes on the distal 
retrolateral surface of the tibia. Cymbium pointed distally, without 
median apophysis well developed (see Forster and Wilton 1973).

Composition.  Current conscription + Taurongia Hogg, 1901 and 
Forsterina Lehtinen, 1967 from Desidae. The position of Aorangia 
remains dubious, and it is currently sister to Stiphidiidae and Desidae.

Remarks.  See Wheeler et al. (2017).
List of included genera:

Aorangia Forster & Wilton, 1973, Asmea Gray & Smith, 2008, 
Borrala Gray & Smith, 2004, Carbinea Davies, 1999, Couranga 
Gray & Smith, 2008, Elleguna Gray & Smith, 2008, Forsterina 
Lehtinen, 1967, Jamberoo Gray & Smith, 2008, Kababina 
Davies, 1995, Karriella Gray & Smith, 2008, Malarina Davies & 
Lambkin, 2000 (Davies and Lambkin 2000a), Marplesia Lehtinen, 
1967, Neolana Forster & Wilton, 1973, Neoramia Forster & 
Wilton, 1973, Pillara Gray & Smith, 2004, Procambridgea For-
ster & Wilton, 1973, Stiphidion Simon, 1902, Tartarus Gray, 1973, 
Taurongia Hogg, 1901, Therlinya Gray & Smith, 2002, Tjurunga 
Lehtinen, 1967, Wabua Davies, 2000 (Davies and Lambkin 2000b).

Family Cybaeidae Banks, 1892 (new 
circumscription)

Type genus:   Cybaeus L. Koch, 1868 (type species: Amaurobius 
tetricus C.L. Koch, 1839)

Diagnosis.  Cybaeidae, Cicuriniidae new rank, Toxopidae, and 
Dictynidae form a monophyletic group characterized by the pres-
ence of a complex conductor that usually surrounds the embolus 
and articulates with the tegulum by means of medial hematodochae. 
Cybaeidae can be distinguished from all other spider families by 
having 3 claws and lacking a cribellum (Bennett 1991, Griswold et 
al. 2005, Wheeler et al. 2017); a single row of tarsal trichobothria 
(Bennett 1991), and a very short distal segment of the posterior lat-
eral spinnerets (Bennett 1991), with the spigots clustered (separated 
into 2 long vertical lines in Agelenidae).

Composition.  Cybaeidae sensu Wheeler et al. (2017) and Mastigusa 
Menge, 1854 (Koch and Berendt 1854), with 3 genera previously in-
cluded in Cybaeidae (Cedicus Simon, 1875, Cedicoides Charitonov, 
1946, Paracedicus Fet, 1993) moved to Desidae in accordance with 
Marusik et al. (2023).

Remarks.  See Wheeler et al. (2017).
List of included genera:

Allocybaeina Bennett, 2020 (Bennett et al. 2020), Blabomma 
Chamberlin & Ivie, 1937, Calymmaria Chamberlin & Ivie, 1937, 
Cryphoeca Thorell, 1870, Cryphoecina Deltshev, 1997, Cybaeina 
Chamberlin & Ivie, 1932, Cybaeota Chamberlin & Ivie, 1933, 
Cybaeozyga Chamberlin & Ivie, 1937, Cybaeus L. Koch, 1868, 
Dirksia Chamberlin & Ivie, 1942, Ethobuella Chamberlin & 
Ivie, 1937, Neocryphoeca Roth, 1970, Pseudocybaeota Bennett, 
2022 (Bennett et al. 2022), Sincybaeus Wang & Zhang, 2022, 
Symposia Simon, 1898, Tuberta Simon, 1884, Vagellia Simon, 
1899, Willisus Roth, 1981, Yorima Chamberlin & Ivie, 1942.

Family Cicurinidae Kishida, 1955 (restored status)

Type genus:  Cicurina Menge, 1871 (type species: Aranea cicurea 
Fabricius, 1793).

Diagnosis.  Cicurinidae restored status can be distinguished from 
other marronoids, including Dictynidae and Hahniidae, in lacking 
a cribellum and instead having a reduced colulus with several setae; 
3 tarsal claws, and legs without scopulae or claw tufts (Murphy 
and Roberts 2015); the male palp with a variable retroventral 
tibial apophysis in proximal position (RvTA); and the RTA en-
larged (in some case as long as the cymbium length), usually with 
an RTA-conductor.

Composition.  Genera Cicurina, Brommella Tullgren, 1948, and 
Chorizomma Simon, 1872 (based on morphology).

Remarks.  Lehtinen (1967; p. 222) considered Chorizomma a 
junior synonym of Cicurina and part of the tribe Chorizommatini, 
(Dictynidae: Cicurininae), to include Chorizomma sylvicolus (now 
Blabomma sylvicola (Chamberlin & Ivie, 1937), Cybaeidae). de 
Blauwe (1973) re-established Chorizomma, and it was then trans-
ferred by Murphy and Roberts (2015) to Cicurinidae. Wheeler et 
al. (2017) transferred all Cicurina to Hahniidae because an undeter-
mined Holarctic Cicurina was found moderately supported as sister 
to all Hahniidae. Neither Brommella nor Chorizomma were included 
or mentioned in Wheeler et al. (2017) so the movement of Cicurina 
puts the placement of the non-type genera of the Cicuriniinae, 
Brommella and Chorizomma, into question. The first inclusion of 
Brommella in a molecular phylogeny suggested an unsupported rela-
tionship with Cicurina and Lathys (see Crews et al. 2020). Previously, 
Brommella was originally placed in Cicurininae with Cicurina and 
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Lathys and several genera now placed in Cybaeidae (Lehtinen 1967, 
Crews et al. 2020). Our phylogeny strongly supports the monophyly 
of Brommella + Cicurina and the new rank of Cicurinidae.

List of included genera:

Cicurina Menge, 1871, Brommella Tullgren, 1948, Chorizomma 
Simon, 1872.

Family Dictynidae O. Pickard-Cambridge, 1871 (new 
circumscription)

Type genus:  Dictyna Sundevall, 1833 (type species: Aranea benigna 
Walckenaer, 1802).

Diagnosis.  See Wheeler et al. (2017)

Composition.  Dictynidae sensu Wheeler et al. (2017), less Brommella, 
moved to Cicurinidae, and Funny, moved to Macrobunidae.

Remarks.  See Wheeler et al. (2017).
List of included genera:

Adenodictyna Ono, 2008, Aebutina Simon, 1892, Ajmonia 
Caporiacco, 1934, Altella Simon, 1884, Anaxibia Thorell, 
1898, Arangina Lehtinen, 1967, Archaeodictyna Caporiacco, 
1928, Arctella Holm, 1945, Argenna Thorell, 1870, Argennina 
Gertsch & Mulaik, 1936, Argyroneta Latreille, 1804, 
Atelolathys Simon, 1892, Banaidja Lehtinen, 1967, Bannaella 
Zhang & Li, 2011, Brigittea Lehtinen, 1967, Callevophthalmus 
Simon, 1906, Chaerea Simon, 1884, Clitistes Simon, 1902, 
Devade Simon, 1884, Dictyna Sundevall, 1833, Dictynomorpha 
Spassky, 1939, Emblyna Chamberlin, 1948, Hackmania 
Lehtinen, 1967, Helenactyna Benoit, 1977, Hoplolathys 
Caporiacco, 1947, Iviella Lehtinen, 1967, Kharitonovia 
Esyunin, Zamani & Tuneva, 2017, Lathys Simon, 1884, Mallos 
O. Pickard-Cambridge, 1902, Marilynia Lehtinen, 1967, 
Mashimo Lehtinen, 1967, Mexitlia Lehtinen, 1967, Mizaga 
Simon, 1898, Myanmardictyna Wunderlich, 2017, Nigma 
Lehtinen, 1967, Paradictyna Forster, 1970, Paratheuma Bryant, 
1940, Penangodyna , Phantyna Chamberlin, 1948, Qiyunia 
Song & Xu, 1989, Rhion O. Pickard-Cambridge, 1871, Saltonia 
Chamberlin & Ivie, 1942, Scotolathys Simon, 1884, Shango 
Lehtinen, 1967, Sudesna Lehtinen, 1967, Tahuantina Lehtinen, 
1967, Tandil Mello-Leitão, 1940, Thallumetus Simon, 1893, 
Tivyna Chamberlin, 1948, Tricholathys Chamberlin & Ivie, 
1935, Viridictyna Forster, 1970.

Discussion

This work contains the broadest taxon sampling of the marronoid 
spiders since Crews et al. (2020), the densest sampling for 
phylogenomic inference, and provides a fully resolved, and well-
supported backbone for the clade. The monophyly of the group 
is maintained, and the monophyly of Agelenidae, Cycloctenidae, 
Cybaeidae, and Toxopidae is supported. Other families, such as 
Amaurobiidae, Desidae, Dictynidae, Hahniidae, and Stiphidiidae 
are recovered as paraphyletic as currently defined and are herein 
relimited for consistency between the taxonomy and phylogeny. 
The relationships in this work differ in slight but significant ways 
from the topology of marronoids recovered by Wheeler et al. 
(2017). Consistent with Wheeler et al. (2017), Amaurobiinae is re-
covered as sister to the rest of the marronoids. Agelenidae, however, 

is sister to the clade containing the rest of the marronoids, except 
Amaurobiinae, which differs from Wheeler et al. (2017). Wheeler et 
al. (2017) recovered (Amaurobiinae + ((Agelenidae + (Macrobuninae 
+ (Cybaeidae + (Hahniidae + (Toxopidae + Dictynidae))))) + 
(Cycloctenidae + (Stiphidiidae + Desidae)))). In short, our well-
supported superfamilial groupings, along the marronoid back-
bone, differ from those recovered with weak support in Wheeler et 
al. (2017), which had single-digit bootstrap support in some cases. 
Combined with the expanded taxon sampling from legacy Sanger 
loci, the taxon sampling in each of these families is sufficient to re-
solve their phylogenetic position and provide a hypothesis for cir-
cumscribing families that were, prior to this study, paraphyletic.

The additional taxon sampling, and the integration of legacy 
Sanger loci added resolution to the paraphyly of Stiphidiidae and 
Desidae. Forsterina and Taurongia are recovered not as desids but 
instead as stiphidiids, and the position of Aorangia as sister to a 
clade containing all other Stiphidiidae and Desidae in all trees ren-
ders the genus of uncertain familial placement (incertae sedis). We 
have elected, for the moment, to keep Aorangia in Stiphidiidae be-
cause we had a sole representative taxon, and additional data may 
further clarify its placement. The alternative solution would be to 
synonymize Stiphidiidae with Desidae, considering all taxa sister to 
the Cycloctenidae as desids, but we feel this solution is too broad 
as it fails to fully consider the wide morphological range of diver-
sity and phylogenetic structure represented in these families. At the 
other extreme, Wheeler et al. (2017) considered only retaining Desis 
in Desidae, and potentially including Poaka (Forster & Wilton, 
1973). In this scenario, all other taxa would need to be relimited 
to the Amphinectidae. We refrained from doing so to avoid creating 
monogeneric (or nearly monogeneric) families.

As a result of this work, we re-establish the family Cicurinidae 
Kishida 1955 to include the genera Brommella (from Dictynidae), 
Chorizomma, and Cicurina (from Hahniidae). We also transfer the 
genus Mastigusa from Hahniidae to Cybaeidae, consistent with re-
cent work by Castellucci et al. (2023). Macrobunidae Petrunkevitch, 
1928 n. rank is herein elevated, and regarded as having priority over 
Chummidae. It was previously argued by Jocqué and Alderweireldt 
(2018) that Chummidae has priority over Macrobunidae, but this is 
incorrect. Although Chresiona is sister to Chumma in our analysis 
(consistent with Miller et al. 2010, Wheeler et al. 2017), rather than 
all other macrobunines (as in Dimitrov et al. 2017), the currently 
monogeneric “Chummidae” is nested within the macrobunines that 
have been described since Lehtinen (1967). Finally, our work indi-
cates unquestionably that Lathys are reciprocally monophyletic and 
sister to all other dictynids. The branch length of Lathys further indi-
cates that this is a derived group that warrants further investigation, 
but here we denote them as a dictynid subfamily Lathysinae.

The lcWG sequencing strategy implemented here is of particular 
note, and we suggest that it is highly effective for UCE phylogenomics, 
particularly for organisms with a relatively small genome size (<10 
Gb) (Zhang et al. 2019). By indiscriminately sequencing genomic 
DNA from our samples at a target coverage of 10×, we were able 
to extract UCE loci in silico, extract legacy Sanger loci (including 
12SrRNA, 16SrRNA, 18SrRNA, 28SrRNA, H3, and COI), and still 
retain the whole genome sequences for further genomic studies. This 
approach maximizes the utility of museum specimens, which may 
not have the high molecular weight DNA needed for traditional 
UCEs or AHE sequencing. An indiscriminate sequencing approach 
using short read technologies (e.g., Illumina) plays to the strengths 
of the fragmented archival DNA in museum collections preserved 
without the intent for use in DNA sequencing, as well as maxi-
mizes the “cost” of the destructive sampling often necessary for 
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DNA extraction. Furthermore, the UCEs recovered from this lcWGS 
strategy markedly exceed the available sequence data from the SRA, 
which variously include transcriptomic, mitochondrial genome, and 
other types of genomic data.

While our matrices represent a 50% gene occupancy at a max-
imum and 25% at a minimum (and less in cases with Sanger-only 
data) for both the RTA and spider probes, we are confident that 
the proportion of missing data has had a negligible impact on the 
backbone and family-level relationships and diagnoses within the 
group. Our evidence for this is the lack of significant differences 
between the 25% gene occupancy matrix and the 50% gene oc-
cupancy matrix, the fact that the Sanger-only legacy data (which 
in many cases include less than 6 loci) are recovered at logical 
positions within the phylogeny, and that previous work has high-
lighted that although missing data may be a problem that is not 
fully understood, biases against missing data may be overstated 
whereas the quality of the data present and the models may be 
more important (Philippe et al. 2004, Roure et al. 2013, Hosner 
et al. 2016). The analysis by Kulkarni et al. (2020) recovered con-
sistent topologies with high support at gene occupancies as low 
as 10%.

The marronoid clade represents a remarkable showcase of some 
of the most interesting ecological and behavioral phenotypes in 
spiders. Our expectation, considering the amount of ecological di-
versity in this group and how this could contribute to potential di-
versification, was that we would see evidence of a rate shift in either 
the aquatic-associated Desidae or the aquatic-associated Dictynidae. 
However, we did not observe any rate shift in either of these groups. 
It is possible the generic sampling of the Dictynidae, as well as the 
sampling of aquatic species in this family, is simply too low in the 
present work to detect evidence of any evolutionary rate shift dy-
namics. This is understandable given our global sampling fraction 
ranges from 4.1% based on family-level species estimates adapted 
from Gorneau et al. (2023) or 6.8% in terms of described species for 
this speciose group. The rate shift in the Agelenidae was observed in 
3 of the 4 analyses, though it is possible the exclusion of Tegenaria 
and Textrix from this rate shift was due to the fact that there were 
only Sanger loci available for these taxa. However, a rate shift in 
this group is not unreasonable given this is the most speciose group 
of marronoid spiders that make use of a distinctively funnel-shaped 
sheet web.

Prior to this study, a morphological and molecular basis for the 
relationships of many marronoid groups was lacking. The mor-
phological characteristics observed across the group include non-
synapomorphic traits, or traits that we currently understand to be 
non-monophyletic (e.g., the cribellum, see Ubick et al. 2005, Wheeler 
et al. 2017, the present study). This work provides, for the first time, 
a well-resolved phylogenetic hypothesis, as well as morphological 
diagnosis for each of the (now) eleven families in the clade. However, 
a morphological synapomorphy for the marronoid clade remains 
undiscovered.
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