

AG
T

*Algebraic & Geometric
Topology*

Volume 25 (2025)

Multitwists in big mapping class groups

GEORGE DOMAT

FEDERICA FANONI

SEBASTIAN HENSEL

Multitwists in big mapping class groups

GEORGE DOMAT
FEDERICA FANONI
SEBASTIAN HENSEL

We show that the group generated by multitwists (ie products of powers of twists about disjoint non-accumulating curves) doesn't contain the Torelli group of an infinite-type surface. As a consequence, multitwists don't generate the closure of the compactly supported mapping class group of a surface of infinite type.

20F65, 57K20

1 Introduction

The mapping class group of a surface of finite type has been thoroughly studied for decades. In particular, multiple *simple* sets of generators are known. The Dehn–Lickorish theorem [7; 11], in combination with the Birman exact sequence [4], shows that the pure mapping class group of a finite-type surface can be generated by finitely many Dehn twists about nonseparating curves, and we need to add finitely many half-twists to generate the full mapping class group. Humphries [10] proved that, if the surface is closed and of genus $g \geq 2$, $2g + 1$ Dehn twists about nonseparating curves suffice to generate the mapping class group, and moreover this number is optimal: fewer than $2g + 1$ Dehn twists cannot generate. Other results show that mapping class groups can be generated by two elements (see eg [17]), by finitely many involutions or by finitely many torsion elements (see eg [5]).

In the case of surfaces of infinite type, the (pure) mapping class group is uncountable, so in particular it is not finitely (nor countably) generated. For some of these surfaces the mapping class group is generated by torsion elements, or even by involutions (see [6; 12]), while for other surfaces they aren't (see [6; 8; 12]). To the best of our knowledge, no other generating set is known.

Note that the (pure) mapping class group of a surface of infinite type is endowed with an interesting topology, induced by the compact–open topology on the group of homeomorphisms of the surface. So it is interesting to talk about *topological* generating sets (sets whose *closure* of the group they generate is the (pure) mapping class group). It follows from the finite-type results that Dehn twists topologically generate the closure of the compactly supported mapping class group. Moreover, Patel and Vlamis [14] proved that the pure mapping class group of a surface is topologically generated by Dehn twists if the surface has at most one nonplanar end, and by Dehn twists and maps called *handle shifts* otherwise.

Our goal here is to investigate a natural candidate for a set of generators of the closure of the compactly supported mapping class group of a surface: the collection of *multitwists*. A multitwist is a (possibly infinite) product of powers of Dehn twists about a collection of simple closed curves that do not accumulate anywhere in the surface. Our main result is a negative one, and it follows from a nongeneration result for the Torelli group:

Theorem A *Let S be an infinite-type surface. Then the subgroup of the mapping class group of S generated by multitwists doesn't contain the Torelli group. In particular, multitwists don't generate the closure of the compactly supported mapping class group.*

The idea of the proof is to produce an explicit element in the Torelli group that is not in the subgroup generated by multitwists. This element is built by taking an infinite product of increasing powers of partial pseudo-Anosov homeomorphisms supported on disjoint finite-type subsurfaces. We use work of Bestvina, Bromberg and Fujiwara [3] to certify that the mapping class we construct is not in the subgroup generated by multitwists.

Theorem A also begs the following question:

Question B *What is the subgroup generated by the collection of multitwists? Is there an alternative, more explicit description of its elements?*

Furthermore, our theorem shows that the subgroup generated by the collection of multitwists is not a closed subgroup of the mapping class group. Therefore, it does not immediately inherit a Polish topology from the topology on the mapping class group.

Question C *Is the subgroup generated by the collection of multitwists a Polish group?*

Acknowledgements The authors would like to thank Mladen Bestvina for his suggestion of how to remove an unnecessary assumption in the main theorem. They are also grateful to the organizers of the *Big mapping class groups and diffeomorphism groups* conference, during which most of the work was done. They thank the referees for their useful comments. Fanoni thanks Peter Feller for useful conversations.

Domat was supported in part by the Fields Institute for Research in Mathematical Sciences, NSF RTG-1745670 and NSF DMS-2303262.

2 Preliminaries

Here a surface is a connected orientable Hausdorff second countable two-dimensional manifold without boundary unless otherwise stated. One notable exception is any subsurface, which will always have compact boundary. Boundary components of subsurfaces are assumed to be homotopically nontrivial, but are allowed to be homotopic to a puncture.

Surfaces are *of finite type* if their fundamental groups are finitely generated and *of infinite type* otherwise. A surface S is *exceptional* if it has genus zero and at most four punctures, or genus one and at most one puncture, otherwise it is *nonexceptional*.

The *mapping class group* of a surface S is the group $\mathrm{MCG}(S)$ of orientation-preserving homeomorphisms of S up to homotopy. The *pure mapping class group* $\mathrm{PMCG}(S)$ is the subgroup of $\mathrm{MCG}(S)$ fixing all ends and—if there are any—boundary components, and $\overline{\mathrm{MCG}_c(S)}$ denotes the closure of the subgroup generated by compactly supported mapping classes. The *Torelli group* $\mathcal{I}(S)$ is the subgroup of the mapping class group given by elements acting trivially on the first homology group of the surface.

A pseudo-Anosov mapping class f of a finite-type surface is *chiral* if f^k is not conjugate to f^{-k} for every $k \neq 0$. We will need chiral pseudo-Anosovs in the Torelli group. The existence of such is likely well known, but since we could not find a proof in the literature we include the following:

Lemma 1 *Let Σ be a finite-type nonexceptional surface with boundary. Then there is a mapping class $\varphi \in \mathrm{MCG}(\Sigma)$ with the following properties:*

- (i) φ is pseudo-Anosov,
- (ii) φ is chiral, and
- (iii) if Σ is a subsurface of a surface S , so that each boundary component of Σ is separating in S , then φ acts trivially on the first homology of S .

Proof Begin by taking an arc ρ joining a boundary component c of Σ to itself, which is filling and nullhomologous in $H_1(\Sigma, \partial\Sigma)$. By Scott's theorem [16] there is a cover of Σ in which ρ lifts to a simple arc.

By taking a further cover, we can find a cover $\hat{\Sigma} \rightarrow \Sigma$ such that ρ lifts to a simple arc $\hat{\rho}$ in $\hat{\Sigma}$ joining two different boundary components \hat{c}_1 and \hat{c}_2 of $\hat{\Sigma}$, and such that the cover is characteristic (ie every homeomorphism of Σ lifts).

Denote by $\hat{\delta}$ the boundary of a regular neighbourhood of $c_1 \cup \hat{\rho} \cup c_2$. Observe that since one complementary component of $\hat{\delta}$ is a pair of pants, and the other one is not, no orientation-preserving homeomorphism of $\hat{\Sigma}$ can preserve $\hat{\delta}$ setwise while inverting its orientation.

Now, let γ be an oriented loop on Σ based at a point $p \in c$, which lifts in $\hat{\Sigma}$ to a curve freely homotopic to $\hat{\delta}$. We claim that the boundary-push P_γ defined by γ has the desired property.

First, γ is filling (since ρ was filling), and so the same proof as that of Kra's theorem (see [9, Theorem 14.6]) shows that $\varphi = P_\gamma$ is pseudo-Anosov, proving (i).

Next, boundary pushes defined by nullhomologous loops are in the Torelli group of Σ . If Σ is a subsurface of a surface S and all of the boundary components of Σ are separating in S , the Torelli group of Σ is contained in the Torelli group of S , showing (iii). (See [15] for a study of Torelli groups of subsurfaces without assuming the boundary components to be separating.)

Finally, note that conjugating a boundary-push simply has the effect of changing the pushing curve:

$$fP_\gamma f^{-1} = P_{f(\gamma)}.$$

Furthermore, push maps are equal if and only if the defining curves are homotopic (by the Birman exact sequence). Thus, if $f\varphi^i f^{-1} = \varphi^j$, then $f(\gamma)^i = \gamma^j$. Since f preserves primitivity in the fundamental group, we only have to exclude the case $i = 1$ and $j = -1$. But if $f\varphi f^{-1} = \varphi^{-1}$, there is a lift \hat{f} of f which preserves $\hat{\delta}$ and inverts its orientation, which is impossible, as discussed above. Hence (ii) holds. \square

A *curve* on a surface is the homotopy class of an essential (ie not homotopic to a point, a puncture or a boundary component) simple closed curve. Given a curve α , we denote by τ_α the Dehn twist about α .

An *integral weighted multicurve* μ is a formal sum $\sum_{i \in I} n_i \alpha_i$, where the α_i are pairwise disjoint curves not accumulating anywhere and the n_i are integers. Given an integral weighted multicurve μ , we define τ_μ to be the mapping class

$$\tau_\mu = \prod_{i \in I} \tau_{\alpha_i}^{n_i}.$$

Such a mapping class is called a *multitwist*.

We say that an integral weighted multicurve is *finite* if I is finite (ie it contains finitely many curves). An integral weighted multicurve ν is a *submulticurve* of an integral weighted multicurve $\mu = \sum_{i \in I} n_i \alpha_i$ if $\nu = \sum_{i \in J} n_i \alpha_i$, where $J \subset I$.

Given a surface with boundary, an *arc* is the homotopy class (relative to the boundary) of a simple arc that cannot be homotoped into the boundary. We denote by $\mathcal{C}(S)$ the *curve and arc graph* of a surface S , where vertices are curves and, if $\partial S \neq \emptyset$, arcs, and two vertices are adjacent if they have disjoint representatives.

For any two subsurfaces A and B of S that have an essential intersection, the *subsurface projection* of B to A is the subset $\partial B \cap A \subset \mathcal{C}(A)$. This projection is denoted by $\pi_A(B)$. For any $\beta \in \mathcal{C}(B)$ we also define $\pi_A(\beta) := \pi_A(B)$. These projections always have bounded diameter [13] and given any intersecting subsurfaces $A, B, C \subset S$ we define the *projection distance* as

$$d_A(B, C) := \text{diam}_{\mathcal{C}(A)}(\pi_A(B) \cup \pi_A(C)).$$

For a subgroup $G < \text{MCG}(S)$, we say that a subsurface $K \subset S$ is G -*nondisplaceable* if gK and K cannot be homotoped to be disjoint for any $g \in G$. Note that if a subsurface K is G -nondisplaceable, subsurface projections are always defined between G -translates of K .

3 Proof of Theorem A

Fix an infinite-type surface S , different from the Loch Ness monster.

Figure 1 shows some examples of $\overline{\text{MCG}_c(S)}$ -nondisplaceable subsurfaces that will be used in the following lemma.

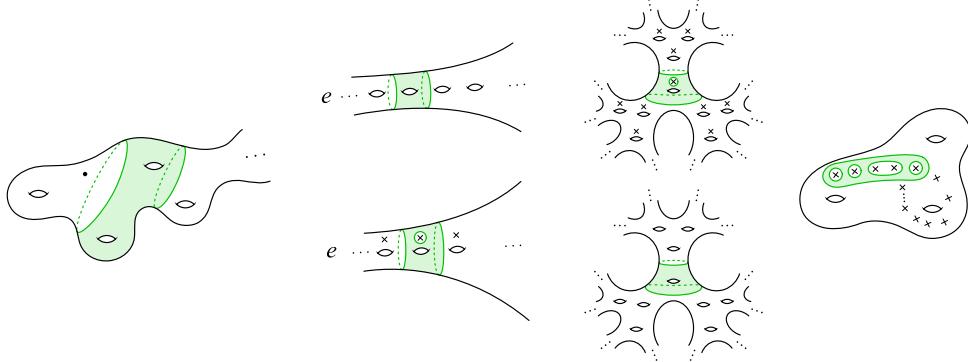


Figure 1: The subsurfaces of Lemma 2.

Lemma 2 *If S is an infinite-type surface, different from the Loch Ness monster, it contains infinitely many finite-type $\overline{\text{MCG}_c(S)}$ -nondisplaceable subsurfaces, which are pairwise disjoint and nonaccumulating. Moreover, the subsurfaces can be chosen to be nonexceptional.*

Proof We split the proof into cases. In each we describe a finite-type $\overline{\text{MCG}_c(S)}$ -nondisplaceable subsurface such that we can clearly find infinitely many copies with the required properties.

Case 1 Suppose S is the once-punctured Loch Ness monster. Then note that any separating curve α which separates the two ends cannot be mapped disjointly from itself by any mapping class (because it bounds a nondisplaceable subsurface). As a consequence, for any $g \geq 1$, any genus- g subsurface with two boundary components separating the two ends is nondisplaceable.

Case 2 Suppose S has at least two nonplanar ends. Note that by the argument in [14, Proposition 6.3], any separating curve such that both complementary components have infinite genus is $\overline{\text{MCG}_c(S)}$ -nondisplaceable.

- If S has at least one nonplanar end—denoted by e —which is isolated in $\text{Ends}(S)$, for any $g \geq 1$, any genus- g subsurface with two separating boundary components, each of which cuts off a surface containing only the end e , is $\overline{\text{MCG}_c(S)}$ -nondisplaceable.
- If S has at least one nonplanar end—denoted by e —which is isolated in $\text{Ends}_g(S)$ but not in $\text{Ends}(S)$, for any $g \geq 1$, any genus- g subsurface with three separating boundary components, two of which cut off a subsurface whose only nonplanar end is e and the third one cuts off a planar surface, is $\overline{\text{MCG}_c(S)}$ -nondisplaceable.
- If no nonplanar end is isolated in $\text{Ends}_g(S)$, $\text{Ends}_g(S)$ is a Cantor set. If it contains an end e that is not accumulated by planar ends, we choose a genus- g subsurface with two separating boundary components and no planar ends, so that each complementary component has infinite genus, for $g \geq 1$. Otherwise, we choose a genus- g subsurface with three separating boundary components, so that two complementary components have infinite genus and one is a planar subsurface, for $g \geq 1$.

Case 3 Suppose S has no nonplanar ends. We can then choose any n -holed sphere whose boundary curves are separating, so that there is at least one end in each complementary component, for $n \geq 5$. \square

Fix a finite-type $\overline{\mathrm{MCG}_c(S)}$ -nondisplaceable subsurface $\Sigma \subset S$ and let \mathcal{Y} be the $\overline{\mathrm{MCG}_c(S)}$ -orbit of Σ . As Σ is $\overline{\mathrm{MCG}_c(S)}$ -nondisplaceable, any two surfaces in \mathcal{Y} have intersecting boundaries—in particular, subsurface projections π_A between surfaces in \mathcal{Y} are always defined. Moreover, by [2; 13], there is some constant $\mu > 0$ such that for every $A, B, C \in \mathcal{Y}$

- at most one of $d_A(B, C)$, $d_B(A, C)$ and $d_C(A, B)$ is bigger than μ , and
- $|\{D \in \mathcal{Y} \mid d_D(A, B) > \mu\}|$ is finite.

See [8, Lemma 3.8] for details on checking these in the infinite-type case. We can therefore run the projection complex machinery to deduce (see [3, Proposition 2.7]):

Proposition 3 $\overline{\mathrm{MCG}_c(S)}$ acts by isometries on a hyperbolic graph $\mathcal{C}(\mathcal{Y})$ so that for every $A, B \in \mathcal{Y}$ with $A \neq B$:

(1) $\mathcal{C}(A)$ is isometrically embedded as a convex set in $\mathcal{C}(\mathcal{Y})$ and the images of $\mathcal{C}(A)$ and $\mathcal{C}(B)$ are disjoint.

(2) The inclusion

$$\bigsqcup_{C \in \mathcal{Y}} \mathcal{C}(Y) \hookrightarrow \mathcal{C}(\mathcal{Y})$$

is $\overline{\mathrm{MCG}_c(S)}$ -equivariant.

(3) The nearest-point projection to $\mathcal{C}(A)$ sends $\mathcal{C}(B)$ to a bounded set, which is at uniformly bounded distance from $\pi_A(B)$.

(4) If $g \in \overline{\mathrm{MCG}_c(S)}$ is supported on A and the restriction is pseudo-Anosov, and Γ is the subgroup of $\overline{\mathrm{MCG}_c(S)}$ given by elements leaving A invariant and preserving the stable and unstable foliations of g , then $(\overline{\mathrm{MCG}_c(S)}, \mathcal{C}(\mathcal{Y}), g, \Gamma)$ satisfies WWPW.

Furthermore, the same proof as [3, Lemma 2.8] yields:

Lemma 4 Let τ be a multitwist about a finite multicurve μ . Then for every $A \in \mathcal{Y}$ there is a vertex v_A of $\mathcal{C}(\mathcal{Y})$ such that the nearest-point projection to $\mathcal{C}(A)$ of the τ orbit of v_A is uniformly bounded. In particular, if τ is hyperbolic, its virtual quasiaxis can intersect $\mathcal{C}(A)$ only in a bounded-length segment.

Proof If $\mu \cap A = \emptyset$, τ fixes any element of $\mathcal{C}(A)$, so it's elliptic. Otherwise, let v_A be an element of $A \cap \mu \neq \emptyset$. Then the nearest-point projection of $\tau^n(v_A)$ to $\mathcal{C}(A)$ is a uniformly bounded distance from $\pi_A(\tau^n(v_A))$, which is defined to be $\pi_A(\partial(\tau^n(A)))$. But this is at bounded distance from $\tau^n(\mu) \cap A = \mu \cap A$, so the projection of $\tau^n(v_A)$ is at uniformly bounded distance from $A \cap \mu$ for every n . This proves the first statement of the lemma. The second statement follows as in the proof of [3, Lemma 2.8]. \square

As a consequence, we can apply [3, Corollary 3.2] to deduce:

Proposition 5 *Let Σ be a $\overline{\text{MCG}_c(S)}$ -nondisplaceable subsurface of finite type and f a mapping class that is a pure chiral pseudo-Anosov mapping class of Σ of sufficiently large translation length and the identity on the complement. Then there is a homogeneous quasimorphism $\varphi: \overline{\text{MCG}_c(S)} \rightarrow \mathbb{R}$ of defect $\Delta \leq 12$ such that $|\varphi(f^n)| \rightarrow \infty$ and $|\varphi(\tau)| \leq \Delta$ for every multitwist τ and every element τ acting elliptically on $\mathcal{C}(\overline{\text{MCG}_c(S)} \cdot \Sigma)$.*

Proof Let $\mathcal{Y} = \overline{\text{MCG}_c(S)} \cdot \Sigma$. The bounds on $\varphi(f)$ and $\varphi(\tau)$, for τ acting elliptically on $\mathcal{C}(\mathcal{Y})$, are given by [3, Corollary 3.2]. The only thing we need to check is that $|\varphi(\tau)| \leq \Delta$ for every multitwist τ . But a multitwist τ associated to an integral weighted multicurve $\mu = \sum_{i \in I} n_i \alpha_i$ can be written as a product of two multitwists, τ_1 and τ_2 , where τ_1 is associated to the integral weighted multicurve

$$\mu_1 = \sum_{i: \alpha_i \cap \Sigma \neq \emptyset} n_i \alpha_i$$

and τ_2 to the integral weighted multicurve

$$\mu_2 = \sum_{i: \alpha_i \cap \Sigma = \emptyset} n_i \alpha_i.$$

Then τ_2 acts elliptically on $\mathcal{C}(\mathcal{Y})$, so $\varphi(\tau_2) = 0$. By Lemma 4, if τ_1 doesn't act elliptically on $\mathcal{C}(\mathcal{Y})$, its virtual quasiaxis has small projections. Thus, by the construction of the quasimorphism φ in [3, Proposition 3.1], if the translation length of f is larger than the projection bound from Lemma 4, we have $\varphi(\tau_1) = 0$. As a consequence $|\varphi(\tau)| \leq \Delta$. \square

Proof of Theorem A Suppose first that S is not the Loch Ness monster. We will construct an element F of $\mathcal{I}(S)$ which is not a finite product of multitwists. Since F is in $\overline{\text{MCG}_c(S)}$ (by construction, or by the fact that $\mathcal{I}(S) \subset \overline{\text{MCG}_c(S)}$ by [1]), this will also show that multitwists don't generate the closure of the compactly supported mapping class group. By Lemma 2, we can find pairwise disjoint nonaccumulating $\overline{\text{MCG}_c(S)}$ -nondisplaceable finite-type subsurfaces Σ_n . For every n , fix a mapping class F_n of S supported on Σ_n which restricts to a chiral pseudo-Anosov mapping class in the Torelli group of Σ_n . Then for any n , by Proposition 5 (after potentially passing to a power in order to increase the translation length), we can find a homogeneous quasimorphism $\varphi_n: \overline{\text{MCG}_c(S)} \rightarrow \mathbb{R}$ with defect at most $\Delta = 12$ that is unbounded on powers of F_n and bounded by Δ on all multitwists or elements acting elliptically on $\mathcal{C}(\overline{\text{MCG}_c(S)} \cdot \Sigma_n)$. Choose powers k_n so that

$$|\varphi_n(F_n^{k_n})| \rightarrow \infty,$$

which exist because by assumption $|\varphi_n(F_n)| > 1$ for every n . Define

$$F = \prod_{n \in \mathbb{N}} F_n^{k_n}.$$

For every n , $\prod_{m \neq n} F_m^{k_m}$ acts elliptically on $\mathcal{C}(\overline{\text{MCG}_c(S)} \cdot \Sigma_n)$, so

$$|\varphi_n(F)| = \left| \varphi_n \left(F_n^{k_n} \circ \prod_{m \neq n} F_m^{k_m} \right) \right| \geq |\varphi_n(F_n^{k_n})| - \Delta \rightarrow \infty.$$

If F were a product of k multitwists τ_1, \dots, τ_k , then for any n ,

$$|\varphi_n(F)| = |\varphi_n(\tau_k \circ \dots \circ \tau_1)| \leq 2k\Delta,$$

which gives a contradiction.

Suppose now that S is the Loch Ness monster and fix a point $x \in S$. By the Birman exact sequence [8, Appendix], the kernel of the surjection

$$\mathcal{I}(S \setminus \{x\}) \rightarrow \mathcal{I}(S)$$

is the fundamental group of S and is therefore generated by twists. In particular, if $\mathcal{I}(S)$ is contained in the subgroup generated by multitwists, so is the Torelli group of the once-punctured Loch Ness monster, a contradiction. By [14], $\text{MCG}(S) = \overline{\text{MCG}_c(S)}$ and $\text{MCG}(S \setminus \{x\}) = \overline{\text{MCG}_c(S \setminus \{x\})}$, so the same argument applied to $\text{MCG}(S)$ and $\text{MCG}(S \setminus \{x\})$ proves the result for the closure of the compactly supported mapping class group. \square

References

- [1] **J Aramayona, T Ghaswala, A E Kent, A McLeay, J Tao, R R Winarski**, *Big Torelli groups: generation and commensuration*, Groups Geom. Dyn. 13 (2019) 1373–1399 MR Zbl
- [2] **J A Behrstock**, *Asymptotic geometry of the mapping class group and Teichmüller space*, Geom. Topol. 10 (2006) 1523–1578 MR Zbl
- [3] **M Bestvina, K Bromberg, K Fujiwara**, *Stable commutator length on mapping class groups*, Ann. Inst. Fourier (Grenoble) 66 (2016) 871–898 MR Zbl
- [4] **J S Birman**, *Mapping class groups and their relationship to braid groups*, Comm. Pure Appl. Math. 22 (1969) 213–238 MR Zbl
- [5] **T E Brendle, B Farb**, *Every mapping class group is generated by 6 involutions*, J. Algebra 278 (2004) 187–198 MR Zbl
- [6] **D Calegari, L Chen**, *Normal subgroups of big mapping class groups*, Trans. Amer. Math. Soc. Ser. B 9 (2022) 957–976 MR Zbl
- [7] **M Dehn**, *Die Gruppe der Abbildungsklassen: das arithmetische Feld auf Flächen*, Acta Math. 69 (1938) 135–206 MR Zbl
- [8] **G Domat**, *Big pure mapping class groups are never perfect*, Math. Res. Lett. 29 (2022) 691–726 MR Zbl
With an appendix by R Dickmann and Domat
- [9] **B Farb, D Margalit**, *A primer on mapping class groups*, Princeton Math. Ser. 49, Princeton Univ. Press (2012) MR Zbl
- [10] **S P Humphries**, *Generators for the mapping class group*, from “Topology of low-dimensional manifolds”, Lecture Notes in Math. 722, Springer (1979) 44–47 MR Zbl
- [11] **W B R Lickorish**, *A finite set of generators for the homeotopy group of a 2-manifold*, Proc. Cambridge Philos. Soc. 60 (1964) 769–778 MR Zbl
- [12] **J Malestein, J Tao**, *Self-similar surfaces: involutions and perfection*, Michigan Math. J. 74 (2024) 485–508 MR Zbl

- [13] **H A Masur, Y N Minsky**, *Geometry of the complex of curves, II: Hierarchical structure*, Geom. Funct. Anal. 10 (2000) 902–974 MR Zbl
- [14] **P Patel, N G Vlamis**, *Algebraic and topological properties of big mapping class groups*, Algebr. Geom. Topol. 18 (2018) 4109–4142 MR Zbl
- [15] **A Putman**, *Cutting and pasting in the Torelli group*, Geom. Topol. 11 (2007) 829–865 MR Zbl
- [16] **P Scott**, *Subgroups of surface groups are almost geometric*, J. Lond. Math. Soc. 17 (1978) 555–565 MR Zbl
- [17] **B Wajnryb**, *Mapping class group of a surface is generated by two elements*, Topology 35 (1996) 377–383 MR Zbl

University of Michigan, Department of Mathematics
Ann Arbor, MI, United States

Laboratoire d’Analyse et de Mathématiques Appliquées, Université Paris-Est Créteil Val de Marne
Créteil, France

Department Mathematisches Institut, LMU München
Munich, Germany

domatg@umich.edu, federica.fanoni@u-pec.fr, hensel@math.lmu.de

Received: 10 March 2023 Revised: 23 July 2024

ALGEBRAIC & GEOMETRIC TOPOLOGY

msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre etnyre@math.gatech.edu Georgia Institute of Technology	Kathryn Hess kathryn.hess@epfl.ch École Polytechnique Fédérale de Lausanne
--	--

BOARD OF EDITORS

Julie Bergner	University of Virginia jeb2md@eservices.virginia.edu	Thomas Koberda	University of Virginia thomas.koberda@virginia.edu
Steven Boyer	Université du Québec à Montréal cohf@math.rochester.edu	Markus Land	LMU München markus.land@math.lmu.de
Tara E Brendle	University of Glasgow tara.brendle@glasgow.ac.uk	Christine Lescop	Université Joseph Fourier lescop@ujf-grenoble.fr
Indira Chatterji	CNRS & Univ. Côte d'Azur (Nice) indira.chatterji@math.cnrs.fr	Norihiro Minami	Yamato University minami.norihiro@yamato-u.ac.jp
Octav Cornea	Université de Montréal cornea@dms.蒙特利爾.ca	Andrés Navas	Universidad de Santiago de Chile andres.navas@usach.cl
Alexander Dranishnikov	University of Florida dranish@math.ufl.edu	Jessica S Purcell	Monash University jessica.purcell@monash.edu
Tobias Ekholm	Uppsala University, Sweden tobias.ekholm@math.uu.se	Birgit Richter	Universität Hamburg birgit.richter@uni-hamburg.de
Mario Eudave-Muñoz	Univ. Nacional Autónoma de México mario@matem.unam.mx	Jérôme Scherer	École Polytech. Féd. de Lausanne jerome.scherer@epfl.ch
David Futer	Temple University dfuter@temple.edu	Vesna Stojanoska	Univ. of Illinois at Urbana-Champaign vesna@illinois.edu
John Greenlees	University of Warwick john.greenlees@warwick.ac.uk	Zoltán Szabó	Princeton University szabo@math.princeton.edu
Matthew Hedden	Michigan State University mhedden@math.msu.edu	Maggy Tomova	University of Iowa maggy.tomova@uiowa.edu
Kristen Hendricks	Rutgers University kristen.hendricks@rutgers.edu	Daniel T Wise	McGill University, Canada daniel.wise@mcgill.ca
Hans-Werner Henn	Université Louis Pasteur henn@math.u-strasbg.fr	Lior Yanovski	Hebrew University of Jerusalem lior.yanovski@gmail.com
Daniel Isaksen	Wayne State University isaksen@math.wayne.edu		

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2025 is US \$760/year for the electronic version, and \$1110/year (+\$75, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by Mathematical Sciences Publishers, 2000 Allston Way # 59, Berkeley, CA 94701-4004. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences Publishers, 2000 Allston Way # 59, Berkeley, CA 94701-4004.

AGT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY
 mathematical sciences publishers
nonprofit scientific publishing
<https://msp.org/>
© 2025 Mathematical Sciences Publishers

ALGEBRAIC & GEOMETRIC TOPOLOGY

Volume 25 Issue 7 (pages 3789–4436) 2025

Algebras for enriched ∞ -operads	3789
RUNE HAUGSENG	
An overtwisted convex hypersurface in higher dimensions	3813
RIVER CHIANG and KLAUS NIEDERKRÜGER-EID	
Presheaves of groupoids as models for homotopy types	3833
LÉONARD GUETTA	
Product and coproduct on fixed point Floer homology of positive Dehn twists	3875
YUAN YAO and ZIWEN ZHAO	
Multitwists in big mapping class groups	3921
GEORGE DOMAT, FEDERICA FANONI and SEBASTIAN HENSEL	
Cofibrantly generated model structures for functor calculus	3931
LAUREN BANDKLAYDER, JULIA E BERGNER, RHIANNON GRIFFITHS, BRENDA JOHNSON and REKHA SANTHANAM	
Endomorphisms of Artin groups of type D	3975
FABRICE CASTEL and LUIS PARIS	
Linear bounds of the crosscap number of knots	4009
ROB MCCONKEY	
Atiyah–Segal completion for the Hermitian K-theory of symplectic groups	4037
JENS HORNBOSTEL, HERMAN ROHRBACH and MARCUS ZIBROWIUS	
A minimality property for knots without Khovanov 2-torsion	4073
ONKAR SINGH GUJRAL and JOSHUA WANG	
Local indicability of groups with homology circle presentations	4077
AGUSTÍN NICOLÁS BARRETO and ELÍAS GABRIEL MINIAN	
Cubulating drilled bundles over graphs	4095
MAHAN MJ and BISWAJIT NAG	
Infinitely many homeomorphic hyperbolic plugs with the same basic sets	4147
FANGFANG CHEN	
One-point compactifications of configuration spaces and the self duality of the little disks operad	4163
CONNOR MALIN	
Braided multitwists	4185
RODRIGO DE POOL	
Positive intermediate Ricci curvature on connected sums	4209
PHILIPP REISER and DAVID J WRAITH	
The \mathbb{S}_n -equivariant Euler characteristic of the moduli space of graphs	4229
MICHAEL BORINSKY and JOS VERMASEREN	
Classification of metric fibrations	4257
YASUHIKO ASAOKA	
Spaces over BO are thickened manifolds	4287
HIRO LEE TANAKA	
Representation-graded Bredon homology of elementary abelian 2-groups	4321
MARKUS HAUSMANN and STEFAN SCHWEDE	
The \mathbb{Z}/p -equivariant cohomology of the genus-zero Deligne–Mumford space with $1+p$ marked points	4341
DAIN KIM and NICHOLAS WILKINS	
Geometry of free extensions of free groups via automorphisms with fixed points on the complex of free factors	4357
PRITAM GHOSH and FUNDU GÜLTEPE	
Coarse cohomology of configuration space and coarse embedding	4391
ARKA BANERJEE	
Correction to the article An algebraic model for finite loop spaces	4427
CARLES BROTO, RAN LEVI and BOB OLIVER	