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Abstract—Seizures pose a significant health hazard for over 50
million individuals with epilepsy worldwide, with approximately
56% experiencing uncontrollable seizures according to the CDC.
Predicting seizures is challenging even with the availability
of various sensors (gyroscopes, pulse rate sensors, heart rate
monitors, etc). Electroencephalography (EEG) data can directly
measure the activity of the brain and has been the choice of
leveraging deep learning (DL) models for seizure prediction.
Despite DL models achieving over 95% accuracy on retroactive
clinical-grade EEG data, this performance fails to translate in
real-world settings where the accuracy goes down to 66% -
which warrants further investigation. Moreover, consumer-grade
wearable EEG headsets, characterized by lower data quality and
a varying number of channels across brands, present additional
challenges. In this paper, we estimate the robustness of DL models
which are trained on clinical-grade EEG data but tested on
the type of data expected from consumer-grade wearable EEG
headsets. We select the previously published model SPERTL
to estimate its robustness when: (1) predicting with data from
less leads/channels, (2) predicting when faced with streaming
data, (3) evaluating performance on imbalanced data with more
interictal segments. Our results are compared against baseline
results from the SPERTL model which we have re-configured to
operate independently of the number of channels with an average
baseline area under the curve (AUC) score of 98.56%. Our results
demonstrate that though the model is surprisingly resilient to
streaming and noisy data, reducing the number of channels
and a higher class imbalance have a more severe degradation.
The AUC across all cross-validation sets degrades only by 2%
and 3% on average for noisy and streaming data, respectively.
However, a performance reduction, on average, is observed by
32% when imbalance is increased with higher percentage of
interictal samples, and up to 16% when using lower number
of channels.

Index Terms—Electroencephalography (EEG),
Seizure Prediction, Robustness, Lower Quality Data

‘Wearable,

I. INTRODUCTION

Epilepsy is a neurological disorder characterized by repeat
unpredictable seizures which affect more than 3 million people
in the USA and up-to 50 million people worldwide. Though
treatable with medications, the centers for disease (CDC)
estimates that 56% of the epileptic population do not achieve
seizure freedom. These uncontrolled seizures pose significant
health, and quality of life challenges. Electroencephalography
(EEQG), a technique to measure the brain’s electrical activity,
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is used clinically by neurologists and epileptologists (neurol-
ogists specializing in epilepsy) for tracking, diagnosing and
managing seizure activity.

Increasingly, machine learning (ML)-based approaches are
playing a key role in seizure detection/prediction, spike de-
tection and EEG transcription due to the availability of long-
term EEG datasets annotated with different events including
seizures. One such dataset is the Children’s Hospital Boston
- Massachusetts Institute of Technology (CHB-MIT) dataset,
which comprises long-term EEG recordings annotated with
the start and end times of seizures from 24 subjects. CHB-
MIT has become the standard dataset for ML and advanced
deep learning (DL)-based seizure prediction. Several models in
literature have shown success in predicting preictal segments
(indicating an imminent seizure) against interictal periods.

While developing DL models is an active area of research,
several challenges remain to make these models functional on
real-world wearable EEG headsets. Firstly, datasets such as
the CHB-MIT are obtained in controlled-settings with clinical-
grade equipment - which may not be possible in a real-world
scenario. Further, most models train using balanced preictal
and interictal classes which again does not represent real-
world conditions; since the number of seizure events are much
smaller than “normal” periods. In contrast, wearable EEG-
based seizure prediction for ambulatory or home-care use is
likely to be implemented on EEG headsets that have a good
form factor, fixed-position dry electrodes and a capability
for wireless communication. Hence, such EEG systems are
expected to have fewer than the 23 channels common to
datasets such as CHB-MIT. Data collected in real-time will be
a stream of mostly interictal samples followed by successive
preictal segments on rare occasions whenever a seizure occurs.
Lastly, wearable wireless EEG has a lower signal-to-noise ratio
(SNR) compared to clinical leading to reduced data quality.

The goal of this work is to investigate the robustness of a
ML model (SPERTL [1] for this study) trained on the CHB-
MIT dataset, and its ability to translate to a wearable EEG
with less and lower quality data. This critical objective will
bridge the gap between models that work well in literature but
their robustness to consumer-grade wearable EEG for long-
term seizure prediction usage is not well characterized. This
will enable better understanding of the performance gaps for
a given model, and what steps the ML practitioners can take
to ensure model robustness for real-world settings.
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II. RELATED WORK

The trend in healthcare is to move towards continuous moni-
toring or real-time detection systems especially for seizure care
in ambulatory settings or even at home. This is aided by the
development of high accuracy ML prediction and diagnosis
models along with the explosion in the internet of medical
things (IoMT) or health IoT (H-IoT) and wearable technology.
Specifically, attention has been given to designing ML models
that are implementable on system-on-chip (SoC) for use on
wearables in an energy-efficient manner.

For example, the works of [2]-[4] use a combination of
feature extraction and lightweight model design for lower
complexity energy-efficient execution on SoC hardware. Fur-
ther, the works of [5] improve the AUC/ROC of the seizure
prediction model in continuous EEG (cEEG) whereas [6]
proposes a dynamic architecture based on data collection from
various sensors (no EEG) with preprocessing on an SOC or
on a smartphone followed by classification using GAs and k-
NNs. A reasonable accuracy is achieved with a latency of 0.5s
and 2.25 days hours battery life. In contrast, the work of [7]
makes ES detection patient-specific by offering personalized
sensor selection and positioning on body. The works of [8]—
[10] explore different IoMT based continuous ambulatory
monitoring systems including a micro controller - TCP/IP
network - user application based design [8], a RaspBerry
Pi and an Android app-based solution with cloud-based ML
inference [9], and distributing the ML model among the edge,
fog nodes, and the cloud which results in significant energy
savings when tested on the EPILEPSIAE dataset [10].

It can be observed that most of the works discussed fo-
cus on the architecture of the IoT framework rather than
the performance of the ML models. The paradigm of edge
computing with associated end IoT devices further enables
the implementation of SoC systems mounted on wearable
devices. The models can either be executed directly on chip
and an alarm can be sent to the caregivers/physicians via
the edge/cloud or the execution can be done at the edge or
cloud after data collection from the wearable. Some of the
relevant works in literature have attempted to quantify the ML
model performance but mostly for detection, not prediction.
For example, the work of [11] develops and tests lightweight
models using feature dimensionality reduction by correlations
that give an accuracy of 97.5% and lightweight detection with
Kriging methods that result in a 100% accuracy and a 0.85s
delay when tested on a RaspBerry Pi [12]. EZCap [13] is
another wearable solution based on Kringing methods that is
designed and tested on the Bonn dataset where results indicate
an accuracy of 97.5% with a delay of 0.81s.

Because complete caps with scalp EEG may result in some
social stigma, wearables with lower and more conspicuous
placement of electrodes have been designed such as the 4-
electrode systems mounted behind-the-ear [14] that gives a
94.5% accuracy for an FAR of 0.52 and on a smart glass [15]
that can give a sensitivity of 93.8% on a 12 patient dataset
with an average 2.71 day battery life. A simple real-time ES
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detection system is designed in [16] based on DWT based
feature extraction and DNN which can provide an accuracy of
98.6% on the Bonn dataset.

Although some of these models provide a sensitivity of
greater than 95%, either these models are trained on limited
data collected from wearables (e.g. [11]) or tested on the
Bonn dataset for seizure detection, not prediction on a dataset
with long-term recordings. Overall, though making models
energy-efficient and capable of IoMT deployment for real-
time ES detection either on SoC or via the edge/cloud has
been studied, few efforts have been expanded on quantifying
the robustness of ML models trained for prediction and their
ability to translate to IoT systems.

III. PROBLEM DESCRIPTION

A major obstacle in developing end-to-end early seizure
prediction solutions based on wearable EEG is the inability of
ML-based models to translate to hardware. As described prior,
most predictive models are trained and tested on the CHB-MIT
where the reported sensitivities are in excess of 98% with a
nearly zero false positive rate (FPR). However, as reported by
[17], some of these models fail when tested with the leave-
one-seizure-out (LOSO) validation even with a balanced class
approach providing sensitivities as low as 67%. It is expected
that when we consider less number of leads, streaming and
imbalanced data in the real-world and lower EEG data quality,
this sensitivity will be reduced even further with a higher
FPR. The implications are that the model’s ability to predict
seizures will be severely reduced while the false alarm rate
(FAR) will be higher due to a high FPR. To frame this problem
scientifically, it is crucial to consider the inherent differences
between the CHB-MIT dataset and wearable EEG data, as well
as the specific challenges that need to be addressed.

A. Varying numbers and locations of EEG Channels:

The CHB-MIT dataset contains long-term recordings col-
lected at a sampling rate of 256 Hz from a scalp EEG of
up-to 22 channels with the electrodes placed in the standard
10-20 configuration. This dataset has become the benchmark
for testing ML/AI models for seizure detection and predic-
tion. On the contrary, consumer-grade wearable EEG’s that
have proliferated the market for applications including mental
wellness and well-being, sleep monitoring and sports-related
performance tracking, may have as few as four EEG channels.
Others may have up-to 16 channels (and though there a few
research-grade EEG headsets with up-to 32 and 64 channels,
they are rarely used for commercial applications). Further,
the location of electrodes on each of these brands will be
different. Consequently, deploying pre-trained ML models
on CHB-MIT dataset must demonstrate a degree of channel
independence to accommodate the variable number of EEG
channels available in commonly accessible wearable headsets.
Such models would allow us to quantify the performance of
the seizure prediction system across multiple types of wearable
EEG with different form factors and numbers/locations of the
lead.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on December 04,2025 at 13:51:40 UTC from IEEE Xplore. Restrictions apply.



B. Streaming/Imbalanced Validation

Traditionally, for seizure prediction tasks, the long-term
EEG recording is divided into smaller segments. The decision-
making is done at the level of each segment which can be
used to make a universal decision at the level of the seizure.
Further, though the start and end of seizures are known and
annotated/verified based on clinical observations, the start and
end of preictal duration is not know or clinically well-defined.
That means researchers usually assume a set preictal period
duration and define the seizure prediction horizon (SPH) and
seizure occurrence period (SOP) based on this assumption.
The preictal samples are usually extracted from the SPH and
there is a gap equivalent to the SOP between the end of the
preictal duration and start of the ictal onset. To build up the
dataset, multiple segments are extracted from this assumed
preictal duration.

All other labels that do not fall into the category of preictal
or interictal (with the exception of additional gap times in
some works [18]) are assumed to be interictal. Because of
a significantly higher proportion of interictal samples, most
works simply sample an equal amount of interictal and pre-
ictal samples in a balanced way. Further, training algorithms
typically employ stochastic gradient descent where the preictal
and interictal labeled samples are randomly shuffled before the
cross-validation results are presented. However, this controlled
division is not similar to real-world streaming EEG data.

In practice, validation should be performed with datasets
that emulate the true temporal dynamics of epilepsy, where
a series of interictal (non-seizure) samples are followed by a
series of preictal (seizure-indicating) samples. Further, an un-
equal distribution of preictal and interictal samples should be
tested with increasing ratios of interictal to preictal segments
all the way up-to the maximum possible interictal segments.

C. Signal-to-Noise Ratio (SNR)

Wearable EEG headsets are usually designed for better form
factor and ease-of-use which leads to a lower data quality
compared to scalp EEG. This quality is further degraded in
wireless headsets due to physical affects such as wireless fi-
delity and packet loss. Overall, datasets such as the CHB-MIT
which collect EEG recordings from clinical-grade headsets
can expect to have data characterized by a higher signal-to-
noise ratio (SNR). Although ML models especially those based
on DL have a degree of robustness to noise, the lower SNR
observed in data from consumer-grade EEG can still negatively
impact the ML model’s predictive performance. Despite other
factors such as packet loss from wireless communication,
sampling rates and bit resolution, we focus on the data quality
itself and characterize it with SNR as is common among
clinical practices and EEG manufacturers.

The overall goal is to test the high performance of pre-
dictive models in controlled CHB-MIT dataset type settings
in constrasting real-world situations characterized by variable
numbers/locations EEG electrodes, streaming and imbalanced
data, and SNR disparities. Our work is a progress towards
solving this vital problem for the successful deployment of
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TABLE I
CHANNELS USED FROM THE CHB-MIT FOR VALIDATION COMPARED TO
AVAILABLE BRANDS.

CHB-MIT | Brand 1 Brand 2 | Brand 3a | Brand 3b
Fpl Fpl - - AF3
FP2 FP2 - - AF4
F7 F7 - - F7
F3 F3 - F3 F3
F4 F4 - F4 F4
F8 F8 - F8
T7 T3 T3 T7 T7
C3 C3 - - C5
C4 C4 - - C6
T8 T4 T4 T3 -

P7 T5 - - P7
P3 P3 - - -
P4 P4 - - T3
P8 T6 - - P8
[e)] [e)] o) - [e)]
02 02 02 - 02
FZ FZ - - -
CZ CZ - - -
PZ PZ - Pz -

real-time seizure prediction models on wearables, ultimately
improving the lives of individuals living with epilepsy and
enhancing their safety and well-being.

IV. METHODS

In this study, we propose an approach to assess and quantify
the robustness of an ML model trained and validated on the
CHB-MIT dataset. Firstly, we draw inspiration from Wang et
al.’s work [18], where they employed LOSO cross-validation
and only 7/24 patients that were able to provide at least three
seizures fitting the selection criteria are chosen. For our work,
we will focus on each of the three cross-validation (CV) folds
of patient 1 to quantify the different metrics. The ML model
under consideration is a modified version of the residual neural
network (ResNet) that has been previously trained and tested
on all 7 patients and provided up-to 88% sensitivity [1].

To make the model independent of the number of channels
and enhance the model versatility, we create a 1D ResNet
equivalent of SPERTL and train each channel of each segment
individually. During validation, majority voting is employed
to decide if each segment belongs to the preictal or interictal
class. This approach allows us to validate the model’s per-
formance effectively, even when confronted with EEG data
generated by wearable headsets that may feature a significantly
reduced number of channels compared to the CHB-MIT
dataset. Table I shows the equivalent electrode placement on
commonly available consumer grade wearable EEG compared
to CHB-MIT. Only channels using these electrodes will be
used to validate the performance of each brand.

We introduce a two-stage process to address the temporal
complexities of seizure prediction in the real world. In the
first stage, we let the model observe the validation set as a
continuous stream of EEG data rather than randomly dividing
the preictal and interictal samples among the CV folds. This
mirrors the actual progression of an epileptic seizure, where
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Fig. 1. Example of validation dataset left as a stream of interictal samples
followed by preictal.

a sequence of interictal segments are followed by preictal
segments. In the next stage, we test for the ability of the
model to predict seizures with increasing interictal to preictal
ratios. Fig. 1 represents the data labels collated in a streaming
manner. Each row represents the preictal and interictal labels
associated for a particular seizure. For example, the images
shown are for seizures 1, 3 and 7 for patient CHBO1 of the
CHB-MIT dataset.

Consumer-grade wearable EEG inherently has a lower SNR
and hence, we we validate the model’s resilience by intro-
ducing white Gaussian noise to the EEG data, emulating
scenarios where SNR disparities exist. In general, let us say
the difference in SNR of a medical grade EEG is given by
SNR) and a wearable by SN Ry . Then, the difference in
SNR (SNRg;sy) can be given by:

SNRyity = SNRy — SNRw (1)

Let us say that an EEG segment of length L is represented
by Ey . Then, to test with CHB-MIT, we will bring down the
quality by the addition of the following noise:

Ew = Ew — SN Ry No/L )

where Ny ~ N(0, 1); where Ny is drawn from a zero-mean
unit-variance Gaussian random variable.

V. EXPERIMENTAL SETUP

We focus on EEG data from patient 01 of the CHB-
MIT dataset with a total recording time of 40 hours with
seven seizures annotated after verification by 2 independent
neurologists. For our preictal/interictal sampling strategy, we
adopted a SPH of 30 minutes, and a SOP of 5 minutes meaning
a preictal duration of 30 minutes is assumed and that seizures
are predicted at least 5 minutes ahead of time. These durations
demonstrated to be sufficient to capture seizure activity from
prior work in the literature [1], [18]. Further, a 2-hour gap is
assumed between 2 consecutive seizures to clearly distinguish
preictal and interictal periods and account for potential post-
ictal effects. After applying this stringent inclusion-exclusion-
inclusion criteria, we retained seizures 1, 3, and 7 and generate
three CV sets based on the LOSO technique.

To ensure uniformity, all preictal and interictal data is seg-
mented into non-overlapping 5-second frames, corresponding
to a frame size of 1280 samples based on a sampling rate
of 256 Hz. The major task in seizure prediction is solving
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TABLE 1I
COMPARISON OF THE BASELINE ROC-AUC SCORE AGAINST THE
RESULTS FROM BRANDS 2, 3A AND 3B.

Seizure Baseline Brand 2 Brand 3a  Brand 3b
1 0.9984 0.6570 0.5781 0.9508
3 0.9969 0.8765 0.5208 0.9808
7 0.9616 0.9554 0.8922 0.9216
Average | 0.9856 0.8296 0.6637 0.9511

the binary classification problem of discriminating between
preictal and interictal segments. The data comes from 22 EEG
channels, each segment contains 1280 samples and for every
seizure, we have 360 preictal segments (and 360 interictal
segments in the balanced case), leading to a total size of
720 x 22 x 1,280. To test for channel-independence, each
channel was treated as an independent subject of interest
which equates to 7,920 positive labels in total per CV set.
This meticulous approach to data selection and labeling laid
the groundwork for our subsequent experiments in which we
assessed the translatability of machine learning models to real-
world wearable EEG data.

A. Simulation Scenarios:

In our baseline training and validation process with the
LOSO method, we designate two seizures for training purpose
while reserving the third for validation. Notably, the training
validation split is a very stringent 66.7%-33.3%. This ratio
differs significantly from the more common 80-20 or 75-25
splits seen in traditional ML-based classification. To illustrate,
for CV set 1, we use the preictal and interictal samples asso-
ciated with seizures 3 and 7 for training, whereas we validate
the performance using the preictal and interictal samples from
seizure 1, and so forth for CV sets 3 and 7.

The baseline model is validated balanced classes, including
30 minutes of randomly sampled interictal segments out of
the contiguous interictal segments collected from the long-
term records based on the above defined exclusion criteria.
Table I shows the receiver operating characteristic - area under
the curve (ROC-AUC) scores for the baseline model. In our
exploration of streaming data scenarios, we re-validated the
model for each cross-validation fold by re-arranging the data
so that a series of interictal labels are followed by preictal
labels. The contiguous interictal samples that preceded preictal
samples for each seizure, without random shuffling of the
validation set. The streaming approach is illustrated in Figure
1, highlighting the importance of adapting models to streaming
data dynamics.

To assess the impact of channel scarcity and class imbalance
on model performance, we conducted a series of experiments.
First, we validated the streaming data with extreme levels
of imbalances by adding additional interictal samples to the
validation set. This allowed us to quantify the effects of class
imbalance on model performance systematically. Additionally,
to simulate scenarios with fewer EEG leads, we simply
excluded data from the leads described in Table 1, thereby
mimicking the limitations of wearable EEG headsets. Our
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Fig. 2. Baseline results for SPERTL re-trained and cross-validated on patient
1 of the CHB-MIT dataset.

decision-making process remained consistent, classifying a
segment as preictal if more than half of the leads predicted
the positive class. To assess the influence of lower data quality
characterized by noise, we intentionally introduced White
Gaussian noise to the validation set, as detailed in (2). These
experiments provided valuable insights into how the model
adapted to noisy data and the implications for its predictive
accuracy.

To demonstrate the results for all scenarios, we plot the
receiver operating characteristic (ROC) and precision recall
curves (PRC). We also compare the performance along several
metrics including the ROC-AUC score, F-1 score, accuracy,
sensitivity and specificity which are shared below each figure
as a snapshot. On each plot, CV set 1 (CV1) is represented
by the blue line, CV3 with the black line and CV7 with the
red line.
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Fig. 3. Validation on Streaming type data but with balanced preictal and

interictal ratios.

VI. RESULTS AND DISCUSSION

In this work, we begin by demonstrating the baseline results
for each CV fold from the version of SPERTL re-configured
for channel independent training and validation. Fig. 2 illus-
trates that the model provides excellent results for all CV sets
with an ROC-AUC scores in excess of 0.99 for CV1 and CV3
and a perfect sensitivity whereas a ROC-AUC score of 0.9610
is achieved for CV7. The experiments are then extended to the
case with less channels corresponding to the configurations
in Table I. As observable, brands 2 and 3a which have the
lowest number of channels (4 and 5, respectively), result in the
lowest levels of performance. However, there is an interesting
anomaly where the performance on CV7 does not degrade
significantly with a reduction in channels. The reason for
this appears to be that the included channels are sufficient to
capture the preictal activity of the seizure type in CV7 whereas
they are not adequate for CV1 and CV3.

Fig. 3 illustrates the model’s performance when the valida-
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Fig. 4. Validation on Streaming type data but with severely imbalanced
interictal to preictal ratios for each cross-validation fold.

tion set is observed as streaming data whereas Fig. 4 shows the
results with an additional imbalance component added on by
increasing the number of interictal samples. As observable,
when we simply present the validation data in a streaming
manner, the model is quite robust and there is only an average
drop of 0.02 in the ROC-AUC score. However, once we
overload the validation sets with interictal data (on average
there is a 16:1 interictal to preictal ratio), the average ROC-
AUC score across all sets falls by about 32%. The impact
may be so severe because we directly test the imbalance on
streaming data and instead of a gradual increase, opt for the
more extreme 16:1 ratio.

Lastly, we examine the impact of lower quality data. Over-
all, the average AUC-ROC score is only reduced by about
0.02. However, some of the cross-validation folds appear to
be more robust such as CV1 and CV3. In contrast, CV7
has a sharper fall in performance compared to the baseline.
One reason for the overall smooth performance may be the
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noisy data with an average degradation of 10 dB.

TABLE III
COMPARISON OF THE ROC-AUC SCORE FOR ALL CROSS-VALIDATION
SETS UNDER DIFFERENT TEST CONDITIONS.

Seizure | Baseline  Streaming Imbalanced  Noisy
1 0.9984 0.9508 0.5781 0.9732
3 0.9969 0.9808 0.5208 0.9880
7 0.9616 0.9216 0.8922 0.9452

role of normalization after the first input layer and before
the convolutional layer in SPERTL. The comparison of all
approaches including streaming data, imbalanced classes and
lower quality data against the baseline in terms of the ROC-
AUC are presented in Table VI. It is clearly observable that
the performance drops in each case, but the most severe drop
occurs in the case of imbalanced classes. It will be interesting
to study different levels of class-imbalance to quantify the
performance drop with increasing imbalance.
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VII. CONCLUSION

In this paper, we evaluated the robustness and ability of
a previously developed DL-based seizure prediction model
to translate to differences in quality of data from consumer-
grade wearable EEG headsets. First, we set up a baseline
and then quantified the performance variations by selectively
ignoring channels, considering the distinctive characteristics of
four common wearable EEG brands. Second, we validated the
model robustness by introducing noise, reducing the signal-
to-noise ratio in the validation data, and simulating lower-
quality consumer-grade EEG recordings. Lastly, we explore
the impact of various levels of class imbalance, reflecting
the real-life rarity of seizure events and the prevalence of
a higher proportion of interictal samples. In this last step,
we also make additional performance characterizations based
on the model’s performance when presented with data in a
streaming format, reflecting real-time collection of data from
EEG sensors. Overall, we demonstrated that imbalance and a
reduction in the number of channels has the most significant
impact as compared to streaming or noisy/low-quality data.
Further experiments are needed to validate these results by
testing different levels of imbalance, and more comprehensive
characterization across all of the patients of the CHB-MIT
dataset.
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