Remote Sensing of Environment 305 (2024) 114061

Contents lists available at ScienceDirect

Remote Sensing of Environment
I}

ELSEVIER

journal homepage: www.elsevier.com/locate/rse

t.)

Check for

Solar-induced chlorophyll fluorescence sheds light on e
global evapotranspiration

Quan Zhang ™, Xuangi Liu?, Kai Zhou", Yang Zhou ?, Pierre Gentine ““, Ming Pan®,
Gabriel G. Katul

& State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China

Y Bureau of Hydrology, Changjiang Water Resources Commission, Wuhan, China

¢ Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA

d Center for Learning the Earth with Artificial intelligence and Physics (LEAP), Columbia University, New York, NY, USA

€ Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
f Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA

ARTICLE INFO ABSTRACT

Editor: Jing M. Chen The significance of large-scale evapotranspiration (ET) to climate science, water resources management, flood
routing, irreversible desertification, and crop yield is not in dispute. Current large-scale ET models combine
empirical formulations with a suite of remotely sensed data products that include meteorological variables,
vegetation indices and/or soil moisture. In recent years, solar-induced chlorophyll fluorescence (SIF) has been
proposed as an indicator of photosynthetic activity but its potential to constrain transpiration (T,) or ET remains
under-explored and frames the scope here. A large-scale terrestrial ET model driven by SIF is developed based on
leaf water-carbon exchange complemented with an outcome for intercellular to ambient CO, concentration
derived from optimality theory for stomatal conductance. The model parameters are first calibrated across
FLUXNET sites and then extrapolated globally using their dependence on climatic variables and plant functional
types. The model, hereafter referred to as ETgp, requires SIF data, leaf area index, land use type, and basic
meteorological variables that include net radiation, air temperature and relative humidity. Global ETgy estimates
computed on a 4-day window for the period spanning 2003 to 2018 was 625 mm yr™ ! in general agreement with
other independent global ET estimates, but discrepancy in the spatial distribution still exists implying that global
ET estimation remains subject to large uncertainty. ETgp exhibited a tantalizing positive trend over the same
period but this trend was not statistically significant. One of the major advantages of this new approach, is that
the model requires few parameters, reduce the parameterization of stomatal conductance and can be immedi-
ately used to constrain spatially extended ET estimates.
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1. Introduction cycle, drought monitoring (McEvoy et al., 2016), and climate change

model evaluation. Unsurprisingly, estimating ET at spatially extended

Evapotranspiration (ET) is the main terrestrial pathway by which
precipitation is recycled back to the atmosphere. The significance of this
water flux in regulating the climate system has been recognized since the
late 1970s (Eagleson, 1981) and much recent attention is focused on its
interaction with the terrestrial carbon cycle (Jung et al., 2010). Because
of the large latent heat of vaporization value of water, the ET cooling
effects also regulate land-surface and near-surface air temperatures (Oki
and Kanae, 2006; Gentine et al., 2010, 2011; Zhang et al., 2020). Esti-
mates of global ET are required for assessing shifts in the hydrological
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scales using remote sensing products continues to receive research in-
terest (e.g., Bastiaanssen et al., 1998; Su, 2002; Mu et al., 2007, 2011;
Yuan et al., 2010; Martens et al., 2017). Barriers to estimating ET at such
large spatial scales include difficulties in capturing heterogeneity in soil-
vegetation activity and the complex interactive effects of biochemical
and biophysical processes regulating transpiration (T;).

Prior remote sensing-based approaches to estimating ET at global
scales fall into two broad categories: (i) meteorologically based semi-
empirical methods and (ii) surface energy balance residual methods.
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The meteorologically based methods employ a Penman equation
(Penman, 1948) or variants such as the Penman-Monteith (PM) equation
(Monteith, 1965) or a Priestley-Taylor (PT) equation (Priestley and
Taylor, 1972) to estimate global ET using remotely-sensed vegetation
properties, meteorological conditions, near-surface soil water content,
among other variables. Mu et al. (2007, 2011) produced a widely used
global ET dataset (i.e., MOD16) employing the PM equation, yet in this
approach, the stomatal conductance must be parameterized leading to
uncertainties in the retrieval. Fisher et al. (2008) modified the PT eq.
(PT-JPL) and partitioned ET into three components: evaporation from
the soil or forest floor, evaporation of canopy intercepted water, and
transpiration T,. These methods are subject to uncertainties given the
difficulty in representing these processes, especially T,. Another limi-
tation encountered by these models is their ability to reproduce the
hysteresis response of ET to radiation load or vapor pressure deficit
variation (Zhang et al., 2014c; Lin et al., 2019; Wan et al., 2023). To
overcome some of these issues, Yang et al. (2013) used the water -
carbon gas exchange relation at the leaf level to link leaf transpiration to
photosynthesis, though uncertainties in describing carbon fluxes and
their bridge to water fluxes remain. The energy balance residual
methods also gained attention because of their simplicity as in the SEBS
model (Su, 2002), SEBAL (Bastiaanssen et al., 1998), and other multiple
water sources models (e.g., two sources - TSEB, Norman et al., 1995;
three sources - 3SEB, Burchard-Levine et al., 2022). Such energy balance
residual methods are sensitive to estimates of land-surface temperature
and air temperature given that their differential value drives sensible
heat fluxes (Zhang et al., 2016b). Moreover, accurate parameterizations
do require turbulent flow statistics rarely available at large scales (Katul
et al., 1998).

Solar-Induced chlorophyll Fluorescence (SIF) provides a novel way
of monitoring large-scale photosynthetic vegetation activity (Sun et al.,
2023). Since stomata regulate leaf gas exchange of carbon dioxide and
water vapor with the atmosphere, SIF offers a promising way to indi-
rectly infer T,, framing the scope here. Plants utilize absorbed photo-
synthetically active radiation (APAR) for photosynthetic activities and
dissipate the excessive radiation through non-photochemical quenching
(NPQ) processes, and the remaining unexploited APAR in the 400-700
nm spectral range is re-emitted by chlorophyll molecules at longer
wavelengths, which is known as solar-induced chlorophyll fluorescence
(or SIF). As such, SIF contains key information on plants’ photosynthetic
activities (Sun et al., 2023) that shows great potentials to constrain T;.
SIF has already been widely used to reconstruct large-scale photosyn-
thesis (Zarco-Tejada et al., 2009; Sun et al., 2015; Yoshida et al., 2015;
Zhang et al., 2016a) after Guanter Palomar (2006) performed the first
space-based SIF retrieval. From then on, several satellite projects have
been launched with equipment allowing for SIF retrievals on board such
as the Greenhouse gases Observing SATellite (GOSAT) (Hamazaki et al.,
2005; Guanter et al., 2012) and GOSAT2 (Imasu et al., 2023) missions,
Global Ozone Monitoring Experiment-2 (GOME-2) (Joiner et al., 2013),
Orbiting Carbon Observatory-2 (OCO-2) (Frankenberg et al., 2014) and
OCO-3 (Taylor et al., 2020), and TROPOMI (the TROPOspheric Moni-
toring Instrument) (Kohler et al., 2018), among others. Because SIF can
reflect plants’ activity, the observed remotely sensed SIF has the po-
tential to constrain large-scale T;, and thus ET as transpiration is usually
the largest fraction of ET, without extensive data needs for meteoro-
logical variables and vegetation conditions and their empirical calibra-
tions. The accuracy of the corresponding T, and ET logically depends on
the quality of remote sensing SIF retrievals.

A handful of prior studies already used SIF to model ET empirically.
Alemohammad et al. (2017) showed that SIF observations could be used
to constrain variations in ET; Damm et al. (2018) found a non-linear
relation between ET and SIF while other studies also found that the
radiation and meteorological conditions such as Photosynthetically
Active Radiation (PAR), Vapor Pressure Deficit (VPD), and Air Tem-
perature (T,) impact the empirical relation between ET and SIF (e.g., Lu
et al., 2018); other studies applied the Penman-Monteith equation by
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parameterizing canopy conductance (or resistance) using SIF and re-
ported good performance in ET modelling (e.g., Shan et al., 2019; Damm
et al., 2021). Utilizing the photosynthetic information contained in SIF
products at FLUXNET sites, a method based on water-carbon relations
was earlier proposed to estimate ET and tested across these sites (Zhou
et al., 2022). In particular, the transpiration-SIF relation was improved
when scaled by VPD. The key advantage of the aforementioned model is
that it does not require explicit accounting for stomatal conductance.
The model reliably reproduced site-level ET when complemented with a
soil evaporation model across all land use types. Expanding on this
work, the aim here is to (1) determine the ET-SIF model parameters at
FLUXNET sites; (2) derive global distributions of the model parameters
using their dependences on climatic properties and land use types as
derived from FLUXNET analysis; (3) use the outcomes in (1) and (2) to
produce a first global terrestrial ET dataset using SIF. Comparison with
other global ET products are also discussed at annual and seasonal time
scales. It is to be underscored that sublimation over snow and ice and
open-water evaporation were not incorporated.

2. Data and method
2.1. Model description of ET using remotely sensed SIF

The ET model proposed here considers three components: Transpi-
ration, Ty, soil evaporation Eg and canopy intercepted water evaporation
E; (ET = T; + Es + E;). For simplicity, the ecosystem is assumed to be well
coupled with the atmosphere and the water flux from leaves, soil surface
and wet canopy are treated as total evapotranspiration. The three
components Ty, Eg and E; are modeled separately but only T,, the
dominant term in ET, is linked with remotely sensed SIF. The T, model is
based on water-carbon relations and commences by linking gross pri-
mary productivity (GPP) to SIF linearly (Zhang et al., 2014a; Zhang
et al., 2016b; Guanter et al., 2014) as,

GPP = aSIF + 8 (€]

where a is a vegetation specific parameter that relates GPP (ymol m 2
s to SIF (mWm 2nm ™! sr’l), A (pmol m2sDisan intercept to be
determined. Though some studies adopted a nonlinear relation between
GPP and SIF (e.g., Guanter et al., 2014; Wei et al., 2018; Gu et al., 2019),
we found no discernible difference in the model accuracy for ET when
using a more complicated model structure (e.g., Guan et al., 2016; Gu
et al., 2019) when compared to a linear one as shown in prior studies
(Zhou et al., 2022). Therefore, the linear form in Eq. (1) is adopted
throughout to describe the relation between GPP and SIF at all FLUXNET
sites. A plausibility argument for Eq. (1) is that the GPP - SIF relation
should be close to linear at large spatial scales and over extended (e.g., 4
day in this study) time intervals due to inherent space-time averaging
that ‘smooths-out’ nonlinearities (Zhang et al., 2014a; Gu et al., 2019).

To describe plant photosynthesis at the canopy scale (presumed to
approximate GPP), carbon dioxide supply from the atmosphere to the
canopy is assumed to be described by a Fickian diffusion that is path-
averaged and given as (Katul et al., 2000),

GPP:gCoCa(lf%> 2)

where g, (mol m~2s™!) is the canopy stomatal conductance to COy, Cq is
the ambient atmospheric CO2 concentration (ppm), and C; is the inter-
cellular CO; concentration (ppm). Measured C, above the canopy was
used in all FLUXNET site calibration stages, while the global averaged C,
over time was adopted in the global ET modelling stage (described
later). Similarly, T, can be described using Dalton’s law as,

T, = 8w ® D (3)

where g, (mol m~2 s 1) is the stomatal conductance to water vapor
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(gw=1.6g;) when CO, and water vapor share the same pathway (Katul
et al., 2000), D is the water vapor deficit fraction expressed by the molar
ratio determined from VPD/P,, P, is the atmospheric pressure set as a
constant 100 kPa for simplicity, and VPD is, as before, the vapor pressure
deficit (kPa). Combing Egs. (1), (2), and (3) to eliminate stomatal
conductance results in,

T, VPD 1.6

aSIF+4 P,C, (FQ) @

Ca

Re-arranging Eq. (4) to obtain T; yields,

7 _ L.6VPD(aSIF + p) )

G
C, ( 1- a) P,

A major advantage of this approach is that it eliminates the need for
modelling g. and its associated uncertainty; however, C;/C, must be
externally supplied instead or estimated using models. The simplest
model assumes C;/C, is a constant determined empirically for each plant
functional type. Alternatively, stomatal optimization theories can be
adopted instead without adding new parameters. In these theories,
stomata are assumed to operate to maximize carbon gain but are con-
strained by water loss from the soil (Farquhar et al., 1993). In their most
simplified form, and upon assuming a linear biochemical demand
function, these stomatal optimization theories predict Ci/C, as (Farqu-
har et al., 1993; Katul et al., 2009, 2010; Way et al., 2014),

©

where 1(mol mol 1) is the inverse of the marginal water use efficiency
presumed to depend on PFTs, I' (ppm) is the leaf CO; compensation
point in the absence of mitochondrial respiration, and 7 is a parameter
that distinguishes C3 from C4 plants and is related to the strength of the
CO4 pump in C4 plants. The parameter 7 is set to unity for C3 plants (no
CO4 pump) but # > 1 for C4 plants as discussed elsewhere (Way et al.,
2014). Hereafter, it is assumed throughout that C3 plants are the
dominant species (1 = 1) for simplicity and for pragmatic reasons. With
these simplifications, and upon replacing C;/C, in Eq. (5) into Eq. (6)
yields,

_(@SIF )Ty s -
P.(C,—T)

A number of features are now pointed out about the final outcome in
Eq. (7). Eq. (7) predicts a T, - VPD'/? scaling instead of T, - VPD scaling
(i.e., Dalton’s law) but the linear scaling emerges when setting C;/C, to a
constant. As discussed elsewhere (Katul et al.,, 2010), the T, -
VPD!2scaling is an emergent outcome of the optimization theory for all
C3 plants and is not an outcome of any model calibration or empirical fit
to gas exchange measurements. Detailed optimality theories that resolve
all the non-linearities in the biochemical demand function have also
been derived but their performance is commensurate with outcomes
such as Eq. (6) (Katul et al., 2010; Volpe et al., 2011).

The compensation point is assumed to vary only with air temperature
(Tp) and is calculated using standard equations (Sellers et al., 1996),

50
M= s ®
2600 x 0.57"

where O, (Pa) is the leaf interior partial O, pressure treated as a constant
set to 2.09 x 10* Pa (Sellers et al., 1992). Inserting Eq. (8) into Eq. (7)
and converting the unit of T, from mol m~2 s ™! to W m~2 using the latent
heat of vaporization (=2.45 x 10° J kg™1), an expression for T, can be
derived and is given as,
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. _ H410(aSIF + ) o \/T6%y

r
50.
Pa Ca - 2 Ta—25
2600x0.57" 10

At first glance, Eq. (9) appears to be independent of LAI though the
effects of LAl are implicit in the coefficients @ and j together with the SIF
signal. The Ay is assumed to be stationary over time for most plant
species (Lloyd and Farquhar, 1994). Values from published gas ex-
change studies are used in Eq. (9) (Lloyd and Farquhar, 1994, see Table
S1 in the supplementary information).

Before proceeding further, several points must be raised when
invoking a constant Ay. It is now established that Ay can vary with
progressive hydraulic limitations and/or large changes in atmospheric
CO, concentration as discussed elsewhere (Ellsworth et al., 1995;
Manzoni et al., 2011; Manzoni et al., 2013; Mrad et al., 2019). Eq. (6)
shows that holding A, constant while increasing C, results in an increase
in C;/C, not congruent with stable isotope measurements at Free Air CO5
Enrichment experiments that predict a near-constant C;/C, independent
of C, (Ellsworth et al., 1995). As such, A, should scale with 1/C, as
discussed elsewhere (Katul et al., 2010) and as theoretically argued
using dynamic optimality theories (Manzoni et al., 2013). However, to
keep the number of parameters to a minimum for global ET estimates, it
is assumed that C, did not change appreciably over the calibration
period so as to justify its inclusion as a modifier for A;. Moreover, T,
scales sub-linearly with A (i.e., T,~ /1.64) and small modifications to
A due to minor increases in C, have minimal impact on T..

With regards to soil evaporation, the Eg formulation used in prior
work (Zhou et al., 2022) is used. This formulation employed the surface
available energy and relative humidity complemented with vegetation
properties (Leaf Area Index). This formulation is given by (Yan et al.,
2012),

VPD!/? 9)

A(R, — G)e M

E, = 1.35RH
A+y

(10

where RH (no unit) is the mean air relative humidity, A is the slope of
saturation vapor pressure - air temperature curve, y is the psychrometric
constant, R, is net radiation above the canopy, G is the ground heat flux
and is neglected relative to Ry, and a plausibility argument is that at a 4
day timescale, the temporal value of G is near-zero. Excluding G can
bring about some uncertainty, but the overall effect should be minimum
given that G usually accounts for under 6% of R, when evaluated by
using FLUXNET sites (data not shown). The k, here is the light extinc-
tion coefficient and the synthesized values by Zhang et al. (2014b) are
adopted in this study. In particular, the value is 0.62 for croplands, 0.59
for broadleaf forests (evergreen broadleaf & deciduous broadleaf &
mixed forests), 0.45 for needleleaf forests (evergreen & deciduous nee-
dleleaf forests), 0.56 for shrublands (open and closed shrublands), and
0.50 for grasslands (grasslands & savannas); the mean value of 0.56 of
all ecosystems in the study by Zhang et al. (2014b) is adopted for
cropland/natural vegetation mosaic and wetlands in this study; LAI is
leaf area index (m?> m~2). When combining Egs. (9) and (10), the
modeled transpiration and soil evaporation can be combined and
expressed as,

~ 44.10 (aSIF + §) o /161
A C——
2600x0.57 10

Here, the T; + Es part has only two ‘free’ parameters - a and f that
must be externally calibrated for each site. Also, it is noted that /T.61
multiplies @ and 8 — and hence - it cannot be readily disentangled from
them if treated as a third fitting parameter. The conversion factor of
44.10 for the T, expression is to ensure these fluxes are in units of Wm 2.

A(R, — G) o g7hall
A+y

T, +E, VPD'? +1.35RH

1D
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The a and g parameters were calibrated at FLUXNET sites during dry
periods with rainfall events excluded (see 2.2).

The evaporation of canopy intercepted water was calculated using a
modified analytical model (Gash, 1979; Gash et al., 1995). Here, the
canopy and the trunk are assumed to be the entire interception surface
so as to simplify the calculation. Remote sensing data are used to
calculate the global canopy intercepted evaporation (Zheng and Jia,
2019). The Gash model describes the volume of water that is intercepted
by the canopy, and the intercepted water is considered as the inter-
ception re-evaporation. The intercepted water is calculated as,

cePsPg <P,
E = ) E ) ) (12)
c-PG+co§o(PG—PG) Pg > Pg

where c is the canopy cover fraction evaluated using 1 — e *LAl (Zheng
and Jia, 2019), and kj is the light extinction coefficient as aforemen-
tioned and the same parameterization is adopted (Zhang et al., 2014b);
R (mm hr™') denotes the mean rainfall rate which can be directly
evaluated by using the rainfall records, and E (mm hr!) denotes the
mean evaporation rate during rainfall and can be evaluated by using a
Dalton type evaporation equation where the evaporation rate is driven
by water vapor concentration gradient between the canopy surface and
the air; note that both R and E are evaluated for certain fixed periods (e.
g., 1 month, 2 months, among others); P; (mm) is the gross rainfall for
each rainfall event; P’G (mm) is the rainfall threshold for saturating the
canopy and can be evaluated as

. R S, E
Ps :fﬁo?goln<lfﬁ> 13)

where Syeg denotes the vegetation canopy storage capacity (mm) and
can be evaluated as,

Syeg = Sy @ VAI 14

where S, (mm) is the specific storage capacity (see Cui et al., 2015). The

VAI (m? m™?) is the vegetation area index approximated by using LAI

and the area index of dead leaves, branches, stem and trunk, L; (m?
-2

m™ ),

VAI = LAI + L, (15)

where L varies with LAI and can be quantified as,
L' = max{[e o L'"" + max(LAI""" — LAI",0) | , Lyyuin } 16)

Here, L and L?! denote the n™ and (r1-1)th L of the time series,
respectively, and L, min is the minimum value of Lg; LAI" and LAT™!
denote the n'™ and (n-1)™ green LAI of the time series, respectively; &
denotes the left rate of residuals and 1-¢ denotes the removal rate. The
parameterizations of Ly min and € are taken from Cui et al. (2015). The
unit of E; was ultimately converted to W m™ using latent heat of
vaporization (=2.45 x 10%J kg_l).

2.2. Deriving the a and f§ parameters over the globe

The contiguous SIF product (CSIF) is used (Zhang et al., 2018) to
constrain transpiration and the model parameters a and f are calibrated
against latent heat flux measurements reported by the FLUXNET2015
dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). CSIF
was produced using a machine learning algorithm trained using the
Orbiting Carbon Observatory-2 (OCO-2) SIF measurements and the
MODIS reflectance product. The CSIF employed here has a spatial res-
olution of 0.05°at the 4-day temporal resolution from January 2000 to
December 2018. The FLUXNET site is paired with CSIF pixel in which
the meteorological tower resides and the parameters of the models were
optimized at the flux site level.
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FLUXNET2015 is a worldwide network of eddy-covariance turbulent
flux measuring stations, which include near-surface fluxes of carbon
dioxide, water vapor, and energy (Pastorello et al., 2020). For each site,
the following variables were selected in the parameter determination:
latent heat flux (W rn_z), VPD (kPa), C, (in ppm), net radiation (W m_z),
air temperature (in °C), and air relative humidity (unitless). Inconsis-
tency usually exists between the flux tower footprint (usually 3 to 5 km?)
and remotely sensed SIF coverage due to land heterogeneity. We used
Net Difference Vegetation Index (NDVI) to select sites satisfying the
following two requirements: (1) The maximum, minimum, and standard
deviation of NDVI (MOD13Q1) of the grid point in which the site is
located is within 20% of the difference of the corresponding statistical
index of the adjacent area (5 x 5 km? area in the center of which the flux
site is located); (2) The maximum of NDVI of the target grid point must
be >0.2 to exclude the sites with barren land in the growing season (see
Zhou et al., 2022). Here the growing season is determined by using 50%
thresholds of annual SIF data series, in particular, the spring onset is
determined by 50% of the annual maximum of SIF, and the last fall day
is defined as the date when the seasonal SIF drops to 50% of the annual
maximum (Jeong et al., 2017). Sites with temporal coverage longer than
2 years are included in the analysis. These selection criteria resulted in
68 flux sites (Table S2) for parameter calibration, and the sites covered
all land types under the IGBP land classification except for deciduous
needleleaf forest (DNF), cropland/natural vegetation mosaic (CVM),
water bodies (WAT) and urban and built-up land (URB). The land use
types of water bodies and urban and built-up were not considered here.
The temporal resolution of all flux site variables was aggregated to 4
days to be consistent with that of the CSIF data. To reduce uncertainty,
we removed data when the meteorological variables over the 4 days’
period missed >10% data. The model parameters a and § were cali-
brated at the site level using the least square method and later employed
to derive the global distribution based on the IGBP vegetation type
classification. Here, the MODIS product MCD12C1 was used for global
vegetation distribution, which has a spatial resolution of 0.05° (See Fig.
S1).

The parameters of @ and 8 describe the relation between GPP and SIF,
where a represents the ratio of light use efficiency to fluorescence yield
(Yang et al., 2015) and f is the intercept of this relation. Thus, any factor
that influences light use efficiency and fluorescence yield affect these
parameters. Vegetation type, canopy structure, meteorological condi-
tions impact these two parameters as well (e.g., Pierrat et al., 2022). In
constructing the spatial distribution of these two parameters, we only
considered the vegetation type by using global plant functional type
(PFT) and the environmental variables of mean annual precipitation
(MAP), mean annual temperature (MAT) and Dryness Index (DI). The
parameters of @ and 8 were first calibrated at the 68 FLUXNET sites, and
then two methods were used to determine the spatial distribution of
these parameters over the terrestrial globe using PFT as follows:

(1) Mean value model:

For PFTs with limited number of sites (0 < N < 5) including Closed
Shrublands (CSH), Deciduous Broadleaf Forests (DBF), Mixed Forests
(MF), Open Shrublands (OSH) and Wetlands (WET), a PFT-based mean
value approach similar to the parameterization method commonly used
in land surface models is used and given as

yi=d +6 a7)
where yi is the value of the parameter a or § at the i flux station in the
j™ PFT, ¢ is the average of the parameter of all flux stations in the j
PFT, and §; is the error.

(2) Regression model:

For PFTs with at least 5 available sites, a regression model was
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employed to construct the global distribution of the model parameters,
including Cropland (CRO), Grassland (GRA), Evergreen Needleleaf
Forest (ENF), Deciduous Broadleaf Forest (EBF), Savannas (SAV), and
Woody Savannas (WSA) (See Table S3 for the 58 sites). The regression
model was developed by correlating the parameters with environmental
variables for each PFT as,

vi= (W) X +5, (18)

Here, (/)" is the regression coefficient matrix for the j plant func-
tional type. The X; is the matrix of selected environmental variables of
the i flux site. The environmental variables here include MAT, MAP,
and Dryness Index (DI) evaluated as the ratio of Potential Evapotrans-
piration (PET) and MAP, all of which are factors that commonly control
local climate, as well as photosynthesis and plant transpiration. At the
FLUXNET sites, MAT and MAP were obtained by averaging long-term
precipitation and temperature records available in the FLUXNET2015
datasets, where the site DI was evaluated and the PET was calculated by
using Priestley-Taylor model (Fisher et al., 2008; Zhang et al., 2019; Liu
et al., 2022).

The global distribution of MAT and MAP were obtained as long-term
averages of ERA5 temperature and precipitation records. Since the
magnitude of land precipitation is usually below 3000 mm yr’1 in most
areas, extreme precipitation records (>3000 mm yr 1) were replaced by
3000 mm yr*. The global distribution of DI was calculated using MAP
and PET estimated from the Priestley-Taylor model (see Fisher et al.,
2008; Purdy et al., 2018 for details). The global distribution of model
parameters was determined using either the mean value model or the
regression model with MAT, MAP and DI. For those PFTs with limited
sites, the mean value of the parameters of the PFT was used; for the DNF
and CVM PFTs, as no flux sites were available to calibrate the parame-
ters, we used the average of the site-calibrated parameters of ENF for
DNF, and the average of CRO for CVM.

2.3. Drivers of the global ET model

Meteorological input from the ERA5 terrestrial meteorological
reanalysis data (https://cds.climate.copernicus.eu/) was used to drive
the ET calculations. ERA5-Land is the latest generation of meteorolog-
ical reanalysis data operated by the European Centre for Medium-Range
Weather Forecasts (ECMWF) (Hersbach et al., 2020). Covering all con-
ventional meteorological data from 1950 to the present, it assimilates
remote sensing products, surface and upper atmosphere meteorological
data, including different regions of the globe with varying time scales.
We used the hourly meteorological variables at a spatial resolution of
0.1°, including air temperature (T,, °C), dew point temperature (Tgey,
°C), net short-wave radiation and net long-wave radiation (W m~2). The
VPD was calculated as

VPD = e, — €4 19)

where esq (kPa) is the saturation vapor pressure and e, (kPa) is the actual
water vapor pressure derived using Tqey-

Because most plant photosynthesis occurs during daytime, we
averaged the meteorological records between 06:00 and 18:00 local
time to the 4-day window. Such treatment brings about some uncer-
tainty to nighttime evaporation. However, the effect should be low as
nighttime evaporation accounts for 6% of the total ET on average as
evaluated using the original latent heat flux measurements provided by
FLUXNET2015 database (data not shown). These estimates also match
other reported nighttime ET estimates in the literature (Novick et al.,
2009). To match the resolution of the SIF data, we resampled the ERA5
radiation data from 0.1° to 0.05° using a spline function interpolation.

Leaf area index (LAI) was obtained from the MODIS leaf area index
product (MCD15A3H V006) for the period 2003-2018 to support the Eg
calculations in Eq. (10) and the canopy interception evaluations. This
LAI product has a spatial resolution of 500 m and a temporal resolution
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of 4 days. At the stage of site parameter calibration, the LAI grid points
were extracted to match the flux sites. For global ET calculations, the
global LAI was aggregated to 0.05° to match the spatial resolution of the
SIF data. To conceptualize the global ET estimation procedure, Fig. 1
features a flowchart highlighting the key variables used and their
resolution.

The global precipitation dataset MSWEP (Beck et al., 2019) was used
to drive the Gash model for global E; estimates. The MSWEP dataset has
a spatial resolution of 0.1° and a temporal resolution of 3 h by optimally
merging multiple data sources ranging from gauge measurements, sat-
ellite observation, to reanalysis production. The high quality of MSWEP
guarantees the quality of the canopy interception evaporation estimate.
Before running the Gash model, the mean rainfall rate (R) was evaluated
using the original 3-hourly data for every 28 day-window (i.e., 7 x 4-day
windows of the calculation step of ET), then the Gash model was run at
the daily time step that was finally aggregated to 4 days to agree with
other ET component calculations. To match the spatial resolution of
0.05° for the transpiration and soil evaporation estimates, the four 0.05°
pixels within the 0.1° pixel directly adopted the corresponding inter-
ception evaporation value.

2.4. Global evapotranspiration products used for comparison

Three widely used meteorologically-driven global ET products were
used for comparisons with the proposed ETgr. The first product is the
GLEAM ET data (Martens et al., 2017). GLEAM calculates PET using the
Priestley-Taylor equation (Priestley and Taylor, 1972) with observed
surface available energy and surface temperature. GLEAM estimates
actual ET by imposing a constraint on PET. In particular, GLEAM com-
bines observations of Vegetation Optical Depth (VOD) and estimates of
root-soil moisture that impose ET limitations using an empirical
reduction factor. Different from other ET products used for comparisons
in this study, GLEAM explicitly considers snow sublimation. The GLEAM
ET data has a spatial resolution of 0.25° and a temporal resolution of 1
day.

The second ET product is derived from the PT-JPL model (Fisher
et al., 2008) that employs the Priestley-Taylor formulation assumed to
represent PET (Priestley and Taylor, 1972). The PT-JPL model then
employs multiple constraints to convert the corresponding PET into
actual canopy transpiration, canopy interception evaporation and soil
evaporation. The constraints for canopy transpiration include leaf area
index, green fraction of the canopy, plant temperature and plant mois-
ture; the constraint for soil evaporation is evaluated using relative hu-
midity and vapor pressure deficit; the constraint for the interception
evaporation is defined as the fraction of time when the surface is wet
evaluated using relative humidity. The model description is featured
elsewhere (Fisher et al., 2008) and is not repeated here. Unlike GLEAM,
all the model parameters of PT-JPL are preset, thus no calibration is
needed when using the model. The PT-JPL model is run on monthly
timescales and these monthly ET estimates from 2003 to 2018 at spatial
resolution of 36 km (or 0.25°) are used for comparison with the pro-
posed ETg;g.

The third ET product is the land MOD16, which was derived by Mu
et al. (2007, 2011) using a modified Penman-Monteith equation with
parameterized stomatal conductance formulation. The dataset is built on
MODIS-reported land cover, albedo, LAI, meteorological forcings, etc.
Note that MOD16 only evaluates ET over vegetated areas, and all
sparsely vegetated or non-vegetated areas are left as blank. The MOD16
has a spatial resolution of 500 m and a temporal resolution of 8 days.

When comparing the proposed ETgr with the three products with
varying spatial and temporal resolutions, the finer-resolution datasets
were aggregated to agree with the lower-resolution ones.
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Fig. 1. Flowchart of the ET model (labeled as ETs;¢) calculations featuring the differing inputs and outputs along with their associated time scale.
The spatial resolutions of the original inputs are listed on the left and all the variables during the intermediate processing are at 0.05° resolution. The ERA5 pre-

cipitation record is used when deriving the dryness index (DI).
3. Results

3.1. Calibrating parameter at flux site level and constructing the
parameters over the globe

The a and B were calibrated for each of the 68 sites from the
FLUXNET2015 dataset. The ETsr model-data comparisons were not
independent of PFTs as shown in Fig. 2. The performance of the ETgp
model is also presented for the selected site for each PFT (see Fig. S2). In
particular, R? of the calibration is higher than 0.50 for 53 sites, and
higher than 0.70 for 34 sites; however, R? at some sites are low and fall
in the range of 0.1-0.3. The low R? was mainly at CSH, EBF and SAV
sites. The model parameters are featured by PFTs in Fig. 3. The pa-
rameters are statistically uniform across sites for some of the PFTs (i.e.,
MF, WSA, SAV, EBF, DBF), whereas they showed variability for other
PFTs (i.e., ENF, SAV, CRO, OSH, CSH). In particular, a of ENF showed
substantial variability among different sites. For those PFTs with limited
sites (N < 5), the average of the parameters from available sites were
employed (Table 1). For PFTs with at least 5 sites, a multiple linear
regression model was used to relate a and  to MAP, MAT and DI (Fig. 4;
Table 1). For most PFTs, the multiple linear regression captures the
variability of parameters among different sites (R* = 0.6-0.8); but for
PFTs such as DBF and GRA, the performance was poor with R? < 0.3.
Given that the value of R? > 0.1, the climatic and environmental

variables of MAP, MAT and DI are used in the regression model to
determine a and f in lieu of using an ad-hoc mean values set by a PFT.
Therefore, the regression model was used for each of the 6 PFTs to
produce the global distribution of a and p (Fig. 5). Note that the lower
boundary of p was artificially set to 0 when estimating the global ET to
avoid negative values of photosynthesis and transpiration due to the
false parameters on a 4-day interval. We tested setting p = O when cal-
ibrating the parameters at flux sites and found the overall performances
showed no discernible difference (See Table S2). The constructed spatial
distribution of o showed clear lower values over tropical area (~10-20
pmol m~2 s~/mWm 2nm~'sr™!) and higher values over the boreal
forests (~50-70 pmol m2sl/mWm 2nm™! sr_l). On the contrary, the
parameter p showed high values over the tropical area (~4-8 pmol m 2

s’l).

3.2. The distribution of global ET from 2003 through 2018

The global ETgr was produced from 2003 through 2018 and spatial
maps of the annual means are featured in Fig. 6. Globally, mean annual
ETsr ranged from 0 to 150 W m~2 (Fig. 6). The higher values were in
eastern North America, South America, South Africa, Southeast Asia,
Southern China, and part of Australia. The mean annual ETg in most
part of the Amazon forest region ranged from 100 to 150 W m ™2, while
in most African regions except for the Sahara Desert and the dry climate
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Fig. 2. The coefficient of determination (R?) of the ETgyz model in reproducing the measured evapotranspiration (ET) for each of the IGBP plant functional types
(PFTs).

Fig. S2 features examples for flux sites when calibrating the model. Hereafter for the boxplot, the central line denotes the median; the upper whisker is the maximum
value of the data that is within 1.5 times the IQR over the 75% percentile, and the lower whisker is the minimum value of the data that is within 1.5 times the IQR
under the 25% percentile, note that the interquartile range (IQR) here is defined as the difference between the 75% and 25% percentiles; the diamond points denote
outliers falling beyond the range [25% percentile-1.5*IQR, 75% percentile+1.5*IQR]. The IGBP code is: CRO-Croplands, CSH-Closed Shrublands, DBF-Deciduous
Broadleaf Forests, EBF-Evergreen Broadleaf Forests, ENF-Evergreen Needleleaf Forests, GRA-Grasslands, MF-Mixed Forests, OSH-Open Shrublands, SAV- Sa-
vannas, WET-Wetlands, WSA-Woody Savannas.

100

80

60 -

40 4

20

o (pmol - m~2 - s~//mWm™2nm~"sr 1)

|
f
4
ﬁs
%

—20 I I I I I I I I I I I
CRO CSH DBF EBF ENF GRA MF OSH SAV WET WSA

Fig. 3. Variability of the parameters o (pmol m2s /mWm 2nm 'sr 1) and B (pmol m~2 s~ 1) across different plant functional types (PFTs).
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Table 1

Mean value for plant functional types with limited sites (N < 5) and the
regression relation of parameters for plant functional types with sufficient sites
(N > 5) derived from calibration over FLUXNET sites.

PFT  a B

CSH  14.46 ~0.15

EBF  14.00 7.75

MF 21.03 —2.01

OSH  22.75 0.02

WET  46.61 -2.36

DNF  35.14 -0.37

CVM 2361 ~1.61

cro 986 +0.047 MAP-0.170 6.21-0.008 MAP-0.170 MAT-0.108
MAT+2.733 DI DI

ppp  33-31-0.014 MAP-3.048 0.54-0.002 MAP+0.575 MAT-6.352
MAT+29.886 DI DI

g 37-32-0.009 MAP-0.665 —4.09 + 0.004 MAP+0.214
MAT-+6.582 DI MAT-0.844 DI

GRa 1217 +0.009 MAP+0.444 —0.77 + 0.004 MAP-0.321
MAT-0.117 DI MAT+0.738 DI

say  87-11-0.050 MAP+0.561 —11.38 + 0.005 MAP-+0.104
MAT-16.232 DI MAT+1.418 DI

wsa  184.77-0.0045 MAP-4.06 ~15.79-0.0012 MAP+0.325

MAT-33.15 DI MAT+2.69 DI

Note that the negative values of # were set to 0 when estimating the global ET,
thus here the values and equations were a direct result of site calibration.

of South Africa, the mean annual ETgz >75 W m™2. The ETs can be
higher than 125 W m ™2 for some regions in central Africa and some parts
of the Amazon forest. The U.S. Corn Belt and the eastern U.S. also have
relatively higher ETgr (>100 W m’z) resulting from cropland irrigation
and intense crop agriculture. Similar ETgr values were computed for
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North America, North and South China where large amounts of crop-
lands are available. In sparsely vegetated regions and drier regions such
as the western United States, the Middle East, North Africa, and at higher
latitudes, ETg;r was lower, typically <50 W m~2. The global annual ET/
R, ratio (Fig. S3) showed that ET was mostly dominated by radiation in
tropical area (i.e., Amazon forest, Central Africa, Southeast Asia) and
intensely irrigated area (e.g., Midwest of U.S., India, North part of
China) with a higher ET/R,, ratio, while in the arid region (e.g., North
Africa, Middle East, Northwestern China) ET was mostly dominated by
water availability with a lower ET/R;, ratio. The maximum and mini-
mum 4-day averaged ETgp are shown in Fig. S4, and a maximum of
about 500 W m~2 appeared at higher latitudes of Eurasia, Southeastern
China, India, part of the Amazon forest, Mideast U.S.. The minima in the
tropical area exceed 50 W m ™2,

Monthly averaged global ETgr was also computed and seasonal
variations across the whole globe evaluated (Fig. 7) to assess controls of
leaf area dynamics on ET. For the Northern Hemisphere spring (Fig. 7a-
¢), ETsir was low in Northern China, Southern China, Eastern U.S., and
across Europe as vegetation greening commences. At the same time,
ETsr remained high in South America along the Amazon rainforest and
southern South America, Indonesia and Congo. In the Northern Hemi-
sphere summer (Fig. 7d-f), the ETgr reached a peak, especially in the
Eastern U.S., Northern and Southern China, and Europe, where ETgr as
high as 150 W m~2 was computed. In the Amazon forest, ETs;r remained
high during the spring. In southern South America, overall ETgr was low
as the southern hemisphere entered winter at this time. Similarly for the
southern part of South America, the overall ETgr in Australia was also
low due to the winter season. As the Northern Hemisphere approached
fall (Fig. 7g-1), ETsr began to decline in North America, most parts of
Europe, northern China, and southern China. Near the U.S. Corn belt,
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Fig. 4. Performance of the multiple linear regression model to explain variability in « (umol m~2 s~*/mWm?nm~'sr™!) and p (umol m~2 s*) for different plant

functional types.

Note that the x axis represents the parameters of site calibration and the y axis represents the estimate when using the multiple linear regression with Mean Annual

Temperature (MAT), Mean Annual Precipitation (MAP) and Dryness Index (DI).
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Fig. 5. Global distribution of the model parameters a (a) and p (b) used in ETgsz. The f = 0 was externally imposed to ensure no negative GPP occurs when SIF =

0 over a 4-day averaging interval.

ETgr dropped from over 150 W m 2 in the summer to about 50 W m 2.
In Europe, ETgr dropped from about 100 W m ™2 in summer to about 25
W m 2. In China, the overall ET dropped to about 100 W m~2. As the
southern hemisphere entered spring, ETgr increased to about 100 W
m~2 in most parts of South America and Australia. The Amazon rain-
forest and parts of Southeast Asia still maintained high ETgr due to low
seasonal variations in this region. In the Northern Hemisphere winter
(Fig. 7j-1), ETsir remained low in North America, Europe, and China. In
the Amazon rainforest and Southeast Asia, ETgr remained relatively
high throughout the year. As summer progressed in the Southern
Hemisphere, the overall ETgr remained high for all parts of Australia
and southern South America. The lower coefficient of variation (CV) of
ETgr in the tropical area implies that ET is generally stable all year
round, and the higher CV in the higher latitude of the Northern Hemi-
sphere and the arid area (Northern Africa, Middle East) implies that the
ET is subject to high seasonal variation (Fig. S5). To sum up, the overall
spatial and temporal patterns of global ETgr appear consistent with
logical expectations. It must be underscored that LAI data product did
not enter into the transpiration calculations explicitly and was only used
in the soil- and intercepted water evaporation.

To reveal other patterns, ETs;z was averaged by latitude and the

seasonal variation of latitudinal ETgr is evaluated and featured in Fig. 8
(a). As expected, near the equator, ETsr showed minor seasonal varia-
tions with a relatively high ETgr level across seasons. In the northern
and southern hemispheres, ETgjr was higher in the plants’ active season
compared to the dormant season as expected. Global ETgr also showed a
minor increasing trend (0.257 mm yr~!) over the 2003-2018 period
though this trend was not statistically significant at the 95% confidence
level (Fig. 8b).

4. Discussion
4.1. Comparison with other ET products

Using global SIF products complemented with meteorological inputs
and land cover properties, a new global ETgr product for the period of
2003-2018 was developed and compared to prior global ET products.
The global distribution of ETsr derived here are comparable with other
common meteorologically-driven ET products of GLEAM, PT-JPL model
and MOD16 though discrepancies exist as shown by the differences in
Fig. 9. The differences between ETgr and prior algorithms is typically
about —20 to 20 W m 2 (Fig. 9) — or under 0.7 mm d~L. This difference is
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Fig. 6. Global distribution of the computed annual mean evapotranspiration (ETg) for the study period (2003-2018); the inset panel shows the probability density

function (pdf) of annual mean ETgg.

deemed acceptable given the differences in input variables and the
differences in model complexities and assumptions. The proposed ETsir
showed evident differences from MOD16 and a bimodal curve pattern
existed in the probability density function of those differences (Fig. 9).
Substantial differences between ETgr and some of the other products are
found in the Amazon rainforest, some parts of central Africa and
Indonesia where the rainforest is dominant as well as Eastern India,
where agriculture is dominant, and in central and western Australia,
part of Africa, part of South and Southeastern Asia where the estimated
residuals ranged from 20 to 60 W m™~2. Part of the uncertainty may be
related to the parameters that adopt the average of the PFTs in most
regions of western Australia, Africa and part of Asia, where eddy-
covariance flux sites over the major PFTs remain insufficient for accu-
rate GPP-SIF parameterization. But the difference may also result from
the limitations in other products.

The comparison between the proposed ETgr and GLEAM in Fig. 9
suggests the two ET methods agree on spatial patterns as the probability
density function (pdf) of the corresponding difference is centered
around 0 W m~2; however, the comparisons with PT-JPL and MOD16
products imply that ETgyy is significantly different. We compared these
three ET products (GLEAM, PT-JPL and MOD16) and also found pro-
nounced differences among themselves (Fig. S6). In general, for the four
ET products evaluated in this study (ETs, GLEAM, PT-JPL and
MOD16), ETgip and GLEAM have similar spatial pattern with pro-
nounced difference mainly emerging in tropical regions (e.g., Amazon
forest), while PT-JPL and MOD16 agree on their spatial pattern; only
GLEAM explicitly considers snow sublimation, but ETgr at high lati-
tudes with snow cover is very close to GLEAM, implying that the
omission of such component of ETgr does not impact the total ET esti-
mate. Compared to PT-JPL and MOD16, the ETgr and GLEAM are
consistently lower at high latitude in Northern Hemisphere, but are
higher at sub-tropical regions (e.g., Southeast America, Southeast Asia).
These differences probably result from different model structures and
varying input variables among these models. As there is no direct
‘measurement’ of global ET, we have no basis to judge which is right and
which is wrong. Thus, we note here that all global ET products,
including ETgp, should be treated with caution.

The climatological zonal distributions of annual ETgr and other ET
products are compared in Fig. 10 and the general patterns are similar
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with the highest values appearing around the equator. However, clear
differences emerge for most latitudes of the globe. At latitudes between
—5° and 5° (near the equator), ETs;r was close to GLEAM and higher
than the other two ET products, whereas between —25° and — 5°
Southern Hemisphere as well as 5° and 20° Northern Hemisphere, the
ETsr was higher than all three ET products. At the mid-latitude regions
of the Northern Hemisphere (25°-50°), the general patterns across all
products agree but with differences emerging in the magnitude. At high
latitudes (50°-75°) of the Northern Hemisphere, the four ET products
showed clear divergent values, indicating that ET estimation at high
latitudes remains subject to high uncertainty. Around 15-25° Northern
Hemisphere, ETgr together with GLEAM and PT-JPL showed pro-
nounced deviations from MOD16 estimates (Fig. 10), which yielded
higher ET values compared to the other three products. But such higher
values of MOD16 at 15°-25° and 50°-75° of the Northern Hemisphere
probably result from statistical biases as MOD16 ET of sparsely vege-
tated and non-vegetated areas (e.g., Sahara Desert and the permanent
snow cover) was not evaluated (Mu et al., 2007, 2011), potentially
elevating the corresponding latitudinal average because ET in these
omitted areas is usually lower than the vegetated areas. The pronounced
differences among the four ET products imply that estimating global ET
remains challenging, especially at the higher latitudes (>60°) and the
zone of 5-25° of the Northern Hemisphere (see the high Root Mean
Square Difference in Fig. 10).

4.2. Advantages and limitations of the SIF-based ET model

The proposed ETgr is based on two physiological relations: (i) the
GPP-SIF and (ii) an optimality hypothesis that predicts C;/C, as a
function of vapor pressure deficit for C3 plants (but can be extended to
C4 plants). Compared with other detailed vegetation-transpiration re-
lations, no stomatal conductance models are required in ETgr and the
effect of stomatal closure is indirectly captured by C;/C,. The optimality
hypothesis requires the inverse of the marginal water use efficiency (1)
that is related to the Lagrange multiplier of the optimality problem. We
assumed the marginal water use efficiency is constant, but this quantity
is regulated by the variation in the soil-plant hydraulic conductance
(Anderegg et al., 2018; Wang et al., 2020), which is not considered in
this study. In the case of C4 plants, an additional parameter (1) related to



Q. Zhang et al. Remote Sensing of Environment 305 (2024) 114061

200

150

U
ﬂ
:
U
U
U

0

Fig. 7. Global distribution of monthly averaged evapotranspiration ETgr for the study period (2003-2018).

11



Q. Zhang et al.

Latitude(®)

—80

Remote Sensing of Environment 305 (2024) 114061

140

120

100

80 «

W m

60

40

20

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Time
(®) °
y =0.257x+108.0
R%Z=10.06 ®
p=0.35 ®

[oN

8

(=]
|

625 -

Annual Total ET (mm yr~})

620

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year

Fig. 8. Seasonal variation of latitudinal averaged evapotranspiration (ET) (a) and the temporal trend of global annual mean ET (b) over the period of 2003-2018.
Note that the global annual total ET in the (b) panel has units of mm yr~' for comparisons with precipitation.

the C4 pump strength is also required. ETsr developed here used Ay
based on literature values and plant functional types for C3 plants. This
assumption ignores hydraulic limitations and, to a lesser extent, the
effects of C, on A¢s. The model calculations set 7 = 1 (C3 plants) even in
croplands that may be occasionally dominated by corn (a C4 crop). The
work here did not consider such variations in 7. A partial justification for
setting # = 1 over large areas and extended time periods is that corn is
frequently rotated with other C3 crops (wheat or soybeans). Accounting
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for such rotation makes the specification of # across the globe a formi-
dable challenge even when the numerical value of 7 is known. Advan-
tages of a simplified model structure and a small number of ‘free
parameters’ bring about potential uncertainties as well, especially in
spatial upscaling. When PFT is not covered by sufficient flux measuring
sites for model calibration, a mean value was adopted. The dominant
PFTs in central and western Australia is OSH (Open shrublands), i.e.,
shrubs cover 10%-60% of the total land area in this region, but the
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Fig. 9. The spatial distribution of the difference between ETgr and GLEAM (a), PT-JPL (b) and MOD16 (c) on annual mean time scale; the inset panels show the
probability density function (pdf) of these differences.
The comparisons with GLEAM, PT-JPL and MOD16 were conducted for the periods of 2008-2018, 2008-2017 and 2003-2018, respectively. Note that MOD16 does
not include sparsely vegetated or non-vegetated areas.
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FLUXNET database lacks sites for parameter calibrations for this PFT. here using the Sobol’ (2001) sensitivity analysis method, which de-
Using a mean of the parameter is likely to result in biases in Australia composes the model output variance into the sum of variances of the
and parts of Asia and southern Africa. The sensitivity of transpiration to input variables and parameters, and the sensitivity index represents to
the two free parameters together with the input variables are evaluated what extent each parameter (or variable) or the interaction of the
05] @ ST (b) 81
0.35 1
0 4 J 030 1
0.25 4
0.3
0.20 1
0.2 0.15
0.10
0.1+
0.05 1
0.0- 0.00 -
a p SIF Acf VPD T, a p SIF Aef VPD T,

Fig. 11. Sensitivity index of transpiration to the parameters (a, B, and A.f) and the input variables (SIF, VPD, and Ta).

ST represents the total sensitivity index (a) and S1 represents the first-order sensitivity index (b). In particular, the first-order sensitivity index is evaluated by keeping
all other variables (including parameters and input variables) constant, while the total sensitivity index is evaluated by considering variations of all variables
(including parameters and input variables); see Sobol’ (2001) for the detailed descriptions. Black line represents the 95% confidence interval.
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parameters (or variables) will have on the final output. We found
transpiration is sensitive to the parameter a (Fig. 11) followed by the
input variables of SIF and VPD, implying that any uncertainty associated
with the parameter o will easily translate into the uncertainty in tran-
spiration and evapotranspiration estimates. Thus, the accuracy of the
parameter o largely determines the overall quality of ETgyg.

Global ET estimation has advanced rapidly over the past decades,
especially when combining remote sensing products with energy bal-
ance- and meteorologically based models (Bastiaanssen et al., 1998; Su,
2002; Fisher et al., 2008; Mu et al., 2007, 2011). Other data-driven ef-
forts such as upscaling ET measurements at FLUXNET sites to the global
scale (Jung et al., 2020) and using machine learning based on FLUXNET
and SAPFLUXNET dataset (Koppa et al., 2022) also contributed to global
ET assessments. Compared with other high data-demanding methods,
ETsr provides an acceptable estimate using SIF dataset and basic
meteorological variables with low data demand and has the potential to
advance global ET modelling efforts. Another major advantage is that
stomatal conductance is not explicitly required when constraining
vegetation transpiration, thereby reducing the associated uncertainty of
the model structure. Thus, ETsr may be viewed as a compromise be-
tween the highly parameterized models (e.g., MOD16) and parameter
free models (e.g., PT-JPL). The model here based on SIF also provides a
possible way for ET partitioning, but independent field measurements of
transpiration are required to derive the model parameters to achieve
such goal. The acceptable performance of ETsr at FLUXNET sites lends
some confidence to its usage for large-scale ET computations. Needless
to say, the accuracy of ETgr depends on the quality of SIF retrieval,
which is impacted by the signal quality, sky condition, among others (e.
g., Kohler et al., 2018). Thus, any uncertainty associated with SIF
retrieval brings about extra error into ETgr as SIF is the most sensitive
input variable for transpiration in this ET model (see Fig. 11).

5. Summary and conclusion

An evapotranspiration model was developed that combines SIF sat-
ellite data and optimality principles for leaf gas exchange. The major
novelty of this approach is that the model does not need to parameterize
stomatal conductance. The model performance in reproducing eddy-
covariance measured ET at FLUXNET sites was acceptable when
model parameters related to GPP-SIF were optimized. The derived
model parameters at these sites were later employed to determine a
global distribution of parameters by relating them to site and climate
properties using multiple linear regression. Using ERA5 meteorological
input, MODIS LAI and SIF products, the MSWEP precipitation product,
the computed evapotranspiration from 2003 through 2018 was in the
range of 615-635 mm yr~! with minor but statistically insignificant ET
enhancement trend (0.257 mm yr 1) possibly resulting from global
greening (Yang et al., 2023). Future developments seek to improve the
role of soil moisture stress and hydraulic limitations on the marginal
water use efficiency parameter and develop additional constraints on
the relation between GPP to SIF. The first global terrestrial ET product
mainly driven by SIF may be used to assess antecedent soil moisture
conditions, drought monitoring, large-scale runoff and associated
changes in the hydrological cycle, among others. The comparisons with
other ET products show that large uncertainties generally exist in global
ET estimates, thus all global ET products should be treated with caution
when dealing with topics on global water cycle.
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