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A B S T R A C T   

The signi3cance of large-scale evapotranspiration (ET) to climate science, water resources management, �ood 
routing, irreversible deserti3cation, and crop yield is not in dispute. Current large-scale ET models combine 
empirical formulations with a suite of remotely sensed data products that include meteorological variables, 
vegetation indices and/or soil moisture. In recent years, solar-induced chlorophyll �uorescence (SIF) has been 
proposed as an indicator of photosynthetic activity but its potential to constrain transpiration (Tr) or ET remains 
under-explored and frames the scope here. A large-scale terrestrial ET model driven by SIF is developed based on 
leaf water‑carbon exchange complemented with an outcome for intercellular to ambient CO2 concentration 
derived from optimality theory for stomatal conductance. The model parameters are 3rst calibrated across 
FLUXNET sites and then extrapolated globally using their dependence on climatic variables and plant functional 
types. The model, hereafter referred to as ETSIF, requires SIF data, leaf area index, land use type, and basic 
meteorological variables that include net radiation, air temperature and relative humidity. Global ETSIF estimates 
computed on a 4-day window for the period spanning 2003 to 2018 was 625 mm yr−1 in general agreement with 
other independent global ET estimates, but discrepancy in the spatial distribution still exists implying that global 
ET estimation remains subject to large uncertainty. ETSIF exhibited a tantalizing positive trend over the same 
period but this trend was not statistically signi3cant. One of the major advantages of this new approach, is that 
the model requires few parameters, reduce the parameterization of stomatal conductance and can be immedi
ately used to constrain spatially extended ET estimates.   

1. Introduction 

Evapotranspiration (ET) is the main terrestrial pathway by which 
precipitation is recycled back to the atmosphere. The signi3cance of this 
water �ux in regulating the climate system has been recognized since the 
late 1970s (Eagleson, 1981) and much recent attention is focused on its 
interaction with the terrestrial carbon cycle (Jung et al., 2010). Because 
of the large latent heat of vaporization value of water, the ET cooling 
effects also regulate land-surface and near-surface air temperatures (Oki 
and Kanae, 2006; Gentine et al., 2010, 2011; Zhang et al., 2020). Esti
mates of global ET are required for assessing shifts in the hydrological 

cycle, drought monitoring (McEvoy et al., 2016), and climate change 
model evaluation. Unsurprisingly, estimating ET at spatially extended 
scales using remote sensing products continues to receive research in
terest (e.g., Bastiaanssen et al., 1998; Su, 2002; Mu et al., 2007, 2011; 
Yuan et al., 2010; Martens et al., 2017). Barriers to estimating ET at such 
large spatial scales include dif3culties in capturing heterogeneity in soil- 
vegetation activity and the complex interactive effects of biochemical 
and biophysical processes regulating transpiration (Tr). 

Prior remote sensing-based approaches to estimating ET at global 
scales fall into two broad categories: (i) meteorologically based semi- 
empirical methods and (ii) surface energy balance residual methods. 
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The meteorologically based methods employ a Penman equation 
(Penman, 1948) or variants such as the Penman-Monteith (PM) equation 
(Monteith, 1965) or a Priestley-Taylor (PT) equation (Priestley and 
Taylor, 1972) to estimate global ET using remotely-sensed vegetation 
properties, meteorological conditions, near-surface soil water content, 
among other variables. Mu et al. (2007, 2011) produced a widely used 
global ET dataset (i.e., MOD16) employing the PM equation, yet in this 
approach, the stomatal conductance must be parameterized leading to 
uncertainties in the retrieval. Fisher et al. (2008) modi3ed the PT eq. 
(PT-JPL) and partitioned ET into three components: evaporation from 
the soil or forest �oor, evaporation of canopy intercepted water, and 
transpiration Tr. These methods are subject to uncertainties given the 
dif3culty in representing these processes, especially Tr. Another limi
tation encountered by these models is their ability to reproduce the 
hysteresis response of ET to radiation load or vapor pressure de3cit 
variation (Zhang et al., 2014c; Lin et al., 2019; Wan et al., 2023). To 
overcome some of these issues, Yang et al. (2013) used the water - 
carbon gas exchange relation at the leaf level to link leaf transpiration to 
photosynthesis, though uncertainties in describing carbon �uxes and 
their bridge to water �uxes remain. The energy balance residual 
methods also gained attention because of their simplicity as in the SEBS 
model (Su, 2002), SEBAL (Bastiaanssen et al., 1998), and other multiple 
water sources models (e.g., two sources - TSEB, Norman et al., 1995; 
three sources - 3SEB, Burchard-Levine et al., 2022). Such energy balance 
residual methods are sensitive to estimates of land-surface temperature 
and air temperature given that their differential value drives sensible 
heat �uxes (Zhang et al., 2016b). Moreover, accurate parameterizations 
do require turbulent �ow statistics rarely available at large scales (Katul 
et al., 1998). 

Solar-Induced chlorophyll Fluorescence (SIF) provides a novel way 
of monitoring large-scale photosynthetic vegetation activity (Sun et al., 
2023). Since stomata regulate leaf gas exchange of carbon dioxide and 
water vapor with the atmosphere, SIF offers a promising way to indi
rectly infer Tr, framing the scope here. Plants utilize absorbed photo
synthetically active radiation (APAR) for photosynthetic activities and 
dissipate the excessive radiation through non-photochemical quenching 
(NPQ) processes, and the remaining unexploited APAR in the 400–700 
nm spectral range is re-emitted by chlorophyll molecules at longer 
wavelengths, which is known as solar-induced chlorophyll �uorescence 
(or SIF). As such, SIF contains key information on plants’ photosynthetic 
activities (Sun et al., 2023) that shows great potentials to constrain Tr. 
SIF has already been widely used to reconstruct large-scale photosyn
thesis (Zarco-Tejada et al., 2009; Sun et al., 2015; Yoshida et al., 2015; 
Zhang et al., 2016a) after Guanter Palomar (2006) performed the 3rst 
space-based SIF retrieval. From then on, several satellite projects have 
been launched with equipment allowing for SIF retrievals on board such 
as the Greenhouse gases Observing SATellite (GOSAT) (Hamazaki et al., 
2005; Guanter et al., 2012) and GOSAT2 (Imasu et al., 2023) missions, 
Global Ozone Monitoring Experiment-2 (GOME-2) (Joiner et al., 2013), 
Orbiting Carbon Observatory-2 (OCO-2) (Frankenberg et al., 2014) and 
OCO-3 (Taylor et al., 2020), and TROPOMI (the TROPOspheric Moni
toring Instrument) (Köhler et al., 2018), among others. Because SIF can 
re�ect plants’ activity, the observed remotely sensed SIF has the po
tential to constrain large-scale Tr, and thus ET as transpiration is usually 
the largest fraction of ET, without extensive data needs for meteoro
logical variables and vegetation conditions and their empirical calibra
tions. The accuracy of the corresponding Tr and ET logically depends on 
the quality of remote sensing SIF retrievals. 

A handful of prior studies already used SIF to model ET empirically. 
Alemohammad et al. (2017) showed that SIF observations could be used 
to constrain variations in ET; Damm et al. (2018) found a non-linear 
relation between ET and SIF while other studies also found that the 
radiation and meteorological conditions such as Photosynthetically 
Active Radiation (PAR), Vapor Pressure De3cit (VPD), and Air Tem
perature (Ta) impact the empirical relation between ET and SIF (e.g., Lu 
et al., 2018); other studies applied the Penman-Monteith equation by 

parameterizing canopy conductance (or resistance) using SIF and re
ported good performance in ET modelling (e.g., Shan et al., 2019; Damm 
et al., 2021). Utilizing the photosynthetic information contained in SIF 
products at FLUXNET sites, a method based on water‑carbon relations 
was earlier proposed to estimate ET and tested across these sites (Zhou 
et al., 2022). In particular, the transpiration-SIF relation was improved 
when scaled by VPD. The key advantage of the aforementioned model is 
that it does not require explicit accounting for stomatal conductance. 
The model reliably reproduced site-level ET when complemented with a 
soil evaporation model across all land use types. Expanding on this 
work, the aim here is to (1) determine the ET-SIF model parameters at 
FLUXNET sites; (2) derive global distributions of the model parameters 
using their dependences on climatic properties and land use types as 
derived from FLUXNET analysis; (3) use the outcomes in (1) and (2) to 
produce a 3rst global terrestrial ET dataset using SIF. Comparison with 
other global ET products are also discussed at annual and seasonal time 
scales. It is to be underscored that sublimation over snow and ice and 
open-water evaporation were not incorporated. 

2. Data and method 

2.1. Model description of ET using remotely sensed SIF 

The ET model proposed here considers three components: Transpi
ration, Tr, soil evaporation Es and canopy intercepted water evaporation 
Ei (ET = Tr + Es + Ei). For simplicity, the ecosystem is assumed to be well 
coupled with the atmosphere and the water �ux from leaves, soil surface 
and wet canopy are treated as total evapotranspiration. The three 
components Tr, Es and Ei are modeled separately but only Tr, the 
dominant term in ET, is linked with remotely sensed SIF. The Tr model is 
based on water‑carbon relations and commences by linking gross pri
mary productivity (GPP) to SIF linearly (Zhang et al., 2014a; Zhang 
et al., 2016b; Guanter et al., 2014) as, 
GPP = αSIF+ β (1)  

where α is a vegetation speci3c parameter that relates GPP (μmol m−2 

s−1) to SIF (mWm−2nm−1sr−1), β (μmol m−2 s−1) is an intercept to be 
determined. Though some studies adopted a nonlinear relation between 
GPP and SIF (e.g., Guanter et al., 2014; Wei et al., 2018; Gu et al., 2019), 
we found no discernible difference in the model accuracy for ET when 
using a more complicated model structure (e.g., Guan et al., 2016; Gu 
et al., 2019) when compared to a linear one as shown in prior studies 
(Zhou et al., 2022). Therefore, the linear form in Eq. (1) is adopted 
throughout to describe the relation between GPP and SIF at all FLUXNET 
sites. A plausibility argument for Eq. (1) is that the GPP - SIF relation 
should be close to linear at large spatial scales and over extended (e.g., 4 
day in this study) time intervals due to inherent space-time averaging 
that ‘smooths-out’ nonlinearities (Zhang et al., 2014a; Gu et al., 2019). 

To describe plant photosynthesis at the canopy scale (presumed to 
approximate GPP), carbon dioxide supply from the atmosphere to the 
canopy is assumed to be described by a Fickian diffusion that is path- 
averaged and given as (Katul et al., 2000), 

GPP = gc • Ca

(

1−
Ci

Ca

)

(2)  

where gc (mol m−2 s−1) is the canopy stomatal conductance to CO2, Ca is 
the ambient atmospheric CO2 concentration (ppm), and Ci is the inter
cellular CO2 concentration (ppm). Measured Ca above the canopy was 
used in all FLUXNET site calibration stages, while the global averaged Ca 
over time was adopted in the global ET modelling stage (described 
later). Similarly, Tr can be described using Dalton’s law as, 
Tr = gw • D (3)  

where gw (mol m−2 s−1) is the stomatal conductance to water vapor 
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(gw=1.6gc) when CO2 and water vapor share the same pathway (Katul 
et al., 2000), D is the water vapor de3cit fraction expressed by the molar 
ratio determined from VPD/Pa, Pa is the atmospheric pressure set as a 
constant 100 kPa for simplicity, and VPD is, as before, the vapor pressure 
de3cit (kPa). Combing Eqs. (1), (2), and (3) to eliminate stomatal 
conductance results in, 

Tr

αSIF + β
=

VPD

PaCa

1.6
(

1 − Ci

Ca

) (4) 

Re-arranging Eq. (4) to obtain Tr yields, 

Tr =
1.6VPD(αSIF + β)

Ca

(

1 − Ci

Ca

)

Pa

(5) 

A major advantage of this approach is that it eliminates the need for 
modelling gc and its associated uncertainty; however, Ci/Ca must be 
externally supplied instead or estimated using models. The simplest 
model assumes Ci/Ca is a constant determined empirically for each plant 
functional type. Alternatively, stomatal optimization theories can be 
adopted instead without adding new parameters. In these theories, 
stomata are assumed to operate to maximize carbon gain but are con
strained by water loss from the soil (Farquhar et al., 1993). In their most 
simpli3ed form, and upon assuming a linear biochemical demand 
function, these stomatal optimization theories predict Ci/Ca as (Farqu
har et al., 1993; Katul et al., 2009, 2010; Way et al., 2014), 

Ci

Ca

= 1−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1.6D
(

Ca −
Γ
η

)

λcf C
2
a

√

√

√

√ (6)  

where λcf (mol mol−1) is the inverse of the marginal water use ef3ciency 
presumed to depend on PFTs, Γ (ppm) is the leaf CO2 compensation 
point in the absence of mitochondrial respiration, and η is a parameter 
that distinguishes C3 from C4 plants and is related to the strength of the 
CO2 pump in C4 plants. The parameter η is set to unity for C3 plants (no 
CO2 pump) but η > 1 for C4 plants as discussed elsewhere (Way et al., 
2014). Hereafter, it is assumed throughout that C3 plants are the 
dominant species (η = 1) for simplicity and for pragmatic reasons. With 
these simpli3cations, and upon replacing Ci/Ca in Eq. (5) into Eq. (6) 
yields, 

Tr =
(αSIF + β)

̅̅̅̅̅̅̅̅̅̅̅̅

1.6λcf

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Pa(Ca − Γ)
√ VPD1/2 (7) 

A number of features are now pointed out about the 3nal outcome in 
Eq. (7). Eq. (7) predicts a Tr - VPD1/2 scaling instead of Tr - VPD scaling 
(i.e., Dalton’s law) but the linear scaling emerges when setting Ci/Ca to a 
constant. As discussed elsewhere (Katul et al., 2010), the Tr - 
VPD1/2scaling is an emergent outcome of the optimization theory for all 
C3 plants and is not an outcome of any model calibration or empirical 3t 
to gas exchange measurements. Detailed optimality theories that resolve 
all the non-linearities in the biochemical demand function have also 
been derived but their performance is commensurate with outcomes 
such as Eq. (6) (Katul et al., 2010; Volpe et al., 2011). 

The compensation point is assumed to vary only with air temperature 
(Ta) and is calculated using standard equations (Sellers et al., 1996), 

Γ =
5O2

2600 × 0.57
Ta−25

10

(8)  

where O2 (Pa) is the leaf interior partial O2 pressure treated as a constant 
set to 2.09 × 104 Pa (Sellers et al., 1992). Inserting Eq. (8) into Eq. (7) 
and converting the unit of Tr from mol m−2 s−1 to W m−2 using the latent 
heat of vaporization (=2.45 × 106 J kg−1), an expression for Tr can be 
derived and is given as, 

Tr =
44.10(αSIF + β) •

̅̅̅̅̅̅̅̅̅̅̅̅

1.6λcf

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Pa

(

Ca −
5O2

2600×0.57
Ta−25

10

)

√ VPD1/2 (9) 

At 3rst glance, Eq. (9) appears to be independent of LAI though the 
effects of LAI are implicit in the coef3cients α and β together with the SIF 
signal. The λcf is assumed to be stationary over time for most plant 
species (Lloyd and Farquhar, 1994). Values from published gas ex
change studies are used in Eq. (9) (Lloyd and Farquhar, 1994, see Table 
S1 in the supplementary information). 

Before proceeding further, several points must be raised when 
invoking a constant λcf . It is now established that λcf can vary with 
progressive hydraulic limitations and/or large changes in atmospheric 
CO2 concentration as discussed elsewhere (Ellsworth et al., 1995; 
Manzoni et al., 2011; Manzoni et al., 2013; Mrad et al., 2019). Eq. (6) 
shows that holding λcf constant while increasing Ca results in an increase 
in Ci/Ca not congruent with stable isotope measurements at Free Air CO2 
Enrichment experiments that predict a near-constant Ci/Ca independent 
of Ca (Ellsworth et al., 1995). As such, λcf should scale with 1/Ca as 
discussed elsewhere (Katul et al., 2010) and as theoretically argued 
using dynamic optimality theories (Manzoni et al., 2013). However, to 
keep the number of parameters to a minimum for global ET estimates, it 
is assumed that Ca did not change appreciably over the calibration 
period so as to justify its inclusion as a modi3er for λcf . Moreover, Tr 
scales sub-linearly with λcf (i.e., Tr~ ̅̅̅̅̅̅̅̅̅̅̅̅̅1.6λcf

√ ) and small modi3cations to 
λcf due to minor increases in Ca have minimal impact on Tr. 

With regards to soil evaporation, the Es formulation used in prior 
work (Zhou et al., 2022) is used. This formulation employed the surface 
available energy and relative humidity complemented with vegetation 
properties (Leaf Area Index). This formulation is given by (Yan et al., 
2012), 

Es = 1.35RH
Δ(Rn − G)e−kALAI

Δ + γ
(10)  

where RH (no unit) is the mean air relative humidity, Δ is the slope of 
saturation vapor pressure - air temperature curve, γ is the psychrometric 
constant, Rn is net radiation above the canopy, G is the ground heat �ux 
and is neglected relative to Rn, and a plausibility argument is that at a 4 
day timescale, the temporal value of G is near-zero. Excluding G can 
bring about some uncertainty, but the overall effect should be minimum 
given that G usually accounts for under 6% of Rn when evaluated by 
using FLUXNET sites (data not shown). The kA here is the light extinc
tion coef3cient and the synthesized values by Zhang et al. (2014b) are 
adopted in this study. In particular, the value is 0.62 for croplands, 0.59 
for broadleaf forests (evergreen broadleaf & deciduous broadleaf & 
mixed forests), 0.45 for needleleaf forests (evergreen & deciduous nee
dleleaf forests), 0.56 for shrublands (open and closed shrublands), and 
0.50 for grasslands (grasslands & savannas); the mean value of 0.56 of 
all ecosystems in the study by Zhang et al. (2014b) is adopted for 
cropland/natural vegetation mosaic and wetlands in this study; LAI is 
leaf area index (m2 m−2). When combining Eqs. (9) and (10), the 
modeled transpiration and soil evaporation can be combined and 
expressed as, 

Tr +Es =
44.10 (αSIF + β) •

̅̅̅̅̅̅̅̅̅̅̅̅

1.6λcf

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Pa

(

Ca −
5O2

2600×0.57
Ta−25

10

)

√ VPD1/2 + 1.35RH
Δ(Rn − G) • e−kALAI

Δ + γ

(11) 
Here, the Tr + Es part has only two ‘free’ parameters - α and β that 

must be externally calibrated for each site. Also, it is noted that ̅̅̅̅̅̅̅̅̅̅̅̅1.6λcf
√

multiplies α and β – and hence – it cannot be readily disentangled from 
them if treated as a third 3tting parameter. The conversion factor of 
44.10 for the Tr expression is to ensure these �uxes are in units of W m−2. 
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The α and β parameters were calibrated at FLUXNET sites during dry 
periods with rainfall events excluded (see 2.2). 

The evaporation of canopy intercepted water was calculated using a 
modi3ed analytical model (Gash, 1979; Gash et al., 1995). Here, the 
canopy and the trunk are assumed to be the entire interception surface 
so as to simplify the calculation. Remote sensing data are used to 
calculate the global canopy intercepted evaporation (Zheng and Jia, 
2019). The Gash model describes the volume of water that is intercepted 
by the canopy, and the intercepted water is considered as the inter
ception re-evaporation. The intercepted water is calculated as, 

Ei =

⎧

⎨

⎩

c • PG PG ≤ P′

G

c • P′

G + c •
Ē

R̄
•
(

PG − P′

G

)

PG > P′

G

(12)  

where c is the canopy cover fraction evaluated using 1 − e−kALAI (Zheng 
and Jia, 2019), and kA is the light extinction coef3cient as aforemen
tioned and the same parameterization is adopted (Zhang et al., 2014b); 
R̄ (mm hr−1) denotes the mean rainfall rate which can be directly 
evaluated by using the rainfall records, and Ē (mm hr−1) denotes the 
mean evaporation rate during rainfall and can be evaluated by using a 
Dalton type evaporation equation where the evaporation rate is driven 
by water vapor concentration gradient between the canopy surface and 
the air; note that both R̄ and Ē are evaluated for certain 3xed periods (e. 
g., 1 month, 2 months, among others); PG (mm) is the gross rainfall for 
each rainfall event; P′G (mm) is the rainfall threshold for saturating the 
canopy and can be evaluated as 

PG
’ = −

R̄

Ē
•

Sveg

c
• ln

(

1 −
Ē

R̄

)

(13)  

where Sveg denotes the vegetation canopy storage capacity (mm) and 
can be evaluated as, 
Sveg = Sv • VAI (14)  

where Sv (mm) is the speci3c storage capacity (see Cui et al., 2015). The 
VAI (m2 m−2) is the vegetation area index approximated by using LAI 
and the area index of dead leaves, branches, stem and trunk, Ls (m2 

m−2), 
VAI = LAI + Ls (15)  

where Ls varies with LAI and can be quanti3ed as, 
Ln

s = max
{[

ε • Ln−1
s + max

(

LAIn−1 − LAIn, 0
) ]

, Ls,min

} (16) 
Here, Ln

s and Ln−1
s denote the nth and (n-1)th Ls of the time series, 

respectively, and Ls, min is the minimum value of Ls; LAIn and LAIn-1 

denote the nth and (n-1)th green LAI of the time series, respectively; ε 

denotes the left rate of residuals and 1-ε denotes the removal rate. The 
parameterizations of Ls, min and ε are taken from Cui et al. (2015). The 
unit of Ei was ultimately converted to W m-2 using latent heat of 
vaporization (=2.45 × 106 J kg−1). 

2.2. Deriving the α and β parameters over the globe 

The contiguous SIF product (CSIF) is used (Zhang et al., 2018) to 
constrain transpiration and the model parameters α and β are calibrated 
against latent heat �ux measurements reported by the FLUXNET2015 
dataset (http://�uxnet.�uxdata.org/data/fluxnet2015-dataset/). CSIF 
was produced using a machine learning algorithm trained using the 
Orbiting Carbon Observatory-2 (OCO-2) SIF measurements and the 
MODIS re�ectance product. The CSIF employed here has a spatial res
olution of 0.05◦at the 4-day temporal resolution from January 2000 to 
December 2018. The FLUXNET site is paired with CSIF pixel in which 
the meteorological tower resides and the parameters of the models were 
optimized at the �ux site level. 

FLUXNET2015 is a worldwide network of eddy-covariance turbulent 
�ux measuring stations, which include near-surface �uxes of carbon 
dioxide, water vapor, and energy (Pastorello et al., 2020). For each site, 
the following variables were selected in the parameter determination: 
latent heat �ux (W m−2), VPD (kPa), Ca (in ppm), net radiation (W m−2), 
air temperature (in ◦C), and air relative humidity (unitless). Inconsis
tency usually exists between the �ux tower footprint (usually 3 to 5 km2) 
and remotely sensed SIF coverage due to land heterogeneity. We used 
Net Difference Vegetation Index (NDVI) to select sites satisfying the 
following two requirements: (1) The maximum, minimum, and standard 
deviation of NDVI (MOD13Q1) of the grid point in which the site is 
located is within 20% of the difference of the corresponding statistical 
index of the adjacent area (5 × 5 km2 area in the center of which the �ux 
site is located); (2) The maximum of NDVI of the target grid point must 
be >0.2 to exclude the sites with barren land in the growing season (see 
Zhou et al., 2022). Here the growing season is determined by using 50% 
thresholds of annual SIF data series, in particular, the spring onset is 
determined by 50% of the annual maximum of SIF, and the last fall day 
is de3ned as the date when the seasonal SIF drops to 50% of the annual 
maximum (Jeong et al., 2017). Sites with temporal coverage longer than 
2 years are included in the analysis. These selection criteria resulted in 
68 �ux sites (Table S2) for parameter calibration, and the sites covered 
all land types under the IGBP land classi3cation except for deciduous 
needleleaf forest (DNF), cropland/natural vegetation mosaic (CVM), 
water bodies (WAT) and urban and built-up land (URB). The land use 
types of water bodies and urban and built-up were not considered here. 
The temporal resolution of all �ux site variables was aggregated to 4 
days to be consistent with that of the CSIF data. To reduce uncertainty, 
we removed data when the meteorological variables over the 4 days’ 

period missed >10% data. The model parameters α and β were cali
brated at the site level using the least square method and later employed 
to derive the global distribution based on the IGBP vegetation type 
classi3cation. Here, the MODIS product MCD12C1 was used for global 
vegetation distribution, which has a spatial resolution of 0.05◦ (See Fig. 
S1). 

The parameters of α and β describe the relation between GPP and SIF, 
where α represents the ratio of light use ef3ciency to �uorescence yield 
(Yang et al., 2015) and β is the intercept of this relation. Thus, any factor 
that in�uences light use ef3ciency and �uorescence yield affect these 
parameters. Vegetation type, canopy structure, meteorological condi
tions impact these two parameters as well (e.g., Pierrat et al., 2022). In 
constructing the spatial distribution of these two parameters, we only 
considered the vegetation type by using global plant functional type 
(PFT) and the environmental variables of mean annual precipitation 
(MAP), mean annual temperature (MAT) and Dryness Index (DI). The 
parameters of α and β were 3rst calibrated at the 68 FLUXNET sites, and 
then two methods were used to determine the spatial distribution of 
these parameters over the terrestrial globe using PFT as follows:  

(1) Mean value model: 

For PFTs with limited number of sites (0 < N < 5) including Closed 
Shrublands (CSH), Deciduous Broadleaf Forests (DBF), Mixed Forests 
(MF), Open Shrublands (OSH) and Wetlands (WET), a PFT-based mean 
value approach similar to the parameterization method commonly used 
in land surface models is used and given as 
y

j
i = cj + δi (17)  

where yj
i is the value of the parameter α or β at the ith �ux station in the 

jth PFT, cj is the average of the parameter of all �ux stations in the jth 

PFT, and δi is the error.  

(2) Regression model: 

For PFTs with at least 5 available sites, a regression model was 
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employed to construct the global distribution of the model parameters, 
including Cropland (CRO), Grassland (GRA), Evergreen Needleleaf 
Forest (ENF), Deciduous Broadleaf Forest (EBF), Savannas (SAV), and 
Woody Savannas (WSA) (See Table S3 for the 58 sites). The regression 
model was developed by correlating the parameters with environmental 
variables for each PFT as, 
y

j
i =

(

nj
)T

Xi + δi (18) 

Here, (nj)T is the regression coef3cient matrix for the jth plant func
tional type. The Xi is the matrix of selected environmental variables of 
the ith �ux site. The environmental variables here include MAT, MAP, 
and Dryness Index (DI) evaluated as the ratio of Potential Evapotrans
piration (PET) and MAP, all of which are factors that commonly control 
local climate, as well as photosynthesis and plant transpiration. At the 
FLUXNET sites, MAT and MAP were obtained by averaging long-term 
precipitation and temperature records available in the FLUXNET2015 
datasets, where the site DI was evaluated and the PET was calculated by 
using Priestley-Taylor model (Fisher et al., 2008; Zhang et al., 2019; Liu 
et al., 2022). 

The global distribution of MAT and MAP were obtained as long-term 
averages of ERA5 temperature and precipitation records. Since the 
magnitude of land precipitation is usually below 3000 mm yr−1 in most 
areas, extreme precipitation records (>3000 mm yr−1) were replaced by 
3000 mm yr−1. The global distribution of DI was calculated using MAP 
and PET estimated from the Priestley-Taylor model (see Fisher et al., 
2008; Purdy et al., 2018 for details). The global distribution of model 
parameters was determined using either the mean value model or the 
regression model with MAT, MAP and DI. For those PFTs with limited 
sites, the mean value of the parameters of the PFT was used; for the DNF 
and CVM PFTs, as no �ux sites were available to calibrate the parame
ters, we used the average of the site-calibrated parameters of ENF for 
DNF, and the average of CRO for CVM. 

2.3. Drivers of the global ET model 

Meteorological input from the ERA5 terrestrial meteorological 
reanalysis data (https://cds.climate.copernicus.eu/) was used to drive 
the ET calculations. ERA5-Land is the latest generation of meteorolog
ical reanalysis data operated by the European Centre for Medium-Range 
Weather Forecasts (ECMWF) (Hersbach et al., 2020). Covering all con
ventional meteorological data from 1950 to the present, it assimilates 
remote sensing products, surface and upper atmosphere meteorological 
data, including different regions of the globe with varying time scales. 
We used the hourly meteorological variables at a spatial resolution of 
0.1◦, including air temperature (Ta, ◦C), dew point temperature (Tdew, 
◦C), net short-wave radiation and net long-wave radiation (W m−2). The 
VPD was calculated as 
VPD = esat − ea (19)  

where esat (kPa) is the saturation vapor pressure and ea (kPa) is the actual 
water vapor pressure derived using Tdew. 

Because most plant photosynthesis occurs during daytime, we 
averaged the meteorological records between 06:00 and 18:00 local 
time to the 4-day window. Such treatment brings about some uncer
tainty to nighttime evaporation. However, the effect should be low as 
nighttime evaporation accounts for 6% of the total ET on average as 
evaluated using the original latent heat �ux measurements provided by 
FLUXNET2015 database (data not shown). These estimates also match 
other reported nighttime ET estimates in the literature (Novick et al., 
2009). To match the resolution of the SIF data, we resampled the ERA5 
radiation data from 0.1◦ to 0.05◦ using a spline function interpolation. 

Leaf area index (LAI) was obtained from the MODIS leaf area index 
product (MCD15A3H V006) for the period 2003–2018 to support the Es 
calculations in Eq. (10) and the canopy interception evaluations. This 
LAI product has a spatial resolution of 500 m and a temporal resolution 

of 4 days. At the stage of site parameter calibration, the LAI grid points 
were extracted to match the �ux sites. For global ET calculations, the 
global LAI was aggregated to 0.05◦ to match the spatial resolution of the 
SIF data. To conceptualize the global ET estimation procedure, Fig. 1 
features a �owchart highlighting the key variables used and their 
resolution. 

The global precipitation dataset MSWEP (Beck et al., 2019) was used 
to drive the Gash model for global Ei estimates. The MSWEP dataset has 
a spatial resolution of 0.1◦ and a temporal resolution of 3 h by optimally 
merging multiple data sources ranging from gauge measurements, sat
ellite observation, to reanalysis production. The high quality of MSWEP 
guarantees the quality of the canopy interception evaporation estimate. 
Before running the Gash model, the mean rainfall rate (R̄) was evaluated 
using the original 3-hourly data for every 28 day-window (i.e., 7 × 4-day 
windows of the calculation step of ET), then the Gash model was run at 
the daily time step that was 3nally aggregated to 4 days to agree with 
other ET component calculations. To match the spatial resolution of 
0.05◦ for the transpiration and soil evaporation estimates, the four 0.05◦

pixels within the 0.1◦ pixel directly adopted the corresponding inter
ception evaporation value. 

2.4. Global evapotranspiration products used for comparison 

Three widely used meteorologically-driven global ET products were 
used for comparisons with the proposed ETSIF. The 3rst product is the 
GLEAM ET data (Martens et al., 2017). GLEAM calculates PET using the 
Priestley-Taylor equation (Priestley and Taylor, 1972) with observed 
surface available energy and surface temperature. GLEAM estimates 
actual ET by imposing a constraint on PET. In particular, GLEAM com
bines observations of Vegetation Optical Depth (VOD) and estimates of 
root-soil moisture that impose ET limitations using an empirical 
reduction factor. Different from other ET products used for comparisons 
in this study, GLEAM explicitly considers snow sublimation. The GLEAM 
ET data has a spatial resolution of 0.25◦ and a temporal resolution of 1 
day. 

The second ET product is derived from the PT-JPL model (Fisher 
et al., 2008) that employs the Priestley-Taylor formulation assumed to 
represent PET (Priestley and Taylor, 1972). The PT-JPL model then 
employs multiple constraints to convert the corresponding PET into 
actual canopy transpiration, canopy interception evaporation and soil 
evaporation. The constraints for canopy transpiration include leaf area 
index, green fraction of the canopy, plant temperature and plant mois
ture; the constraint for soil evaporation is evaluated using relative hu
midity and vapor pressure de3cit; the constraint for the interception 
evaporation is de3ned as the fraction of time when the surface is wet 
evaluated using relative humidity. The model description is featured 
elsewhere (Fisher et al., 2008) and is not repeated here. Unlike GLEAM, 
all the model parameters of PT-JPL are preset, thus no calibration is 
needed when using the model. The PT-JPL model is run on monthly 
timescales and these monthly ET estimates from 2003 to 2018 at spatial 
resolution of 36 km (or 0.25◦) are used for comparison with the pro
posed ETSIF. 

The third ET product is the land MOD16, which was derived by Mu 
et al. (2007, 2011) using a modi3ed Penman-Monteith equation with 
parameterized stomatal conductance formulation. The dataset is built on 
MODIS-reported land cover, albedo, LAI, meteorological forcings, etc. 
Note that MOD16 only evaluates ET over vegetated areas, and all 
sparsely vegetated or non-vegetated areas are left as blank. The MOD16 
has a spatial resolution of 500 m and a temporal resolution of 8 days. 

When comparing the proposed ETSIF with the three products with 
varying spatial and temporal resolutions, the 3ner-resolution datasets 
were aggregated to agree with the lower-resolution ones. 
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3. Results 

3.1. Calibrating parameter at >ux site level and constructing the 
parameters over the globe 

The α and β were calibrated for each of the 68 sites from the 
FLUXNET2015 dataset. The ETSIF model-data comparisons were not 
independent of PFTs as shown in Fig. 2. The performance of the ETSIF 
model is also presented for the selected site for each PFT (see Fig. S2). In 
particular, R2 of the calibration is higher than 0.50 for 53 sites, and 
higher than 0.70 for 34 sites; however, R2 at some sites are low and fall 
in the range of 0.1–0.3. The low R2 was mainly at CSH, EBF and SAV 
sites. The model parameters are featured by PFTs in Fig. 3. The pa
rameters are statistically uniform across sites for some of the PFTs (i.e., 
MF, WSA, SAV, EBF, DBF), whereas they showed variability for other 
PFTs (i.e., ENF, SAV, CRO, OSH, CSH). In particular, α of ENF showed 
substantial variability among different sites. For those PFTs with limited 
sites (N < 5), the average of the parameters from available sites were 
employed (Table 1). For PFTs with at least 5 sites, a multiple linear 
regression model was used to relate α and β to MAP, MAT and DI (Fig. 4; 
Table 1). For most PFTs, the multiple linear regression captures the 
variability of parameters among different sites (R2 = 0.6–0.8); but for 
PFTs such as DBF and GRA, the performance was poor with R2 < 0.3. 
Given that the value of R2 > 0.1, the climatic and environmental 

variables of MAP, MAT and DI are used in the regression model to 
determine α and β in lieu of using an ad-hoc mean values set by a PFT. 
Therefore, the regression model was used for each of the 6 PFTs to 
produce the global distribution of α and β (Fig. 5). Note that the lower 
boundary of β was arti3cially set to 0 when estimating the global ET to 
avoid negative values of photosynthesis and transpiration due to the 
false parameters on a 4-day interval. We tested setting β = 0 when cal
ibrating the parameters at �ux sites and found the overall performances 
showed no discernible difference (See Table S2). The constructed spatial 
distribution of α showed clear lower values over tropical area (~10–20 
μmol m−2 s−1/mWm−2nm−1 sr−1) and higher values over the boreal 
forests (~50–70 μmol m−2 s−1/mWm−2nm−1sr−1). On the contrary, the 
parameter β showed high values over the tropical area (~4–8 μmol m−2 

s−1). 

3.2. The distribution of global ET from 2003 through 2018 

The global ETSIF was produced from 2003 through 2018 and spatial 
maps of the annual means are featured in Fig. 6. Globally, mean annual 
ETSIF ranged from 0 to 150 W m−2 (Fig. 6). The higher values were in 
eastern North America, South America, South Africa, Southeast Asia, 
Southern China, and part of Australia. The mean annual ETSIF in most 
part of the Amazon forest region ranged from 100 to 150 W m−2, while 
in most African regions except for the Sahara Desert and the dry climate 

Fig. 1. Flowchart of the ET model (labeled as ETSIF) calculations featuring the differing inputs and outputs along with their associated time scale. 
The spatial resolutions of the original inputs are listed on the left and all the variables during the intermediate processing are at 0.05◦ resolution. The ERA5 pre
cipitation record is used when deriving the dryness index (DI). 
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Fig. 2. The coef3cient of determination (R2) of the ETSIF model in reproducing the measured evapotranspiration (ET) for each of the IGBP plant functional types 
(PFTs). 
Fig. S2 features examples for �ux sites when calibrating the model. Hereafter for the boxplot, the central line denotes the median; the upper whisker is the maximum 
value of the data that is within 1.5 times the IQR over the 75% percentile, and the lower whisker is the minimum value of the data that is within 1.5 times the IQR 
under the 25% percentile, note that the interquartile range (IQR) here is de3ned as the difference between the 75% and 25% percentiles; the diamond points denote 
outliers falling beyond the range [25% percentile-1.5*IQR, 75% percentile+1.5*IQR]. The IGBP code is: CRO-Croplands, CSH-Closed Shrublands, DBF-Deciduous 
Broadleaf Forests, EBF-Evergreen Broadleaf Forests, ENF-Evergreen Needleleaf Forests, GRA-Grasslands, MF-Mixed Forests, OSH-Open Shrublands, SAV- Sa
vannas, WET-Wetlands, WSA-Woody Savannas. 

Fig. 3. Variability of the parameters α (μmol m−2 s−1/mWm−2nm−1 sr−1) and β (μmol m−2 s−1) across different plant functional types (PFTs).  
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of South Africa, the mean annual ETSIF >75 W m−2. The ETSIF can be 
higher than 125 W m−2 for some regions in central Africa and some parts 
of the Amazon forest. The U.S. Corn Belt and the eastern U.S. also have 
relatively higher ETSIF (>100 W m−2) resulting from cropland irrigation 
and intense crop agriculture. Similar ETSIF values were computed for 

North America, North and South China where large amounts of crop
lands are available. In sparsely vegetated regions and drier regions such 
as the western United States, the Middle East, North Africa, and at higher 
latitudes, ETSIF was lower, typically <50 W m−2. The global annual ET/ 
Rn ratio (Fig. S3) showed that ET was mostly dominated by radiation in 
tropical area (i.e., Amazon forest, Central Africa, Southeast Asia) and 
intensely irrigated area (e.g., Midwest of U.S., India, North part of 
China) with a higher ET/Rn ratio, while in the arid region (e.g., North 
Africa, Middle East, Northwestern China) ET was mostly dominated by 
water availability with a lower ET/Rn ratio. The maximum and mini
mum 4-day averaged ETSIF are shown in Fig. S4, and a maximum of 
about 500 W m−2 appeared at higher latitudes of Eurasia, Southeastern 
China, India, part of the Amazon forest, Mideast U.S.. The minima in the 
tropical area exceed 50 W m−2. 

Monthly averaged global ETSIF was also computed and seasonal 
variations across the whole globe evaluated (Fig. 7) to assess controls of 
leaf area dynamics on ET. For the Northern Hemisphere spring (Fig. 7a- 
c), ETSIF was low in Northern China, Southern China, Eastern U.S., and 
across Europe as vegetation greening commences. At the same time, 
ETSIF remained high in South America along the Amazon rainforest and 
southern South America, Indonesia and Congo. In the Northern Hemi
sphere summer (Fig. 7d-f), the ETSIF reached a peak, especially in the 
Eastern U.S., Northern and Southern China, and Europe, where ETSIF as 
high as 150 W m−2 was computed. In the Amazon forest, ETSIF remained 
high during the spring. In southern South America, overall ETSIF was low 
as the southern hemisphere entered winter at this time. Similarly for the 
southern part of South America, the overall ETSIF in Australia was also 
low due to the winter season. As the Northern Hemisphere approached 
fall (Fig. 7g-i), ETSIF began to decline in North America, most parts of 
Europe, northern China, and southern China. Near the U.S. Corn belt, 

Table 1 
Mean value for plant functional types with limited sites (N < 5) and the 
regression relation of parameters for plant functional types with suf3cient sites 
(N ≥ 5) derived from calibration over FLUXNET sites.  

PFT α β 

CSH 14.46 −0.15 
EBF 14.00 7.75 
MF 21.03 −2.01 
OSH 22.75 0.02 
WET 46.61 −2.36 
DNF 35.14 −0.37 
CVM 23.61 −1.61 
CRO 9.86 + 0.047 MAP–0.170 

MAT+2.733 DI 
6.21–0.008 MAP–0.170 MAT–0.108 
DI 

DBF 33.31–0.014 MAP–3.048 
MAT+29.886 DI 

0.54–0.002 MAP+0.575 MAT–6.352 
DI 

ENF 37.32–0.009 MAP–0.665 
MAT+6.582 DI 

−4.09 + 0.004 MAP+0.214 
MAT–0.844 DI 

GRA 12.17 + 0.009 MAP+0.444 
MAT–0.117 DI 

−0.77 + 0.004 MAP–0.321 
MAT+0.738 DI 

SAV 87.11–0.050 MAP+0.561 
MAT–16.232 DI 

−11.38 + 0.005 MAP+0.104 
MAT+1.418 DI 

WSA 184.77–0.0045 MAP–4.06 
MAT–33.15 DI 

−15.79–0.0012 MAP+0.325 
MAT+2.69 DI 

Note that the negative values of β were set to 0 when estimating the global ET, 
thus here the values and equations were a direct result of site calibration.  

Fig. 4. Performance of the multiple linear regression model to explain variability in α (μmol m−2 s−1/mWm−2nm−1 sr−1) and β (μmol m−2 s−1) for different plant 
functional types. 
Note that the x axis represents the parameters of site calibration and the y axis represents the estimate when using the multiple linear regression with Mean Annual 
Temperature (MAT), Mean Annual Precipitation (MAP) and Dryness Index (DI). 
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ETSIF dropped from over 150 W m−2 in the summer to about 50 W m−2. 
In Europe, ETSIF dropped from about 100 W m−2 in summer to about 25 
W m−2. In China, the overall ETSIF dropped to about 100 W m−2. As the 
southern hemisphere entered spring, ETSIF increased to about 100 W 
m−2 in most parts of South America and Australia. The Amazon rain
forest and parts of Southeast Asia still maintained high ETSIF due to low 
seasonal variations in this region. In the Northern Hemisphere winter 
(Fig. 7j-l), ETSIF remained low in North America, Europe, and China. In 
the Amazon rainforest and Southeast Asia, ETSIF remained relatively 
high throughout the year. As summer progressed in the Southern 
Hemisphere, the overall ETSIF remained high for all parts of Australia 
and southern South America. The lower coef3cient of variation (CV) of 
ETSIF in the tropical area implies that ET is generally stable all year 
round, and the higher CV in the higher latitude of the Northern Hemi
sphere and the arid area (Northern Africa, Middle East) implies that the 
ET is subject to high seasonal variation (Fig. S5). To sum up, the overall 
spatial and temporal patterns of global ETSIF appear consistent with 
logical expectations. It must be underscored that LAI data product did 
not enter into the transpiration calculations explicitly and was only used 
in the soil- and intercepted water evaporation. 

To reveal other patterns, ETSIF was averaged by latitude and the 

seasonal variation of latitudinal ETSIF is evaluated and featured in Fig. 8 
(a). As expected, near the equator, ETSIF showed minor seasonal varia
tions with a relatively high ETSIF level across seasons. In the northern 
and southern hemispheres, ETSIF was higher in the plants’ active season 
compared to the dormant season as expected. Global ETSIF also showed a 
minor increasing trend (0.257 mm yr−1) over the 2003–2018 period 
though this trend was not statistically signi3cant at the 95% con3dence 
level (Fig. 8b). 

4. Discussion 

4.1. Comparison with other ET products 

Using global SIF products complemented with meteorological inputs 
and land cover properties, a new global ETSIF product for the period of 
2003–2018 was developed and compared to prior global ET products. 
The global distribution of ETSIF derived here are comparable with other 
common meteorologically-driven ET products of GLEAM, PT-JPL model 
and MOD16 though discrepancies exist as shown by the differences in 
Fig. 9. The differences between ETSIF and prior algorithms is typically 
about −20 to 20 W m−2 (Fig. 9) – or under 0.7 mm d−1. This difference is 

Fig. 5. Global distribution of the model parameters α (a) and β (b) used in ETSIF. The β = 0 was externally imposed to ensure no negative GPP occurs when SIF =
0 over a 4-day averaging interval. 
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deemed acceptable given the differences in input variables and the 
differences in model complexities and assumptions. The proposed ETSIF 

showed evident differences from MOD16 and a bimodal curve pattern 
existed in the probability density function of those differences (Fig. 9). 
Substantial differences between ETSIF and some of the other products are 
found in the Amazon rainforest, some parts of central Africa and 
Indonesia where the rainforest is dominant as well as Eastern India, 
where agriculture is dominant, and in central and western Australia, 
part of Africa, part of South and Southeastern Asia where the estimated 
residuals ranged from 20 to 60 W m−2. Part of the uncertainty may be 
related to the parameters that adopt the average of the PFTs in most 
regions of western Australia, Africa and part of Asia, where eddy- 
covariance �ux sites over the major PFTs remain insuf3cient for accu
rate GPP-SIF parameterization. But the difference may also result from 
the limitations in other products. 

The comparison between the proposed ETSIF and GLEAM in Fig. 9 
suggests the two ET methods agree on spatial patterns as the probability 
density function (pdf) of the corresponding difference is centered 
around 0 W m−2; however, the comparisons with PT-JPL and MOD16 
products imply that ETSIF is signi3cantly different. We compared these 
three ET products (GLEAM, PT-JPL and MOD16) and also found pro
nounced differences among themselves (Fig. S6). In general, for the four 
ET products evaluated in this study (ETSIF, GLEAM, PT-JPL and 
MOD16), ETSIF and GLEAM have similar spatial pattern with pro
nounced difference mainly emerging in tropical regions (e.g., Amazon 
forest), while PT-JPL and MOD16 agree on their spatial pattern; only 
GLEAM explicitly considers snow sublimation, but ETSIF at high lati
tudes with snow cover is very close to GLEAM, implying that the 
omission of such component of ETSIF does not impact the total ET esti
mate. Compared to PT-JPL and MOD16, the ETSIF and GLEAM are 
consistently lower at high latitude in Northern Hemisphere, but are 
higher at sub-tropical regions (e.g., Southeast America, Southeast Asia). 
These differences probably result from different model structures and 
varying input variables among these models. As there is no direct 
‘measurement’ of global ET, we have no basis to judge which is right and 
which is wrong. Thus, we note here that all global ET products, 
including ETSIF, should be treated with caution. 

The climatological zonal distributions of annual ETSIF and other ET 
products are compared in Fig. 10 and the general patterns are similar 

with the highest values appearing around the equator. However, clear 
differences emerge for most latitudes of the globe. At latitudes between 
−5◦ and 5◦ (near the equator), ETSIF was close to GLEAM and higher 
than the other two ET products, whereas between −25◦ and − 5◦

Southern Hemisphere as well as 5◦ and 20◦ Northern Hemisphere, the 
ETSIF was higher than all three ET products. At the mid-latitude regions 
of the Northern Hemisphere (25◦-50◦), the general patterns across all 
products agree but with differences emerging in the magnitude. At high 
latitudes (50◦-75◦) of the Northern Hemisphere, the four ET products 
showed clear divergent values, indicating that ET estimation at high 
latitudes remains subject to high uncertainty. Around 15–25◦ Northern 
Hemisphere, ETSIF together with GLEAM and PT-JPL showed pro
nounced deviations from MOD16 estimates (Fig. 10), which yielded 
higher ET values compared to the other three products. But such higher 
values of MOD16 at 15◦-25◦ and 50◦-75◦ of the Northern Hemisphere 
probably result from statistical biases as MOD16 ET of sparsely vege
tated and non-vegetated areas (e.g., Sahara Desert and the permanent 
snow cover) was not evaluated (Mu et al., 2007, 2011), potentially 
elevating the corresponding latitudinal average because ET in these 
omitted areas is usually lower than the vegetated areas. The pronounced 
differences among the four ET products imply that estimating global ET 
remains challenging, especially at the higher latitudes (>60◦) and the 
zone of 5–25◦ of the Northern Hemisphere (see the high Root Mean 
Square Difference in Fig. 10). 

4.2. Advantages and limitations of the SIF-based ET model 

The proposed ETSIF is based on two physiological relations: (i) the 
GPP-SIF and (ii) an optimality hypothesis that predicts Ci/Ca as a 
function of vapor pressure de3cit for C3 plants (but can be extended to 
C4 plants). Compared with other detailed vegetation-transpiration re
lations, no stomatal conductance models are required in ETSIF and the 
effect of stomatal closure is indirectly captured by Ci/Ca. The optimality 
hypothesis requires the inverse of the marginal water use ef3ciency (λcf ) 
that is related to the Lagrange multiplier of the optimality problem. We 
assumed the marginal water use ef3ciency is constant, but this quantity 
is regulated by the variation in the soil-plant hydraulic conductance 
(Anderegg et al., 2018; Wang et al., 2020), which is not considered in 
this study. In the case of C4 plants, an additional parameter (η) related to 

Fig. 6. Global distribution of the computed annual mean evapotranspiration (ETSIF) for the study period (2003–2018); the inset panel shows the probability density 
function (pdf) of annual mean ETSIF. 
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Fig. 7. Global distribution of monthly averaged evapotranspiration ETSIF for the study period (2003–2018).  
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the C4 pump strength is also required. ETSIF developed here used λcf 
based on literature values and plant functional types for C3 plants. This 
assumption ignores hydraulic limitations and, to a lesser extent, the 
effects of Ca on λcf . The model calculations set η = 1 (C3 plants) even in 
croplands that may be occasionally dominated by corn (a C4 crop). The 
work here did not consider such variations in η. A partial justi3cation for 
setting η = 1 over large areas and extended time periods is that corn is 
frequently rotated with other C3 crops (wheat or soybeans). Accounting 

for such rotation makes the speci3cation of η across the globe a formi
dable challenge even when the numerical value of η is known. Advan
tages of a simpli3ed model structure and a small number of ‘free 
parameters’ bring about potential uncertainties as well, especially in 
spatial upscaling. When PFT is not covered by suf3cient �ux measuring 
sites for model calibration, a mean value was adopted. The dominant 
PFTs in central and western Australia is OSH (Open shrublands), i.e., 
shrubs cover 10%–60% of the total land area in this region, but the 

Fig. 8. Seasonal variation of latitudinal averaged evapotranspiration (ET) (a) and the temporal trend of global annual mean ET (b) over the period of 2003–2018. 
Note that the global annual total ET in the (b) panel has units of mm yr−1 for comparisons with precipitation. 
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Fig. 9. The spatial distribution of the difference between ETSIF and GLEAM (a), PT-JPL (b) and MOD16 (c) on annual mean time scale; the inset panels show the 
probability density function (pdf) of these differences. 
The comparisons with GLEAM, PT-JPL and MOD16 were conducted for the periods of 2008–2018, 2008–2017 and 2003–2018, respectively. Note that MOD16 does 
not include sparsely vegetated or non-vegetated areas. 
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FLUXNET database lacks sites for parameter calibrations for this PFT. 
Using a mean of the parameter is likely to result in biases in Australia 
and parts of Asia and southern Africa. The sensitivity of transpiration to 
the two free parameters together with the input variables are evaluated 

here using the Sobol’ (2001) sensitivity analysis method, which de
composes the model output variance into the sum of variances of the 
input variables and parameters, and the sensitivity index represents to 
what extent each parameter (or variable) or the interaction of the 

Fig. 10. Comparison of the climatological zonal mean of the global annual ETSIF with the three prior products of GLEAM, PJ-JPL and MOD16. 
The grey line represents the Root Mean Square Difference (RMSD) of the four products. Note that all available records of the corresponding ET products are used for 
this evaluation, but MOD16 ET product does not include sparsely vegetated and non-vegetated areas. 

Fig. 11. Sensitivity index of transpiration to the parameters (α, β, and λcf) and the input variables (SIF, VPD, and Ta). 
ST represents the total sensitivity index (a) and S1 represents the 3rst-order sensitivity index (b). In particular, the 3rst-order sensitivity index is evaluated by keeping 
all other variables (including parameters and input variables) constant, while the total sensitivity index is evaluated by considering variations of all variables 
(including parameters and input variables); see Sobol’ (2001) for the detailed descriptions. Black line represents the 95% con3dence interval. 
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parameters (or variables) will have on the 3nal output. We found 
transpiration is sensitive to the parameter α (Fig. 11) followed by the 
input variables of SIF and VPD, implying that any uncertainty associated 
with the parameter α will easily translate into the uncertainty in tran
spiration and evapotranspiration estimates. Thus, the accuracy of the 
parameter α largely determines the overall quality of ETSIF. 

Global ET estimation has advanced rapidly over the past decades, 
especially when combining remote sensing products with energy bal
ance- and meteorologically based models (Bastiaanssen et al., 1998; Su, 
2002; Fisher et al., 2008; Mu et al., 2007, 2011). Other data-driven ef
forts such as upscaling ET measurements at FLUXNET sites to the global 
scale (Jung et al., 2020) and using machine learning based on FLUXNET 
and SAPFLUXNET dataset (Koppa et al., 2022) also contributed to global 
ET assessments. Compared with other high data-demanding methods, 
ETSIF provides an acceptable estimate using SIF dataset and basic 
meteorological variables with low data demand and has the potential to 
advance global ET modelling efforts. Another major advantage is that 
stomatal conductance is not explicitly required when constraining 
vegetation transpiration, thereby reducing the associated uncertainty of 
the model structure. Thus, ETSIF may be viewed as a compromise be
tween the highly parameterized models (e.g., MOD16) and parameter 
free models (e.g., PT-JPL). The model here based on SIF also provides a 
possible way for ET partitioning, but independent 3eld measurements of 
transpiration are required to derive the model parameters to achieve 
such goal. The acceptable performance of ETSIF at FLUXNET sites lends 
some con3dence to its usage for large-scale ET computations. Needless 
to say, the accuracy of ETSIF depends on the quality of SIF retrieval, 
which is impacted by the signal quality, sky condition, among others (e. 
g., Köhler et al., 2018). Thus, any uncertainty associated with SIF 
retrieval brings about extra error into ETSIF as SIF is the most sensitive 
input variable for transpiration in this ET model (see Fig. 11). 

5. Summary and conclusion 

An evapotranspiration model was developed that combines SIF sat
ellite data and optimality principles for leaf gas exchange. The major 
novelty of this approach is that the model does not need to parameterize 
stomatal conductance. The model performance in reproducing eddy- 
covariance measured ET at FLUXNET sites was acceptable when 
model parameters related to GPP-SIF were optimized. The derived 
model parameters at these sites were later employed to determine a 
global distribution of parameters by relating them to site and climate 
properties using multiple linear regression. Using ERA5 meteorological 
input, MODIS LAI and SIF products, the MSWEP precipitation product, 
the computed evapotranspiration from 2003 through 2018 was in the 
range of 615–635 mm yr−1 with minor but statistically insigni3cant ET 
enhancement trend (0.257 mm yr−1) possibly resulting from global 
greening (Yang et al., 2023). Future developments seek to improve the 
role of soil moisture stress and hydraulic limitations on the marginal 
water use ef3ciency parameter and develop additional constraints on 
the relation between GPP to SIF. The 3rst global terrestrial ET product 
mainly driven by SIF may be used to assess antecedent soil moisture 
conditions, drought monitoring, large-scale runoff and associated 
changes in the hydrological cycle, among others. The comparisons with 
other ET products show that large uncertainties generally exist in global 
ET estimates, thus all global ET products should be treated with caution 
when dealing with topics on global water cycle. 
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