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Abstract The turbulent static pressure spectrum Epp (kx) as a function of longitudinal wavenumber kx in the
roughness sublayer of forested canopies is of interest to a plethora of problems such as pressure transport in the
turbulent kinetic energy budget, pressure pumping from snow or forest floor, and coupling between flow within
and above canopies. Long term static pressure measurements above a sub‐arctic forested canopy for near‐
neutral conditions during the winter and spring were collected and analyzed for three snow cover conditions:
trees and ground covered with snow, trees are snow free but the ground is covered with snow, and snow free
cover. In all three cases, it is shown that Epp (kx) obeys the attached eddy hypothesis at low wavenumbers
(1/δ< kx < 1/z)—with Epp (kx)∝ u4

∗
k−1x and Kolmogorov scaling in the inertial subrange at higher

wavenumbers—with Epp (kx)∝ ϵ4/3k−7/3x , where u∗ is the friction velocity at the canopy top, ϵ is the mean
turbulent kinetic energy dissipation rate, z is the distance from the snow top, and δ is the boundary layer depth.
The implications of these two scaling laws to the normalized root‐mean squared pressure Cp = σp/ u

2
∗
and its

newly proposed logarithmic scaling with normalized wall‐normal distance z/δ are discussed for snow covered
and snow free vegetation conditions. The work here also shows that the k−1x in the Epp (kx) appears more
extensive and robust than its longitudinal velocity counterpart.

Plain Language Summary Textbook definitions of pressure at a point microscopically relate it to the
collision frequency of molecules around a hypothetically small volume. Macroscopically, however, pressure
couples distant regions of a fluid as may be demonstrated when opening a door rapidly in a closed room and
noting movement of a curtain or water level variations in a water closet. For these macroscopic reasons, time
variations in static pressure near the top of a forested canopy are of interest to a variety of atmospheric problems
because they can move air volumes rapidly in and out of the canopy volume, soil, or snow cover. Yet, there is no
accepted theory to describe these variations, which are necessary for mathematically representing their effects
on biosphere‐atmosphere exchanges in climate models. The work here offers a phenomenological model that
predicts the static pressure variability as well as the contributions of different swirling motion or eddies to this
variability. The model is tested using low‐cost commercial static pressure sensors across a wide range of snow
cover conditions with agreement between model predictions and measurements.

1. Introduction

Static pressure fluctuations are at the core of the equations of fluid motion; yet, their spectral scaling properties are
less understood compared with their velocity counterparts in turbulent flows. This difficulty is partly attributed to
measurement challenges that continue to plague studies of static pressure fluctuations at high Reynolds numbers
(Elliott, 1972; Sigmon et al., 1983; Tsuji et al., 2007) and partly due to theoretical challenges. In atmospheric
research, studies on turbulent static pressure fluctuations are commonly motivated by their role in (a) the transport
terms within the turbulent kinetic energy budget (Kaimal & Finnigan, 1994; Maitani & Seo, 1985; McBean &
Elliott, 1975; Wyngaard & Coté, 1971), (b) the pressure strain correlation terms that redistribute turbulent energy
among the three fluctuating velocity components ‐ sometimes labeled as the “Robin Hood” effect (George
et al., 1984) because those terms take energy from the energy‐rich component and pass it to the energy‐poor
components, and (c) pressure gradients that spectrally link small scale to organized motion (Albertson
et al., 1998; A. Thomas & Bull, 1983) as well as physically coupling distant regions of the flow (Tsuji et al., 2007)
as may occur between the canopy air volume and the overlying atmosphere (Raspet & Webster, 2015; Shaw &
Zhang, 1992; Sigmon et al., 1983; Zhuang &Amiro, 1994). The spectral properties of turbulent static pressure are
also receiving attention in many other geophysical research applications. In climate research, pressure pumping
from soils, forest floor, and snow surfaces are receiving renewed interest (Burns et al., 2021; Colbeck, 1989;
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Kimball & Lemon, 1970; W. Massman et al., 1995, 1997; Takle et al., 2004). Pressure pumping within snow or
soil occurs at multiple time scales—ranging from fractions of seconds (i.e., turbulent) to several days (W.
Massman et al., 1997; W. J. Massman & Frank, 2022; Takle et al., 2004). Some studies report minor impact on
mass exchange between snow or soil and the atmosphere by turbulent pressure pumping (Hubbard et al., 2005;W.
Massman et al., 1997; W. J. Massman & Frank, 2022; Suzuki et al., 2006), whereas others report significant
effects (> 40% of mass transport) (Bowling &Massman, 2011; Laemmel et al., 2019; Seok et al., 2009; Swanson
et al., 2005; Takagi et al., 2005). Similar enhancements due to the so‐called non‐diffusive transport (mainly
vertical advection due to pressure pumping) have been reported for forest floor carbon dioxide fluxes (Maier
et al., 2010; Roland et al., 2015). Likewise, vapor transport from soils has been shown to be enhanced by turbulent
pressure (Farrell et al., 1966) but other studies do not support significant enhancement (W. J. Massman &
Frank, 2022).

In hydraulics and aquatic ecology, mass, momentum, and heat exchanges within the so‐called hyporheic zone are
facilitated by turbulent pressure fluctuations that lead to transmission rates orders of magnitude larger than their
Darcian matrix counterpart (Boano et al., 2014; Boulton et al., 1998). Above porous beds (e.g., gravel beds in
streams), pressure fluctuations near the permeable interface not only impact the flow within the bed but also lead
to adjustments in the relation between the so‐called Darcy‐Weisbach friction factor and the bulk Reynolds
number above the bed (Manes et al., 2012). Another general application of static pressure fluctuations is in air‐
water mass and momentum exchanges across such an interface. When airflow occurs over a water surface,
fluctuations in air static pressure can contribute to the generation of water waves (Phillips, 1957). This generation
occurs by means of a resonance mechanism in which a component of the “energetic” mode of the surface pressure
spectrum moves at the same speed as the free surface wave with the same wave number. In numerous engineering
applications such as structural vibrations and acoustic propagation, static pressure statistics are also necessary and
those have been reviewed in a number of studies (Fritsch et al., 2023; Goody, 2004). The role of pressure
fluctuations within urban roughness elements as well as within wind farms is receiving renewed attention given
the role of pressure in building ventilation and efficiency of wind turbines (Cortina et al., 2016; Hirose
et al., 2020).

Among the earliest theories for the turbulent static pressure spectrum and its root‐mean squared value (σp) were
developed for homogeneous and isotropic turbulence in the late 1940s (Batchelor, 1951; Heisenberg, 1948). In
those theories, the pressure correlation function was linked to a quantity closely related to the fourth order velocity
increment moments (Gotoh & Nakano, 2003; Hill & Wilczak, 1995; Monin & Yaglom, 1975). When employing
Kolmogorov scaling (Kolmogorov, 1991) to those fourth‐order velocity increments, it was possible to arrive at an
explicit spectral shape for the pressure spectrum (or its Fourier pair, the pressure auto‐covariance function), which
when integrated across scales, yields a relation between pressure‐ and velocity‐variances (Batchelor, 1951;
Heisenberg, 1948; Hill &Wilczak, 1995; Kraichnan, 1956; Obukhov &Yaglom, 1959; Pearson &Antonia, 2001;
Uberoi, 1953). However, those approaches have not considered the shape of the static pressure spectrum at low
wavenumbers in the presence of a rough canopy, which is the main focus here.

The primary goal of the work here is to arrive at a spectral shape for the turbulent pressure fluctuations that can be
readily employed in future analysis or models where high‐frequency pressure fluctuations need to be represented.
The sought mathematical complexity for the pressure spectra ought to resemble those derived for the Kansas
experiments (Kaimal & Finnigan, 1994) for velocity in terms of simplicity, making synthetic generation of
turbulent pressure fluctuations convenient for integration into large‐scale models. The proposed form will be
tested against newly acquired pressure measurements from low‐cost commercial sensors in the roughness sub-
layer above a tall subarctic canopy for snow covered and snow‐free conditions. During snow‐covered periods,
tree crowns appear more slender and smoother compared with their snow free counterparts. Hence, the presence
and absence of snow offers a natural manipulation of roughness cover without altering tree spacing and mean tree
height—only crown size and its local roughness. As a logical starting point for this inquiry, near‐neutral atmo-
spheric conditions will be the main focus here to permit comparisons with published laboratory studies and direct
numerical simulations. Those conditions are also prevalent above rough forested canopies for a wide range of
snow cover conditions.

The manuscript is organized as follows: The theory section begins with the governing equations and reviews what
is known about the scaling laws of the pressure spectrum across various eddy sizes spanning the very large scales,
production scales, inertial scales, and very fine scales. Findings from laboratory experiments with limited
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Reynolds numbers, along with scaling analysis and basic theories are also covered. Following this review, a
simplified model for the turbulent pressure variance is derived showing its similarity to the so‐called attached
eddy model for adiabatic conditions. The experimental details about the site conditions used to explore the
pressure spectra and variances, the pressure measurements, and run selection are presented. The results and
discussion comparing model calculations (spectral and variances) with measurements are then featured. The role
of the canopy in damping the spectral shapes of the pressure is elaborated upon. Conclusions and future work
plans are then provided. Comparisons between the low‐cost high‐frequency pressure measurements here and
standard pressure measurements as well as an exploration of possible temperature contamination effects are
presented in the appendix.

2. Theory

2.1. Definitions

The Cartesian coordinate system used defines xi with x1 = x, x2 = y, and x3 = z as the longitudinal, lateral, and
vertical directions, respectively, with z = 0 being the ground surface. The longitudinal (i = 1) direction is
aligned along the mean wind direction defined locally at z. The instantaneous velocity components along x, y, and
z directions are labeled as ui with u1 = u, u2 = v, and u3 = w, respectively, and overline defines time averaging
over some period Tp selected here to be 1,800 s. The U represents the mean velocity over Tp at z. Turbulent
fluctuations from their time‐averaged values are indicated by primed quantities. The potential temperature θ is
also needed in the quantification of thermal stratification and can be decomposed into a mean θ and a fluctuating
or θʹ term. The buoyancy parameter linking density to temperature fluctuations is defined as β = g/θ, where g is
the gravitational acceleration and 1/θ is the coefficient of thermal expansion of an ideal gas. The turbulent stress

τt above the canopy is related to the friction velocity u∗ =
̅̅̅̅̅̅̅̅̅̅
τt/ρo

√
, where ρo is the mean air density. The local u∗

above the canopy is determined from the overall turbulent stresses

u∗ = (uʹwʹ
2 + vʹwʹ

2)1/4. (1)

The spectrum of an arbitrary fluctuating flow variable sʹ satisfies the normalizing property

σ2s = ∫∞

0
Fss (kx) dkx; (2)

where kx is the one‐dimensional (longitudinal) wavenumber in space derived from Taylor's frozen turbulence
hypothesis (Hsieh & Katul, 1997; Taylor, 1938; Wyngaard & Clifford, 1977) and given as kx = 2πn/U, n is the
natural frequency (cycles per period), and Fss (kx) is the spectral density function. Thus, kx may be viewed as a
characteristic eddy size and Fss (kx) measures the strength of variability in sʹ associated with kx.

Turbulent flows in the near‐neutral atmospheric surface layer (ASL) are dominated by eddies with wide‐ranging
sizes. The largest eddies tend to scale with the boundary layer height (an outer‐layer scale) that may be
approximated by Arya (1981), Clarke (1970), and McBean (1976)

δ = Aδ

u∗

f
, (3)

where f = 1.4 × 10−4 rad s−1 is the Coriolis parameter for the site here and Aδ = 0.2 is a constant though its
value can range from 0.1 to 0.3. The finest scales of turbulence are in the regime where the action of kinematic
viscosity ν becomes significant and those fine scales are represented by the Kolmogorov micro‐scale given by

η = (ν3
ϵ
)
1/4

, (4)

where ϵ is the mean turbulent kinetic energy dissipation rate (overline is dropped for notational simplicity). In
classical boundary layer theories, eddies attached to the ground are presumed to be responsible for diffusive
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exchanges and they scale as lm = κ(z − d) (i.e., inner‐layer scale), where κ = 0.4 is the von Kármán constant
and d is the zero‐plane displacement (Kaimal & Finnigan, 1994; Tennekes & Lumley, 1972). There are other
length scales that dominate momentum exchange just above the canopy top—such as mixing layer eddies
(Raupach et al., 1996) and combinations of attached eddies and mixing layer eddies (Poggi et al., 2004) whose
relative contribution to an effective lm depends on the leaf area density. These canonical length scales (micro‐,
inner‐, and outer‐ scales) have been used to delineate key “break‐points” in the pressure spectra, where scaling
laws shift their exponents.

For pragmatic purposes, a balance between mechanical production and viscous dissipation of turbulent
kinetic energy is assumed here, which is reasonable for near neutral conditions in stationary and planar
homogeneous flow in the absence of subsidence and transport terms (Charuchittipan & Wilson, 2009; Katul
et al., 2011; Saddoughi & Veeravalli, 1994; Salesky et al., 2013). From this turbulent kinetic energy
balance, ϵ is given by

ϵ = u2
∗

dU

dz
= u3

∗

lm
. (5)

Replacing this estimate in Equation 4 and re‐arranging enables the definition of a Reynolds number Re+ given by

lm

η
= (u∗lm

ν
)3/4 = Re3/4+ . (6)

Likewise, an estimate of the largest (i.e., δ) to the finest (i.e., η) scale, a measure of the widest scale separation, is
given by

δ

η
= δ

lm

lm

η
= Aδ

u∗

f lm
Re3/4+ = Aδ

f

dU

dz
Re3/4+ . (7)

This estimate underscores that δ/ lm is dictated by the ratio of the mean flow vorticity (dU/dz) and the Coriolis
time scale ( f ). Last, the finest scales of turbulence defined by the Kolmogorov velocity vK = (ϵν)1/4 and η result
in a micro‐scale Reynolds number

Reη =
vKη

ν
= 1, (8)

Meaning that molecular viscosity ν and the turbulent viscosity vKη are equally important to the energetics of the
flow at such fine scales (Tennekes & Lumley, 1972).

Another common Reynolds number used in wind tunnel experiments is the bulk friction‐based Reynolds number
given by Reτ = u∗δ/ν. This Reynolds number can be evaluated as

Reτ =
Aδ

f

u2
∗

ν
= δ

η
Re1/4+ . (9)

Thus, Reτ does sense the largest to the finest eddy sizes in the boundary layer but with a sub‐unity scaling
enhancement arising from Re 1/4+ . In atmospheric boundary layer turbulence, Reτ ∼ 107, 3–4 orders of magnitude
larger than wind tunnel experiments or Direct Numerical Simulations.

2.2. Governing Equation

The turbulent pressure pʹ (t,xi) satisfies the Poisson equation given by Hanjalić and Launder (1972), Launder
et al. (1975)
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1
ρo

∇
2pʹ = − 2

∂Ui

∂xj

∂uʹ
j

∂xi

⏞̅⏟⏟̅⏞Rapid Term

− ∂2

∂xi∂xj
(uʹ

i uʹ
j − uʹ

i uʹ
j )

⏞̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅⏞Slow Term

+ g

θ

∂θʹ

∂z
.

⏞⏟⏟⏞Buoyancy Term

(10)

This equation is elliptic—meaning that pʹ at position xi and time t requires knowledge of the flow field and
temperature across the entire flow domain. Despite this complexity, Equation 10 underscores two mechanisms
that historically formed the basis for much of the models for pʹ. The first is known as the “rapid term” because it
involves direct interaction between the mean strain rate (∂Ui/∂xj) and turbulence. The second is known as the
“slow term” because it involves turbulent stresses that require some time to adjust after the mean strain rate reacts
to changes in boundary conditions. The third term is the buoyancy pressure and does not respond instantly to
changes in the mean shear or the mean temperature gradient. However, it does respond instantly to changes in
temperature gradients caused by density fluctuations, and thus shares some similarities with the rapid term.
Because the focus is on near‐neutral conditions, the buoyancy term is hereafter ignored.

Some of the early experiments and model calculations suggest that the rapid term is dominant (Corcos, 1964;

Panton & Linebarger, 1974) for the determination of σ2p = pʹ2. In the case where surface layer scaling applies,

meaning that z and u∗ are the only characteristic length and velocity scale, and upon ignoring thermal stratification
and the “slow” term, dimensional considerations applied to Equation 10 suggest that the non‐zero mean velocity
gradient (the only non‐zero source term in the Laplace equation) is for i = 1 and j = 3. Thus, the contribution of
the rapid term to the pressure variance may be of the order of Katul et al. (1996).

1
ρo

σp

z z
∼ u∗

z

u∗

z
. (11)

A σp = ρoCpu
2
∗
(Batchelor, 1951) is recovered where Cp is the pressure coefficient and is of order unity (Katul

et al., 1996). For wall‐bounded flow, Cp values are in the range of 2.1–6.0 as discussed elsewhere (Blake, 1970;
Elliott, 1972; Farabee & Casarella, 1991; Willmarth, 1975). Another possibility is to assume the finest scales of
turbulence dominate the effects of the instantaneous gradient on σ2p. That is, the overall characteristic velocity and

length scales of turbulent velocity gradients are comparable to σw and η. This assumption suggests that the rapid
term involving ∂wʹ/∂x contributes to the pressure variance as σw/η ∼ (u∗/z)Re 3/4+ , which leads to

1
ρo

σp

z z
∼ u∗

z

u∗

z
Re3/4+ . (12)

With such analysis, σp = ρoCpu
2
∗
but with Cp increasing with increasing Re 3/4+ . These two choices (i.e., z and η)

for the appropriate length scale determining the effects of ∂wʹ/∂x on σ2p bound all other possibilities when the

rapid term dominate. It will be shown later that models based on the spectral shape for Epp (kx) result in a non‐
constant Cp that vary with log(z/δ). Henceforth, the pressure is normalized by ρo and only kinematic variables are
employed in the spectral analysis next.

2.3. The Static Pressure Spectrum

The scaling laws of Epp (kx) across various eddy sizes, flow conditions, and generation‐dissipation mechanisms
are now considered.

2.3.1. The Inertial Sub‐Range

As a starting point, homogeneous isotropic turbulence is considered. For such a case, the micro‐scales vk and η are
used as normalizing variables (Tennekes & Lumley, 1972). This scaling leads to a non‐dimensional form of
Epp (kx) given by Tsuji et al. (2007)

Epp (kx)
v4Kη

= Epp (kx)
ϵ3/4ν7/4

= ϕp (kxη), (13)
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where ϕp (kxη) is a dimensionless similarity function to be determined. In the inertial subrange where kxz≫ 1 but
kxη≪ 1, the effects of viscosity are no longer relevant to the dynamics of Epp (kx) and must be canceled out from
Equation 13. The elimination of ν from Equation 13 requires a unique ϕp = Cp1(kxη)−7/3 thereby resulting in

Epp (kx) = Cp1ϵ
4/3k−7/3x , (14)

where Cp1 is a similarity coefficient presumed to be constant and universal. There is experimental support for a

k−7/3x scaling in the inertial subrange of atmospheric flows (Elliott, 1972; W. Massman et al., 1997; Ould‐Rouis
et al., 1996; Zhao et al., 2016). Moreover, Equation 14 has been tested for turbulent wakes and jets at inertial
subrange scales (deemed locally isotropic) and was also shown to be valid (Ould‐Rouis et al., 1996). Equation 14
has also been evaluated using direct numerical simulations for isotropic turbulence (Gotoh & Fukayama, 2001;
Gotoh & Rogallo, 1999; Tsuji & Ishihara, 2003; Xu et al., 2007), large eddy simulations (Alvelius & Johans-
son, 2000; Miles et al., 2004) and other theories based on locally homogeneous turbulent flows (Hill & Wilc-

zak, 1995). It is no coincidence that the Epp (kx) ∼ k−7/3x emerges for the inertial subrange as the turbulence‐
turbulence interaction term (or slow term) may be significant to the pressure spectrum thereby making
Epp (kx) exhibit scaling laws similar to Euw (kx) (George et al., 1984; Katul et al., 2013; Kim, 1989; Miles
et al., 2004; Raspet & Webster, 2015).

2.3.2. The Dissipation Range

The transition from the inertial to the viscous dissipation range occurs at around kη = 10 for the turbulent kinetic
energy and pressure spectra (Ould‐Rouis et al., 1996; Zhao et al., 2016), though this limit is rarely resolved in field
experiments reporting Epp (kx). Some theories suggest a sharp exponential cut‐off in the viscous range (Hill &
Wilczak, 1995; Zhao et al., 2016). Empirical models also suggest Epp (kx) ∼ k−5x (Goody, 2004) but reviewing
those models are outside the scope here. Given the rapid decay of the spectrum with increasing kx (i.e., much

faster than k−7/3x ), the viscous sub‐range is no longer considered here as its contribution to pressure variances is
deemed negligible compared with the inertial scales or large scales.

2.3.3. Large Scales

Unlike the inertial and dissipation regimes, there is no accepted universal spectral theory describing the pressure
in wall‐bounded flows or canopy flows at large scales. For homogeneous turbulence, numerical simulations
suggest that at low kx (Gotoh & Fukayama, 2001)

Epp (kx)
ϵ4/3L7/3p

= ϕL (kxLp), (15)

where Lp is an integral scale for the pressure fluctuations and ϕL(.) is another similarity function to be determined.
There are two possible choices for Lp: an inner layer scaling where Lp = z and an outer layer scaling where
Lp = δ, the boundary layer depth. When kxLp ≫ 1 and kxz≪ 1, then an overlap region must exist where Epp (kx) is
independent of Lp. This condition in the overlap region is used to determine ϕL(.) by eliminating Lp resulting in

ϕL (kxLp) =
Epp (kx)
ϵ4/3L7/3p

= Ao

kxLp
, (16)

where Ao is a similarity coefficient and ϵ scales as u2∗ (u∗/Lp). This choice of ϕL leads to a model for the pressure
spectrum at large scales given by

Epp (kx) = Aoϵ
4/3L7/3p (kxLp)−1 = Cp2 (u

3
∗

Lp
)
4/3

L7/3p ( 1
kxLp

), (17)

where Cp2 is another similarity coefficient. With this choice for ϕp(kxLp), Equation 15 reduces to
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Epp (kx) = Cp2u
4
∗
k−1x . (18)

The Epp (kx)∝ k−1x was already speculated using the inactive eddy motion
hypothesis (Bradshaw, 1967; Panton & Linebarger, 1974; Tsuji et al., 2007).
Direct numerical simulations in channel flows also demonstrate the existence
of a k−1x scaling for kxδ> 1 (Kim, 1989) when the static pressure is analyzed in
the log‐layer. Large eddy simulations of the atmospheric boundary layer also
revealed an extensive k−1x scaling at scales larger than z for the overlap region
in near‐neutral conditions (Ding et al., 2018). Low‐frequency pressure spectra
reported in smooth and rough‐wall boundary layers exhibited a k−1x region for
kxδ> 2 (Blake, 1970). Wind tunnel data generally suggest a slower roll‐off of
the surface pressure with a scaling regime that is commensurate with a k−0.7x

(Goody, 2004; Tsuji et al., 2007). However, for the same data sets, the
pressure fluctuations measured in the overlap region exhibited an extensive
k−1x scaling (Fritsch et al., 2023; Tsuji et al., 2007). A number of field ex-

periments also report a k−1x scaling in the near‐neutral ASL (Katul et al., 1996;
Wei et al., 2021).

2.3.4. Very Large Scales

There are empirical models summarizing the shape of the turbulent pressure spectrum in the limit of kxδ → 0.
One common form is given by Goody (2004)

Epp (kx) = Cp2u
4
∗
δ(kxδ)+2, (19)

which is expressed by us as such to match the spectrum in the overlap region spectrum at kxδ = 1 (i.e., continuity
constraint). There are a number of derivations leading to a k2x scaling in this limit, perhaps the earliest proposed in
1954 (Ogura & Miyakoda, 1954). The one selected here is based on a statistical constraint: spatial spectra must
vanish (i.e., Epp (kx) → 0 at kx → 0 and at kx → ∞). The viscous cut‐off ensures the latter is satisfied given the

rapid spectral decay is much faster than k−7/3x (usually on the order of k−5x (Goody, 2004; Joseph et al., 2020) to k−7x
(Kim, 1989)). For the former, a constraint on the spectrum must be formulated to ensure that, at minimum, a
continuity and smoothness condition is satisfied so that both Epp (kx) → 0 and dEpp (kx)/dkx → 0 as kx → 0.

These two conditions generally require Epp (kx) ∼ k2x . The Epp (kx) ∼ k2x shape may also not be realized in the
“real” atmosphere as large‐scale meteorological processes, gravity waves, turbulence, and acoustic waves all
contribute to alterations of the pressure spectrum at those scales (Marty et al., 2021). However, in zero‐pressure
gradient turbulent boundary layer experiments, there is experimental evidence that Epp (kx) ∼ k2x (Fritsch
et al., 2023; Goody, 2004). In the absence of any alternative model, this scaling will be assumed to represent
turbulent pressure fluctuations only for the very large scales.

Figure 1 summarizes all the predicted exponents and their associated mechanisms for the different range of scales
for Epp (kx) . The work here will be focused on the overlap region and part of the inertial subrange that can be
interrogated by the pressure sensors to be later described. Transients and other large scale (i.e., non‐turbulent)
meteorological drivers impacting the turbulent pressure spectrum will be “filtered” out prior to comparisons
between model predictions and measurements.

2.3.5. Deviations From Inertial Subrange Scaling

At the transition from production to the inertial subrange, the effects of the integral scale may still have some
impact on the scaling laws. Thus, one possible approach to accommodate them is to revise the inertial subrange
pressure spectrum to be expressed as

Epp (kx) = Cp1ϵ
4/3k−7/3x (kxLp)μp , (20)

Figure 1. Summary of the scaling laws in the turbulent pressure spectrum
Epp (kx) as a function of the longitudinal wavenumber kx within the inertial
(or log) region of a turbulent boundary layer. The transition wavenumbers
between differing scaling regimes are based on laboratory experiments or
direct numerical simulations. A possible transition region from k−1x to the k−7/3x

identified in some studies (Albertson et al., 1998; Tsuji et al., 2007) is not
shown for clarity.
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where μp remains to be determined. Some studies already reported μp = 2/3 (Albertson et al., 1998; Mayor
et al., 2023)). Others proposed that ϕp (kxη) is not a constant due to finite Reynolds number effects, which may
even lead to bottle‐necks or a bump in the compensated spectrum (Tsuji et al., 2007). The ϕp (kxη) argument is
suggestive that viscous effects can persist up to scales commensurate with the inertial subrange for low Reynolds
numbers encountered in some laboratory experiments and simulations.

An entirely different line of inquiry for the deviations from k−7/3x and k−1x is through a refinement put forth by
Kolmogorov, labeled as K62 (Kolmogorov, 1962). For the log‐normal model of turbulent kinetic energy dissi-
pation, the pth moment of the dissipation rate is related to the mean dissipation rate (i.e., ϵ) using (Boffetta
et al., 2009)

ϵp = Qo(ϵ)pRe
βp
λ ; βp =

3
4
μo (p2 − p), (21)

for any statistical moment p> 0, whereQo depends on external conditions generating the turbulence, βp is derived
from the log‐normal model of K62 with μo being the intermittency parameter of the dissipation rate. This
parameter, in principle, is related to the power‐law exponent of the spatial auto‐correlation function of the tur-
bulent kinetic energy dissipation rate (about 0.25–0.30 for internal intermittency only), Reλ = σuλ/ν is the Taylor

micro‐scale Reynolds number formed from a macro‐velocity σu = (uʹ2)1/2, and λ = σu
̅̅̅̅̅̅̅̅̅̅̅̅
15ν/ϵ

√
is the Taylor

micro‐scale (Tennekes & Lumley, 1972). For p = 4/3, βp = μo/3, and Cp1 and Ao vary with Re
μo/3
λ , a non‐

constant. Recalling that λ ∼ (η2Lp)1/3, both large and micro‐scale effects can impact Ao or Cp1 as already
speculated elsewhere (Albertson et al., 1998; Tsuji et al., 2007). Thus, the analysis here is suggestive that the
compensated spectrum, expressed as

k7/3x

Epp (kx)
ϵ4/3

∝ (kxLp)μo/9(kxη)2μo/9, (22)

might be able to foreshadow how intermittency impacts the scaling laws in the overlap region and in the inertial
subrange region. The point to be made here is that intermittency effects arising from averaging ϵ4/3 lead to spectral
decay rates that are “flatter” (i.e., less steep in absolute value) than −7/3 in the inertial subrange and flatter than
−1 in the overlap region. A flatter than k−1x scaling was noted as early as 1970 from an overlooked field
experiment above a corn canopy at different stages of crop height (Kimball & Lemon, 1970). In those field

studies, the reported shapes for the high frequency component were Epp (kx) ∼ k−6/3x , which is also flatter than

−7/3. Interestingly, field experiments over shrubs do report a near k−1x scaling at low wavenumbers but a k−2x
scaling in the inertial subrange (Wei et al., 2021). Another experiment measuring near surface atmospheric

pressure report a k−5/3x scaling in the inertial subrange (Mayor et al., 2023) instead of k−7/3x though no explanation
was offered. Last, the data sets reported for wakes, jets, and the atmospheric boundary layer also show small

deviations from k−7/3x (less steep), which were speculated to be due to intermittency effects (Ould‐Rouis
et al., 1996).

2.4. A Logarithmic Scaling for Pressure Variances

Neglecting momentarily the effects of intermittency (i.e., setting μo = 0) and accepting a k−1x scaling at low

wavenumbers, continuity of the spectrum at kx = β/z results in Cp2 = Cp1(βκv)−4/3, where β is a constant
delineating the transition from inactive eddies to inertial subrange (Huang & Katul, 2022). To link the spectral
model to Cp, the normalizing property

σ2p = ∫∞

0
Epp (kx) dkx = ∫1/δ

0
Cp2u

4
∗
δ3k2xdkx +∫β/z

1/δ
Cp2u

4
∗
k−1x dkx +∫∞

β/z

Cp1ϵ
4/3k−7/3x dkx (23)

to yield
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σ2p =
Cp2

3
u4

∗
+ Cp2u

4
∗
log(βδ

z
) + 3

4
Cp1

(κvβ)4/3
u4

∗
, (24)

which simplifies to

σ2p

u4
∗

= Cp2[13 +
3
4
− log( z

βδ
)], (25)

and is a form of a log‐linear scaling similar to Townsend's attached eddy
hypothesis for σ2u/u

2
∗
(Banerjee & Katul, 2013; Huang & Katul, 2022; Marusic

et al., 2013; Townsend, 1976). There are a number of laboratory studies that
report profiles of σp supporting log‐linear variations with z (Tsuji et al., 2007).

Here, the contribution from the (kxδ)2 regime are small compared with their
inertial subrange counterpart (at least by a factor of 2) and perhaps the precise
shape of the spectrum in this regime may not be as relevant for variance
models. Hence, the final expression for the sought Cp is now given by

C2p =
σ2p

u4
∗

= Cp1

(βκv)4/3
[13
12

− log( f z

βAδu∗

)]. (26)

For locally isotropic turbulence, Cp1 = 8 (Gotoh & Fukayama, 2001) and this value will be used throughout here.
In several laboratory boundary layer flows, a Cp = 3.4 was reported (Blake, 1970). Thus, values exceeding
Cp = 3.4 may be attributed to some large‐scale modulations of Epp (kx) or large deviations from local isotropy.
As discussed elsewhere (Panton & Linebarger, 1974), scaling laws in pressure appear robust to the isotropy
assumption (Panton & Linebarger, 1974). Predictions from Equation 26 are used to demonstrate the range of
expected values for the canonical spectral shape already discussed. In these calculations, Cp1 = 8 as derived from
direct numerical simulation (DNS) for isotropic turbulence, and β = 2 as later shown from the spectral analysis.
The calculations from Equation 26 are shown in Figure 2. The model calculations suggest that Cp can vary from
5.5 (at low u∗ and Aδ = 0.1) to 8.5 (at high u∗ and Aδ = 0.3). Interestingly, a Cp as large as 6.75 was put forth
using the inactive eddy motion argument (Bradshaw, 1967). Likewise, wind‐tunnel experiments did report a
Cp = 6.5 for high Reynolds number boundary layers (Farabee & Casarella, 1991). Early theories using the rapid
term only also estimate Cp = 6 (Kraichnan, 1956; Willmarth, 1975), close to the values predicted here when
Aδ = 0.1 and moderate u∗. Moreover, a Cp dependency on z/δ, or alternatively, a Reynolds number dependence
was noted in early modeling studies (Panton & Linebarger, 1974) and few turbulent boundary layer experiments
(Farabee & Casarella, 1991). These experiments suggest an increasing Cp with increasing Reynolds number
consistent with the arguments here and the outcome of Equation 26. Atmospheric surface layer experiments for

near‐convective conditions indicate that C2p = 18(−z/L)2/3 (Wilczak & Businger, 1984). When extrapolating the
same data set to near‐neutral conditions, aC2p = 15 was determined (Wilczak & Businger, 1984), which is some 4

times larger than the value reported in early wind tunnel experiments. The authors attributed this large Cp to
thermal fluctuations persisting even for near‐neutral conditions. Another possible explanation is the role of the
logarithmic correction arising from z/δ given the large δ expected in such experiments. Large values of Cp (=13)
were also reported from Large Eddy Simulation studies in the bottom 20% of the lower‐atmosphere (Ding
et al., 2018).

There are instances where low‐frequency pressure modulations occur due to meso‐scale or other non‐turbulent
motion that disrupt expected scaling relations. These disruptions have been reported in earlier studies of
ground pressure situated at a forest floor (Sigmon et al., 1983). More recently, near ground measurements of

turbulent pressure fluctuations in a grass field report a k−5/3x in Epp (kx) with deviations from this scaling asso-
ciated with time scales longer than 2 min (Mayor et al., 2023). Local topographic variations can also generate
large‐scale static pressure fluctuations under certain wind conditions that are more energetic than their turbulent‐
only counterpart. Those instances must be filtered out when considering turbulent static pressure only. For this

Figure 2. Modeled Cp with u2∗ using Equation 26 for β = 2, Cp1 = 8,
κv = 0.4, f = 1.4×10−4s−1, and Aδ = 0.1, 0.2, and 0.3.
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reason, the measured pressure fluctuations time series to be analyzed were
decomposed into turbulent and non‐turbulent components. A spectral cut‐off
filter set to 5 min was used to separate the largest turbulent scale from non‐
turbulent low‐frequency motion. The precise numerical value of this filter
cut‐off was found not to be essential for near‐neutral conditions provided it
varies between 5 and 10 min. Plausibility arguments regarding a 5 min cut‐off
are now provided. In a flux‐variance analysis reported by Waterman
et al. (2022), how to separate turbulent from non‐turbulent motion was
explored using high‐frequency data from the National Ecological Observatory
Network (NEON) database. It was shown that for 39 sites (spanning short
crops to forests) and multiple years per site, a 5 min cut‐off recovered flux‐
variance relations and similarity constants well when compared to standard
values (Waterman et al., 2022). This finding implies that a weak non‐
stationarity associated with non‐turbulent motion was contributing to
enhanced variances. Micro‐meteorological studies that partition evapotrans-
piration into evaporation and transpiration, a low‐frequency cut‐off that varied
from 5 to 10 min was also shown to be necessary so as to achieve acceptable
convergence given the use of flux‐variance similarity in these schemes (Zahn
et al., 2022). In studies of mass, energy, and momentum transporting eddies
over heterogeneous forested sites, it was reported that the time scale associ-
ated with the largest flux‐bearing eddy was few minutes (C. Thomas

et al., 2006) suggestive that eddies much longer than this time scale were surrogates to non‐stationarity (i.e., non‐
turbulent). In ogive analysis for momentum and scalar fluxes at several sites, more than 90% of total fluxes were
shown to be carried by time scales smaller than 5 min in the near‐neutral limit (Sakai et al., 2001). All these
studies hint that time scales much longer than 5 min are non‐turbulent and likely contribute to non‐stationarity in
the time series and this non‐stationarity has disproportionate impact on variances instead of turbulent fluxes.

3. Experiment

The study site (Kenttärova forest) is located within a subarctic region in northern Finland (67°59.237’N,
24°14.579’E) at an elevation of 347 m a.s.l (Aurela et al., 2015). The forest mainly consists of Norway spruce
(Hylocomium‐Myrtillus type, HMT) with a mean stand density of 643 stems per hectare, dominant tree height (h)
of 14 m, and leaf area index (LAI) of 2.1 (no significant seasonal change). The site is under snow‐cover for most
of the year, starting in mid‐October, reaching a peak in late‐March and melting occurs in late‐May (Meriö
et al., 2023). During the study period (15 December 2023–14 July 2024), snow depth (ds) gradually increased
from ca. 60 to ca. 120 cm at its peak by the beginning of April, and snow cover fully melted away by late May, as
shown in Figure 3. Considering its effect on roughness characteristics, the data are separated into three categories,
that is, all snow, ground snow, and snow‐free. All snow represents the snow cover on both trees and ground, which
typically occurs following a heavy snow fall with persistently below freezing temperature conditions (Figure 4e).
Succeeding all snow, alternating air temperature above freezing conditions cause the melting of snow on trees
first, resulting in ground snow condition (Figure 4f), where cases with ds >60 cm are considered for uniformity.

The micro‐meteorological setup consists of (a) a conventional eddy covariance system located above the canopy
at 23 m (= z) above the soil surface, employing an ultrasonic three‐dimensional anemometer (model USA‐1;
METEK GmbH, Elmshorn, Germany) and an enclosed‐path nondispersive infrared gas analyzer (LI‐7000, LI‐
COR Biosciences, USA), (b) a sonic anemometer (model USA‐1; METEK GmbH, Elmshorn, Germany)
located in the trunk space at 2.4 m height from the soil surface, (c) absolute barometric pressure sensors (BMP581,
BOSCH, Germany) at 2.4 and 23 m above the soil surface (Figures 4b–4d). The pressure sensors were placed in a
polycarbonate mounting enclosure (165 × 115 × 40 mm), where a polyurethane sampling tube with 20 cm length
and 6 mm diameter linked the sensor and free atmosphere at the bottom of the enclosure as shown in Figure 4h.
The BMP581 is a precision pressure sensor with dimensions 2 × 2 × 0.75 mm and with a relative accuracy of 6 Pa
and a noise level of 0.08 Pa at the highest sampling rate (∼ 480 Hz). Since the interest here is pressure fluctuations
and spectra not pressure gradients, the noise level is the pertinent criterion. The manufacturer also reports a
temperature coefficient offset of ±0.5 Pa/K. Thus, comparisons between the BMP581 and a conventional slow‐
response pressure sensor used in standard weather stations (PTB220, Vaisala, Finland) as well as an assessment

Figure 3. Snow depth (ds) during the measurement period (15 December
2023–14 July 2024). The snow conditions are marked as shaded areas in the
background as all snow in gray, ground snow in cyan, and snow‐free in
purple.
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related to temperature dependency of pressure fluctuations are presented in Appendix A. All in all, good
agreement in terms of correlation coefficient and one‐to‐one response is noted, but some finite intercept values
that cannot be explained by mean air temperature or wind speed also emerged. The filtered pressure fluctuations
standard deviation are compared to the standard deviation of the temperature fluctuations, but no correlation
between the filtered pressure standard deviation and the temperature standard deviation appeared (see Appen-
dix A) despite the fact that the air temperature variance follows expectations from Monin‐Obukhov similarity
theory for near‐neutral conditions (Monin & Obukhov, 1954). To assess whether measured pressure fluctuations
in the enclosure can be explained by the background instantaneous turbulent kinetic energy, a correlation analysis
was conducted and presented in Appendix A. From this analysis and for almost all the 30‐min runs considered, the
coefficient of determination between the 10 Hz measured turbulent kinetic energy and measured pʹ was small and
below 0.1.

All instruments were sampled at 10 Hz and the raw data were stored for later post‐processing. To prevent possible
distortion by the tower‐fence‐shed infrastructure (Figure 4a), only the data from 180–360° wind sector were used.
When computing spectra from time series, Taylor's frozen turbulence hypothesis is used (Taylor, 1938;Wyngaard
& Clifford, 1977). Recent wind tunnel experiments compared velocity spectra (longitudinal and vertical) obtained

Figure 4. (a) Aerial sketch of the instrument location showing the horizontal‐spatial orientation of the infrastructure and
instruments. (b) Illustration of the vertical orientation of the instrumentation with respect to the average vegetation height. (c,
d) show the instruments at the forest floor and the main tower, respectively. (e–g) pictures of the study site taken above the
canopy at 12:30 EET with the same angle showing the three snow‐cover cases investigated, that is, all snow, ground snow,

and snow‐free, respectively. (h) Interior picture of mounting enclosure where BMP581 sensor is located.
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by means of a particle imaging velocimeter (PIV) and cross probe at very high
Reynolds numbers. The PIV velocity spectra (space‐time) did not utilize
Taylor's hypothesis, whereas the cross‐probe measurements in time did. The
agreement between the two spectra along kx was exceptionally high for scales
up to 6δ (Deshpande et al., 2023). Hence, Taylor's hypothesis will be used
without any modifications. All spectra are computed using Welch Periodo-
gram method with a Hamming window approach.

4. Results and Discussion

To evaluate the predicted Epp (kx) , the results and discussion are structured as
follows: The selection of the turbulence runs based on anisotropy in energy
among velocity components is introduced to determine appropriate u∗ classes
for each of the three snow‐cover periods. Next, relations between σp and u2∗
are used to estimate Cp for classes in which the anisotropy measure no longer
varies with u∗ (similar to canonical turbulent boundary layers). Using this Cp,
predictions of Epp (kx) are compared with the measurements when Cp1 is

computed from the aforementioned C2p.

4.1. Turbulence Anisotropy in Eddy Energetics

Because stratification impacts the energy distribution in eddies, a metric is
needed to assess how far turbulence is from its “canonical state” in terms of
energy anisotropy. There are multiple measures that can be used such as the
stability parameter or the flux Richardson number. Here, we use a different
metric that is sensitive to the energy distribution in eddies—labeled as the
energy anisotropy. It is given by

Kiso =
σ2w

σ2u + σ2v + σ2w
= 1
1 + (σ2u + σ2v)/σ2w , (27)

where σu, σv, and σw are the root‐mean‐squared values of the longitudinal, lateral, and vertical turbulent velocity
components, respectively. When Kiso → 0, it implies that the turbulent kinetic energy is concentrated in u and
v—and the eddies are “energetically” pan‐cake like. Likewise, when Kiso = 1/3, it implies that the turbulent
kinetic energy is equally partitioned among the three velocity components (isotropic). In the near‐neutral ASL
flows, σu = Auu∗, σv = Avu∗, and σw = Awu∗ (Kaimal & Finnigan, 1994) so that

Kiso =
1

1 + (A2u + A2v)/A2w . (28)

Typical values for these similarity constants are Au = 2.2, Av = 1.9, and Aw = 1.25 (Kaimal & Finnigan, 1994;
Stull, 2012). Hence, Kiso = 0.16 represents a reference value for a neutrally stratified ASL. This value is roughly
between 2‐D turbulence (Kiso = 0) and 3‐D isotropic turbulence (Kiso = 0.33). When the turbulence is strongly
stably stratified, much of the turbulent energy resides in the u and v components. Stable stratification acts as a sink
for the vertical velocity kinetic energy and the only source of kinetic energy is the pressure‐redistribution term
(the Robin Hood effect). These 2‐D turbulence conditions are commonly associated with meandering that
dominates eddy movements with little energy in the vertical component. As u∗ increases, the Kiso will increase
until a “saturation” value commensurate with Kiso = 0.16 is reached. That is, a critical u∗ needs to be exceeded
before turbulence begins to approach its 3‐D “canonical” state of a neutrally stratified ASL. For those high u∗

conditions, the Epp(k) may also attain its canonical shape for boundary layers (i.e., Figure 1) unless large meso‐
scale motion disrupts its onset. Such meso‐scale motion is to be spectrally filtered out here when the focus is on
turbulence pressure spectra.

Figure 5 shows the relation between Kiso and u∗ for the three snow cover cases. The Kiso increases as u∗ increases
for low u∗ values and reaches a plateau within the range of 0.15–0.18 as expected. Interestingly, the critical u∗ is

Figure 5. The variation of energy anisotropy ratio Kiso) with friction velocity
(u∗) above the canopy for different snow cover cases, that is, all snow,
ground snow, and snow‐free. Half‐hourly values are shown with small and
semi‐transparent markers, while the binned values are featured with big
markers for the corresponding color and shape indicated in the legend. The
shaded area shows the saturation range, while vertical‐dashed line marks the
threshold u∗ = 0.5 ms−1.
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attained differently for the three snow cover cases. For the snow free case, the critical u∗ is closer to 0.2 ms−1,
whereas for the all snow cover, the critical u∗ exceeds 0.4 ms−1. The canopy roughness is certainly impacted by
the presence or absence of snow on the trees as shown in Figure 4. When snow covers the trees, the crown
diameter becomes more slender and the canopy appears more open. For snow‐free conditions, the overall crown
diameter expands, and the forested canopy appears more closed. Thus, for the snow‐covered trees, the air flow
within the vegetation experiences a smoother array of slender obstructions. This has two inter‐related effects: the
first is that any vortex shedding or wake diffusion persisting above the canopy will maintain its coherency over
greater distances before encountering another obstacle. The second is that a sparser canopy may prevent a strong
inflection point in the mean velocity profile and thus the formation of Kelvin‐Helmholtz (KH) instabilities (i.e.,
mixing layer eddies) may be less frequent. The KH instabilities are quite efficient at enhancing vertical mixing
near the canopy‐atmosphere interface. Thus, higher u∗ is required to dissipate coherent two‐dimensional wake
effects for the snow‐covered trees. For the snow free vegetation, the crowns are wider and thus tightly spaced, the
obstructions are rougher and include multiple scales. These multiple roughness scales are efficient at breaking up
or, at least, randomizing any persistent two‐dimensional vortices from wakes and enhances the redistribution of
turbulent kinetic energy among velocity components. In short, the presence or absence of snow on the vegetation
dictates how Kiso approaches the threshold u∗ rapidly (no snow) or slowly (with snow). However, the overall
saturation Kiso value is not appreciably impacted by snow cover (at least for z/h = 1.64).

Beyond using Kiso for canonical turbulent flows, estimates of ϵ using Equation 5 are also indirectly explored. The
mean velocity gradient was not measured at z/h = 1.67 but a balance between turbulent kinetic energy pro-
duction and dissipation allows for an estimate of the mixing length and subsequently a zero‐plane displacement
assuming attached eddies dominate momentum transfer. The ϵ was determined from the inertial subrange spectra
of the longitudinal velocity. From Appendix B, it is shown that lm computed from u3

∗
/ϵ agree with κ(z − d) for

d/h around 0.5–0.6. The higher d/h value is for snow‐free conditions where the canopy appears rougher and the
crown diameter wider.

4.2. The Pressure Spectra

Figure 6 shows a sample time series of themeasured static pressure variations and longitudinal velocity fluctuations
(Figures 6a and 6b), their filtered version (Figures 6c and 6d), and the computed power spectra of the filtered
versions (Figures 6e and 6f) for a 30 min period collected on 15 Dec. 2023 at 09:00 when u∗ was 0.52 ms−1. As
expected, the 5 min filtering removes low‐frequency modulations on time scales of about 1,000 s from the raw
pressure time series. The effects of such 5 min filtering appear not as appreciable in the longitudinal velocity time
series compared to its static pressure fluctuations counterpart.

The agreement between predicted and measured Epp (kx) (after filtering) appears superior to its longitudinal
velocity counterpart (i.e., Euu (kx)) when setting β = 2. The overlap region kx ∈ [1/ (βz), 1/δ] featured here is
routinely used to justify the extent of a k−1x power law in Euu (kx). Prior studies do suggest that β can vary with the
stability parameter for velocity spectra (Huang & Katul, 2022). At the high‐frequency end, the instrument noise
level (flat part of the measured spectrum) dominates beyond kxz> 10. The reported minimum sensor noise
variance by the manufacturer is also shown as a dot‐dashed line. It is clear that the actual noise is higher. Despite
the higher noise level found here, there is still an appreciable signal‐to‐noise ratio in the measured Epp (kx) where
k−1x and a k−7/3x are resolved across wide ranging kx values (>2 decades).

The value of β (i.e., transition from k−1x to k−7/3x ) was further explored in Figure 7 for different snow cover ranges.
This figure presents 30 measured Epp (kx) for each of the three snow cover periods when Kiso attained inde-

pendence from u∗ (>0.5 ms−1). Because the focus is on whether β is impacted by the snow cover, each of the 30
pressure time series was first spectrally filtered, and then normalized to have a zero‐mean and a unit variance. By

and large, the k−1x and the k−7/3x remain reasonable descriptors of the scaling laws. A β = 2 also appears plausible
for all snow cover cases though the spectral transition region from one scaling regime to another is not as sharp
(i.e., smoother than a single break‐point in wavenumber space). The effects of these modest deviations from the
anticipated scaling laws and transition point (i.e., β = 2) on Cp (i.e., sensitive to the area under the spectrum) is
considered next.
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4.3. The Normalized Pressure Variances

The relation between σ2p and u
4
∗
is commonly used in the literature to infer C2p. This relation and the empirically

inferred Cp from it are now investigated for the case where Kiso attained a near‐constant value. By regressing

measured σ2p (after the 5‐min high‐pass spectral filtering) against measured u4
∗
, “effective” values for C2p

converged on ca. 53, as shown in Figure 8 (or Cp converged on ca. 7.3), irrespective of the snow cover. These
effective values are compared to those determined from Equation 26 when varying Aδ = 0.1–0.3 and β =1.5–3
and using the Cp outcomes only for u∗ > 0.5 ms−1 (or u4

∗
> 0.0625), as shown in Figure 9. For this u∗ threshold,

Kiso is constant and the modeled Cp from the log‐scaling result varied depending on the range of u∗ interrogated
for the periods corresponding to the snow cover case. Figure 8, which reports only median Cp for all the u∗ cases
interrogated, reveals a number of dynamically interesting features about Cp. When setting Aδ to a fixed value—
say Aδ = 0.2, the required β that matches the empirical Cp is ca. β = 2 regardless of snow conditions.

Figure 6. Measured pressure (a) and longitudinal velocity (b) series sampled at 10 Hz and de‐meaned for z = 23 m. The data
displayed were collected on 15 Dec. 2023 at 9:00 a.m. Filtered pressure (c) and filtered longitudinal velocity (d) series using a
5 min spectral cut‐off are shown. Comparison between measured and predicted pressure spectra (Epp (kx)) for the low
wavenumber regime by Equation 18 and the inertial subrange regime by Equation 14 when setting β = 2 and Aδ = 0.2 (its
accepted value for near‐neutral flows) using the filtered pressure series (e). The k−1x power‐law scaling in Epp (kx) is more
evident and broader across scales than its longitudinal velocity (i.e., Euu (kx) ) counterpart (f). The dot‐dashed horizontal line in
the Epp (kx) panel is the reported minimum sensor noise variance (=0.082 × [Udt/ (2π)] Pa2 m).
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While the agreement between effective and modeled Cp is acceptable, there are a number of issues that should be
raised as cautionary notes. The effective Cp inferred from the data is impacted by (a) the white‐noise at high

frequency in the measurements as evidenced from Figure 7, (b) a spectral exponent decaying not as steep as k−7/3x

in some runs (due to intermittency effects), and (c) low‐frequency modulations at scales where kxδ< 1. All these
effects, which are visible in several sample runs shown in Figure 7, act to increase the measured Cp in the data. On

the other hand, the modeledCp in Equation 26 does account for large‐scale turbulent motion associated with the k
2
x

scaling regime. The latter scaling regime is not fully resolved by the Epp (kx) measurements.

4.4. The Sub‐Canopy Pressure Variances and Spectra

As a bridge to the topics raised in the introduction, the 5 min spectrally filtered pressure variances at z = 2.4 m
were also computed and compared with their counterpart near the canopy top in Figure 10 for all three snow cover
cases. As expected, the canopy filters out pressure fluctuations depending on snow conditions. The overall
pressure variance near the forest floor is ca. 27% of its value at the canopy top for all snow, which gradually
decrease to 20% for ground snow and further to 16% for snow‐free conditions. The linear relation between
variances found here implies that models that seek to quantify pressure pumping in snow or forest floor due to

Figure 7. Measured above canopy pressure spectra of 30 half‐hour periods (Epp (kx)) normalized by their respective variances for all three snow cover cases. Note the
normalized transition wavenumber from k−1x to k−7/ 3x for different snow cover is shown for kxz = β = 2 as reference.

Figure 8. Relation between measured u4
∗
and σ2p of the filtered pressure series above the canopy for the three different snow

cover cases. The regression slope is conventionally interpreted as an effective C2p. The goodness of the fit is evaluated using

the coefficient of determination R2.
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turbulence can use the scaling laws for Epp (kx) above the canopy and the variance reduction derived here. In fact,
Figure 11 confirms that the same scaling laws as those reported near the canopy top reasonably describe the
normalized pressure spectra at z = 2.4 m further confirming this conjecture. Thus, it appears that the canopy here,
and for all snow conditions, is simply removing pressure variance in proportion to the squared amplitude asso-

ciated with each scale with no preferential scale cut‐off. The β value separating the transition from k−1x to k−7/3x

regime is also around β = 2. This similarity in scaling laws should be accompanied with cautionary notes
including the use of Taylor's frozen turbulence hypothesis where much higher turbulent intensity in the sub‐
canopy space is encountered. Also, even small local topographic variations (compared with h) can impact the
static pressure spectra near the snow top.

5. Conclusion and Future Outlook

The spectral properties of the turbulent static pressure fluctuations Epp (kx) were analyzed above a subarctic forest
canopy for near neutral conditions across a wide range of snow cover. The work demonstrated the following:

1. The critical friction velocity (u∗) beyond which the turbulent kinetic energy partition among velocity com-
ponents is reasonably approximated by standard near‐neutral surface layer similarity is sensitive to the snow
cover conditions. Much higher u∗ values are needed when trees are covered with snow (>0.5 ms−1) compared
to snow‐free ecosystem (>0.2 ms−1). The remaining conclusions apply for u∗ values exceeding these
thresholds.

Figure 9. A comparison between estimated effective Cp from data for different snow cover cases reported in Figure 8 and
modeled Cp using Equation 25. The Cp is computed for each measured u∗ for typical Aδ values (0.1–0.3) and for varying β
values (1.5–3). The median Cp value of each Aδ and β combination is shown with markers and estimated effective Cp from data
with dotted line (ca. 7.3 for all snow cases).

Figure 10. Relation between measured pressure variances above (z = 23 m) and below the canopy (z = 2.4 m) of the filtered
series for the three different snow cover cases.
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2. For the inertial subrange in which kxz> β, the Epp (kx) is approximated by Cp1ϵ
4/3k−7/3x , where β = 2 (derived

from measurements) and Cp1 = 8, the latter constant is consistent with DNS.
3. For the overlap region in which kxz< β and kxδ> 1.5 − 2.5, the Epp (kx) is defined as Cp2u

4
∗
k−1x , where

Cp2 = σ2p/u
4
∗
and is not a constant. It is given by a log‐linear relation in z/δ analogous to the attached eddy

model for σ2u/u
2
∗
.

4. The aforementioned spectral scaling laws appear to hold in the trunk space just above the snow cover. This
implies that the canopy filters out turbulent pressure variances in proportion to their squared amplitudes
without any preferential selection across scales.

5. The filtered pressure variance in the sub‐canopy space varies from 27% for all snow to 16% for snow free
conditions when compared to the filtered pressure variance at the canopy top. While the tree density and tree
height are the same for both snow cover cases, the all snow cover case makes the trees appear more slender and
smoother compared to their snow free counterpart. This effect implies less pressure variance filtering in the all
snow cover case.

6. The low‐cost static pressure sensors employed here (BMP581, BOSCH, Germany) can resolve pressure
fluctuations albeit with a small non‐constant drift. Despite these limitations, the turbulence pressure spectra
derived from the BMP581 sensors agree with theories and similarity coefficients explored using DNS. When
compared with standard high‐precision digital barometers (PTB220, Vaisala, Finland) using linear regression,
the regression slope and the coefficient of determination are near unity. The intercept variations across the
winter‐spring season were not small and ranged from 0.2 to 1.4 kPa (discussed in Appendix). This work adds
to the growing trend of exploring the use of low‐cost pressure sensors to quantify spectral properties of
pressure (Mayor et al., 2023).

Future experiments will include a ceilometer to estimate the boundary layer height and thus constrain the value of
Aδ in near‐neutral conditions for future analysis. With extended measurement campaigns, the ensemble‐averaged
spectra may reliably discern the transition regime from the k−1x to k−7/3x and thus β. More broadly, the role of
thermal stratification on the pressure spectra as well as the inclusion of such pressure spectra in numerical models
for pressure pumping in snow is a topic that is better kept for a future inquiry.

Appendix A: Pressure Sensor Diagnostics

This appendix reports comparisons between the pressure sensor used in the high‐frequency analysis here
(BMP581) and a reference pressure sensor (PTB220 Digital Barometer, Vaisala, Finland) available at the site
supporting a standard weather station. Minutely averaged BMP581 and sampled PTB220 absolute pressure

Figure 11. Measured subcanopy pressure spectra of 30 half‐hour periods (Epp (kx)) normalized by their respective variances for all three snow cover cases.
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showed good agreement (R2 ∼ 1 and slope ∼ 1) across months for selected days (Figure A1). Despite this
agreement, varying offset between 0.2 and 1.4 kPa for different months were observed. These offsets were
small in absolute when compared with the mean pressures (about 95 kPa). The manufacturer does report a
temperature coefficient offset of ±0.5 Pa/K, which may explain some of the variations in the regression
intercept determined in Figure A1. To further explore any T or wind speed dependency, the relation between
mean T and wind speed and the associated offset values in Figure A1 was analyzed. It was found that the effect
of such meteorological variables on instrument performance was not significant when absolute values were
considered.

The effect of air temperature fluctuations within each 30 min run on pressure fluctuations was also considered.
The mean air temperature measured at z = 23 m every 30 min varied between −25 and +25°C during the
campaign (Figure A2a). The associated temperature variance σT was computed for each 30 min run and an
assessment was made as to whether the air temperature variability within a given 30 min run impacts the pressure
fluctuations for the same 30 min. Before computing σT , the number of runs experiencing spikes was first checked
and found to be infrequent. When temperature spikes do occur in a given 30 min run, their numbers remained well
below 50 out of 18,000 (Figure A2b). Thus, the spikes were removed and gap‐filled for the purposes of computing
σT . As noted earlier, the high‐frequency pressure data were categorized with different mean air temperature
classes (Figure A3) and the runs featured here interrogate all snow conditions (all snow, ground snow, and snow‐
free). The analysis to be presented next was limited to 240–300° wind sector to minimize the effect of sensor
separation between sonic anemometer and pressure sensor, which were located on 160–340° axis with 2 m
horizontal separation at the same height. Based on the analysis here, the σT of each 30 min run remained below
1°C, while filtered σp were below 12 Pa. The relation between σT and σp was analyzed to assess whether there are
dependencies between σp and σT in any given temperature class. The findings shown in Figure A3 suggest that σT
variability is not correlated with filtered σp (i.e., pressure fluctuations due to turbulence only) for each temperature
class.

It is worth noting that σT and σp are jointly impacted by u∗ when |wʹTʹ| ≥ 0.02 m s−1 K. In fact, the σT variations
here can be explained by the turbulent sensible heat and u∗ using Monin‐Obukhov similarity theory (Monin &

Figure A1. Comparison between Vaisala‐PTB220 located at 2 m integrated in AWS and BMP581 absolute pressure sensor
located at 23 m. The panels show daily variations for a chosen day in every month between Dec and May.
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Obukhov, 1954). Specifically, it was found that in near‐neutral conditions, σT variations can be reasonably
explained by T∗ = |wʹTʹ/u∗| as shown in Figure A4. More interesting is that the regression slope (=1.28) is
commensurate to that reported in the Kansas and other experiments for near‐neutral atmospheric stability con-

ditions where σT/T∗ =
̅̅̅̅̅̅
1.8

√
= 1.34 (i.e., close to 1.28) as summarized elsewhere (Sorbjan, 1989). This analysis is

suggestive that measured turbulent pressure fluctuations by the BMP581 sensor are unlikely to be driven by
temperature fluctuations.

The relation between pʹ and instantaneous turbulent kinetic energy e(t) = (1/2)(uʹ(t)2 + vʹ(t)2 + wʹ(t)2) was
also considered to assess whether the dynamic pressure fluctuations played a significant role on the measured pʹ

within the enclosure (Figure A5). Here, e(t) was selected because it is a scalar and reflects the intensity of the
turbulence in the vicinity of the boxed pressure sensor. Figure A5 suggests that for the 30‐min runs analyzed here,
the coefficient of determination between pʹ(t) (filtered and raw) and e(t) was small in almost all cases. That is, if
the dynamic pressure head is assumed to be related to the background e(t), the analysis here seems to suggest that
the dynamic contribution is not significant.

Figure A2. (a) Time series of measured air temperature at 23 m during the experiment. (b) Kinematic sensible heat flux and
friction velocity. (c) Standard deviation of air temperature σT and the number of spikes in each half‐hour period. (d) Standard
deviation of filtered pressure measured at 23 m as described in Section 3.
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Figure A3. Relation between standard deviation of temperature as measured using the sonic anemometer (σT ) and the
standard deviation of the filtered pressure fluctuations (σp) for different mean air temperature classes. The fitted lines are
shown with corresponding colors, while the goodness of fit (R2) is shown for each classes next to the legend. Both σT and σp are
impacted by u∗.

Figure A4. (a) The relation between the absolute kinematic heat flux |wʹTʹ| normalized with friction velocity u∗ (abscissa)
against the standard deviation of temperature (ordinate) for each mean air temperature class and u∗ ≥ 0.5 m s−1. A constant
slope is suggestive that σT is explained by T∗ = |wʹTʹ /u∗| as predicted from Monin and Obukhov (1954) similarity theory.
(b) The variation of the absolute kinematic heat flux |wʹTʹ| for each mean air temperature class is also shown for reference.
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Appendix B: Production to Dissipation Balance

The relation between ϵ(z) and u3
∗
/ lm above the canopy at z/h = 1.64 is explored in Figure B1. The interest in

lm(z) = u3
∗
/ϵ(z) has received significant attention in canopy turbulence and surface layer scaling analysis

(Chamecki et al., 2017; Davidson & Krogstad, 2014; Ghannam et al., 2018; Mortarini et al., 2023) as it allows for
some deviations from the law‐of‐the wall to be accommodated due to imbalances between turbulent kinetic
energy production and its dissipation. For the attached eddy hypothesis, lm is determined from eddies attached to
the zero‐plane displacement d. Thus, to infer lm, the measured longitudinal velocity spectra Euu (kx) are used. For
kxz> 2, the Euu (kx) spectra are approximated by their inertial subrange form given by

Euu (kx) = Co,uϵ
2/3k−5/3x , (B1)

where Co,u = 0.5 is the Kolmogorov constant (Kaimal & Finnigan, 1994). For the runs used here (i.e., u∗ ≥ 0.5 m

s−1), the estimates of ϵwere determined by regressing log[Euu (kx)] upon log(kx) for eddy sizes within the inertial
subrange. The resulting spectral exponents varied from −1.5 to −1.67, as shown in Figure B1a. The regression
intercepts were then used to infer ϵ. Once ϵ was determined for a given run, the associated u3

∗
was computed. An

overall regression analysis was then conducted with u3
∗
as the dependent variable and ϵ as the independent

variable for all three temperature classes (Figure B1b). The slope of this regression can then be interpreted as lm to
be compared to κ(z − αh) (i.e., d = αh). For dense canopies, textbook values suggest d/h = 2/3 (Kaimal &
Finnigan, 1994). For sparse canopies, the α values can be much lower (Kunadi et al., 2024). When using κ = 0.4,
z = 23 m, the α values were then computed for each air temperature range (roughly coincident with snow cover)
using

α = d

h
= z

h
− lm

κh
. (B2)

For lm about 6.36 as determined from the robust regression analysis in Figure B1b, α is around 0.51 (<0.67),
which may be plausible as the canopy may appear sparser for this temperature range due to the presence of snow
on the vegetation. For lm about 5.78, α is around 0.6, which is close to expectations for dense canopies. That
α = 0.6 and is close to 2/3 as derived from a balance between production and dissipation of turbulent kinetic

Figure A5. The goodness of fit (R2) of filtered (pfiltered) and raw (praw) pressure perturbations and fluctuating turbulent kinetic
energy (e(t)).
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energy is suggestive that this balance holds for z/h = 1.67. For air temperature values well below freezing, a
much poorer correlation between ϵ and u3

∗
was obtained. We do not have a definitive explanation as to why.

Data Availability Statement

Data to reproduce the figures in the main text are available in Aslan et al. (2025).
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Erratum

The originally published version of this article contained errors in Equations 15–18 and related text. Equations

15–18 have been corrected as follows: Epp (kx)
ϵ4/ 3L7/ 3p

= ϕL (kxLp), ϕL (kxLp) = Epp (kx)
ϵ4/ 3L7/ 3p

= Ao

kxLp
, Epp (kx) =

Aoϵ
4/3L7/3p (kxLp)−1 = Cp2 (u3∗Lp)

4/3
L7/3p ( 1

kxLp
), Epp (kx) = Cp2u

4
∗
k−1x . The phrase and sentence immediately

following Equation 16 have been corrected to the following: “where Ao is a similarity coefficient and ϵ scales as
u 2

∗
(u∗/Lp). This choice of ϕL leads to a model for the pressure spectrum at large scales given by…” The sentence

immediately following Equation 17 has been corrected to the following: “where Cp2 is another similarity coef-
ficient. With this choice for ϕp(kxLp), Equation 15 reduces to .…” This may be considered the authoritative
version of record.
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