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Empirical evidence is provided that within the inertial sublayer (i.e. logarithmic region)
of adiabatic turbulent flows over smooth walls, the skewness of the vertical-velocity
component S,, displays universal behaviour, being a positive constant and constrained
within the range S,, ~ 0.1-0.16, regardless of flow configuration and Reynolds number.
A theoretical model is then proposed to explain this behaviour, including the observed
range of variations of S,. The proposed model clarifies why S, cannot be predicted from
down-gradient closure approximations routinely employed in large-scale meteorological
and climate models. The proposed model also offers an alternative and implementable
approach for such large-scale models.
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1. Introduction

Much of the effort devoted to the study of adiabatic and hydrodynamically smooth-wall
turbulence has focused on the characterization of velocity statistics within the so-called
logarithmic or inertial sublayer (ISL). The attached eddy model (AEM), which is probably
the most cited model for ISL turbulence, predicts that first- and second-order velocity
statistics can be described as (Townsend 1976; Smits, McKeon & Marusic 2011; Marusic
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& Monty 2019):

1
it =~ logzt) +A; 02" = A, — B, log (g) : (11a.b)
K
and, a less studied outcome, ov%* :Agv, where u and w are the longitudinal and
wall-normal velocity components, respectively; z is the wall-normal coordinate; o, =

\/L72 and oy, = \/ﬁ are the standard deviation of u and w, respectively; primes identify
fluctuations due to turbulence around the mean; the overline represents averaging over
coordinates of statistical homogeneity; the plus index indicates classical inner scaling
whereby velocities and lengths are normalized with the friction velocity u, and viscous
length scale v/u,, respectively, with v being the kinematic viscosity of the fluid; § is the
outer length scale of the flow; «, A, A,, A,,, B, are coefficients that are thought to attain
asymptotic constant values at very large Reynolds numbers Re; = u,6/v (Smits et al.
2011; Marusic et al. 2013; Stevens, Wilczek & Meneveau 2014).

The AEM has been extended to velocity moments of any order as well as
cross-correlations between different velocity components thereby providing an expanded
picture of ISL flow statistics (Woodcock & Marusic 2015). However, convincing empirical
support for the aforementioned theoretical predictions is limited to the statistics of u
(Smits et al. 2011; Banerjee & Katul 2013; Marusic et al. 2013; Meneveau & Marusic
2013; Huang & Katul 2022). In contrast, the statistics of w have been much less reported
and investigated, partly because of the technical difficulties associated with accurately
measuring w in the near-wall region of laboratory flows at high Re;. As a result, theoretical
predictions of w-statistics have received mixed support from the literature (Zhao & Smits
2007; Morrill-Winter et al. 2015; Orlii et al. 2017) and higher-order moments of w' are
rarely reported but with few notable exceptions (Flack, Schultz & Connelly 2007; Schultz
& Flack 2007; Manes, Poggi & Ridolfi 2011; Heisel et al. 2020; Peruzzi et al. 2020).
We argue that this overlook contributed to hiding a universal property of ISL turbulence,
which is herein reported and discussed.

The aim of this paper is to demonstrate that the skewness of w/, S,, = w’3 /GVSV, is a
positive z-independent constant and robust to variations in Re; within the ISL. Moreover,
a theoretical model that explains this observed behaviour and links S, to established
turbulence constants is proposed, leading to satisfactory predictions. Finally, this paper
demonstrates that the asymmetry in the probability density function of w’/, as quantified by
Sy, cannot be accounted for with gradient-diffusion representations routinely employed in
meteorological and climate models (Mellor & Yamada 1982). Rectifying this limitation is
of significance because S,, is recognized as a key feature of climate and meteorological
modelling (Wyngaard 2010) impacting various atmospheric phenomena such as cloud
formation (Bogenschutz et al. 2012; Huang et al. 2020; Li et al. 2022) and dispersion
processes (Barentsen & Berkowicz 1984; Luhar & Britter 1989; Wyngaard & Weil 1991;
Maurizi & Tampieri 1999). Neglecting S,, affects models by underestimating the impact of
the asymmetry between ejective eddy motion (w’ > 0, ' < 0) and sweeping eddy motion
(W' < 0,4’ > 0), which is a widely accepted feature of the ISL.

Figure 1 reports the variations of S,, with normalized wall-normal distance (z/3) using
data from direct numerical simulations (DNS) (Sillero, Jiménez & Moser 2013), laboratory
experiments pertaining to flat plate turbulent boundary layers (TBLs) (Zimmerman 2019;
Heisel et al. 2020), uniform (Poggi, Porporato & Ridolfi 2002) and weakly non-uniform
open channel flows (Manes et al. 2011; Peruzzi et al. 2020), pipe flows (Zimmerman
2019) and the atmospheric surface layer (ASL) (Priyadarshana & Klewicki 2004), whereby
accurate measurements of w are available. This set of data covers an extensive range of Re;
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Figure 1. Variation of the vertical-velocity skewness S, with normalized wall-normal distance z/§ from open
channel flow (a), wind tunnel, ASL and pipe flow (b) and DNS (c). The dashed line is S,, = 0.16 and the dotted
line is Sy, = 0.10. Data are summarized in table 1. Red symbols and lines identify the ISL range. For HL1 and
HL2, near-wall measurements are not reported due to spatial resolution limitations of the x-probe employed in
the experiments (Heisel ef al. 2020).
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Source Dataset Flow Re; B, Ay Sw
Manes et al. (2011) MN oC 2160 0.58 1.06 0.11
Sillero et al. (2013) DNS — 1307 0.85 115 0.13

— — 2000 086 117 012

Heisel et al. (2020) HL1 WT 3800 0.85 0.96 0.21
HL2 WT 4700 0.63 1.00 0.15
Poggi et al. (2002) PGl1 oC 1232 0.73 090 0.23
PG2 oC 1071  0.78 1.02 0.17
PG3 oC 845 1.03 090 0.33
Peruzzi et al. (2020) PR1 oC 2240  0.60 112 0.10
PR2 ocC 999 048 1.06 0.09
PR3 oC 1886 0.81 1.06 0.16
Zimmerman (2019) ZM1 PF 14005 1.25 101 0.28

ZM?2 WT 15250 1.03 126 0.12
ZM3 WT 6340 040 0.81 0.17

Priyadarshana & Klewicki (2004) PK ASL 860000 — — —

Table 1. Overview of smooth-wall boundary-layer experiments (OC, open channel/flumes; WT, wind tunnel;
PF, pipe flows; ASL, atmospheric surface layer) and DNS (six cases ranging between Re; = 1307 and
Re; =2000) in figure 1(c). The Re; = dus /v is the friction Reynolds number, B, and A,, were computed
from data using AEM. For the DNS, the highest and lowest Re; are shown given the small variability in B,
(0.85-0.86) and A,, (1.15-1.17). The computed S, using (2.11) is also presented.

spanning from 8 x 10% to approx 10° (table 1). A reference value of S,, = 0.1 is added to
the figure as often reported for ASLs in adiabatic conditions across multiple heights and
for various surface covers (Chiba 1978). A region of constant S,, weakly varying between
0.1 and 0.16 (here weakly means that variations are much smaller than those displayed by
S,, over the entire flow domain) is evident in all profiles within the range 2.6./Re;v/u,
up to 0.15-0.258, which is often associated with the ISL (Zhou & Klewicki 2015; Orlii
et al. 2016, 2017). This finding is rather remarkable given the large differences in Re,
measurement techniques and experimental facilities used. In what follows, a theoretical
model that predicts and explains such a behaviour is provided.

2. Theory
To explain the observed behaviour of S,, a stationary and planar homogeneous

incompressible flow in the absence of subsidence is considered for w’3. For these
conditions, the model can be derived from the Reynolds-averaged Navier—Stokes equations
and is given as (Canuto ef al. 1994; Zeman & Lumley 1976)

Source/sink Turbulent transport

w3 ,002  gw'w o “ow ow
Py =0= UWa—ZW % -3 w/w’a—Z —2v 3W/3_x,-8_x,- , (2.1
Pressure-velocity destruction  Viscous destruction
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where 7 is time, p’ is the pressure deviation from the mean or hydrostatic state normalized
by a constant fluid density o and the repeated index i in the viscous term denotes
summation over the spatial coordinates ([x1, X2, x3] = [x, ¥, z]). The first two terms on the
right-hand side of (2.1) (i.e. those highlighted by overbraces) arise from inertial effects or
convective acceleration, the third and fourth terms (i.e. those highlighted by underbraces)
arise due to interactions between w'w’ and the forces acting on a fluid element (p’ and
viscous stresses). A quasi-normal approximation for the fourth moment is used (André

et al. 1976) so that the flatness factor F,, = w'*/ (0)* = 34 a and the overall inertial
term simplifies to

aw 9o2 302
— 302—% — —(3 4+ 2a)02—2, 22
9z R 0z (3 +2a)0;, 07 @.2)

where a # 0 allows for deviations from Gaussian tails (@ = 0 recovers a Gaussian flatness
factor). Usage of a quasi-Gaussian approximation to close a fourth (and even) moment
budget makes no statement on the asymmetry (or odd moments) of the w' probability
density function, only that large-scale intermittency is near-Gaussian, a finding well
supported in the literature (Meneveau 1991) and many phenomenological approaches
(Woodcock & Marusic 2015). Models for the pressure-velocity and viscous destruction
terms are now needed to integrate equation (2.1). A return-to-isotropy (or Rotta) model

(Rotta 1951) given by
op  Cr (q
2w (T-q2), 23

may be used as the basis to derive an expression for the pressure-velocity destruction term
in (2.1) where g = u'u’ + v'v' + w'w’ is twice the instantaneous turbulent Kinetic energy
(TKE), g = 2K, K is the averaged TKE, v’ is the lateral turbulent velocity, and Cg = 1.8
is a well-established constant, the Rotta constant (Bou-Zeid et al. 2018). The constant Cg
relates the so-called relaxation time T = g/€ to the time it takes for isotropy to be attained
at the finest scales, where € is the mean TKE dissipation rate. Inspired by the Rotta model
we propose that the pressure-velocity interaction term appearing in (2.1) can be expressed

as
'\ 3Cr(wqg —
g ww ) = 2R (ML), (2.4)
9z 2 T, 3

where 7 is another decorrelation time that differs from 7. While expected to be small
relative to the pressure-velocity interaction term, the viscous destruction contribution is
herein retained and represented as (Zeman & Lumley 1976)

T au aus S
—2 (waw ow ) = 2w = —c, 24 (2.5)
. .

where ¢ is a similarity constant, and € ~ g/t is the fluctuating dissipation rate around
€. Inserting these approximations into (2.1) yields

2.6
3 3Cg (26)

_ _%(3“‘2“)7&‘%%8;%%_'_”/—/ 1 2c¢ ‘
3 CR 0z

A model for w/q is further needed to infer S,,. To arrive at this model, the K budget for
the same flow conditions leading to (2.1) are employed. When mechanical production is
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balanced by € as common in the ISL, the K budget leads to two outcomes (Lopez & Garcia
1999):
ou
2 —
u; 5

The height-independence of w'q is suggestive that it must be controlled by local conditions
and a down-gradient approximation is justified given by (Lopez & Garcia 1999)
1— oK

—Ew/q = Kzu*a—z. (2.8)

13_’
wq:O

—— 2.7a,b
2 0z (2.7a.6)

—€e=0;

The model in (2.8) has received experimental support even for rough-wall TBLs and across
a wide range of Reynolds numbers and surface roughness values (Lopez & Garcia 1999).
Noting that K ~ JMZ yields

N 2 9 2 9 2 3 o) 2 )
w3 = —5 [Kt’waizw +Kt,u aazu ] > Kt,w = —( * Ca)‘[saw; K,,u = KZUx (1 — 2) ,
R

where K;,, and K; , are eddy viscosity terms. These two eddy viscosity values become
comparable in magnitude when setting 7y, = xz/u, (i.e. following classical ISL scaling)
and Cg = 1.8 — its accepted value (Bou-Zeid et al. 2018) as expected in the ISL. To
determine 80;% / 9z, the mean vertical-velocity equation is considered for the same idealized
flow conditions as (2.1). This consideration results in

dog _ (l) <3_’3> _ (2.10)
3z \p/)\az & '

where g is the gravitational acceleration. When P = —pgz (i.e. hydrostatic), aav% /0z=0
or A,, is constant in z within the ISL. That is, the AEM requires P to be hydrostatic.
However, the AEM precludes d0,2/dz = 0 in the ISL. In fact, the AEM predicts d02/3z =
—uiBu /z when Re; is very large as expected in the ISL of an adiabatic atmosphere.
Inserting this estimate into (2.9a—c), setting u, = o,,/A,, and momentarily ignoring
d02/dz relative to 302 /dz as a simplification consistent with the AEM, leads to

g _W_Z ! 2¢p \ KBy 2.11)
Y63 T3 Cr) A3~ '

This equation is the sought outcome. The term 2¢,/Cr reflects the relative importance
of the pressure-velocity to viscous destruction terms. Pressure-velocity destruction effects
are far more efficient than viscous effects supporting the argument that 2¢,/Cr < 1 at
very high Re; (Katul et al. 2013) such as the atmosphere. This implies that the numerical
value of S,,, as obtained from (2.11), depends on three well-established phenomenological
constants, namely «, A,, and B,, (Banerjee & Katul 2013; Marusic & Monty 2019; Huang &
Katul 2022), which, in turn, may depend weakly on Re; and the flow type. Equation (2.11)
is also insensitive to the choices made for , because the AEM requires d0,2/dz = 0.

3. Discussion and conclusion

From the w3 local budget for a planar homogeneous and incompressible flow without
subsidence, and upon assuming a (i) quasi-normal approximation for the fourth moment,
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(ii) return-to-isotropy (or Rotta) model for pressure-velocity and viscous destruction, (iii)
down-gradient approximation for the vertical TKE fluxes, and (iv) adopting the AEM for
the second moments, a model (2.11) for S, in the ISL was recovered. Equation (2.11)
demonstrates two inter-related aspects about S, in the ISL: (i) why S,, is positive and
constant with z, and (ii) why conventional gradient-diffusion approximations fail to predict

w’3 from do2/dz.

Regarding the first, (2.11) predicts that S,, > O consistent with the paradigm that ejective
eddy motions (w' > 0, ' < 0) are more significant in momentum transfer than sweeping
motions (W' < 0,« > 0) within the ISL. This assertion is supported by numerous
experiments and simulations (Nakagawa & Nezu 1977; Raupach 1981; Heisel et al.
2020) and adds further confidence in the physics associated with the derivation of (2.11).
Moreover, values of the constants in (2.11) for flat plate TBLs at Re; — 0o correspond
tox =0.39, A, = 1.33 and B, = 1.26 (Smits et al. 2011; Huang & Katul 2022). Upon
further setting ¢c; = 0.1 and Cr = 1.8 (conventional values) leads to S,, = 0.12. This
estimate compares well with S,, = 0.1 reported for the ISL in the adiabatic atmosphere
(Chiba 1978; Barskov et al. 2023) and, in general, with all the S,, data pertaining to very
high Re; reported in figure 1 (i.e. ZM1-3 and PK). Note that for datasets pertaining to
the low to moderate Re; (i.e. MN, DNS, HL1-2, PG1-3 and PR1-3), (2.11) cannot be
used to estimate S,, using the AEM and the associated asymptotic values of A,, and B,,.
However, figure 1 shows that these flows attain similar (i.e. slightly higher) and reasonably
z-independent values of §,,. To explain this behaviour, it is necessary to step back to
(2.9a—c). This formulation does not contain assumptions about the second moments (i.e.
the AEM) and, once scaled with oi, represents a more general model for S,,. The only
limitation is the need to provide reliable estimates of do,,/dz and do,/dz, which are here
obtained from DNS data. Figure 2 indicates that, for most of the ISL, the first term on
the right-hand side of (2.9a) is an order of magnitude smaller than the second and can
be discarded as predicted by the AEM and advocated in the proposed theory. Predictions
of S, obtained from the second term are excellent in the ISL and resemble the observed
z-independent behaviour. Besides providing further confidence on the proposed theory,

this result indicates that, since K, is directly proportional to z, do;2/dz must overall scale
as ~ 1/z, as predicted by the AEM. Hence, we argue that the AEM represents a reasonable
approximation provided B, and A,, are adjusted to accommodate for low Re, effects. As
shown in figure 3, this is the case for DNS and all laboratory data.

For the DNS, appropriate values of A, (= 1.15-1.17) and B,(= 0.85-0.86) were
estimated by fitting the AEM to the available data for all available Re;. The constant
k = 0.39 was assumed as reported in the literature (Marusic et al. 2013; Peruzzi et al.
2020). When inserting these choices of A,, and B,, from the DNS into (2.11), the computed
Sy = 0.13, which is close to reported values in figure 1(c). The same approach was used
for all laboratory studies. When combining all the runs together (wind tunnel, pipe flow
and open channel flow), ensemble-averaged A,, = 1.04 &= 0.12 and the ensemble-averaged
B, = 0.78 &= 0.23 were obtained across runs within an experiment and across experiments.
These values result in an ensemble-averaged S,, = 0.17 & 0.07 and agree with the
measurements reported in figure 1.

This analysis and figure 1 suggest that S,, for DNS and experiments is higher than 0.12
estimated for Re; — oo. This is probably because of deviations of B, and A,, from their
asymptotic values. The effects of such deviations on S,, are, however, modest because,
although values of A,, and B, are significantly lower than their counterparts at Re; — 00
(i.e. Ay, = 1.33 and B, = 1.26, see table 1), (2.11) indicates that S,, is dictated by Bu/Afv,
meaning the effect of such deviations are in good part compensated.
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Figure 2. (a) Variation of the vertical-velocity skewness S, with normalized wall-normal distance z/§ from
DNS Sillero et al. (2013); (b) Syv,m is the modelled skewness using the first term (blue line) and second term
(black line) on the right-hand side of (2.9a—c) both scaled with 03. In both panels, red lines identify the ISL
range. The dashed line is S), = 0.16 and the dotted line is S,, = 0.10.

Additionally, a separate investigation into the vertical extent of the constant §,, region
was conducted using laboratory data. This was achieved by selecting data points varying
within a 5% range around the S,, mode. The analysis revealed that the constant S,,
region extends from 1.13-2.514/Re,v/u, to 0.16-0.3268, which is very similar to the range
that is commonly employed to identify the ISL using other velocity statistics (i.e. from
2.64/Re;v/uy to 0.15 — 0.258) (Zhou & Klewicki 2015; Orlii et al. 2016, 2017). This
analysis provides further evidence of the operational interlink between the constant S,,
region and the ISL.

Regarding the second feature of (2.11), (2.9a—c) offers an explanation as to why
conventional down-gradient closure models with eddy viscosity K; o gl (1,;; is a ‘master’
mixing length) expressed in general index notation ([u}, uj, u5] = [u', v’, w']) as (Launder,
Reece & Rodi 1975)

77 7 77
8uiuj dulu, N 8ujuk

(3.1)

/o0
uuu, = —K;
Tk 0xy, 0x; 0x;

spectacularly fail when i = j = k = 3 and when A,, is approximately constant in the ISL as
in the AEM. Yet, the derived equation here also offers a rectification based on the AEM.

This rectification accommodates the role of finite d0,2/3z on w3 that cannot arise from
(3.1). In conclusion, this paper demonstrates that, within the ISL of turbulent and adiabatic
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Figure 3. (a) Difference between %H and estimations obtained from the AEM, auz;;l = A, — B, log(z/8)
using values of A, and B, obtained from regression of data within the ISL range (identified by red symbols
and lines) vs wall-normal distance z/8; (b) non-dimensional vertical-velocity variance (7»% normalized with A,,
obtained from data fitting within the ISL (identified by red symbols and lines) vs wall-normal distance z/3.

Data sources and references are summarized in table 1.

smooth-wall flows, §,, attains z-independent values that are predictable from well-known
turbulence constants relating to the AEM. This behaviour is reported for a variety of
different wall flows and is fairly independent of variations in Re;, hence universal and
robust.

Supplementary material. The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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