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Abstract Describing flow resistance from the properties of an underlying surface is a challenge in surface

hydrology. Runoff models must specify a resistance formulation or “roughness scheme”—describing the

functional relationship between flow resistance and flow depth/velocity—and its parameters. Uncertainty in

runoff predictions derives from both the selected roughness scheme (e.g., Darcy Weisbach, Manning's, or

laminar flow equations), and its parameterization with a roughness coefficient (e.g., Manning's n). Both choices

are informed by model calibration to data, usually discharge, and, if available, velocity. In this study, a Saint

Venant Equation‐based runoff model is calibrated to discharge and velocity data from 112 rainfall simulator

experiments. The results are used to identify the optimal roughness scheme among four widely‐used options for

each experiment, and to explore whether surface properties can be used to select the optimal roughness scheme

and its coefficient. Among the tested roughness schemes, a transitional flow equation provided the best fit to the

plurality of experiments. The most suitable roughness scheme for a given experiment was not related to

measured surface properties. Regression models predicted the calibrated roughness coefficients with adjusted r2

values between 0.48 and 0.54, depending on the roughness scheme used. Litter cover was the best predictor of

the roughness coefficient, followed by soil cover and average canopy gap size. The results suggest that selection

of an optimal roughness scheme based on surface properties alone remains difficult, but that once a scheme is

selected, roughness coefficients can be estimated from surface properties.

Plain Language Summary Runoff prediction assists land and water management in drylands, but is

challenging in part because of difficulties in specifying the “flow resistance” (frictional losses impeding water

flow). Flow resistance is represented by a resistance equation, or “roughness scheme,” which describes how

resistance depends on the flow depth and velocity, and the land surface. Most roughness schemes represent the

land surface roughness with a “roughness coefficient,” (i.e., Manning's n). Reliably determining the best

roughness scheme and its coefficient from rainfall and land surface data remains an unresolved challenge. The

roughness scheme and its coefficient are usually determined by calibrating runoff models to discharge data.

Unfortunately, multiple roughness schemes can be tuned to fit the same discharge data similarly well. Since the

roughness scheme determines how velocity varies with discharge, some calibrated schemes may bias velocity

predictions. Here, we calibrate a runoff model to 112 rainfall simulator experiments for which both discharge

and velocity data were collected. We use the data set to compare four commonly‐used roughness schemes. The

results suggest that calibration using both discharge and velocity is valuable in selecting the best roughness

scheme. For the best‐fit scheme, the calibrated roughness coefficients vary with surface properties, particularly

leaf litter cover.

1. Introduction

The partitioning of rainfall between infiltration and runoff at the land surface determines the hydrological

behavior of dryland regions. These arid and semiarid regions comprise some 40% of the earth's surface and are

characterized by sporadic rainfall that produces transient and shallow surface flows (Horton, 1933; Maestre

et al., 2012; Reynolds et al., 2007). In dryland regions, runoff is a primary mechanism for the transport of water

and nutrients from bare soil sources to vegetated sinks, augmenting plant water availability and sustaining

vegetation in regions where direct rainfall inputs alone would be insufficient (Assouline et al., 2015; Okin

et al., 2009; Schlesinger et al., 1990). Because ecosystem function and surface hydrology are tightly coupled,

RESEARCH ARTICLE

10.1029/2024WR037176

Key Points:

• A runoff model is calibrated to 112

rainfall simulator experiments, and the

results are used to compare four

commonly used roughness schemes

• A transitional flow equation provides

the best fit to the plurality of

experiments

• Litter cover is the best predictor of

roughness coefficients, followed by

soil cover and average canopy gap size

Supporting Information:

Supporting Information may be found in

the online version of this article.

Correspondence to:

O. Crompton,

octavia.crompton@usda.gov

Citation:

Crompton, O., Katul, G., & Thompson, S.

E. (2025). Uniting surface properties with

hydrodynamic roughness in shallow

overland flow models. Water Resources

Research, 61, e2024WR037176. https://

doi.org/10.1029/2024WR037176

Received 12 FEB 2024

Accepted 17 DEC 2024

Author Contributions:

Conceptualization: Octavia Crompton,

Gabriel Katul, Sally E. Thompson

Formal analysis: Octavia Crompton

Investigation: Octavia Crompton

Methodology: Octavia Crompton,

Gabriel Katul

Software: Octavia Crompton

Visualization: Octavia Crompton

Writing – original draft:

Octavia Crompton

Writing – review & editing:

Octavia Crompton, Gabriel Katul, Sally

E. Thompson

© 2025. The Author(s).

This is an open access article under the

terms of the Creative Commons

Attribution License, which permits use,

distribution and reproduction in any

medium, provided the original work is

properly cited.

CROMPTON ET AL. 1 of 18



runoff prediction is necessary for any effort pertaining to ecological conservation, erosion control, drought

mitigation and hazard response in drylands (Reynolds et al., 2007). For example, water erosion is often a sig-

nificant driver of land degradation in dryland regions (Dregne, 2002), with erosion initiation tightly coupled to the

velocity of runoff (Govers et al., 2007; Wu et al., 2017). Similarly, surface water is often required for drinking,

irrigation, and livestock watering, meaning runoff prediction is necessary for water resources management

(Rockstrom, 2000; Saha & Zeleke, 2015). At watershed scales, hydrologic models are needed for the imple-

mentation of real‐time flood forecast and warning systems (Creutin & Borga, 2003; Kitanidis & Bras, 1980), and

the implementation of proactive measures against flash floods.

The common equations with which to represent runoff from rainfall in dryland environments are the Saint Venant

(or shallow water) equations (SVE). The SVE combine the continuity equation with conservation of momentum,

and, in their one dimensional form, are expressed as:

∂h

∂t
+ ∂

∂x
(Uh) = (p − i), (1)

∂U

∂t
+ U

∂U

∂x
+ g

∂h

∂x
+ g(S f − So) = 0, (2)

where h is the water depth at location x and time t, U is the depth‐averaged velocity, g is the gravitational ac-

celeration, So is the bed slope, and S f is the friction slope, which represents the energy lost due to friction between

the fluid and the surface. Precipitation p and infiltration i are forcing terms that can vary with position x and time t.

Because of S f , the SVE do not form a closed system of equations, so a “closure” model in the form of a resistance

formulation, hereafter a “roughness scheme,” must be specified to represent the net effects of bed and other shear

stresses on energy losses in the flow.Many roughness schemes exist, each describing the friction slope S f in terms

of modeled flow variables (i.e., h and U) and surface features. Table 1 summarizes four commonly‐used

roughness schemes. For a more in‐depth discussion of these schemes, the work in Crompton et al. (2020) in-

cludes derivations of resistance formulations for bed and distributed drag. The four roughness schemes can be

represented in dimensional form as:

U = r−1hmSwf , (3)

where the exponents m and w link U to h and S f , and the roughness coefficient r sets the magnitude of frictional

resistance. Equation 3 provides closure to Equation 2 through the relation S f = (Urh−m)1/w. A common choice

Table 1

Summary of the Tested Roughness Schemes, Where r Is a General Resistance Parameter, Fr = U(ghSo)−1/2 Is the Local
Froude Number and Re = Uh/ν Is the Local Reynolds Number

Name Froude number form Conveyance form References

Bed friction roughness schemes

Darcy Weisbach Fr2 = 8
f

U = 1
r
h1/2S1/ 2o Brutsaert (2005)

r =
̅̅̅̅̅
f

8g

√
, m = 1/2 Cea et al. (2014)

Laminar Fr2 = 1
K
Re U = 1

r
h2So Brutsaert (2005)

r = g

Kν
, m = 2 Dunkerley (2003b)

Manning Fr2 = h1/ 3

n2g
U = 1

r
h2/3S1/ 2o Brutsaert (2005)

r = n, m = 2/3 Smith et al. (2007)

Mixed/ Fr2 = h
r2g

U = 1
r
hS1/2o Mügler et al. (2011)

Transitional r = T , m = 1 Horton (1939)

Note. Other symbols are Manning's coefficient n, the Darcy Weisbach friction factor f (dimensionless), a roughness

parameter for laminar flow K (Dunkerley, 2003b), the kinematic viscosity ν, and a roughness coefficient for transitional

flow T (Brutsaert, 2005; Horton, 1939). The transitional formulation has the same functional form as the depth‐dependent

Manning's n trialed by Mügler et al. (2011). That is, r scales with h1/ 3.
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for S f is Manning's equation for sheet flow, which can be written as U = n−1h2/3S1/2f . Here m = 2/3, w = 1/2

and r = n or Manning's roughness, which is treated as a constant independent of the Reynolds number

(Re = Uh/ν, ν is the kinematic viscosity) in fully developed turbulent flows.

The parameterization of flow resistance thus entails both the selection of a roughness scheme to describe how U

varies as a function of h and S f , and the determination of a roughness coefficient, specific to both the chosen

scheme and the land surface being represented. Determining the suitability of a roughness scheme for a given

runoff problem is a longstanding challenge. For example, roughness schemes are often specified based on the

nature of the flow being described. Yet overland flow can be laminar, turbulent, or transitional over very short

distances depending on the bed slope and surface cover (Abrahams et al., 1986; Roels, 1984), and has been

described as “mixed flow” by Horton (1945) and “composite flow” by Abrahams et al. (1986).

The Darcy‐Weisbach and Manning equations are the most widely used empirical equations to close S f in runoff

and erosion models. These equations were originally developed for steady, uniform pipe and channel flows,

where the water depth far exceeds the mean geometric height of roughness elements. However, these conditions

are rarely encountered in overland flows (Smith et al., 2007). Other studies have suggested that surface runoff is

better represented as laminar (Dunkerley, 2003b; Woolhiser et al., 1970), given the low bulk Reynolds numbers

typical for rainfall runoff studies. Finally, in an intercomparison of four roughness schemes, Mügler et al. (2011)

found that a transitional formulation of the form U = r−1hS1/2o provided the best fit to the velocity data (note that

Mügler et al. (2011) label it a depth‐dependent Manning's equation).

For modeling purposes, a uniform roughness coefficient is typically applied within the domain, and its value

adjusted via calibration to reproduce the discharge observations (e.g., calibration of Manning's n to the runoff

hydrograph). However, multiple roughness schemes can produce acceptable agreement with runoff measure-

ments through calibration (Cea et al., 2014; Crompton et al., 2020; Mügler et al., 2011), posing equifinality as a

challenge in selecting the most appropriate model. While this may not be problematic for discharge prediction per

se, the roughness scheme determines howU varies as a function of h and S f . Thus, model calibration to discharge

may result in selection of a roughness scheme that biases velocity predictions.

This is illustrated in Figure 1a, which plots h versus U for four roughness schemes for the case of steady‐state,

uniform flow. Once a scheme is identified, the roughness coefficient plays an independent role in shaping the h

versus U relationship, as is illustrated for the case of Manning's equation in Figure 1b. A solution to this problem

is to incorporate both velocity and discharge data in runoff model calibration. However, such jointly‐informed

calibration is rarely performed (a notable exception is Mügler et al. (2011), who compared several roughness

schemes using rainfall simulator experiments conducted in Senegal).

Figure 1. Illustration of the independent roles of the selection of a roughness scheme (m) and its parameterization (r) on the

predicted relation between velocity U and depth h for a steady‐state uniform flow. Under these conditions, the momentum

equation simplifies to S f = So and Equation 3 simplifies toU = r−1hmSwo . Panel (a) illustrates how the selection of a roughness

scheme implies a U − h scaling relation for each roughness scheme, independent of the value of r (for each scheme, r has been

adjusted to match flow properties between schemes at the outlet). Conversely, (b) illustrates model predictions for three values

of Manning's n (with all other variables the same).
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This study therefore uses a joint calibration approach incorporating discharge and velocity data, to evaluate the

suitability of four commonly‐used roughness schemes to model shallow, rain‐driven overland flow. A public

rainfall simulator data set (Polyakov et al., 2018) consisting of 112 rainfall simulator experiments conducted

throughout the US Southwest, in which both discharge and velocity were measured for varying rainfall intensities

(see Figure 2b), offers a unique opportunity for calibration to multiple experiments. Surface properties—

including soil texture and vegetative, litter, rock, and bare soil cover—were surveyed prior to each experi-

ment, providing a rich data set to evaluate the correspondence between surface properties and hydrodynamic

roughness.

The experimental data set and model calibrations are used to address the following research questions (RQs):

1. Considering the 112 rainfall experiments together, which roughness scheme best fits this expansive data?

2. Anticipating that the “best” roughness scheme will vary between experiments, can surface properties be used

to predict the suitability of a given roughness scheme to a given experiment?

3. Can the roughness coefficient of a selected roughness scheme be predicted from surface properties?

We address these questions by calibrating the model to each experiment and for each roughness scheme, using

two approaches: firstly, by tuning the roughness coefficient to minimize the discharge prediction error (as

conventionally done), and secondly, to minimize the velocity prediction error. We evaluate roughness scheme

suitability using the criteria that the two approaches should yield the same (or similar) roughness coefficients and

comparable calibration errors. To examine whether physical attributes of the land surface are predictive of scheme

suitability, we label each experiment as successfully‐ or unsuccessfully‐calibrated, and ask whether surface

properties differ significantly between these groups. Research Question 3 is empirically addressed using

regression and machine learning (ML) approaches to predict the calibrated roughness coefficients from the

measured surface properties.

2. Methods

2.1. Rainfall Simulator Data Set

The data set is comprised of a series of 112 rainfall simulator experiments conducted on grass, shrub, oak savanna,

and juniper sites in Arizona and Nevada, and is described elsewhere (Polyakov et al., 2018). The surface

properties span a wide range of conditions, including a range of soil textures from clay loam to very gravelly loam.

Rainfall was generated by the Walnut Gulch Rainfall Simulator, a portable variable‐intensity simulator that can

deliver rainfall rates p ranging between 13 and 178 mm/hr with a variability coefficient of 11% across a 6 × 2 m

area (Paige et al., 2004). The data were collected between 2006 and 2013 on 20 rangeland sites, where each site

contained between 4 and 12 replicate plots. The plots were constructed with sheet metal borders, and runoff was

collected in a trough on the downslope side of each plot. To saturate the soil, the plots were subjected to a 45 min

long pre‐wetting at 65 mm h−1.

Figure 2. Panel (a) shows a sample plot selected from Lucky Hills in the Walnut Gulch Experimental Watershed, with dimensions 6 × 2 m. Panel (b) shows rainfall

simulator data collected at the site, with infiltration rate i estimated as the difference between applied rainfall and collected runoff, p − qL. Panel (c) illustrates—for the

same experiment—how the experimental resistance rE was estimated using linear regression ofUE on (Swo qmL )1/(m+ 1)
for each experiment and roughness scheme. Note that

the exponents m and w—and thus units in (Swo qmL )1/(m+ 1)
—differ between roughness schemes in Panel (c).
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In each experiment, the rainfall intensity was increased incrementally (see Figure 2 illustrating a sample runoff

plot and collected data). For each rainfall intensity, velocity measurements were taken under steady‐state con-

ditions, with 4–6 measurements per experiment. The experimental velocity UE was measured using the mean

transit time obtained from electrolyte solution released from a perforated PVC pipe placed across each plot

located 3.3 m from the outlet, and thus represents the spatial average velocity over the distance traveled by the

electrolyte tracer (i.e., from x = 2.7 m to the outlet x = 6 m, where x = 0 at the upslope boundary). The runoff

rate QE [L3/T] from the plot was measured using a V‐shaped supercritical flume positioned at a 4% slope and

equipped with an electronic depth gauge. The experimental flow rate per unit width can be computed as

qL = QE/b [L2/T] where b = 2 m is the plot width. For a given roughness scheme, the experimental resistance rE
is defined as:

rE = hmE S
w
f U

−1
E , (4)

where hE [L] is the experimental depth estimated as hE = qL/UE. For example, for Manning's equation,

nE = h2/3E S1/2o U−1
E . The computed values of rE depend on the specified roughness scheme (i.e., Manning's n is not

directly comparable to the Darcy Weisbach friction factor f ).

Prior to each rainfall simulation, surface and vegetative cover were measured at 400 points on a 15 cm × 20 cm

grid using a laser and line‐point intercept procedure (Herrick, 2005). At each point, vegetative cover was clas-

sified as forbs, grass, and shrub, and the percent coverage was computed for each cover type. The surface cover

was similarly classified at each point as rock, litter, plant basal area, and bare soil, and converted to percentages.

These four metrics were further classified as protected (located under plant canopy) and unprotected (not covered

by the canopy). Plant canopy gaps and basal gaps were measured on the plots over three lengthwise and six

crosswise transects. These were reported as the average of all inter‐canopy and inter‐basal spaces greater than

10 cm along the transects.

2.2. The Saint Venant Equations Model

The rainfall simulator experiments were modeled using an open‐source SVE model, FullSWOF (Delestre

et al., 2014), that has been validated on a library of analytic solutions to the SVE (Delestre et al., 2013) and real

rainfall events (Tatard et al., 2008). The friction slope S f is specified by Equation 3, with exponentsm andw listed

in Table 1 and the coefficient r obtained through model calibration.

Infiltration in the model is computed at each cell using a modified Green Ampt equation. In its original form, the

Green Ampt equation predicts the movement of water into the soil as an advancing wetting front separating a

saturated zone from an underlying zone with initial soil moisture θi. At the timestep t = tn, the soil infiltration

capacity inc [L/T] is given as:

inc = Ks(1 + H

In
), (5)

where Ks is the saturated hydraulic conductivity (L/T), and In is the cumulative infiltration at timestep n, and

H = ψ f (θs − θi) is a grouped parameter in which ψ f is the wetting front capillary pressure head (L), (θs − θi) is
the moisture deficit, and θs is the saturated water content (approximating the soil porosity). The infiltration rate is

then computed as: in = min(ic,p + h/dt) , where h is the local surface water depth.

Preliminary assessment of the data indicated that the rate of infiltration—estimated as the difference between

rainfall and runoff—in some cases increased over the rainfall duration, which could indicate subcritical soil water

repellency. Subcritical repellency has been reported for many natural and agricultural soils worldwide and has

been attributed to water‐solid contact angle exponentially decreasing in time (Wang & Wallach, 2021). To

accommodate this effect in the current modeling framework, a correction factor proposed by Abou Najm

et al. (2021) was incorporated, which adjusts the Green Ampt infiltration rate by a factor of (1 − e−αRt) :

inc = Ks(1 + H

In
) (1 − e−αRt), (6)
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where αR is a rate‐constant parameter whose reciprocal reflects the time‐scale of water repellency and thus

characterizes the duration of water repellency. Smaller αR represents greater repellency, and αR = ∞ for non‐

repellent soils.

2.3. Model Calibration

We calibrated the SVE model to each experiment and for each roughness scheme using a sequential approach in

which: (a) the Green Ampt infiltration parameters were estimated, (b) the experimental resistance rE was esti-

mated from the measured UE and qL, and (c) the estimated infiltration and roughness parameters were used to set

the ranges of parameter values tested in the SVEmodel simulations. Each of these steps is described in more detail

below. Other boundary conditions—including the rainfall intensity p and slope gradient So—were provided

directly by the experimental data.

(1) Infiltration parameters: The infiltration parameters—Ks,H and αR—were estimated by fitting Equation 6 to

the infiltration rate, which we estimated as the difference between rainfall intensity and discharge (filtered to omit

periods of runoff adjustment following changes in rainfall intensity). Specifically, Equation 6 was solved using a

gridded search approach, and the eight parameter combinations with the lowest root‐mean squared errors were

retained and tested in the SVE model simulations.

(2) Roughness estimation: The roughness coefficients were estimated by fitting a linear regression to Equation 4.

Manning's n, for example, was estimated as the slope in UE = n−1E q2/5L S1/2o . The goodness of fit was then

computed as the normalized root mean square error (NRMSE):

Ê(UE,qL) = Ū
−1
E

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

N
∑N
i

(UE,i − ÛE,i) 2

√√√
, (7)

where i indexes the velocity measurements, ÛE is predicted from the linear regression equation, and ŪE is the

mean.

(3) SVE model calibration: For each roughness scheme, the SVE model was calibrated to each rainfall

experiment using a gridded search approach, which included all combinations of the eight estimated soil

parameter sets and 16 trialed values of rE, ranging from rE/2 to 2rE. Including the four trialed roughness schemes,

480 SVE model simulations were run for each rainfall simulator experiment, each model simulation requiring

approximately 1 min to run. To calibrate the 112 experiments in the data set, 480 × 112 = 53,760 simulations

were run in total.

For each rainfall simulator experiment and roughness scheme, the selection of eight parameter combinations in

step (1) establishes a prior on the infiltration parameters, while the selection of 16 roughness coefficients in step

(2) establishes a prior on the roughness parameters. These infiltration and roughness parameters are subsequently

refined through the SVE model simulations.

2.4. Assessment Metrics Used to Quantify the Model Errors

Several objective functions were employed to assess the model prediction errors. The discharge error E(qL) is

defined by the normalized root‐mean squared error (NRMSE) between the measured and predicted qL, and is

given by:

E(qL) = q̄ −1
L

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

N
∑N
i

(qL,i − q̂L,i) 2

√√√
, (8)

where qL,i and q̂L,i are the measured and model‐predicted runoff at timestep i, and q̄L is the mean runoff used in the

normalization. The velocity error E(UE) is similarly defined as:
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E(UE) = Ū
−1
E

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

N
∑N
i

(UE,i − ÛE,i) 2

√√√
, (9)

where UE,i and ÛE,i indicate the measured and model‐predicted velocities at timestep i (ÛE is computed as the

mean velocity between the tracer release point, located 3.3 m upslope of the outlet, and the outlet in the SVE

model output). Lastly, a velocity bias metric B is defined as:

B = ∑N
i

(ÛE,i − UE,i)/∑N
i

(UE,i), (10)

where positive values of B indicate that the model overestimates the measured velocity.

We define rU and rq as the roughness coefficients that minimize E(UE) and E(qL) , respectively. Recognizing that
a range of roughness coefficients can produce an acceptable agreement to qL, an ensemble approach was used to

estimate rq for each experiment: (a) the parameter set with the lowest E(qL) was selected as the “best” fit to the

data, (b) all parameter sets for which E(qL) was within 5% of the minimum E(qL) were designated as the

calibrated parameter ensemble, and (c) the mean and standard deviation of rq were obtained from this ensemble.

The same approach was used to obtain rU for each experiment, using E(UE) to determine the calibrated parameter

ensemble.

2.5. Research Question 1: Roughness Scheme Suitability

To evaluate roughness scheme suitability, we assessed whether the two calibration approaches yield approxi-

mately the same roughness coefficients (i.e., whether rU = rq). Specifically, we used the ratio rU/ rq, where an

rU/ rq < 1 means that model calibration to discharge yields a larger roughness coefficient than calibration to

velocity, biasing the model to overestimate velocity. Likewise, an rU/ rq > 1 means that model calibration to

discharge biases the model to underestimate velocity.

We then assessed whether calibrating the model to discharge yields accurate velocity predictions, and vice versa.

Table 2 summarizes the error metrics used to evaluate and compare errors between calibration approaches and

roughness schemes. Briefly, to evaluate the impact of different objective functions, we used subscripts to denote

the calibration criteria:

• Eq (qL) is the discharge error obtained by calibrating the model to discharge (i.e., to minimize E(qL) ,
which yields r = rq).

• EU (qL) is the discharge error obtained by calibrating the model to velocity (i.e., to minimize E(UE) , which
yields r = rU).

• Eq (UE) is the velocity error obtained by calibrating the model to discharge (r = rq).

Table 2

Error Metric and Roughness Coefficient Definitions

Symbol Description

Error metrics

E(qL) Hydrograph normalized root mean square error (Equation 8).

E(UE) Velocity normalized root mean square error (Equation 9).

B Mean normalized velocity error (Equation 10).

Roughness coefficients

rE Experimental resistance computed from observed discharge and velocity (rE = hmE S
w
f U

−1
E ).

rU Roughness calibrated by minimizing the velocity error, E(UE) .

rq Roughness calibrated by minimizing the discharge error, E(qL).
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• EU (UE) is the velocity error obtained by calibrating the model to velocity (r = rU).
• Bq is the velocity bias obtained by calibrating the model to discharge (r = rq).
• BU is the velocity bias obtained by calibrating the model to velocity (r = rU) .

These error metrics were compared between the four trialed roughness schemes, considering the ensemble of 112

rainfall simulator experiments together.

2.6. Research Question 2: Correspondence Between Surface Properties and Roughness Scheme Suitability

Research Question 2 asks whether surface properties—such as litter cover, soil texture, and slope gradient—can

be used to predict the best roughness scheme for a given experiment. For each roughness scheme, we labeled each

experiment as “successfully calibrated” if 0.8< rU/ rq < 1.2, and “unsuccessfully calibrated” otherwise. This

range of rU/ rq coincides with low calibration errors (see Figure S2 in Supporting Information S1), so no addi-

tional criteria were used to classify experiments as successfully calibrated. “Successfully calibrated” is narrowly

defined here to mean that calibration to discharge and calibration to velocity yield similar roughness coefficients.

The experiments were labeled successfully‐ and unsuccessfully‐calibrated to assess roughness scheme suitability,

but the criterion of 0.8< rU/ rq < 1.2 was not used to exclude experiments from the RQ 3 analysis (see Sec-

tion 2.7). We did not set threshold goodness‐of‐fit criteria for E(qL) , E(UE) , or B, because the calibration errors

largely depend on the infiltration—specifically, whether the modified Green Ampt model suitably describes the

infiltration behavior.

The requirement that 0.8< rU/ rq < 1.2 was met by exactly one scheme in 50 of the 112 rainfall simulator ex-

periments, zero schemes in 38 experiments, two schemes in 18 experiments, and three schemes in 6 experiments.

This range of rU/ rq values maximizes the number of experiments for which exactly one roughness scheme is

successfully calibrated. A more restrictive rU/ rq range increases the number of experiments for which no ex-

periments are labeled suitable. Conversely, a less restrictive range increases the number of experiments for which

multiple roughness schemes are labeled suitable.

For each roughness scheme, we used the Kolmogorov‐Smirnov test to assess whether any of the surface properties

were significantly different between successfully and unsuccessfully calibrated groups. We also fit logistic

regression models using surface properties to predict scheme suitability (i.e., whether an experiment is labeled as

successfully‐calibrated or not). Finally, we trialed various parametric and machine learning approaches to predict

the calibration errors directly from surface properties.

While our primary aim is to evaluate the correspondence between surface properties and roughness scheme

suitability, we also assessed whether measured flow characteristics, such as the bulk Reynolds and Froude

numbers are predictive of roughness scheme suitability.

2.7. Research Question 3: Correspondence to Surface Properties

For each roughness scheme, we trialed several approaches to predict the calibrated roughness coefficients from

the measured surface properties, including common parametric approaches (e.g., multivariate linear regression,

power law, Gaussian, and exponential fits), and machine learning approaches (e.g., random forest regression,

gradient boosting regression, k‐nearest neighbors). Details of the machine learning approach are provided in the

Supporting Information S1.

We did not include dynamic variables, such as the Reynolds and Froude numbers, because these variables can be

used to directly estimate the roughness coefficient for a given scheme (e.g., e.g., f = 1/Fr2). Experimentally‐

estimated and model‐calibrated roughness coefficients are closely related, and using the former to predict the

latter limits ability to generalize to new environments.

Several variable selection methods were tested, including forward and backward stepwise regression. For the

parametric approaches, the model fit was evaluated using the adjusted coefficient of determination (r2) , which
takes into account how many independent variables are added to a particular model. The machine learning model

performance was evaluated using k‐fold cross‐validation, a re‐sampling procedure used to evaluate ML models

on limited data samples.
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3. Results

Figure 3 illustrates the SVE model results for two example rainfall simulator experiments. Panel A shows an

example in which model calibration to discharge yields the same roughness coefficient as calibration to velocity

(rU = rq) , and Panel B shows an example in which rU > rq. In Panel B, the hydrograph predicted using rU is

comparatively “sluggish” (compare blue and orange curves in the center panel), while the velocity predicted using

rq is overestimated (right panel).

For the Darcy Weisbach friction factor and Manning's roughness equations, the ranges of calibrated roughness

coefficients are similar in magnitude to those reported in previous rainfall simulator studies (Emmett, 1970) (see

the distributions of rU and rq in Figure 4a for each of the trialed roughness schemes). The range of calibrated

laminar coefficients is also comparable to previous plot‐scale studies (Dunkerley et al., 2001; Pan et al., 2016;

Woolhiser et al., 1970). Of the surveyed studies, the only plot‐scale study to include the transitional formulation

reported T = 0.089 (Mügler et al., 2011), which is similar to the median calibrated roughness coefficients in the

present study (TU = 0.056 and Tq = 0.054) (Table 3).

3.1. Research Question 1: Roughness Scheme Comparison

Comparing the roughness coefficient distributions in Figure 4a, rq and rU most closely align for the transitional

formulation (m = 1), followed by Manning's equation (m = 2/3). Figure 4b shows the distributions of rU/ rq

for each scheme. The median rU/ rq is closest to one for the transitional formulation. For the Darcy Weisbach

and Manning's equations, the median rU/ rq is greater than one, and for laminar flow, the median rU/ rq is less

than one.

Violin plots in Figure 5 show the distributions of the discharge errors, Eq (qL) and EU (qL) (panel a), velocity

errors, Eq (UE) and EU (UE) (panel b), and velocity biases, Bq and BU (panel c). The left subplots show the errors

obtained by calibration to discharge, and the right subplots show the errors obtained by calibration to velocity.

Figure 3. Sample results showing the model calibration for two rainfall simulator experiments with Manning's equation for flow resistance. In panel (a), calibration to

discharge, qL, yields the same roughness coefficient as calibration to velocity. In panel (b), calibration to velocity, UE , yields a larger roughness coefficient than

calibration to discharge. Note that, because Manning's n is used to parameterize flow resistance in these simulations, nq and nU are used in the legend instead of the more

general rq and rU .
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Table 4 provides the median values and standard deviations for each error metric and scheme, summarizing the

information in Figure 5. Visual inspection of the results indicated that cases with large calibration errors were, in

most cases, those in which the modified Green Ampt model did not adequately describe the infiltration behavior

(as determined from an imbalance between rainfall and discharge).

In Figure 5a, the distributions of Eq (qL) and EU (qL) are similar across roughness schemes, echoing previous

studies showing that multiple schemes can be calibrated to the same discharge data (Cea et al., 2014; Crompton

et al., 2019; Mügler et al., 2011). Comparing left and right subplots in panel

A, the two calibration approaches yielded comparable discharge errors.

Specifically, the median EU (qL) values are 30%–40% larger than the median

Eq (qL) values. The velocity errors are more sensitive, both to the calibration

approach and the roughness scheme. The median velocity errors are 2–4 times

larger if the model is calibrated to discharge than if the model is calibrated to

velocity (compare Eq (UE) and EU (UE) in Figure 5b). The values of Eq (UE)
are smaller for the transitional formulation than for the other roughness

schemes, as are the differences between Eq (UE) and EU (UE) .

The distributions of Bq in Figure 5c show that, for the Darcy Weisbach and

Manning's equations, calibrating the model to discharge biases it to over-

estimate velocity. For laminar flow, by contrast, calibrating the model to

discharge biases it to underestimate velocity.

Figure 4. Panel (a) shows the distributions of roughness coefficients obtained through calibration to discharge (rq, blue) and

velocity (rU , green) for each of the four roughness schemes. Vertical lines show the median values. Panel (b) shows the

corresponding distributions of rU/ rq, where values close to one indicate that the two calibration approaches yield consistent

results.

Table 3

Columns rq and rU Show the Median Roughness Coefficients Obtained

Through Calibration to qL and UE , With Standard Deviations in Parentheses

rq rU rU/ rq

f 33.5 (98.2) 64.1 (173.2) 1.90 (2.52)

n 0.26 (0.21) 0.36 (0.25) 1.4 (0.55)

T 0.054 (0.05) 0.056 (0.044) 1.09 (0.52)

K 9590 (21188) 5960 (9109) 0.52 (0.41)

Note. Letters indicate the DarcyWeisbach equation (f ,m = 1/2), Manning's

equation (n, m = 2/3), transitional flow (T , m = 1) and laminar flow (K,

m = 2). The ratio rU/ rq is closest to unity for the transitional scheme.
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For all schemes, small BU values indicate, unsurprisingly, that calibration to velocity leads to unbiased velocity

predictions. Across schemes, Figure 5 shows that calibration to discharge yields large velocity errors, while

calibration to velocity yields modest discharge errors (Eq (qL) ≈ EU (qL) , while Eq (UE)>EU (UE) ). Thus, where
possible, calibration using velocity data represents a more reliable approach.

3.2. Research Question 2: Can Surface Properties Predict the Best Roughness Scheme?

The criterion that 0.8< rU/ rq < 1.2 was met by the transitional scheme in 42 experiments, Manning's equation in

27 experiments, the laminar equation in 17 experiments, and the DarcyWeisbach equation in 18 experiments. The

Kolmogorov‐Smirnov test revealed no significant differences in the measured surface properties between the

Figure 5. Violin plots show the distributions of discharge errors (Eq, panel a), velocity errors (EU , panel b), and velocity bias

(B, panel c). Letters indicate, from left to right: the Darcy Weisbach equation (f , m = 1/2), Manning's equation (n,

m = 2/3), transitional flow (T , m = 1) and laminar flow (K, m = 2). The left subplots show the errors obtained through

calibration to discharge, and the right subplots show the errors obtained through calibration to velocity. Comparing left and right

subplots in panel (a), the discharge error is relatively insensitive to how the model is calibrated. In panels (b, c), by comparison,

the velocity errors are generally much larger when the model is calibrated to discharge (left) than when it is calibrated to velocity

(right).

Table 4

Error Comparison Between Roughness Schemes

Eq (qL) EU (qL) Eq (UE) EU (UE) Bq BU

f 0.12 (0.09) 0.17 (0.14) 0.28 (0.26) 0.07 (0.04) 0.27 (0.3) 0.0 (0.03)

n 0.12 (0.09) 0.15 (0.13) 0.27 (0.21) 0.06 (0.04) 0.2 (0.28) 0.0 (0.02)

T 0.11 (0.09) 0.15 (0.13) 0.19 (0.16) 0.06 (0.04) 0.07 (0.25) −0.01 (0.03)

K 0.12 (0.11) 0.17 (0.15) 0.27 (0.11) 0.08 (0.06) −0.23 (0.19) −0.02 (0.03)

Note. Columns show median values, with standard deviations in parentheses. Letters indicate the Darcy Weisbach equation

(f , m = 1/2), Manning's equation (n, m = 2/3), transitional flow (T , m = 1) and laminar flow (K, m = 2).
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successfully‐ and unsuccessfully‐calibrated experiments, for any of the roughness schemes (see Tables S2–S5 in

Supporting Information S1). Additionally, no significant differences were detected in the bulk Reynolds or

Froude numbers between the successfully‐ and unsuccessfully‐calibrated experiments (see Tables S2–S5 in

Supporting Information S1). Surprisingly, the laminar scheme did not outperform the other schemes in experi-

ments with lower Reynolds numbers. This may, in part, be because the Re was low in all experiments (Re< 500),
such that there was limited scope to compare low and high Re cases. Moreover, the low Re here does not reflect

the disturbed state of the flow due to rainfall splashing and random obstructions.

Alternative statistical approaches such as logistic regression also failed to predict scheme suitability. Lastly,

parametric and machine learning regression approaches did not predict calibration errors with any accuracy.

3.3. Research Question 3: Correspondence Between Surface Properties and Calibrated Roughness

Coefficients

Despite the insensitivity of roughness scheme suitability to surface properties, we now explore the correspon-

dence between inferred roughness values and physical properties of the surface. Recall that the model calibration

approach yielded two roughness coefficient versions: rq, obtained by calibration to discharge, and rU , obtained

through calibration to velocity. Accordingly, we fit regression models to both rq and rU . The results are similar,

both in terms of model accuracy and variable significance. This section presents the results for rU, and the rq

results are included Figure S3 in Supporting Information S1 for completeness. Focusing on rU is justified by the

Research Question 1 result that calibration to velocity yields acceptable model accuracy for bothUE and qL, while

calibration to discharge yields large velocity errors.

The lowest errors were achieved using a power law function and backward feature selection (see scatter plots in

Figure 6, panels a–d). With this approach, the Pearson correlation coefficients ranged from r2 = 0.48 for the

laminar scheme to r2 = 0.54 for the Darcy Weisbach scheme. Thirteen variables were selected with backward

feature selection: basal cover (protected and unprotected), canopy gap size, foliar cover (forb and total), ground

cover (unprotected and total), litter cover (unprotected and total), rock cover (protected and unprotected), soil

Figure 6. Equations for the power law fits to the roughness coefficients rU for each roughness scheme on a double‐log graph: (a) DarcyWeisbach, (b) Manning equation,

(c) Transitional flow and (d) Laminar flow. The variables were selected with a backward selection method. Panels (e–h) show power law fits using the top three variables

selected with stepwise forward selection (litter cover, soil cover and canopy gap size).
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cover (protected), and slope. All variables have units of percent coverage,

with the exceptions of slope and canopy gap size, as described in Section 2.1.

To simplify, we also fit a power law regression using the top three variables

selected with forward variable selection, which were litter, soil cover, and

canopy gap size (see Figure 6, Panels e–h, and Table 5). All variable selection

methods found litter cover to be the best predictor of the calibrated roughness

coefficients, followed by the total soil cover and canopy gap size.

Machine learning approaches yielded poorer fits to the data compared to other

methods, as detailed Text S1 in Supporting Information S1. Among the tested

models, gradient boosting regression provided the best results for the tran-

sitional formulation, Manning's equation, and laminar flow, with Pearson correlation coefficients (reported as the

mean test‐set r2 from 5‐fold cross‐validation) ranging from r2 = 0.32 for laminar flow to r2 = 0.38 for the

transitional formulation. The exception was the Darcy‐Weisbach formulation, where k‐nearest neighbors out-

performed other models, with r2 = 0.32. Figure S1 in Supporting Information S1 compares the rU prediction

errors using gradient boosting regression and k‐nearest neighbors regression.

4. Discussion

The discharge errors were similar between the four trialed roughness schemes, and relatively insensitive to the

calibration approach. This result is consistent with previous studies finding that multiple roughness schemes can

be calibrated to fit the same discharge data. In particular, the studies of Mügler et al. (2011), Cea et al. (2014), and

Crompton et al. (2020) demonstrated that multiple roughness schemes can produce acceptable agreement with

runoff measurements through calibration.

The results show that discharge errors are similar between calibration approaches (EU (qL) ≈ Eq (qL)) . For
instance, the median discharge errors are 30%–40% larger when the model is calibrated to velocity rather than

discharge. Velocity errors, on the other hand, are two to four times greater when model calibration targets

discharge versus velocity (EU (UE)<Eq (UE)) . This result is unsurprising, because velocity is more sensitive than

discharge to the flow resistance parameterization. Unlike velocity, discharge more closely depends on factors

controlling the volume of flow, namely, rainfall inputs and infiltration losses (i.e., the continuity equation).

Notably, the discharge and velocity errors exhibit no significant correlation, suggesting that errors in the infil-

tration model do not affect the velocity errors.

Of the trialed roughness schemes, the transitional formulation provided the best overall fit to the experiments. The

median rq/ rU ≈ 1 for the transitional scheme, suggesting that this formulation is most likely to provide unbiased

predictions. This finding is consistent with the results of Mügler et al. (2011), which is the only previous rainfall

simulator study to calibrate an SVE model to velocity measurements. Comparing four roughness schemes,

Mügler et al. (2011) found that the data was best fit by a “depth‐dependent” Manning's equation, that has the same

U ∼ h scaling as the transitional scheme used here. However, whereas Mügler et al. (2011) calibrated an SVE

model to a single plot, the present study included 112 rainfall experiments. The surface conditions in Mügler

et al. (2011)—namely, bare, relatively impermeable soils—also differed from the plots modeled here, which had

vegetation cover and exhibited complex infiltration behaviors.

Across the tested regression models, litter cover was the best predictor of the roughness coefficients. This finding

is consistent with previous studies on flow resistance on dryland slopes (Abrahams et al., 1994; Al‐Hamdan

et al., 2013; Dunkerley, 2003a). Litter can reduce overland flow by inhibiting crust formation (Le Bissonnais

et al., 1998; Puigdefábregas, 2005), and litter transported downslope may form micro‐terraces that slow and

spread overland flow (Ellis et al., 2006). Regression models predicting roughness coefficients from surface

properties had limited success (r2 ≈ 0.5) , which may be attributable to the lumped nature of the measured surface

properties. For example, the fractional cover of soil, litter, rocks, and vegetation elements represent average plot‐

scale statistics that do not capture potential for flow rivulets and meanders to form. Additionally, the power law

fits to rU and rq may not generalize to other sites because the calibrated roughness coefficients likely depend on

variables not considered in these experiments, such as domain size, microtopography, and the potential for

concentrated flow paths to develop.

Table 5

Power Law Fits to rU Using the Top Three Variables Selected With Stepwise

Forward Selection (Litter Cover Flitter , Soil Cover Fsoil, and Average Canopy

Gap Size Fcanopy−gap)

Equation r2

Darcy Weisbach f = 221.08 F0.43
litterF

−1.19
soil F0.34

canopy−gap 0.40

Mannings n = 0.68 F0.23
litterF

−0.58
soil F0.14

canopy−gap 0.39

Transitional T = 0.09 F0.33
litterF

−0.71
soil F0.21

canopy−gap 0.38

Laminar K = 13359.28 F0.31
litterF

−0.85
soil F0.25

canopy−gap 0.31
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Model calibration to discharge resulted in similar discharge errors between schemes (i.e., similar distributions of

Eq (qL) ), showing that jointly‐informed calibration to discharge and velocity is needed to evaluate roughness

scheme suitability. If velocity data is not available and the model is calibrated solely using discharge data—as is

often the case—then the Darcy Weisbach and Manning's equations are biased toward underestimating the ve-

locity, whereas the laminar formulation is biased toward overestimating it.

While the transitional roughness scheme is rarely implemented in runoff models (but see Jain et al., 2004; Rai

et al., 2010), empirical studies often describe overland flow as mixed or transitional (Abrahams et al., 1986).

However, no theoretical arguments have been offered to arrive at its form. In contrast to the other schemes in

Table 1, the scaling relation between S f , U and h does not conform to any prior boundary layer expectations. A

novel and quantitative argument using a thermodynamic perspective is included in Appendix A, A review of

roughness schemes.

Qualitatively, physical explanation for the transitional formulation may take advantage of spatial variability in

both the horizontal and vertical dimensions. Horizontally, overland flow generally appears as a shallow sheet of

water with threads of deeper, faster flow diverging and converging around surface obstructions, such as rocks and

vegetation. If the flow is shallow but obstructed, there will be stagnation zones and fast flow regions along the

horizontal paths, which may make the effective flow appear transitional along the entire flow path. As a result of

these diverging and converging threads, flow depth and velocity may vary markedly over short distances, giving

rise to a state of flow that has been labeled mixed or transitional (Abrahams et al., 1986; Horton, 1945).

In the vertical dimension, the transitional formulation can be framed as a depth‐dependent Manning's n (Jain

et al., 2004; Mügler et al., 2011; Rai et al., 2010), where the resistance decreases with increasing depth as the

average submergence of soil surface roughness and vegetation elements increases. For flow over rough surfaces

with obstructions such as pebbles or vegetation, the drag is large if the flow is shallow and sees the frontal area of

the obstructions over the entire depth. Then, as the flow depth increases, the resistance decreases as the portion of

the flow experiencing the frontal area decreases. Mathematically, the depth‐dependent Manning's equation and

spatially varying laminar/turbulent flow have the same functional form (U = r−1hS1/2o ) . Assessing which

conceptual model better represents overland flow is beyond the study scope and is kept for a future inquiry.

The transitional roughness scheme provided the best calibration results to a plurality of experiments, but there

were many cases in which a different scheme provided a better fit. We were not able to find any correspondence

between surface properties and scheme suitability, despite being able to predict the calibrated roughness co-

efficients from surface properties with reasonable accuracy. This finding is not unexpected: unlike the roughness

coefficient, which describes how rough a surface is, the roughness scheme specifies the “physics” of flow

resistance. That is, the resistance formulation is intended to close the SVE by describing how velocity scales as a

function of flow depth and S f . The best choice of roughness scheme for a given surface likely depends on a

number of subtle and interacting variables.

5. Conclusion

The study investigated the relation between surface properties and flow resistance in a data set consisting of 112

rainfall simulator experiments conducted in the US Southwest. Model calibration errors were compared among

four commonly‐used roughness schemes and two calibration approaches. To evaluate roughness scheme suit-

ability, we first assessed whether calibration to discharge yields the same roughness coefficients as calibration to

velocity. We then examined whether calibrating the model to discharge yields unbiased velocity estimates, and

vice versa.

We found that all schemes perform equally well in predicting discharge, with relatively small sensitivity to how

the model was calibrated. Conversely, model calibration to discharge may bias the velocity predictions if the

selected roughness scheme is not suitable. In cases where jointly‐informed calibration to velocity and discharge

data is not possible, the transitional formulation appears to be the best a priori choice. However, the roughness

coefficient associated with it lacks the rich history and literature values enjoyed by Manning's n and the Darcy‐

Weisbach f .
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Appendix A: A Review of Roughness Schemes

The commonly‐used resistance formulations in Table 1 can be represented in dimensionless form as:

U

u
∗

= U̅̅̅̅̅̅̅̅̅̅
ghS f

√ = Fr = f1(ro
h
,Re), (A11)

where u
∗
=

̅̅̅̅̅̅̅̅̅
τo/ρ

√
is the friction velocity, τo is the total frictional stress resisting the flow, ρ is the density of

water, Fr is a Froude number, Re = Uh/ν is a bulk Reynolds number, ν is the kinematic viscosity, ro/h is a

relative roughness, ro is the absolute roughness. In the limit of high Re, f1 depends only on ro/h, as ro far exceeds

the viscous sublayer, whereas in the limit of very low Re, f1 only depends on Re with ro being entirely submerged

within the viscous sublayer.

Equation 3 provides a mathematical closure to Equation 2 through the relation S f = (Urh−m)1/w. A case in point

is Manning's equation for sheet flow, which can be written as S f = (Unh−2/3)2. Here m = 2/3, w = 1/2 and

r = n where n ∼ r1/6o is Manning's roughness, which is treated as a constant independent of Re in fully

developed turbulent flows (Bonetti et al., 2017).

As previously noted, roughness schemes must recover the idealized case where the flow is steady and uniform.

For those conditions, the force balance between the gravitational forces driving the flow and the overall stresses τo
opposing this motion leads to:

τo/ρ = u 2
∗
= ghSo. (A12)

For the quadratic drag law (i.e., τo = ρCdU
2), the drag coefficient Cd relates the shear stress to U to yield:

Cd =
u 2

∗

U2
= f

8
, (A13)

where f is the Darcy‐Weisbach friction factor. Combining Equations A12 and A13 yields the well‐known Chezy

formulation:

U = 1̅̅̅̅̅̅
Cd

√ (ghSo)1/2. (A14)

Equation A14 can be arranged so that:

U2

ghSo
= Fr2 = 1

Cd
= 8

f
. (A15)

Hence, the particulars of a roughness scheme is reduced to describing Cd or f . For very low Re, the laminar

formulation is recovered because

Cd =
Ao

Re
and U = 1

Ao

g

μ
h2So, (A16)

where Ao is a coefficient that depends on geometry. On the other hand, for very large Re, Cd is independent of Re

and varies with the relative roughness ro/h. That is:

Cd = A1 (ro
h
)m1

and (A17)

U = 1

A1

(h
ro
)m1/2

(ghSo)1/2, (A18)
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where A1 is also a proportionality coefficient. Manning's formula is recovered when m1 = 1/3 (the Strickler

scaling) whereas the empirical transitional formulation is recovered when m1 = 1. These are the roughness

schemes covered in Table 1 and are considered here.

The transitional scheme in Table 1 has been empirically proposed and included here given its previous success

(Jain et al., 2004; Mügler et al., 2011). In contrast to the other schemes in Table 1, the scaling relation between Cd
and 1/h does not conform to any prior boundary layer theory expectations. A number of conjectures may be

offered as to why Cd scales with 1/h in such shallow overland flows. As h increases, some of the roughness

obstacles “flip” from being emergent to being submerged and thus reduce the overall Cd. A variant on this

argument is that with increased h, the flow resembles a continuous sheet thereby activating some of “dead‐zones”

(or stagnant water pools) in the domain. However, these arguments remain qualitative.

A thermodynamic argument is now offered. For steady uniform flow, the work per unit mass per unit time needed

to move water at bulk velocity U is gSoU. If this work is dissipated and converted into internal energy, then the

bulk dissipation rate ϵb can be expressed as:

ϵb = gSoU = u 2
∗

h
U = Cd

U3

h
= U2

τd
, (A19)

where u 2
∗
= ghSo and τd is, by definition, a relaxation timescale. This τd can be interpreted as the time it takes to

convert work (needed to move the water at U) into heat, and thus raise the internal energy of the water. From

Equation A19,

τd =
1

Cd

h

U
. (A20)

An intermediate case is now considered where the Re is sufficiently large so that wake production occurs. Such Re

must be much larger than those associated with laminar flow (i.e., where Cd = Ao/Re). However, the Re cannot

be so large that the flow is fully turbulent and Cd is independent of Re. By fully turbulent, we mean there is a very

large separation between turbulent production scales and the Kolmogorov micro‐scales. For such very high Re

values, wakes produced from obstacles cannot grow in space and are rapidly distorted or wiped out by turbulence,

mainly through ejections and sweeps. Thus, the intermediate or transitional Re considered here are those asso-

ciated with vortex production and subsequent growth (or shedding). Vortex shedding is initiated from the

obstacle, leading to the periodic detachment of vortices that form what is known as a Kármán vortex street. To a

leading order, Kármán vortex streets have a characteristic dissipation volume with three lengthscales: a horizontal

length τdU, a width that scales with the obstacle diameter do, and a height that scales with the flow depth h. Hence,

the shedding volume that the vortices occupy is τdUdoh. However, for very shallow flows, where the most

restrictive length is h, the dissipation of energy is occurring in many small spheres (or fine‐scale eddies). During

the cascade, the largest volume scales as τdUdoh, and the smallest volume as h3. If the energy cascade from large

to small is volume‐preserving or space‐filling, then τdUdoh ∼ Nch
3, where Nc is the number of small‐scale

vortices produced just before viscous dissipation. Thus, we can set τdUdoh = acNch
3, where ac is a propor-

tionality coefficient. Combining this expression with Equation A20 yields:

Cd =
h

τdU
= do(acNch)−1 (A21)

Thus, Cd scales as h
−1, which is the sought result that recovers the transitional formulation.

Data Availability Statement

The data for this study were obtained from existing rainfall simulator experiments conducted in the U.S.

Southwest (Polyakov et al., 2018). The data set is available from the National Agricultural Library at https://data.

nal.usda.gov/search/type/dataset (https://doi.org/10.15482/USDA.ADC/1358583). FullSWOF is an open‐source
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software distributed under CeCILL‐V2 (GPL compatible) license and can be accessed at https://www.idpoisson.

fr/en/fullswof/ (Delestre et al., 2014).
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