CUSPS IN HEAVY BILLIARDS

BORIS HASSELBLATT, KI YEUN KIM, AND MARK LEVI

ABSTRACT. We consider billiards with cusps and with gravity pulling
the particle into the cusp. We discover an adiabatic invariant in this
context; it turns out that the invariant is in form almost identical to

the Clairaut integral (angular momentum) for surfaces of revolution.

We also approximate the bouncing motion of a particle near a cusp by
smooth motion governed by a differential equation - which turns out to
be identical to the differential equation governing geodesic motion on a
surface of revolution. We also show that even in the presence of gravity
pulling into a cusp of a billiard table, only the direct-hit orbit reaches
the tip of the cusp. Finally, we provide an estimate of the maximal
depth to which a particle penetrates the cusp before being ejected from
it.
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1. INTRODUCTION.

In a gravity-free billiard system a particle moves freely in a planar do-
main and is reflected in the boundary so that the angle of incidence equals
the angle of reflection. Convex, polygonal, and dispersing billiards give
rise to rather different dynamical phenomena, and we focus on a specific
question pertaining to the latter class: can a billiard orbit reach a (finite
dispersing) cusp in the defining region of the billiard in any way other way
than along a straight line into it? The answer is negative: the tip of a cusp
can only be reached in a straight shot; any collision with the boundary
means ejection after finitely many collisions. This problem was presented
by King [14] for the infinite cusp bounded by y = +£1/x. In this note we
consider billiards with gravity, and ask whether gravity can pull the particle
into the cusp so that it limits at the tip of the cusp.

We show that the cusp behaves as a repeller so strong that every motion
that is not the straight shot (Figure 1, right) is ejected from the cusp before
any future visits, if any. This ejection happens no matter how sharp the
cusp is—even if the order of contact of the two sides is infinite, and no
matter how strong the gravity is. By contrast, there are examples of a bil-
liard trajectory near a concave wall undergoing infinitely many collisions
in finite time, cf. [10].

2. RESULTS

In this note we consider billiards with gravity as in Figure 1. The billiard
region includes a cusp—shaped domain

€={(x,y) eRx[0,1] | —g-() =x=<g:(N}
with g =g.: [0,1] — [0,00) satisfying
(1 g0)=g'0=0, g'"(y)=o0.

Gravity produces acceleration a = const. pointing into the cusp, in the
direction tangent at the cusp, as shown in Figure 1.

Our main results are:
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FIGURE 1. Left: atypical trajectory in a heavy billiard. Right:
an exceptional trajectory that falls into the cusp.

(1) an observation on the existence of an adiabatic invariant! associ-
ated with a cusp (Section 2.1);

(2) aclose connection between billiard in the cusp and geodesics on a
surface of revolution: the adiabatic invariant is an almost identical
“twin” of the Clairaut integral, and a smooth approximation to the
billiard is identical to the equation for the geodesics (Section 2.2);

(3) an estimate of the penetration depth into a cusp using the adia-
batic invariant (Section 2.3);

(4) the ejection property of cusps with gravity (Section 2.4, Theorem
4).

In the rest of this section we summarize the above items 1-4. Details
and proofs are in the following sections.

2.1. Adiabatic invariant of the cusp. Consider a particle bouncing near
the tip of the cusp as in Figure 2. As long as the velocity is not “too vertical”,
collisions happen in rapid succession. This will allow us to approximate

IThe idea of adiabatic invariants dates back at least as far as 1905, when, before the
discovery of quantum mechanics, there were attempts to explain why the ratio of energy
to frequency of an atom’s radiation is always (Planck’s) constant. An explanation offered
by Einstein went like this: an electron in an atom (then thought of as a miniature solar
system held together by electric forces) is orbiting around the nucleus so fast that the
ambient electromagnetic forces seem to change slowly. Loosely speaking, the atom is
similar to a pendulum whose string slowly changes length. In general, the energy and the
frequency in a pendulum are unrelated. It was discovered by Einstein that if the length of
a pendulum changes slowly, the frequency becomes tied to the energy; in fact, the ratio
of the two becomes almost constant. This ratio is an example of what became known as
an adiabatic invariant.
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FIGURE 2. A magnified view of a trajectory bouncing in
a small neighborhood of the cusp. Parabola’s segments
appear straight in this magnification.

the discrete process with a continuous one (the details are in section 3).
Each collision results in some increase in the y-component of the particle’s
velocity. This velocity increase averaged over the short inter-collision time
amounts to a steady upward force. In Section 3 we show that this force is
given to the leading order of accuracy by

gy
where E is the energy (kinetic plus potential) of the particle and where g
defines the cusp: its walls are the graphs of x = +g(y). Solutions of this
differential equation approximate vertical motions of a billiard particle
in a sufficiently small neighborhood of the tip of the cusp. Note that
v =1v(y,y) in (2) approximates the x-velocity vy, of the actual billiard
particle. Indeed, for the bouncing particle with energy E we have

2) —a, where v =2(E-ay) - j°.

2 2

14 v

hor vert
3 —+—+4+ay=E,
3) 9 5 y

so that
2 2
Vhor = 2(E- ay) — Uyert
Therefore, if vyere = 7 then v? = vy

A conserved quantity of (2): A direct computation2 shows that (2) pos-
sesses a conserved quantity’, namely

4) I=g vy, y) =g/ 2(E-ay) - 2.

2000 = %UZ = %[Z(E—ay)—yz] =-2ylj+al &) —2y2yg§ implies % =vg'y+vg=0.

3The existence of a conserved quantity may seem surprising at first glance since the
presence of y in the right-hand side of (2) may suggest dissipation.
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While [ is an exact integral of (2), it is an approximate integral of the billiard
motion. This allows us to estimate the depth to which a particle can pene-
trate the cusp: at the closest approach to the cusp, vy = v =+/2(E — ay),

the speed, so 1(0) = g(¥0) (Vi)o = §(¥Ymin) V = & (Ymin) v/2(E — @Ymin); this
implicitly determines ymin. We return to this later.

A geometrical interpretation of I is illustrated by Figure 3: I approximates
g(¥) vhor, the action (phase area of a frozen closed orbit) in the phase plane
{xx} of horizontal motion. This coincides with the adiabatic invariant
of the Fermi-Ulam “ping-pong” [9, 24]a particle on the line bouncing
between two slowly (compared to the particle’s speed) moving walls. In
our billiard problem the “moving walls” are due to the particle’s descent
or ascent. By analogy with (4), the product of speed and the distance
between the walls is an adiabatic invariant of Fermi-Ulam’s “ping-pong”.
Geometrically, this is the area in the phase plane enclosed by a trajectory
of the “frozen” system, i.e. stationary walls. In the case of cusp, “frozen”
would amount to parallel walls; and near the tip of the cusp the walls are
nearly parallel.

For a billiard particle, the deeper it descends into the cusp, i.e. the more
itis “compressed” horizontally, the greater is vy, according to (4). This is
closely related to the adiabatic process in ideal gas: without heat exchange,
decrease in volume raises temperature.

We do not address the problem of rigorous estimates on the change of
the adiabatic invariant in the neighborhood of the cusp.

T = Vhor

FIGURE 3. Adiabatic invariant of the billiard in the cusp is
the product of the width and the horizontal velocity.

2.2. Adiabatic invariant and Clairaut’s integral. We describe now a con-
nection between (2) and geodesics on a surface of revolution. It will turn

1: Correct references?
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out that the adiabatic invariant of the billiard has the same expression
as Clairaut’s integral ([7, p. 257], [23, Proposition 9.3.2]), i.e. the angular
momentum of the particle on the surface of revolution, and that the differ-
ential equation for the “smoothed” motion of a billiard is the same as the
equation (2) describing the longitudinal motion of a geodesic on a surface
of revolution.

Along with the cusped billiard let us consider the classical problem: a
point mass on a surface of revolution with gravity, Figure 4. The surface of
revolution is given by the same function g as the cusp, except that we use
the arclength s distance from the cusp along a meridian. Since s = y +0(y)
(due to g'(0) = 0), this surface is closely approximated by the surface of
revolution of x = g(y) near the tip of the cusp. The Lagrangian for the
point mass is

o o
L(s,,0,0) = 5((8(90)% + §)-ay,

where y = y(s) = [y v/1—g'(0)do = s+ o(s). The Euler-Lagrange equa-
tions for s and 6 are

§s—gg'0%+a=o(s),
(5) { £8

d (520) —
m(g 6) - 0;
the latter equation expressing the conservation of the angular momentum

ak.a. Clairaut’s integral M = g20. We are interested in all motions with an
(arbitrarily) fixed energy E:

%((g(s)é)z + s')+ay - E.

Solving this for 6 and substituting in the first equation of (5) yields the
ODE for the motions with energy E:

/

(6) §:(2E—s‘2—as)g§—a,

where we replaced y = s+ o(s) with s. This equation is identical to the
billiard equation (2)!

The connection between the billiard and the particle on a surface of
revolution extends further. Namely, the seemingly mysterious conserved
billiard quantity (4) is identical to the angular momentum M. Indeed,

(7) M = g°0 = g(80) = g Vazimuthal = CONSL,;
here Vazimuthal (Shown in Figure 4) has the same expression as v in (4):
indeed,

1
_(U2

.2 _
2 azimuthal +87)+ ay= E
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gives
v2 =2(E—-ay) - §%,

azimuthal
same as in (2) (modulo replacing y with s = y + o(y)).

The bouncing particle’s motion is therefore approximated by projecting
the smooth motion on the particle on the surface onto a plane through
the axis of revolution.

Summarizing, the billiard’s approximate equation (2) is the same as
the s-equation (6) for the geodesic; and the expression of the conserved
quantity (4) of the billiard equation is identical to Clairaut’s integral M.

Vazimuthal

FIGURE 4. The averaged accleration in (2) due to collisions
is identical to the s—acceleration § of a particle on a surface
of revolution. And the adiabatic invariant (4) of the billiard
in a cusp is exactly of the form (7) of the angular momen-
tum, i.e. of Clairaut’s integral.

Remark 1. The repelling term UZ% in (2) has the following physical inter-
pretation. Consider an auxiliary problem: a particle constrained to the
circular arc normal Figure 5. The particle slides back and forth along the
arc, bouncing off the two walls. Neglecting gravity, the particle moves
with constant speed v which we take to be the same as in (2). The particle
applies the outward centrifugal force v?/R to the arc. Since the arc is
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perpendicular to the walls, no additional force normal to the circle is gen-
erated by the particle in collisions. Now since the circle’s radius R = g/g’
we have:

U2 ) g/
— =122

R §
showing that the first term in (2) equals the centrifugal force of Figure 5!
This term therefore equals the force of the imagined constraint. This ob-
servation suggests a way to guess the form of (2) by a thought experiment

without calculations, as described in the following remark.

. L2 .
FIGURE 5. The main term vz% = % (R=g'lg) is the cen-
tripetal force acting on the point unit mass constrained to

the circle and moving with speed v.

Remark 2. A heuristic derivation of (2). The thought experiment of con-
straining the particle suggests that removing the constraint (thus reverting
to the original problem) should amount to applying the force opposite to

the constraint, i.e. the force v>£ away from the tip of the cusp. This is

exactly what (2) states! ¢

One of the gaps in this heuristic argument is the use of the implicit
assumption that the velocity is nearly tangent to the circle. We do not fill
this gap in the interest of brevity.

Remark 3. An observation on Clairaut’s problem. The equation (6) gov-
erning the geodesic motion can be rewritten in a remarkably simple form:

2
azimuthal’

8) §=kgv
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where kg is the geodesic curvature of the meridian through the particle’s
location.
For the proof we only need to show that

g'(s _
g(s)

To that end, consider the cone tangent to the surface at a meridian s =
const., Figure 4. The length R of the generator of this cone, i.e. the distance
from the vertex to the meridian, is given by R = Sii ~ where a is the angle
between the axis and a generator. But sina = g/, so that R = ?. It remains
to cut the cone along a generator and unroll it to the plane, thus turning
the meridian into an arc of a circle of radius R and thus of curvature
R1= %. And since unrolling is an isometry, kg = R™! = gg is indeed the
geodesic curvature of the meridian.

It remains to observe that (8) could have been guessed without the ar-
gument of the preceding paragraph by imitating the heuristic argument of
Remark 2, namely by observing that restricting the particle to the meridian

. 1 2
will generate the reaction force kgvy . . .

g.

2.3. Penetration depth. We consider first billiards without gravity; in a
small vicinity of the cusp gravity’s role is small since parabolic segments
are short and thus appear almost straight. In the absence of gravity we
can pick any energy value, say E = %, so that the particle’s speed v = 1. The
adiabatic invariant (4) takes form

I=gcosa,

where «a is the angle between the trajectory and the horizontal. Thus I
has a remarkably simple geometrical interpretation (Figure 6): it is the
projection of the width g onto the trajectory segment that cuts through
this width. Figure 6 illustrates a geometrical way to estimate maximal
penetration depth: projecting the width gy onto the trajectory segment AB
gives the width of the cusp at the maximal penetration depth: gocosa =
gmin €0s0 since a = 0 at the deepest penetration, and we have

8min = 0 COS .

This approximation gets worse as a gets too close to 7/2 and it gets better
the deeper A is in the cusp. We do not address error estimates in these
approximations.

Actually the same estimate holds for billiards with gravity since para-
bolic segments are nearly straight deep in the cusp; in this case a can be
taken as the angle between the horizontal and the tangent to the rebound-
ing trajectory at the point of impact.



10 BORIS HASSELBLATT, KI YEUN KIM, AND MARK LEVI

Ymin

FIGURE 6. “gmin = Proj,z8o0”: Maximal width of penetra-
tion is well approximated (when deep in the cusp) by the
projection of the horizontal section (e.g. go) onto the seg-
ment (e.g. AB) of the trajectory. In fact, projection of any
horizontal section onto the trajectory segment crossing this
section is an adiabatic invariant, i.e. is near-constant along
the trajectory near the cusp provided the trajectory seg-
ments are “not too vertical”.

2.4. Ejection theorem. Returning to billiards with gravity we prove that
the cusp acts as an infinitely strong repeller, as anticipated in the heuristic
discussion above. In particular, only a straight shot can reach the cusp. Any
other trajectory may possibly approach the cusp repeatedly and arbitrarily
closely, but such approaches are separated by departures from the cusp. In
particular, there are no trajectories whose height y(#) — 0 as ¢ approaches
a finite or infinite value. All this is so no matter how strong the gravity is
and no matter how high the order of contact.

Assumptions and notations. Recall that the billiard region includes the
cusp-shaped domain

€={x,)eRx[0,1] | —g- () <sx=<g:(»}
We assume that g = g..: [0,1] — [0, 00) satisfy

9) g0=g'0=0 g'y=0
and
!
(10) lim % =0;
y—0t g

a geometrical meaning of the last condition is explained in Remark 6. In
addition, the billiard is subject to constant gravity a > 0 in the direction
of the outward (downward in Figure 1) tangent vector of the cusp (we say
“the cusp is vertical”). Finally, when speaking of energy, we take potential
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energy at (0,0) to be zero, and the mass of the particle m = 1, so that the
total energy of a particle with speed v is E = v?/2 + ay.

Theorem 4 (Ejection Theorem). Under the above assumptions on g, for
any fixed energy E > 0 there exists the height D = D(E) € (0,1] (Figure 7)
such any trajectory with energy E entering {y < D} not as straight shot into
the cusp tip leaves {y < D} after a finite time, with finitely many collisions
during that time, Figure 7(a). Moreover, the sequence of collision heights yj
first monotonically decreases and then increases:

(11) D>y1>y>...> V1> Vn<Yn+1<...<YnN<D;
here y, is the first collision after the trajectory descends below y = D and

YN IS the last collision height before the trajectory rises above y = D; the
trajectory remains in {y < D} between adjacent collisions.

Corollary 5. Under the assumption of Theorem 4, no trajectory other than
the straight shot converges to the tip (0,0) in finite or infinite time.

Indeed, if the trajectory is not a straight shot, then convergence y(¢) \, 0
is forbidden by (11).

It should be mentioned that some trajectories with energy E may never
visit {y < D(E)}, Figure 7(b); for such trajectories the theorem is vacuous.

FIGURE 7. Ifatrajectory with energy E ever visits the region
{y < D(E)} and not as a direct shot into the cusp, it must
leave the region after finitely many uninterrupted collisions
(this does not preclude a later return). The heights of this fi-
nite sequence of collisions obey the monotonicity property
(11).

Remark 6. Condition (10) is equivalent to the statement that the center of
the osculating circle to the graph of x = g(y) approaches the x-axis (i.e. the
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line through the tip of the cusp and normal to the common tangent of the
two walls) as y — 0.

Remark 7. Despite the heuristic discussion above it may seem intuitively
plausible that gravity, if strong enough, may overcome collisions in cusps
with sufficiently high order of contact, causing the particle approach the
cusp in a series of infinitely many collisions. This, however, does not
happen: the above conditions on g allow cusps with arbitrarily high order
of contact - for instance, g(y) = e~'/?, aswell as g(y) = cy” + O(y"*) for
any r = 2. Moreover, if g satisfies the hypotheses of Theorem 4, then so
does h=e7'/8,

Remark 8. Theorem 4 does not exclude the possibility of a trajectory with
infinitely many collisions in a vicinity of a cusp; however, these collisions
must be broken into finite groups separated by exits from {y < D(E)}. In
fact, by Poincaré’s recurrence theorem there exist trajectories that visit
any neighborhood of the tip infinitely many times, but these visits are
punctuated by departures. For such trajectories the number of collisions
during a visit has no upper bound since the further into the cusp the
trajectory reaches, the more collisions it will undergo before exiting.

FIGURE 8. A trajectory with infinitely many collisions ap-
proaching the cusp for a gravity-free billiard.

Remark 9. (1) Without convexity of g (or something to replace it), the
conclusion of Theorem 4 can fail even without gravity, as Figure 8)
illustrates. Parenthetically, For billiards with infinite cusps and
with zero gravity there are conditions other than convexity that
allow only the trivial escape to infinity [17].

(2) Convexity of g implies

(12) yg'(y) > g(y) forall yel0,1].

Indeed, referring to Figure 9, y = PO > PA = g(y)/g'(y), hence (12).
In particular, g/g" ——= 0.
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FIGURE 9. Proofof (12).

Note that in other respects, gravity, no matter how weak, produces
qualitative change such as the presence of periodic orbits in the cusp or
the possibility of upward motion turning downward between collisions.

Remark 10 (Symmetry). For convenience we assume g, = g_; the argu-
ments do not depend on this assumption but the exposition is slightly
simplified.

2.5. History. As we learned from a referee, this subject is at least 60 years
old. This is the age of a proof that only a straight shot (there called a
trivial trajectory) goes all the way into an eventually convex infinite cusp
[20]. More than 3 decades later, the same issue was raised in a paper by
Jonathan King [14], who, like us, was unaware of that early paper. For
the infinite cusp bounded by y = +£1/x, David and Jacob Feldman had
posed the problem whether a particle can reach infinity in a nontrivial
way. Benjamin Weiss (unpublished, to our knowledge) determined that
this is essentially impossible, i.e., that the set of such billiard trajectories
is a null set, and indeed empty for a dispersing cusp [14, p. 13]. (The
argument Weiss gave for this does not use convexity. Initially unaware of
Weiss’ insight, King gave a direct “bare-hands” proof that only a straight
shot goes to infinity if the bounding function is convex. We note that
this billiard with y = 1 as the third wall is ergodic [18] (likewise with a
finite cusp [25]) and that cusps have also been of interest with respect to
correlation decay [1-3,5,6,11-13,21,22,30]. Indeed, the main purpose
of King’s article was to bring measure theory to bear on this and related
issues. Once finite invariant measures enter, ergodicity becomes a natural
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issue, and for a range of infinite cusps, Lenci established hyperbolicity
and ergodicity of the resulting billiard map [17, 19].

Considerations of finite cusps seem to be even more a matter of folklore.
David Bernstein first told us how to prove that a particle colliding with the
boundary will be ejected after finitely many collisions, Figure 10, [4]. This
proofis based on a simple observation: Let T and N be two perpendicular
lines (Figure 10(left)) with two lines L, and L, symmetric to each other
with respect to N and T, and let P be a point in one of the quadrants
determined by T and N. Of the two skew lines the one passing through
the quadrant of P (namely, L; in the figure) is closer to P than the other.

In Figure 10(left and middle) tangent and normal lines play the roles
of T and N in the above remark, the lines L; and L, are the lines of the
incoming and reflected rays. If the impact is from the left of the normal
(Figure 10(left)), i.e. if the line of trajectory passes through the quadrant
of the cusp P, then d; < d,. Otherwise, d; > d», Figure 10(middle). Thus
the sequence dj increases while the trajectory approaches the cusp -
more precisely, while it impacts from the left of normal) and decreases on
departure from the cusp.

dy < do dy > do

FIGURE 10. After an impact arriving from the outward
(from the cusp) side of the normal (left) the distance in-
creases: dp > dj; the opposite happens when impact is
from the inward of the normal.

We should also mention the work by Wojtkowski for geodesic flows of
surfaces, which in particular implies a corresponding result [27, Theorem
3]: only straight geodesics reach a nonpositively curved cusp (more specifi-
cally, there is a natural parametrization of the cusp by (s, #) € S' x [0,1) such
that only the geodesics s = const reach the cusp). This is better known for
rotationally symmetric cusps, where the Clairaut integral (see Section ?2)
is the obstruction to reaching the cusp.



CUSPS IN HEAVY BILLIARDS 15

In summary, there are three extant arguments that establish the impos-
sibility of reaching the cusp except by a direct hit: the simple Bernstein
argument, the enhanced ergodic argument by Weiss, and King’s bare-
handed argument.

3. CONTINUUM APPROXIMATION FOR ADIABATIC INVARIANT

In this section we derive the differential equation (2) whose solutions
approximate the y-coordinate of billiard particles in the vicinity of the
cusp. We derive (2) by “smoothing” the reflection law which states that

FIGURE 11. Derivation of the smooth approximation to the
billiard motion).

the incidence and reflection angles are equal. In this discussion we first
take the gravity a = 0: in a small neighborhood of the cusp, short parabolic
segments look nearly straight.

Lemma 11 (Reflection law). In the notations of Figure 11 and with gravity
a =0 the law of reflection at the n* collision is given by

(13) cosf;,-1 —cosh, = (sinf,_1 +sinb,)g,.
Proof. If g, = tana,, so that e*!% = cosa, (1 + ig,), then “angle of inci-
dence = angle of reflection” means that 8,,_, + a, =0, — a,, and thus

ei9n_1eian — ei(Gn_1+an) — ei(Hn—an) — ei9ne—ian

’

or efn-1(1 + ig)) = elfn(1 - ig)). Taking the real part results in (13). O
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We now derive the differential equation (2). In a small vicinity of the
cusp collisions happen in rapid succession, provided horizontal veloc-
ity vhor is not too small. At nth collision vertical velocity vy increases
instantaneously by

AUyert = VCOSQn—l — UCOSQn,

where v is the constant speed of the billiard particle. The time between
this collision and the next one is
+
Af = gn gn+1 )
Vhor
The increase Avyert averaged over this time gives an average acceleration:

(14)

~sinf, =Uhor/ V
I 1 1 1
AUyert ,cos 0n-1—cosO, (13) o (sinf,_; +sinf,)g,, 2 g,
= - hor ~ U
At (&n+ &n+1)/ vy 8nt 8n+1 horgn
| M—
~8&n
In conclusion, the impulsive acceleration due to collisions is approximated
. . . 2 8n
by the continuously acting acceleration vy o

So far this was for billiards without gravity. Now the presence of gravity
a > 0 has two effects: (i) it adds the downward acceleration a, explaining
the last term in (2), and (ii) horizontal velocity now depends on height
according to the energy conservation (3); this completes the derivation of
2).

4. THE EJECTION THEOREM

This section is dedicated to the proof of the ejection theorem (Theorem
4). Some technical arguments are deferred.

4.1. Assumptions on cusp depth. Fix E > 0 and let D(E) satisfy the fol-
lowing conditions.
(1) {y < D} is aJacobiregion, i.e. any parabolic segment with energy E
lying in {y < D} has no pairs of conjugate points.
(2) D satisfies

(15) supg’ <1,
[0,D]
g, 12 E
(16) D+sup—(1+g7)<—,
[o,LIJ)] g" 8 a
and
E
(17) D+supg<-—.

[0,D] a
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We note that for any E > 0 the last two inequalities are satisfied for suf-
ficiently small D thanks to the assumptions (9) and (10) of the theo-
rem.Incidentally, E/a is the maximal height to which a particle with energy
E canrise. Therefore for the weightless billiards for which a =0 (16) and
(17) pose no restriction on D and we can simply take D = 1.

4.2. Proof of the ejection theorem (Theorem 4). Fixing the energy E (re-
call the potential energy at the tip of the cusp is taken as zero), we will
choose D = D(E) sufficiently small as specified in the previous subsec-
tion, and consider any non-straight-shot trajectory with energy E crossing
y = D downwards. If the trajectory rises above y = D after one collision
(as the bold trajectory in Figure 12(a)), there is nothing to prove and we
consider the non-trivial case of at least two collisions after descending be-
low y = D, Figure 12(a). Our goal is to show that the sequence of collisions

(0)

FIGURE 12. (a): incoming trajectories may leave {y < D} af-
ter one collision); (b): consecutive collisions with the same
wall cannot happen if curvatures satisfy kg < k4 (unlike
what is shown). Here tangents at A and B are parallel.

(while the trajectory stays in y < D) is finite and that collision heights first
decrease and then increase, ending with the trajectory (not necessarily
the collisions!) rising above y = D. As a prerequisite we will establish that
collisions happen with alternate walls, to exclude a possiblity sketched in
Figure 12(b).

Lemma 12 (Alternating collisions). Fix E > 0. For D = D(E) satisfying (16)
any parabolic trajectory segment with energy E lying entirely in{y < D} has
its ends on the opposite sides of the cusp.

Proof. Assume first that y # 0 for the parabolic segment; to be specific, let
¥ <0, Figure 12(b). The parabolic segment then is the graph of x = h(y),
with two consecutive collisions at y = yp and y = y; with the same wall
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x = g(y), so that then the horizontal distance f = g — h vanishes at y =
Yo, y1 and is positive (and smooth, because of no collisions) in between.
At ¥ = ymax the graphs of g, h have parallel tangents and their curvatures
then must satisfy

(18) kg — k<0

Butin fact the opposite holds as we now show—namely that if the tangents
to the trajectory and the boundary are parallel:

h,(_Vmax) = g/(,Vmax),
then
(19) kg~ kp >0

at ¥ = Ymax- Contradiction with (18) will then show that the scenario of Fig-
ure 12(b) is impossible. We have kj, = a, / v> where a, is the component
of the acceleration normal to the velocity; and at the level y = yax where

the tangents to the boundary and the trajectory are parallel a; = a \/1g+,?;
here g’ = g'(¥max), etc. We have
a g/ ) gl/
k= —-———=, while ko= ————
v N o a+g%32
so that v . ,
h_ag 2 a g 12, (16)
Lo 22 +g) < ——2 1+ <1
b 2g T8 sE_apy g T8

this proves (19).

To complete the proof of Lemma 12 it remains to address the possibility
of y being non-monotone, i.e. of y = 0 at some point (Xmax, Ymax) Of the
parabolic trajectory. The slope of the graph of this trajectory is

X — Xmax

M

2
where v is the horizontal velocity, which, by the conservation of energy,
satisifies v = 2(E — aD). And since |x — Xmax| < 2g(D) the slope of the
parabolic arc inside the cusp does not exceed

ag(D)

E—-aD
in absolute value. On the other hand, the absolute value of the slope of the
boundaries of the cusp is bounded by 1/g’(D) from below. But two curves
whose slopes are never equal may intersect at most once. Therefore it
remains to make sure that

ag(D) < 1
E—-aD g'(D)
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But this holds due to (15) and (17).
This completes the proof of Lemma 12. U

Returning to the trajectory whose collisions in y < D we now know
alternate, we consider the maximal 7 such that the collision heights are
monotone decreasing;:*

(20) D>y1=2y,=...2y,.

To prove the theorem we must show (i) that 7 is finite, and (ii) that all sub-
sequent collisions, prior to the trajectoryrising above y = D, are monotone
increasing and finite in number.

To prove that n is finite, assume the contrary: y is an infinite sequence,
monotone decreasing, thus leaving two alternatives:

21) klim V=0
or
(22) klim Vi > 0.

Lemma 13. No trajectory with energy E can have an infinite monotone
decreasing set of collisions heights while staying under y = D, i.e. neither
(21) nor (22) may hold with yj decreasing.

The proofis given in the next subsection.
Next we let
(23) Vn<Yn+1<Yn+2<...SYN

be the maximal montone increasing sequence of subsequent collisions
with the trajectory staying under y = D between all collisions. The ejection
theorem is now a consequence of the following lemmas.

Lemma 14. For any trajectory with energy E, subsequent collision heights
satisfy

(24) Vi+1 2 Vi implies Yir2 > Vi1,

for as long as the trajectory stays in y < D between collisions.

Lemma 15. For a trajectory with energy E > 0, any monotone increasing
sequence of collisions while the trajectory remains in y < D terminates with
the trajectory exiting y < D - that is, N in (23) is necessarily finite.

Proof. Otherwise, the suprema of the collision points on the walls are a
period-2 orbit, which is impossible by choice of D; see Figure 13. O

Save for proving Lemmas 13 and 14, this concludes the proof of the
ejection theorem (Theorem 4).

41t will be clear from the proof that all inequalities but the last one will be strict.
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4.3. Proof of Lemma 13. First, we show that (21) cannot hold. Assume
the contrary: y; \, 0 as k — oo.

FIGURE 13. For a trajectory leaving B along the normal the
next collision B’ is above B.

First we observe that the downward monotonicity of y; implies that
every impact happens from above the normal as at A in Figure 13. Indeed,
otherwise the reflected velocity will be on or above the normal n as at B.
But this implies yi+1 > yx as we now show, contradicting monotonicity.
To that end we will first show that the trajectory leaving B along a normal
impacts at yr+1 > yk; and by the assumption on no conjugate points,
increasing the departure slope at B will cause an increase in yj.1, thus
proving that the impacts indeed are as at point A in Figure 13. We consider
therefore a trajectory leaving B along the normal, as in Figure 13 and prove
that the monotonicity is violated in this case. Indeed, the trajectory has
curvature < a/v? < a/ (2(E — aD)) = x, while the length of the arc BB’ is
<3g(yx) (if D is further decreased, if necessary). The angle between the
tangents to the arc at its ends B, B’ is therefore

(25) Z(TB/, TB) < 3’Kg(yk)
On the other hand,
(26) Zm, n') > g'(yp).

if D is decreased further if necessary. Roughly speaking, the bend of the
trajectory is negligible compared to the angle between the normals at B
and B'. But

(27) /(Tg, Tp) < Z(n, n')

by (12), provided y < 2(E — aD)/3a, which in turn holds if D < 2(E —
aD)/3a,ie.if D < %%, which we add to our assumptions on D.
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Having shown that all impacts at yj are from above the normal (as at
point A in Figure 13) we now show that the cumulative upward kick in
velocity from infinitely many collisions is infinite, even accounting for
the downward gravity, contradicting yj | 0. A key observation is that the
horizontal velocity increases after each impact. The reason is illustrated by
the collision at A in Figure 13, right: for the pre-and post-impact velocities
satisfy |[v_| = |v4|, while |slope(v_)| < |slope(v,)|. Putting it differently,
if @ € (0,7/2) is the angle between the normal and the incoming and
reflected velocity, and if § € (0, 7/2) is the angle between the normal and
the horizontal, we have, with v denoting speed just before and just after
impact:

vy = vcos(a— ) > vcos(a+pf) = vy,
as claimed. We thus showed that for the descending trajectory
(28) %] > vy,

for all time after the first collision, where v; > 0 is the horizontal speed
after the first collision at y;. We now use this to show that each collision
adds upward kick in velocity estimated thus:

(29) P - y) = Cg' (),

where C > 0 depends only on the initial condition but not on k. Indeed,
according to the reflection law,

(30) y(t)) = y(t;) =2vcosany,

where v = /2(E — ayy) is the speed prior and after the impact; where « is
the angle between the normal and the horizontal and where 7, is the y-

component of the inward unit normal to the boundary: n, = g'/\/1 + (g)?
(evaluated at y — yx). Thanks to (28) we have cosa = ¢ > 0 for some ¢
independent of k; substituting the above estimates into (30) results in (29).
On the other hand, between two collisions at ¢ = #; and ¢ = f;,; vertical
velocity acquires a negative addition:

P, ) = 7)) = —altee — ).

Fortunately this downward speed-up is dominated by the instantaneous
increase (29) upwards. Indeed, thanks to (28),
2g(x)

ler1 — Lk < )
V1

so that

2
(31) W = g, ) < 228,
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Subtracting (31) from (29) we have
(32)
i) = y06) 2 Cg = =58
for k sufficiently large. The last key point is the lower bound
Yk~ Yin
e o

where C; > 0 is independent of k for sufficiently large k. Indeed, due to
(28) the absolute value of the slope of the parabolic arc is bounded by a
constant c;, and therefore

_ / ag(xy) C ,
-Cg (xk)(l—z o )>§g x),

(33) g (xp)>Cy

(34) Yk — Yi+1 = C28(Xg).

for some ¢, > 0 independent of k. Together with g(xi) < yrg'(xx) this
implies (33).

It remains to show that the sum of added upward velocity increases is
infinite. We have

- SR 32 C & 32 CC, &y —
V) =y =) gt ) —yt) = —Zg(xk £ CCL ¢ Ve~ Vin
k=1 = 2 =5 Wk
But

Ye d
Z Ve~ Vel Z &y =Inyo—Inyn4+1 5= 00.
k=1 Yk k=1Yk+1 —

—0t
We thus showed that y(¢,) — co as n — oo, which contradicts the mono-
tone descent into the cusp. We thus eliminated the possibility (21).

To complete the proof of Lemma 13 it remains to eliminate the possibil-
ity (22). To that end we observe that y,, = lim y; > 0 is the endpoint of a
period 2 orbit bouncing between the two walls, in the region {y < D}; but
this is impossible. Indeed, such a trajectory would impact the boundary
at the right angle, which is impossible as we showed earlier when referring
to Figure 13. This completes the proof of Lemma 13.

Proof of Lemma 14. Consider first the extreme case: yx = yx+1. The
estimate (27) in the proof of Lemma 13 shows that the impact at yj,;
is below the normal. Fixing yr.; < D arbitrarily, we now decrease yx,
i.e. shoot at yi,; (that's been fixed) from the new point y;; since all the
trajectories are in the Jacobi region, the next impact y, ., will be above
Y}1o- This completes the proof of the lemma.

Proof of Lemma 15. Assume the contrary. This leaves two possibilities:
the sequence is infinite, monotone increasing - but that implies that the
limit is a period 2 periodic orbit, which is impossible as proven in the proof
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AY

/
Ykyo

Yk+2

Yk Yk = Yk+1

/
Y

FIGURE 14. Proof of Lemma 14. Points are labeled by their
y-coordinates.

of Lemma 13. The remaining alternative is the failure of monotonicity. But
this contradicts Lemma 14 and completes the proof of Lemma 15.
This also completes the proof of the ejection Theorem 4.
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