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ACKGROUND CONTEXT: Low back pain (LBP) remains the leading cause of disability glob-

ally. In recent years, machine learning (ML) has emerged as a potentially useful tool to aid the

diagnosis, management, and prognostication of LBP.

PURPOSE: In this review, we assess the scope of ML applications in the LBP literature and out-

line gaps and opportunities.

STUDY DESIGN/SETTING: A scoping review was performed in accordance with the Preferred

Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews

(PRISMA-ScR) guidelines.

METHODS: Articles were extracted from the Web of Science, Scopus, PubMed, and IEEE Xplore

databases. Title/abstract and full-text screening was performed by two reviewers. Data on model

type, model inputs, predicted outcomes, and ML methods were collected.

RESULTS: In total, 223 unique studies published between 1988 and 2023 were identified, with

just over 50% focused on low-back-pain detection. Neural networks were used in 106 of these

articles. Common inputs included patient history, demographics, and lab values (67% total).

Articles published after 2010 were also likely to incorporate imaging data into their models (41.7%

of articles). Of the 212 supervised learning articles identified, 168 (79.4%) mentioned use of a

training or testing dataset, 116 (54.7%) utilized cross-validation, and 46 (21.7%) implemented
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hyperparameter optimization. Of all articles, only 8 included external validation and 9 had publicly

available code.

CONCLUSIONS: Despite the rapid application of ML in LBP research, a majority of articles do

not follow standard ML best practices. Furthermore, over 95% of articles cannot be reproduced or

authenticated due to lack of code availability. Increased collaboration and code sharing are needed

to support future growth and implementation of ML in the care of patients with LBP. © 2024

Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and simi-

lar technologies.
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Introduction

Low back pain (LBP) remains the leading cause of years

lived with disability (YLDs) globally [1]. Despite advances

in diagnostic and therapeutic technology, the burden of

LBP continues to grow at an alarming rate, with a 60%

increase in cases from 1990 to 2020 [1,2]. The global finan-

cial impact of LBP is estimated between $50 and $100 bil-

lion USD per annum. In 2016 alone, low back pain and

neck pain were identified as the largest direct healthcare

costs in the US [3]. The combined high cost and widespread

burden of disability make efficient diagnosis and manage-

ment of LBP a priority for patients, health systems and

practitioners worldwide [4,5].

The presentation of LBP can vary significantly between

patients [6]. There are also many diverse treatment modali-

ties for LBP, ranging from conservative nonsurgical inter-

ventions such as physical therapy and chiropractic

management, to pharmacologic-based therapies, to physiat-

ric or surgical interventions [7−10]. This complexity makes

identifying and implementing the right treatment regimen

exceedingly challenging [11]. Additional compounding fac-

tors affecting patient care include socioeconomic and psy-

chosocial variables, as well as the relatively low rate of

guideline concordant care within LBP [12−14].
The complexity of LBP care is exacerbated by several

important factors. First, the traditional biomedical approach

to managing LBP does not align well with the more com-

prehensive biopsychosocial model of pain [15−17]. In the

latter more updated approach, patient pain is considered in

the context of factors beyond biomechanics and neurologic

change, such as patient social and cultural background, and

psychologic state [18]. Second, there is a significant gap

between common treatment approaches and guideline-con-

cordant care [15,19]. Recent guidelines from the American

College of Physicians (ACP) recommend that patients with

LBP progress systematically through therapies from least-

to most-invasive [15]. By this logic, a vast minority of

patients would require prescription of opioids, with surgical

intervention reserved for those patients with severe, unre-

mitting pain recalcitrant to conservative therapy and those

who exhibit red flag signs: incontinence, anesthesia in the

groin area, and rapidly progressing neurologic deficits.

Despite this, inappropriate outpatient referrals and inpatient

consultations to surgical services are abundant, with over
80% of referrals deemed inappropriate in a recent study

[20]. This mismanagement of patient care poses a signifi-

cant financial burden to health systems globally [21−25].
One of the potential contributors to this guideline-discor-

dance is lack of awareness of these guidelines on the part of

patients and physicians [26].

Machine learning (ML) has emerged in recent years as a

tool to assist in answering complex questions. As such it

has seen application in the diagnosis, management, and

prognostication of a variety of musculoskeletal and neuro-

surgical pathologies [27−30]. ML algorithms can capture

complex, nonlinear relationships in data, making them ideal

to help in challenging clinical scenarios such as LBP care.

However, these same characteristics make ML tools chal-

lenging to develop and integrate into every-day use. The

objective of this study is to evaluate the state of ML appli-

cations in the care of patients with LBP and propose future

directions for ML-guided integrative LBP care.

Methods

Article identification

A scoping review was performed to clarify the breadth of

research publications utilizing machine learning in the eval-

uation and/or clinical management of low back pain. This

was performed in accordance with the Preferred Reporting

Items for Systematic reviews and Meta-Analyses extension

for Scoping Reviews (PRISMA-ScR) checklist, which can

be found in Appendix A [31]. The review was registered on

Open Science Framework (doi redacted for anonymity).
A comprehensive search strategy was created with our

research librarian team members (EB) to include terms

related to low back pain and machine learning

(Appendix B). These terms were searched on the Pubmed,

Embase, Web of Science, and IEE XPlore databases on

April 1st of 2023, and metadata of all resulting articles until

that date were retrieved. Only English language articles

were reviewed. No date restrictions were applied. These

articles were imported into Covidence Extraction 2.0 sys-

tematic review software (Veritas Health Innovation, Mel-

bourne, Australia). Duplicate articles were removed

through automated filtration within Covidence followed by

manual identification. In total, 2282 non-duplicate citations

were screened.
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Article screening

Screening was performed in two stages: title/abstract

screening followed by full text screening. In both stages,

reviewers assessed article adherence to pre-specified inclu-

sion and exclusion criteria, as given in Appendix C. Screen-

ing was performed independently by two members of the

review team (AS, TZ). Conflicts between reviewers were

subsequently resolved by a third independent team member

(DS). Inter-rater reliability was assessed via calculation of a

Cohen’s Kappa score for both the title/abstract screening

stage and the full-text screening stage. A standard error was

also computed at each stage and used to compute a 95%

confidence interval for each Cohen’s Kappa score.

Data extraction, analysis, and processing

Two independent reviewers collected several data ele-

ments from each publication. Articles and their correspond-

ing algorithms were first placed into one or more “stages”

of LBP management or intervention. Articles categorized

as “Risk Prediction” aimed to predict future incidence of

LBP in patients without a current diagnosis of LBP. The

“Detection” category included algorithms aimed at detect-

ing LBP in patients with an existing diagnosis, perhaps

through imaging or clinical characteristics. Algorithms

classified as “Characterization” focused on subclassifying

or stratifying LBP, and included tools meant to further our

understanding its pathophysiology. “Triage” algorithms

used imaging or other data to predict patient nonsurgical

referrals/appointments, while “Intervention” algorithms

predicted surgical treatment. “Outcome Prediction” algo-

rithms were those built to predict patient outcomes from a

specific intervention whether that be surgical or non-surgi-

cal. These include but are not limited to post-treatment mor-

tality, LBP severity, readmission, and pain recurrence.

Each included article built or tested at least one ML

algorithm, broadly defined here as any mathematical formu-

lation that uses past data to predict a future event (with the

exception of rules-based systems) [32]. Linear regression

models assume a linear relationship between a set of input

predictors and a continuous output. An example of a contin-

uous output to predict for a LBP patient could be length of

stay after surgery or LBP severity [33]. Logistic regression

models are like linear regression models except their output

is the probability of a binary outcome, such as whether a

patient will be readmitted within 30 days of a lumbar fusion

or have a postoperative complication [34]. Decision tree

models are flowchart-like models where each node repre-

sents a feature, each branch represents a decision, and each

leaf represents an outcome [35]. Random forests are built

by creating several decision trees from the same data and

combining their predictions [36]. Extreme Gradient Boost-

ing (XGBoost) algorithms involve building multiple deci-

sion trees one after the other, where each tree “corrects” the

errors of its “ancestors” rather than averaging across all

trees like in the random forest model [37]. Support vector
Downloaded for Anonymous User (n/a) at Duke University fro
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machines (SVMs) take input data and find the best bound-

ary (also called a “hyperplane”) that separates one group of

data from another [38]. Naı̈ve-Bayes models use the proba-

bility of each model input being associated with an outcome

to make predictions with all the model inputs together [39].

Clustering models group similar datapoints together in an

unsupervised approach, without knowledge of whether

these groupings are relevant or meaningful [40]. They can

be used to explore data and even segment radiologic

images. K-Nearest Neighbors models make predictions

from model inputs based off results from neighboring data-

points, here meaning similar scans or similar patients [41].

Natural Language Processing (NLP) is a larger subfield of

the ML world referring to the use of algorithms to process

and analyze raw text [42]. In this review, we specifically

classified articles as using NLP if they used raw text to

make predictions relevant to LBP care, and we did not

include algorithms that used NLP to simply extract data.

Finally, neural networks are some of the most common ML

algorithms and are modeled after the human brain. They

consist of layers of interconnected “neurons” connected

through linear or nonlinear “axons” with adjustable weights

[43].

All the ML algorithms noted above require input of data.

Various types of data inputs were recorded from each arti-

cle type, mainly grouped into imaging and nonimaging

inputs. Imaging data inputs included Magnetic Resonance

Imaging (MRI) scans, Computed Tomography (CT) scans,

X-rays, functional MRI (fMRI), or other imaging inputs.

We also noted if raw imaging report text was used as a

model input, or if specific data were manually extracted

from images, such as spinopelvic parameters. Nonimaging

data included patient demographics, lab values and history,

as well as posture and balance data or kinematic data from

movement.

Model outputs were also recorded. These included

binary data such as risk of developing LBP in the future,

present LBP, LBP recurrence, imaging abnormality, com-

plications after intervention, need for surgery, need for

physical therapy, recommendation of a specific therapy,

readmission, reoperation, and mortality. Continuous outputs

included patient reported outcome measures (PROMs),

LBP severity, patient satisfaction, and length of stay. Imag-

ing segmentation was the only recorded output that is nei-

ther binary nor continuous.

Various model characteristics and best practices were

recorded for each algorithm [44]. We recorded first whether

models were supervised or unsupervised: supervised mod-

els are built using data with labeled outputs (like the y-

value in a linear regression), while unsupervised models are

trained without guidance on what the output should be. It

was also noted whether data were split into a training and a

testing set which don’t share data, a common practice in

ML model development. Models are built using the training

dataset, and their performance is assessed on the testing

data. This prevents model overfitting, a phenomenon where
m ClinicalKey.com by Elsevier on October 30, 2024. 
opyright ©2024. Elsevier Inc. All rights reserved.



ARTICLE IN PRESS

4 A. Seas et al. / The Spine Journal 00 (2024) 1−14
a model learns to predict noise rather than relevant signal,

and doesn’t generalize well to new, unseen data. Cross vali-

dation is another common method to prevent overfitting

which was assessed in our extraction. It involves training

and testing a model iteratively on different subsets of the

same dataset to see how well it generalizes to unseen data

[45]. We also assessed how many models implemented

hyperparameter optimization techniques, where different

model architectures are tested to identify which one(s)

work best to predict a specific output [46]. An example of

this would include training several different neural net-

works to predict hospital readmission on a dataset, each net-

work with a different number of neurons, and picking the

best network from the bunch. After collecting all these

data, we assessed whether any of these models were exter-

nally validated on a unique set of data outside of a train-test

split, such as data from a different hospital. We finally iden-

tified whether code was made available for any of these

articles on Github or other similar code-sharing platforms.

Once raw article data were collected and cleaned, they

were analyzed within Python 3.9.18 using numpy 1.22.3,

pandas 1.4.2, matplotlib 3.5.1, and seaborn 0.12.2 [47−50].
Results

Of the 2,282 unique studies extracted, 346 met inclusion

and exclusion criteria on title/abstract screening (Cohen’s

Kappa = 0.706, 95% confidence interval from 0.666 to

0.746). Of these, 123 were removed in full-text review due

to violation of inclusion and exclusion criteria, leaving 223

studies as illustrated in Fig. 1 (Cohen’s Kappa=0.337, 95%

confidence interval from 0.239 to 0.435).

Applications of ML in LBP

The studies included in this review described applica-

tions of machine learning at every stage of low back pain

management from predicting a patient’s risk of developing

LBP, to predicting the outcome of intervention for chronic

LBP (Fig. 2A). A majority of studies focused on the detec-

tion of LBP (52%), followed by outcome prediction

(24.7%) and disease characterization (8.1%). Only six

articles attempted to triage patients to different types of

therapeutic approaches for their pain.

There are two periods of rapid expansion in this research

topic, and the time periods of articles included 1988-2003,

and 2010 to the present day, with a plateau from 2003 to

2010 (Fig. 2B, C). Algorithms aimed at LBP detection were

the first to emerge in the late 1990s and into the 2000s,

making up a majority of articles from 1988-2003. However,

the second period of expansion from 2010 to present day

has included algorithms with several unique applications in

LBP such as predicting proper patient triage or intervention,

or even future development or worsening of LBP. However,

a large portion of these algorithms have aimed at predicting

outcomes of LBP treatment such as patient mortality, pain
Downloaded for Anonymous User (n/a) at Duke University fr
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recurrence, medication use, or hospital admission and read-

mission.

ML algorithms in LBP

Neural networks are the most commonly reported ML

method among the included articles and were utilized in

47.5% of all articles (Fig. 3A, B). They were also the first

to emerge at the beginning of the 1990s. They have since

continued to grow in use but have been followed by other

simpler algorithms including logistic regression (24.7%),

support vector machine (25.1%), and random forest

(22.9%), all of which have grown in use since 2015.

Common model inputs and outputs

All early studies used nonimaging data as model inputs,

including pertinent patient history, demographics, and labo-

ratory values (Fig. 4C). However, imaging data began to

appear in models in the early 2010s, with MRI leading all

other imaging data inputs (Fig. 4A). At present, 41.7% of

all studies include some imaging data as an input. In recent

years, other types of non-imaging data have made their way

into the literature including kinematic and posture data.

The most common output predicted in the included stud-

ies was the presence of low back pain itself (29.6%,

Table 1). This was followed by the prediction of imaging

abnormality (26.0%), and the possibility for recurring LBP

after treatment (15.2%).

Machine learning types and best-practices

The overwhelming majority of studies, (96.0%) utilized

supervised learning, with only 17 total studies reporting use

of unsupervised learning techniques (Fig. 5). Of the super-

vised learning articles, 168 (79%) clearly implemented a

split training/testing protocol, with 116 (52%) utilizing

cross-validation to minimize the risk of overfitting. A total

of 46 studies implemented hyperparameter optimization

techniques to ensure peak model performance. Thirty

articles reported model discrimination data, with 16 report-

ing on model calibration. Very few models shared in these

studies were also publicly available via Github or other

knowledge-sharing platform (9/223), and only eight models

were externally validated.

Trends in model use across stage, inputs, outputs, and

practices

Various trends are observed when cross-tabulating ML

model type with various article features. As seen in

Fig. 6A, detection of LBP was most performed using neural

networks, whereas outcome prediction was most frequently

performed using logistic regression models. Most imaging

analysis was performed with neural networks, especially

with MRI data (Fig. 6B). However, manually extracted data

was more evenly distributed across ML methodologies. The

same is true for nonimaging data which was an input for a
om ClinicalKey.com by Elsevier on October 30, 2024. 
Copyright ©2024. Elsevier Inc. All rights reserved.
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wide range of models (Fig. 6C). Outputs were dispersed

across all model types, and ML best practices were distrib-

uted across all models (Fig. 6D−E).

Discussion

In this scoping review, we share data on the stage,

inputs, outputs, methods, and availability of machine learn-

ing tools built for the diagnosis, management, and care of

patients with LBP.

Machine learning is growing exponentially in the low back

pain literature

The use of ML in the LBP literature is rising rapidly.

This rise can be subdivided into three domains: slow growth

from 1988 to 2003, a plateau from 2003 to 2010, and expo-

nential expansion from 2010 to the present day. This trend
Downloaded for Anonymous User (n/a) at Duke University fro
For personal use only. No other uses without permission. C
can be explained by the recent democratization of machine

learning and high-performance computing, the expanding

use of electronic health records, and the rising popularity of

machine learning within the public domain as well as in the

research of academics across the medical space.

The first papers in this review were released in the 1980s

and 90s, included fewer than 400 datapoints, and all but

one article utilized neural networks [51−58]. At that time,

all data were manually tabulated from written records and

computing resources were incredibly limited and inflexible.

The challenges inherent in data collection and model devel-

opment at that time also limited model utility: a tool requir-

ing a custom computer would not have been practical, nor

would it have been feasible in the clinical setting regardless

of its predictive ability.

Since the 1990s, several free and open tools have

emerged allowing the implementation of ML by nearly
m ClinicalKey.com by Elsevier on October 30, 2024. 
opyright ©2024. Elsevier Inc. All rights reserved.



Fig. 2. Breakdown of publications and how their algorithms fit into a general framework of low back pain machine learning and treatment. (A) This is a con-

ceptualization of the path of an individual patient across time, and the various points where a machine learning algorithm could be applied (represented by

the various colored boxes). Patient time course is broken into four phases, “Before Onset” when a patient still does not have constant LBP but may have risk

factors, “Onset, Diagnosis” when a patient first has constant LBP but is not yet receiving treatment, “Management” when a patient first sees a provider and

undergoes some treatment whether that be pharmacologic, physiotherapeutic, or surgical, and “Re-Management” when a patient is continuing management

whether that is escalation or de-escalation of care. Each arrow within the “Re-Management” phase represents a different path a patient’s pain could take,

from significantly improving (green arrow) to significantly worsening (redarrow). (B) The breakdown of articles and their respective algorithms based on

their stage of intervention, and (C) the cumulative sum of these publications over time.
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Fig. 3. Breakdown of (A) the algorithms employed and their use over time, and (B) cumulatively.
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every individual with access to the internet and a modern

computer. Scikit-learn, one of the predominant Python

packages for machine learning, was first released in 2010

and provides easy implementation of hundreds of algo-

rithms including but not limited to neural networks [59].

The release of this package and other open-source tools

(which have freely available and modifiable source code)

may explain the rapid rise in publications seen around 2012

in Figs. 2B and 3A, as well as the emergence of non-neural-

network algorithms such as support vector machines and

random forest classifiers. In the later 2010s, other open-

source tools emerged allowing for more complex analysis,

including Tensorflow and Pytorch. Both packages are

intended for deep learning, a critical tool for image process-

ing involving the use of multi-layered (or “deep”) neural

networks [60,61]. The slightly delayed release of these tools

tracks with the similarly delayed growth of models using

imaging inputs, as shown in Fig. 4A. In the past few years,

several groups have worked to automate machine learn-

ing entirely, with specific applications in improving the

efficiency of diagnostic radiology and disease prediction

in the backend of electronic health record systems

[62,63]. Several large companies have also built interfa-

ces for no-code machine learning including Amazon

with SageMaker Canvas and Microsoft with Azure

[64,65]. While still early in their use, these tools have

seen application in varied scenarios including automated

aphasia assessment and modeling of drug mechanism of

action [66,67].
Downloaded for Anonymous User (n/a) at Duke University fro
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In addition to improved access to ML tools, recent

growth in ML in LBP is also likely a result of expand-

ing use of electronic health record (EHR) systems, espe-

cially at academic and university hospitals. The

Medicare and Medicaid EHR Incentive Programs was

introduced in 2011 to increase the utilization of EHR

systems across the country [68,69]. As a result, the per-

cent of US hospitals utilizing EHR systems jumped

from 59% in 2013 to 97% in 2014, and has remained at

96% since then [70]. This may have accelerated the

expansion of ML literature in LBP seen beginning in

2015. The next step in this expansion is the integration

of ML into electronic health records systems. Recent

work by Jiang and Oermann has shown the immense

power of health system-scale machine learning. Specifi-

cally, they trained and tested language models on

unstructured clinical note data from their EHR and were

able to successfully predict various important patient

outcomes including in-hospital mortality, 30-day read-

mission, and even insurance denial [71].

Another key reason for the exponential growth of ML in

LBP since 2010 is the increased popularity of ML in the sci-

entific community. According to a review by Pugliese et al.

[72] the use of ML in publications has grown exponentially

across nearly every domain from medicine to law to cyber-

security. Several journals have even created new sub-jour-

nals or divisions for machine learning, including New

England Journal of Medicine - Artificial Intelligence,

Nature Machine Intelligence, and more [73]. This
m ClinicalKey.com by Elsevier on October 30, 2024. 
opyright ©2024. Elsevier Inc. All rights reserved.



Fig. 4. Illustration of (A) yearly and (B) cumulative counts of publications using imaging inputs, as well as (C) yearly and (D) cumulative counts of publica-

tions using other types of inputs including patient history, lab values, etc.
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simultaneous expansion in supply of and demand for ML

literature is a likely precursor to continued exponential

growth [74]. It also underscores the need for expansion in

regulation and review of these ML applications, as well as

the development of systems for clinical integration and pro-

spective validation [75−78].
Downloaded for Anonymous User (n/a) at Duke University fr
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We need more work in integrative low back pain machine

learning and triage

Many of the articles and models included in this review

assess a single element or outcome in a patient’s LBP man-

agement path (Fig. 1A). Examples include models that

diagnose LBP from MRI images or predict postoperative
om ClinicalKey.com by Elsevier on October 30, 2024. 
Copyright ©2024. Elsevier Inc. All rights reserved.



Table 1

Most common model outputs amongst all articles

Model outputs

LBP* Presence 66 (29.6%)

Imaging abnormality 58 (26.0%)

LBP recurrence 34 (15.2%)

PROMs2y 19 (8.5%)

General Complications 18 (8.1%)

LBP Severity 17 (7.6%)

Risk of developing LBP 14 (6.3%)

Need for Surgery 13 (5.8%)

LBP Diagnosis/Cause 13 (5.8%)

Patient satisfaction 10 (4.5%)

Therapy to use 7 (3.1%)

Segmentation 6 (2.7%)

Readmission 6 (2.7%)

Length of Stay 5 (2.2%)

Reoperation 2 (0.9%)

Need for physical therapy 1 (0.4%)

Patient Mortality 1 (0.4%)

Other 6 (2.7%)

Total # Articles 223

* Low Back Pain.
y Patient Reported Outcome Measures.
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outcomes based on patient weight [79,80]. However, only six

models (2.7%) were built to aid in patient triage or integra-

tive care across medical and surgical specialties (Fig. 1C)

[81−86]. Furthermore, a majority of outcome-prediction

models studied outcomes only after surgical interventions.

The few articles which explored patient outcomes after reha-

bilitation-based interventions predicted outcomes such as

pain reduction or change in patient reported outcomes after

epidural injections, consistent physiotherapy, and other non-

surgical interventions [87−89]. The management of LBP is

becoming more complex and more integrative, with spine

centers hiring surgeons, pain physicians, physical therapists,
Fig. 5. Breakdown of the prevalence of ML learning ty
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and chiropractors to care for various patient needs [26,90].

This complexity, combined with the aforementioned paucity

of research on rehabilitation-based interventions outlines the

need for more ML research to understand the wider spectrum

of care, developing tools to aid in triage and identification of

effective non-surgical treatment modalities, as done by Nije-

weme-d’Hollosy, Purohit, Knoop, and others in the literature

[85−87].
There is a need for code sharing, external validation and

prospective implementation

While machine learning has exploded in the LBP litera-

ture, many models don’t implement machine learning best-

practices. Approximately one of every five articles imple-

menting supervised learning in this study did not report

splitting their data into a training and testing set. This is a

critical step in the development of any predictive model, as

it allows for unbiased assessment of performance against

data not used in its development [91]. Nearly half of the

supervised learning models did not include cross-validation,

another important step in model development chiefly aimed

to prevent overfitting to the test dataset [91]. Only 46 of all

included articles mentioned hyperparameter optimization, a

practice which ensures that models provide the best possi-

ble prediction.

Of all 223 articles, only nine provided the code used

to generate their results. This paucity of open code shar-

ing is unfortunately unsurprising: Hamilton et al. [92]

report both the declared and actual availability of data

and code in the medical literature at less than 0.5%.

This low availability of data holds true even in the radi-

ology artificial intelligence literature, an area of medi-

cine that sports multiple links with the computer science

realm through the Brain Tumor Segmentation Challenge

(BraTS) and the Abdominal Trauma Detection AI
pes and best practices across all 223 manuscripts.

m ClinicalKey.com by Elsevier on October 30, 2024. 
opyright ©2024. Elsevier Inc. All rights reserved.
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Challenge to name a few [93−95]. The low availability

of code is likely related to the corresponding low num-

ber of studies with external validation found in the LBP

ML literature (8 total). It is important to note that
Downloaded for Anonymous User (n/a) at Duke University fr
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privacy concerns may play a role in the lack of data

availability and code sharing, both with regards to

ensuring patient confidentiality and protecting the intel-

lectual property of industry partners.
om ClinicalKey.com by Elsevier on October 30, 2024. 
Copyright ©2024. Elsevier Inc. All rights reserved.
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The observed variability in ML practices and lack of

code availability point underscore the need for scientists,

clinicians, and publishers alike to adopt guidelines for

reporting machine learning research in LBP and other clini-

cal areas. To this end, several reporting guidelines have

been established for development and validation of ML

tools, and clinical trials involving ML [76,77,96].

Future directions

Despite the proliferation of ML based research aiding

the diagnosis and treatment of low back pain, few models

are ever deployed into clinical practice. This conspicuous

gap in development and implementation is not isolated to

lower back pain but prevalent across the spectrum of AI in

healthcare. The transition from machine learning research

to clinical integration, is fraught with challenges beyond

model development, including the need for specialized

expertise in data infrastructure, software engineering, and

ethical considerations that become exceedingly important

when ML influences real-time clinical decisions.

Limitations

This study has several limitations, including the use of

modern terminology for machine learning. As with any

fast-paced field, the terminology surrounding ML changes

rapidly, and the names of several tools have changed with

time. For example, what we now call “deep neural

networks” were originally called “multilayer perceptrons”,

and this shifting terminology may have contributed to

articles not being included in review. However, most mod-

ern search engines including those searched in this review

include key terms and labels which are constantly updated

to include both past and present names of similar/identical

search terms. Another limitation in this work is the fact that

data are only included to April 1st, 2023. Given the expo-

nential growth of this field, a significant number of addi-

tional articles may have been added since the initial search

was performed. We did not extract data regarding whether

ML models were trained on socioeconomic or psychosocial

factors, and this is an area for future exploration. Finally,

we assume that if ML best-practices were used in the devel-

opment of models, they were reported within the text of

each article. However, this is an imperfect assumption, as

some practices including cross validation, hyperparameter

optimization, and calibration are either automatically

implemented, or not reported in the clinical literature.

Conclusion

Machine learning is a continually growing element of

the low back pain literature and medicine at large and has

expanded with the democratization of ML techniques. Its

applications to date have focused on detection of LBP and

prediction of outcomes of surgical interventions, but few

models have been built to assess the impact of nonsurgical
Downloaded for Anonymous User (n/a) at Duke University fro
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or integrative care for LBP. Few studies utilize standard

ML best-practices including train/test splitting, cross-vali-

dation, and hyperparameter optimization. Fewer than ten

studies to date have shared their code and methods openly

with the scientific community. Future work in the applica-

tion of ML to LBP care must expand to include elements

across the spectrum of guideline-concordant care and be

shared openly to promote external validation and efficient

implementation in clinical practice.
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