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Abstract

FDA device/drug status: Not applicable.

BACKGROUND CONTEXT: Low back pain (LBP) remains the leading cause of disability glob-
ally. In recent years, machine learning (ML) has emerged as a potentially useful tool to aid the
diagnosis, management, and prognostication of LBP.

PURPOSE: In this review, we assess the scope of ML applications in the LBP literature and out-
line gaps and opportunities.

STUDY DESIGN/SETTING: A scoping review was performed in accordance with the Preferred
Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews
(PRISMA-ScR) guidelines.

METHODS: Articles were extracted from the Web of Science, Scopus, PubMed, and IEEE Xplore
databases. Title/abstract and full-text screening was performed by two reviewers. Data on model
type, model inputs, predicted outcomes, and ML methods were collected.

RESULTS: In total, 223 unique studies published between 1988 and 2023 were identified, with
just over 50% focused on low-back-pain detection. Neural networks were used in 106 of these
articles. Common inputs included patient history, demographics, and lab values (67% total).
Articles published after 2010 were also likely to incorporate imaging data into their models (41.7%
of articles). Of the 212 supervised learning articles identified, 168 (79.4%) mentioned use of a
training or testing dataset, 116 (54.7%) utilized cross-validation, and 46 (21.7%) implemented
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hyperparameter optimization. Of all articles, only 8 included external validation and 9 had publicly

available code.

CONCLUSIONS: Despite the rapid application of ML in LBP research, a majority of articles do
not follow standard ML best practices. Furthermore, over 95% of articles cannot be reproduced or
authenticated due to lack of code availability. Increased collaboration and code sharing are needed
to support future growth and implementation of ML in the care of patients with LBP. © 2024
Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and simi-

lar technologies.
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Introduction

Low back pain (LBP) remains the leading cause of years
lived with disability (YLDs) globally [1]. Despite advances
in diagnostic and therapeutic technology, the burden of
LBP continues to grow at an alarming rate, with a 60%
increase in cases from 1990 to 2020 [1,2]. The global finan-
cial impact of LBP is estimated between $50 and $100 bil-
lion USD per annum. In 2016 alone, low back pain and
neck pain were identified as the largest direct healthcare
costs in the US [3]. The combined high cost and widespread
burden of disability make efficient diagnosis and manage-
ment of LBP a priority for patients, health systems and
practitioners worldwide [4,5].

The presentation of LBP can vary significantly between
patients [6]. There are also many diverse treatment modali-
ties for LBP, ranging from conservative nonsurgical inter-
ventions such as physical therapy and chiropractic
management, to pharmacologic-based therapies, to physiat-
ric or surgical interventions [7—10]. This complexity makes
identifying and implementing the right treatment regimen
exceedingly challenging [11]. Additional compounding fac-
tors affecting patient care include socioeconomic and psy-
chosocial variables, as well as the relatively low rate of
guideline concordant care within LBP [12—14].

The complexity of LBP care is exacerbated by several
important factors. First, the traditional biomedical approach
to managing LBP does not align well with the more com-
prehensive biopsychosocial model of pain [15—17]. In the
latter more updated approach, patient pain is considered in
the context of factors beyond biomechanics and neurologic
change, such as patient social and cultural background, and
psychologic state [18]. Second, there is a significant gap
between common treatment approaches and guideline-con-
cordant care [15,19]. Recent guidelines from the American
College of Physicians (ACP) recommend that patients with
LBP progress systematically through therapies from least-
to most-invasive [15]. By this logic, a vast minority of
patients would require prescription of opioids, with surgical
intervention reserved for those patients with severe, unre-
mitting pain recalcitrant to conservative therapy and those
who exhibit red flag signs: incontinence, anesthesia in the
groin area, and rapidly progressing neurologic deficits.
Despite this, inappropriate outpatient referrals and inpatient
consultations to surgical services are abundant, with over

80% of referrals deemed inappropriate in a recent study
[20]. This mismanagement of patient care poses a signifi-
cant financial burden to health systems globally [21—25].
One of the potential contributors to this guideline-discor-
dance is lack of awareness of these guidelines on the part of
patients and physicians [26].

Machine learning (ML) has emerged in recent years as a
tool to assist in answering complex questions. As such it
has seen application in the diagnosis, management, and
prognostication of a variety of musculoskeletal and neuro-
surgical pathologies [27—30]. ML algorithms can capture
complex, nonlinear relationships in data, making them ideal
to help in challenging clinical scenarios such as LBP care.
However, these same characteristics make ML tools chal-
lenging to develop and integrate into every-day use. The
objective of this study is to evaluate the state of ML appli-
cations in the care of patients with LBP and propose future
directions for ML-guided integrative LBP care.

Methods

Article identification

A scoping review was performed to clarify the breadth of
research publications utilizing machine learning in the eval-
uation and/or clinical management of low back pain. This
was performed in accordance with the Preferred Reporting
Items for Systematic reviews and Meta-Analyses extension
for Scoping Reviews (PRISMA-ScR) checklist, which can
be found in Appendix A [31]. The review was registered on
Open Science Framework (doi redacted for anonymity).
A comprehensive search strategy was created with our
research librarian team members (EB) to include terms
related to low back pain and machine learning
(Appendix B). These terms were searched on the Pubmed,
Embase, Web of Science, and IEE XPlore databases on
April st of 2023, and metadata of all resulting articles until
that date were retrieved. Only English language articles
were reviewed. No date restrictions were applied. These
articles were imported into Covidence Extraction 2.0 sys-
tematic review software (Veritas Health Innovation, Mel-
bourne, Australia). Duplicate articles were removed
through automated filtration within Covidence followed by
manual identification. In total, 2282 non-duplicate citations
were screened.
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Article screening

Screening was performed in two stages: title/abstract
screening followed by full text screening. In both stages,
reviewers assessed article adherence to pre-specified inclu-
sion and exclusion criteria, as given in Appendix C. Screen-
ing was performed independently by two members of the
review team (AS, TZ). Conflicts between reviewers were
subsequently resolved by a third independent team member
(DS). Inter-rater reliability was assessed via calculation of a
Cohen’s Kappa score for both the title/abstract screening
stage and the full-text screening stage. A standard error was
also computed at each stage and used to compute a 95%
confidence interval for each Cohen’s Kappa score.

Data extraction, analysis, and processing

Two independent reviewers collected several data ele-
ments from each publication. Articles and their correspond-
ing algorithms were first placed into one or more “stages”
of LBP management or intervention. Articles categorized
as “Risk Prediction” aimed to predict future incidence of
LBP in patients without a current diagnosis of LBP. The
“Detection” category included algorithms aimed at detect-
ing LBP in patients with an existing diagnosis, perhaps
through imaging or clinical characteristics. Algorithms
classified as “Characterization” focused on subclassifying
or stratifying LBP, and included tools meant to further our
understanding its pathophysiology. “Triage” algorithms
used imaging or other data to predict patient nonsurgical
referrals/appointments, while “Intervention” algorithms
predicted surgical treatment. “Outcome Prediction” algo-
rithms were those built to predict patient outcomes from a
specific intervention whether that be surgical or non-surgi-
cal. These include but are not limited to post-treatment mor-
tality, LBP severity, readmission, and pain recurrence.

Each included article built or tested at least one ML
algorithm, broadly defined here as any mathematical formu-
lation that uses past data to predict a future event (with the
exception of rules-based systems) [32]. Linear regression
models assume a linear relationship between a set of input
predictors and a continuous output. An example of a contin-
uous output to predict for a LBP patient could be length of
stay after surgery or LBP severity [33]. Logistic regression
models are like linear regression models except their output
is the probability of a binary outcome, such as whether a
patient will be readmitted within 30 days of a lumbar fusion
or have a postoperative complication [34]. Decision tree
models are flowchart-like models where each node repre-
sents a feature, each branch represents a decision, and each
leaf represents an outcome [35]. Random forests are built
by creating several decision trees from the same data and
combining their predictions [36]. Extreme Gradient Boost-
ing (XGBoost) algorithms involve building multiple deci-
sion trees one after the other, where each tree “corrects” the
errors of its “ancestors” rather than averaging across all
trees like in the random forest model [37]. Support vector

machines (SVMs) take input data and find the best bound-
ary (also called a “hyperplane”) that separates one group of
data from another [38]. Naive-Bayes models use the proba-
bility of each model input being associated with an outcome
to make predictions with all the model inputs together [39].
Clustering models group similar datapoints together in an
unsupervised approach, without knowledge of whether
these groupings are relevant or meaningful [40]. They can
be used to explore data and even segment radiologic
images. K-Nearest Neighbors models make predictions
from model inputs based off results from neighboring data-
points, here meaning similar scans or similar patients [41].
Natural Language Processing (NLP) is a larger subfield of
the ML world referring to the use of algorithms to process
and analyze raw text [42]. In this review, we specifically
classified articles as using NLP if they used raw text to
make predictions relevant to LBP care, and we did not
include algorithms that used NLP to simply extract data.
Finally, neural networks are some of the most common ML
algorithms and are modeled after the human brain. They
consist of layers of interconnected ‘“neurons” connected
through linear or nonlinear “axons” with adjustable weights
[43].

All the ML algorithms noted above require input of data.
Various types of data inputs were recorded from each arti-
cle type, mainly grouped into imaging and nonimaging
inputs. Imaging data inputs included Magnetic Resonance
Imaging (MRI) scans, Computed Tomography (CT) scans,
X-rays, functional MRI (fMRI), or other imaging inputs.
We also noted if raw imaging report text was used as a
model input, or if specific data were manually extracted
from images, such as spinopelvic parameters. Nonimaging
data included patient demographics, lab values and history,
as well as posture and balance data or kinematic data from
movement.

Model outputs were also recorded. These included
binary data such as risk of developing LBP in the future,
present LBP, LBP recurrence, imaging abnormality, com-
plications after intervention, need for surgery, need for
physical therapy, recommendation of a specific therapy,
readmission, reoperation, and mortality. Continuous outputs
included patient reported outcome measures (PROMs),
LBP severity, patient satisfaction, and length of stay. Imag-
ing segmentation was the only recorded output that is nei-
ther binary nor continuous.

Various model characteristics and best practices were
recorded for each algorithm [44]. We recorded first whether
models were supervised or unsupervised: supervised mod-
els are built using data with labeled outputs (like the y-
value in a linear regression), while unsupervised models are
trained without guidance on what the output should be. It
was also noted whether data were split into a training and a
testing set which don’t share data, a common practice in
ML model development. Models are built using the training
dataset, and their performance is assessed on the testing
data. This prevents model overfitting, a phenomenon where
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a model learns to predict noise rather than relevant signal,
and doesn’t generalize well to new, unseen data. Cross vali-
dation is another common method to prevent overfitting
which was assessed in our extraction. It involves training
and testing a model iteratively on different subsets of the
same dataset to see how well it generalizes to unseen data
[45]. We also assessed how many models implemented
hyperparameter optimization techniques, where different
model architectures are tested to identify which one(s)
work best to predict a specific output [46]. An example of
this would include training several different neural net-
works to predict hospital readmission on a dataset, each net-
work with a different number of neurons, and picking the
best network from the bunch. After collecting all these
data, we assessed whether any of these models were exter-
nally validated on a unique set of data outside of a train-test
split, such as data from a different hospital. We finally iden-
tified whether code was made available for any of these
articles on Github or other similar code-sharing platforms.
Once raw article data were collected and cleaned, they
were analyzed within Python 3.9.18 using numpy 1.22.3,
pandas 1.4.2, matplotlib 3.5.1, and seaborn 0.12.2 [47—50].

Results

Of the 2,282 unique studies extracted, 346 met inclusion
and exclusion criteria on title/abstract screening (Cohen’s
Kappa = 0.706, 95% confidence interval from 0.666 to
0.746). Of these, 123 were removed in full-text review due
to violation of inclusion and exclusion criteria, leaving 223
studies as illustrated in Fig. 1 (Cohen’s Kappa=0.337, 95%
confidence interval from 0.239 to 0.435).

Applications of ML in LBP

The studies included in this review described applica-
tions of machine learning at every stage of low back pain
management from predicting a patient’s risk of developing
LBP, to predicting the outcome of intervention for chronic
LBP (Fig. 2A). A majority of studies focused on the detec-
tion of LBP (52%), followed by outcome prediction
(24.7%) and disease characterization (8.1%). Only six
articles attempted to triage patients to different types of
therapeutic approaches for their pain.

There are two periods of rapid expansion in this research
topic, and the time periods of articles included 1988-2003,
and 2010 to the present day, with a plateau from 2003 to
2010 (Fig. 2B, C). Algorithms aimed at LBP detection were
the first to emerge in the late 1990s and into the 2000s,
making up a majority of articles from 1988-2003. However,
the second period of expansion from 2010 to present day
has included algorithms with several unique applications in
LBP such as predicting proper patient triage or intervention,
or even future development or worsening of LBP. However,
a large portion of these algorithms have aimed at predicting
outcomes of LBP treatment such as patient mortality, pain

recurrence, medication use, or hospital admission and read-
mission.

ML algorithms in LBP

Neural networks are the most commonly reported ML
method among the included articles and were utilized in
47.5% of all articles (Fig. 3A, B). They were also the first
to emerge at the beginning of the 1990s. They have since
continued to grow in use but have been followed by other
simpler algorithms including logistic regression (24.7%),
support vector machine (25.1%), and random forest
(22.9%), all of which have grown in use since 2015.

Common model inputs and outputs

All early studies used nonimaging data as model inputs,
including pertinent patient history, demographics, and labo-
ratory values (Fig. 4C). However, imaging data began to
appear in models in the early 2010s, with MRI leading all
other imaging data inputs (Fig. 4A). At present, 41.7% of
all studies include some imaging data as an input. In recent
years, other types of non-imaging data have made their way
into the literature including kinematic and posture data.

The most common output predicted in the included stud-
ies was the presence of low back pain itself (29.6%,
Table 1). This was followed by the prediction of imaging
abnormality (26.0%), and the possibility for recurring LBP
after treatment (15.2%).

Machine learning types and best-practices

The overwhelming majority of studies, (96.0%) utilized
supervised learning, with only 17 total studies reporting use
of unsupervised learning techniques (Fig. 5). Of the super-
vised learning articles, 168 (79%) clearly implemented a
split training/testing protocol, with 116 (52%) utilizing
cross-validation to minimize the risk of overfitting. A total
of 46 studies implemented hyperparameter optimization
techniques to ensure peak model performance. Thirty
articles reported model discrimination data, with 16 report-
ing on model calibration. Very few models shared in these
studies were also publicly available via Github or other
knowledge-sharing platform (9/223), and only eight models
were externally validated.

Trends in model use across stage, inputs, outputs, and
practices

Various trends are observed when cross-tabulating ML
model type with various article features. As seen in
Fig. 6A, detection of LBP was most performed using neural
networks, whereas outcome prediction was most frequently
performed using logistic regression models. Most imaging
analysis was performed with neural networks, especially
with MRI data (Fig. 6B). However, manually extracted data
was more evenly distributed across ML methodologies. The
same is true for nonimaging data which was an input for a
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Fig. 1. Consort diagram illustrating the process for article collection, screening, and final inclusion.

wide range of models (Fig. 6C). Outputs were dispersed
across all model types, and ML best practices were distrib-
uted across all models (Fig. 6D—E).

Discussion

In this scoping review, we share data on the stage,
inputs, outputs, methods, and availability of machine learn-
ing tools built for the diagnosis, management, and care of
patients with LBP.

Machine learning is growing exponentially in the low back
pain literature

The use of ML in the LBP literature is rising rapidly.
This rise can be subdivided into three domains: slow growth
from 1988 to 2003, a plateau from 2003 to 2010, and expo-
nential expansion from 2010 to the present day. This trend

can be explained by the recent democratization of machine
learning and high-performance computing, the expanding
use of electronic health records, and the rising popularity of
machine learning within the public domain as well as in the
research of academics across the medical space.

The first papers in this review were released in the 1980s
and 90s, included fewer than 400 datapoints, and all but
one article utilized neural networks [51—58]. At that time,
all data were manually tabulated from written records and
computing resources were incredibly limited and inflexible.
The challenges inherent in data collection and model devel-
opment at that time also limited model utility: a tool requir-
ing a custom computer would not have been practical, nor
would it have been feasible in the clinical setting regardless
of its predictive ability.

Since the 1990s, several free and open tools have
emerged allowing the implementation of ML by nearly
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Fig. 2. Breakdown of publications and how their algorithms fit into a general framework of low back pain machine learning and treatment. (A) This is a con-
ceptualization of the path of an individual patient across time, and the various points where a machine learning algorithm could be applied (represented by
the various colored boxes). Patient time course is broken into four phases, “Before Onset” when a patient still does not have constant LBP but may have risk
factors, “Onset, Diagnosis” when a patient first has constant LBP but is not yet receiving treatment, “Management” when a patient first sees a provider and
undergoes some treatment whether that be pharmacologic, physiotherapeutic, or surgical, and “Re-Management” when a patient is continuing management
whether that is escalation or de-escalation of care. Each arrow within the “Re-Management” phase represents a different path a patient’s pain could take,
from significantly improving (green arrow) to significantly worsening (redarrow). (B) The breakdown of articles and their respective algorithms based on
their stage of intervention, and (C) the cumulative sum of these publications over time.
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every individual with access to the internet and a modern
computer. Scikit-learn, one of the predominant Python
packages for machine learning, was first released in 2010
and provides easy implementation of hundreds of algo-
rithms including but not limited to neural networks [59].
The release of this package and other open-source tools
(which have freely available and modifiable source code)
may explain the rapid rise in publications seen around 2012
in Figs. 2B and 3A, as well as the emergence of non-neural-
network algorithms such as support vector machines and
random forest classifiers. In the later 2010s, other open-
source tools emerged allowing for more complex analysis,
including Tensorflow and Pytorch. Both packages are
intended for deep learning, a critical tool for image process-
ing involving the use of multi-layered (or “deep”) neural
networks [60,61]. The slightly delayed release of these tools
tracks with the similarly delayed growth of models using
imaging inputs, as shown in Fig. 4A. In the past few years,
several groups have worked to automate machine learn-
ing entirely, with specific applications in improving the
efficiency of diagnostic radiology and disease prediction
in the backend of electronic health record systems
[62,63]. Several large companies have also built interfa-
ces for no-code machine learning including Amazon
with SageMaker Canvas and Microsoft with Azure
[64,65]. While still early in their use, these tools have
seen application in varied scenarios including automated
aphasia assessment and modeling of drug mechanism of
action [66,67].

In addition to improved access to ML tools, recent
growth in ML in LBP is also likely a result of expand-
ing use of electronic health record (EHR) systems, espe-
cially at academic and university hospitals. The
Medicare and Medicaid EHR Incentive Programs was
introduced in 2011 to increase the utilization of EHR
systems across the country [68,69]. As a result, the per-
cent of US hospitals utilizing EHR systems jumped
from 59% in 2013 to 97% in 2014, and has remained at
96% since then [70]. This may have accelerated the
expansion of ML literature in LBP seen beginning in
2015. The next step in this expansion is the integration
of ML into electronic health records systems. Recent
work by Jiang and Oermann has shown the immense
power of health system-scale machine learning. Specifi-
cally, they trained and tested language models on
unstructured clinical note data from their EHR and were
able to successfully predict various important patient
outcomes including in-hospital mortality, 30-day read-
mission, and even insurance denial [71].

Another key reason for the exponential growth of ML in
LBP since 2010 is the increased popularity of ML in the sci-
entific community. According to a review by Pugliese et al.
[72] the use of ML in publications has grown exponentially
across nearly every domain from medicine to law to cyber-
security. Several journals have even created new sub-jour-
nals or divisions for machine learning, including New
England Journal of Medicine - Artificial Intelligence,
Nature Machine Intelligence, and more [73]. This
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Fig. 4. Illustration of (A) yearly and (B) cumulative counts of publications using imaging inputs, as well as (C) yearly and (D) cumulative counts of publica-

tions using other types of inputs including patient history, lab values, etc.

simultaneous expansion in supply of and demand for ML
literature is a likely precursor to continued exponential
growth [74]. It also underscores the need for expansion in
regulation and review of these ML applications, as well as
the development of systems for clinical integration and pro-
spective validation [75—78].

We need more work in integrative low back pain machine
learning and triage

Many of the articles and models included in this review
assess a single element or outcome in a patient’s LBP man-
agement path (Fig. 1A). Examples include models that
diagnose LBP from MRI images or predict postoperative
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Table 1
Most common model outputs amongst all articles

Model outputs

LBP* Presence 66 (29.6%)
Imaging abnormality 58 (26.0%)
LBP recurrence 34 (15.2%)
PROMs2' 19 (8.5%)
General Complications 18 (8.1%)
LBP Severity 17 (7.6%)
Risk of developing LBP 14 (6.3%)
Need for Surgery 13 (5.8%)
LBP Diagnosis/Cause 13 (5.8%)
Patient satisfaction 10 (4.5%)
Therapy to use 7 (3.1%)
Segmentation 6 (2.7%)
Readmission 6 (2.7%)
Length of Stay 5(2.2%)
Reoperation 2 (0.9%)
Need for physical therapy 1 (0.4%)
Patient Mortality 1 (0.4%)
Other 6 (2.7%)
Total # Articles 223

* Low Back Pain.
T Patient Reported Outcome Measures.

outcomes based on patient weight [79,80]. However, only six
models (2.7%) were built to aid in patient triage or integra-
tive care across medical and surgical specialties (Fig. 1C)
[81—86]. Furthermore, a majority of outcome-prediction
models studied outcomes only after surgical interventions.
The few articles which explored patient outcomes after reha-
bilitation-based interventions predicted outcomes such as
pain reduction or change in patient reported outcomes after
epidural injections, consistent physiotherapy, and other non-
surgical interventions [87—89]. The management of LBP is
becoming more complex and more integrative, with spine
centers hiring surgeons, pain physicians, physical therapists,

and chiropractors to care for various patient needs [26,90].
This complexity, combined with the aforementioned paucity
of research on rehabilitation-based interventions outlines the
need for more ML research to understand the wider spectrum
of care, developing tools to aid in triage and identification of
effective non-surgical treatment modalities, as done by Nije-
weme-d’Hollosy, Purohit, Knoop, and others in the literature
[85—87].

There is a need for code sharing, external validation and
prospective implementation

While machine learning has exploded in the LBP litera-
ture, many models don’t implement machine learning best-
practices. Approximately one of every five articles imple-
menting supervised learning in this study did not report
splitting their data into a training and testing set. This is a
critical step in the development of any predictive model, as
it allows for unbiased assessment of performance against
data not used in its development [91]. Nearly half of the
supervised learning models did not include cross-validation,
another important step in model development chiefly aimed
to prevent overfitting to the test dataset [91]. Only 46 of all
included articles mentioned hyperparameter optimization, a
practice which ensures that models provide the best possi-
ble prediction.

Of all 223 articles, only nine provided the code used
to generate their results. This paucity of open code shar-
ing is unfortunately unsurprising: Hamilton et al. [92]
report both the declared and actual availability of data
and code in the medical literature at less than 0.5%.
This low availability of data holds true even in the radi-
ology artificial intelligence literature, an area of medi-
cine that sports multiple links with the computer science
realm through the Brain Tumor Segmentation Challenge
(BraTS) and the Abdominal Trauma Detection Al

Supervised Learning -

214

Unsupervised
Learning

Train/Test

Cross Validation

Hyperparameter
Optimization

Code Available

External Validation

168

0 50

100 150 200

Number of Publications

Fig. 5. Breakdown of the prevalence of ML learning types and best practices across all 223 manuscripts.
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Challenge to name a few [93—95]. The low availability privacy concerns may play a role in the lack of data
of code is likely related to the corresponding low num- availability and code sharing, both with regards to
ber of studies with external validation found in the LBP ensuring patient confidentiality and protecting the intel-
ML literature (8 total). It is important to note that lectual property of industry partners.
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The observed variability in ML practices and lack of
code availability point underscore the need for scientists,
clinicians, and publishers alike to adopt guidelines for
reporting machine learning research in LBP and other clini-
cal areas. To this end, several reporting guidelines have
been established for development and validation of ML
tools, and clinical trials involving ML [76,77,96].

Future directions

Despite the proliferation of ML based research aiding
the diagnosis and treatment of low back pain, few models
are ever deployed into clinical practice. This conspicuous
gap in development and implementation is not isolated to
lower back pain but prevalent across the spectrum of Al in
healthcare. The transition from machine learning research
to clinical integration, is fraught with challenges beyond
model development, including the need for specialized
expertise in data infrastructure, software engineering, and
ethical considerations that become exceedingly important
when ML influences real-time clinical decisions.

Limitations

This study has several limitations, including the use of
modern terminology for machine learning. As with any
fast-paced field, the terminology surrounding ML changes
rapidly, and the names of several tools have changed with
time. For example, what we now call “deep neural
networks” were originally called “multilayer perceptrons”,
and this shifting terminology may have contributed to
articles not being included in review. However, most mod-
ern search engines including those searched in this review
include key terms and labels which are constantly updated
to include both past and present names of similar/identical
search terms. Another limitation in this work is the fact that
data are only included to April 1st, 2023. Given the expo-
nential growth of this field, a significant number of addi-
tional articles may have been added since the initial search
was performed. We did not extract data regarding whether
ML models were trained on socioeconomic or psychosocial
factors, and this is an area for future exploration. Finally,
we assume that if ML best-practices were used in the devel-
opment of models, they were reported within the text of
each article. However, this is an imperfect assumption, as
some practices including cross validation, hyperparameter
optimization, and calibration are either automatically
implemented, or not reported in the clinical literature.

Conclusion

Machine learning is a continually growing element of
the low back pain literature and medicine at large and has
expanded with the democratization of ML techniques. Its
applications to date have focused on detection of LBP and
prediction of outcomes of surgical interventions, but few
models have been built to assess the impact of nonsurgical

or integrative care for LBP. Few studies utilize standard
ML best-practices including train/test splitting, cross-vali-
dation, and hyperparameter optimization. Fewer than ten
studies to date have shared their code and methods openly
with the scientific community. Future work in the applica-
tion of ML to LBP care must expand to include elements
across the spectrum of guideline-concordant care and be
shared openly to promote external validation and efficient
implementation in clinical practice.
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