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Abstract— Our earlier work developed a contention-resolving
model predictive control (or MPC) framework to optimally
schedule a single human operator’s attention to collaborate with
multiple robots. In this paper, we present a generalized design
that can allocate and schedule the limited human attention
in a multi-human and multi-robot collaborative system. We
establish a new analytical timing model for multi-resource
and multi-task real-time systems, where collaboration tasks
can be either preemptive or non-preemptive. Then we derive
the condition to predict the moments when contentions occur
among the collaboration requests to humans. The contention-
resolving MPC is triggered at contention moments to dynam-
ically schedule human attention and determine the robot with
which each human operator should collaborate. The optimal
schedule, which aims to maximize the overall robots perfor-
mance, is computed using an event-triggered and sampling-
based approach with a weighted decision tree. To further
improve computation efficiency, we present a new rule to merge
leaves and simplify the decision tree. This paper also introduces
a reset time for contention-resolving MPC, shortening the time
horizon to search the optimal solution and reduce computa-
tional requirements. The effectiveness of the proposed method
is verified through simulations.

I. INTRODUCTION

With the rapid progress of robotic technology, it can
be envisioned that humans will collaborate with robots in
the very near future in many scenarios [1], such as smart
manufacturing, underground mining, search and rescue, and
surveillance tasks. In those scenarios, robots can work for
long operation hours on repetitive tasks, providing consistent
and precise performance beyond human capability, while
human operators are better at intuitive decision making
and working with uncertainties. The multi-human multi-
robot (or MH-MR) collaboration then has the advantage
of combining the strength of both robots and humans and
becomes a promising setup for future work spaces. Research
on collaboration between humans and robots has gained a
lot of momentum [2]–[5]. However, when it is applied, one
constraint for humans is limited attention capacity. Psychol-
ogy studies [6], [7] has revealed that one human can only
efficiently pay attention to two to four items simultaneously.
Due to this limitation, each human should collaborate with
which subset of robots needs to be determined [8].

Given the variety of possible combinations of heteroge-
neous robots and the scale of MH-MR systems, developing
a generalized framework for human attention allocation is
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challenging [9]–[14]. A multi-level programming model was
proposed to allocate multiple robot and human agents to
maximize the effectiveness of the entire system with limited
resources [15]. Gombolay et al. [16] present a centralized
task assignment algorithm using a mixed-integer program
solver. In addition to human-robot allocation, properly sched-
ule human attention to better assist robots is another impor-
tant problem for MH-MR systems. Well-known scheduling
policies like rate monotonic scheduling (or RMS), which
schedules the system with the smallest period first, and
earliest deadline first (or EDF) [17], which schedules the
system with the most urgent deadline first, can be used
for multi-resource real-time systems. But these algorithms
are designed only for real-time scheduling purposes and are
optimal for minimizing the mean waiting time [18]. Other
scheduling strategies, such as first come first serve [19], the
shortest job first [20] and the highest trust first scheduling
[21] were proposed to ensure fairness, efficiency or maintain
trust level between humans and robots but cannot guarantee
optimal performance. There are fewer recent studies [22]–
[24] that use optimization-based methods to solve scheduling
problems in human and robot collaboration. However, these
existing methods rely on optimization solvers or genetic
algorithms to obtain the optimal solution, which results
in difficulties for real-time computing when considering a
relatively large number of collaboration tasks or repeating
collaboration requirements.

Our previous work suggested a contention-resolving MPC
design that is a promising general method to solve real-time
scheduling and task allocation problem with the applications
in traffic intersection management [25], [26], networked
control systems [27]–[29], and a single-human and multi-
robot collaboration system [30]. However, all those works
so far only focus on scheduling systems with a single shared
resource. The real-time scheduling problem with multiple
shared resources, more general and common in reality, is
much more challenging and complex. Our previous work
assumed purely non-preemptive human-robot collaboration,
meaning it cannot be interrupted until finished. However, in
reality, robot collaboration involves both preemptive and non-
preemptive tasks. An example of preemptive collaboration
is a robot requesting human’s help to detect targets from
its onboard camera, which can be interrupted by other
more important tasks. Such a mix of preemptive and non-
preemptive tasks cannot be handled by our previous work.

In this paper, we present a contention-resolving MPC
to dynamically schedule multiple shared resources for the
FIRST time, applied to an MH-MR collaboration system

2024 IEEE Conference on Control Technology and Applications (CCTA)
August 21-23, 2024. Newcastle upon Tyne, UK

979-8-3503-7094-2/24/$31.00 ©2024 IEEE 357

20
24

 IE
EE

 C
on

fe
re

nc
e 

on
 C

on
tro

l T
ec

hn
ol

og
y 

an
d 

A
pp

lic
at

io
ns

 (C
C

TA
) |

 9
79

-8
-3

50
3-

70
94

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
C

C
TA

60
70

7.
20

24
.1

06
66

64
2

Authorized licensed use limited to: George Mason University. Downloaded on December 04,2025 at 18:51:04 UTC from IEEE Xplore.  Restrictions apply. 



where each human is regarded as a shared resource. Our
method aims to find the optimal allocation of collaboration
tasks and the attention schedule of each human operator
to maximize the overall performance of the robots. The
contributions of this paper are as follows.
1. We model the MH-MR systems as parallel machines in
the job scheduling and develop a generalized timing model to
rigorously describe time evolution in a multi-resource multi-
task real-time system. To the best of our knowledge, this
is the first analytical model for multiple resources. Timing
models for a single resource system from our previous works
are special cases of this generalized timing model.
2. The new proposed timing model unifies the definition
of significant moments for preemptive and non-preemptive
collaborative tasks, previously studied separately in [21] and
[30]. It predicts the critical timings when contentions occur,
considering both preemptive and non-preemptive tasks in the
collaboration system. At each contention time, the contended
robots and available human operators are identified based on
timing states values computed by the new timing model.
3. We develop a generalized contention-resolving MPC to
optimize scheduling for the MH-MR collaborative system.
We present a new rule to merge leaves in decision tree
construction, significantly reducing the number of leaves
and branches. Also, we propose a novel reset time concept,
converting the search for minimal cost path in the entire tree
into searching for minimal cost segments in several sub-trees.
Such conversion improves the computation efficiency of the
contention-resolving MPC algorithm. The effectiveness of
the proposed method is verified by simulations.

II. PROBLEM FORMULATION

We consider M human operators collaborating with N
robots (1 ≤ M < N). Since human operators have higher
intelligence in decision making and adaptation to uncertain-
ties than robots, we assume that robots can improve their
performance with human help through collaboration.

A. Robot Performance Model

For a robot i where i=1, ..., N , we consider two modes
depending on whether a human collaborates with it or not:
the autonomous mode and the interactive mode. The robot
performance, denoted as Pi(k) where k represents a discrete
time step, can be quantified according to [31] as

Pi(k)=ui(k) [(1−ki,H)Pi(k−1)+ki,HPi,max]

+[1−ui(k)] [(1−ki,R)Pi(k − 1)+ki,RPi,min] , (1)

where Pi,min and Pi,max are the minimal and maximal
bounds of the robot i’s performance value. The parameters
ki,R and ki,H are coefficients for autonomous and collabora-
tive modes, respectively, and we assume 0<ki,H <ki,R<1.
The control variable ui(k) is a binary integer that indicates
whether robot i is in autonomous mode, or in collaborative
mode with a human. When a robot is in autonomous mode,
ui(k) = 0 and the performance value Pi(k) is a convex
combination of Pi(k−1) from the previous time step and the
lower bound Pi,min due to the range of ki,R. Thus, Pi(k)

will decrease in the autonomous mode. When a robot is in
collaborative mode, ui(k) = 1 and the performance value
Pi(k) is a convex combination of Pi(k−1) and the upper
bound Pi,max. Thus, Pi(k) will increase in collaborative
mode. Given that the initial performance values are within
[Pi,min, Pi,max], it can be easily shown that Pi(k) is always
within [Pi,min, Pi,max] for any k.

B. Collaboration Task Model

Each robot will perform a sequence of repeating tasks,
denoted as {τi,1, τi,2, ..., τi,ni

, ...}, where i is the robot index
and ni is the task index. We assume that all tasks are periodic
with a known period Ti. For any ni, Ci(ni) is the collabora-
tion time that robot i requires to collaborate with one human
operator for task τi,ni

, satisfying 1 ≤ Ci(ni) < Ti for all i
and ni. In an MH-MR system, collaboration task allocation
and human attention scheduling can be modeled as a parallel
machine scheduling [18] with following assumptions.

Assumption 1: Each human operator has the same set of
skills and expertise, i.e., the human resources are identical.
Therefore, the duration of the collaboration time Ci(ni) does
not depend on which human operator robot i is assigned.

Assumption 2: Each collaboration cannot be divided and
accomplished by two or more than two human operators
simultaneously, meaning that each robot can only collaborate
with one human at any time.

The time robot i starts to execute the nith task is denoted
by αi(ni). At each αi(ni), the robot performance Pi(αi(ni))
is reset to P 0

i (ni) ∈ [Pi,min, Pi,max] because each task in
the task sequence can be very different. A collaboration
completion time γi(ni) is the time step when robot i finishes
collaborating with a human operator. Since we modeled the
systems in discrete time, all Ti, Ci, αi, and γi are integers.
In addition to the timing parameters, we also introduce a pa-
rameter ϕi(ni), indicating whether a collaboration task τi,ni

is non-preemptive. Define ϕi(ni) = 0 if τi,ni is preemptive
and ϕi(ni)=1 if it is non-preemptive.

Due to Theorem 1 in [30], to maximize overall robot
performance, the optimal strategy for each robot is to obey
the condition of immediate access (or CIA), meaning that ev-
ery robot should start collaboration immediately at αi(ni) if
possible. However, the CIA condition is not always possible
for all robots due to limited resources.

C. Task Allocation and Human Attention Scheduling

To design the allocation, we introduce a selector variable
vi,m(k) where i=1, . . . , N and m=1, . . . ,M .

Definition 1: The selector variable vi,m(k) is a binary
integer. If the current task of robot i is assigned to human
operator m at k, then vi,m(k)=1. Otherwise, vi,m(k)=0.

All selector variables for human m lead to a vector
Vm(k)=[v1,m(k), ..., vN,m(k)]⊤, denoting the schedule for
human m at k. If vi,m(k) = 1, human m is scheduled to
collaborate with robot i at k. Due to the limitation of human
attention capacity, we make the following assumption:
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Fig. 1. Illustration of scheduling 4 robots to 2 humans. The upper four sub-
figures show collaboration tasks of each robot where the colored rectangles
denote preemptive tasks and shaded rectangles denote non-preemptive tasks.
The lower two sub-figures show the humans attention schedule.

Assumption 3: At any given time, each human operator
can collaborate with at most one robot, i.e.,∑N

i=1
vi,m(k) ≤ 1, for any m and k. (2)

This is valid because, in most human-robot collaborations,
humans must manually control or pay close attention to
monitor robots’ behavior. It is risky for a human to work
with two robots at the same time.

All column vectors Vm(k) together contribute to a selec-
tor matrix V(k)=[V1(k), ...,Vm(k), ...,VM (k)]. Based on
Assumption 2, we have the constraint∑M

m=1
vi,m(k) ≤ 1, for any i and k. (3)

Then based on the definitions of vi,m(k) and ui(k),

ui(k) =
∑M

m=1
vi,m(k), for any i and k. (4)

Remark 1: When M=1, we have ui(k)=vi,1(k), which
means that vi,1(k) and ui(k) are equivalent if there is only
one human operator in the collaboration system, which is
consistent with the scheduling model used in [30].

Due to constraints (2) and (3), we derive
∑N

i=1

∑M
m=1

vi,m(k)≤M for any k, meaning that at most M robots can
be scheduled to humans at any time. If the number of robots
collaborating with a human at k plus those that have started
new task requests at k exceeds M , a contention occurs. Thus,
some robots cannot collaborate with humans immediately,
delaying their task completion time. To quantify the delay,
we introduce the delay variable δi(ni)≥0 so that

γi(ni) = αi(ni) + δi(ni) + Ci(ni). (5)

Consider an example shown by Figure 1 where 4 robots
request to collaborate with 2 humans at k0. Since the total
number of requests at k0 is greater than that of humans,
contention occurs at k0. Let robot 1 collaborate with human
1 and robot 2 with human 2 at k0, robots 3 and 4 wait to
humans later. Due to the occupation of humans by robots
1 and 2, robots 3 and 4 have time delays δ3(1) and δ4(1),
shown by red and blue arrows on the left. If we exchange the
schedule between robots 2 and 4, i.e., exchange the value of
v2,1(k) and v4,1(k) for k∈[α1(1), α1(2)], robot 2 has a time

delay but robot 4 will not. This simple example shows that
time delay variables δi(ni) depend on the value of vi,m(k).
In Section III, we present a timing model that can accurately
compute δi(ni) given vi,m(k) for all i, m, and k.

D. Optimization Formulation

A robot collaboration task allocation and human attention
scheduling problem can be formulated with the selector ma-
trix V(k)=[V1(k), ...,Vm(k), ...,VM (k)]. Given the initial
robot performance (P 0

1 (n1), ..., P
0
i (ni), ..., P

0
N(nN )) for all

i and ni, the optimal task allocation and scheduling problem
is to find the optimal V∗(k) by solving the optimization
problem in a planning horizon [k0, kf ]

min
V(k)

N∑
i=1

kf∑
k=k0

[Pi,max−Pi(k)] s.t. (1), (2), (3) and (4), (6)

where the cost function aims to increase the robot per-
formance as much as possible to reach its upper bound.
Equations (1) and (4) are system dynamics. (2) and (3) are
the contention constraints. Since V(k) is a matrix of binary
integers, the problem is binary optimization. It is a non-
convex optimization problem with M×N×(kf−k0) decision
variables. If we consider a relatively large number of robots
and a long time horizon, the optimization problem in (6) will
be very difficult to solve.

Instead of solving (6), which is commonly adopted for
MH-MR allocation problems [22]–[24], for each time step,
we formulate this problem in an equivalent way

min
V(k)

N∑
i=1

kf∑
k=k0

[Pi,max−Pi(k)] s.t. (1), (7)

ui(k)=0, k∈ [αi(ni), αi(ni)+δi(ni)(V(k))− 1],

ui(k)=1, k∈ [αi(ni)+δi(ni)(V(k)), γi(ni)(V(k))] and
ui(k)=0, k∈ [γi(ni)(V(k))+1, αi(ni+1)−1]

for all ni such that k0 ≤ αi(ni) and αi(ni+1) ≤ kf ,

where the notations δi(ni)(V(k)) and γi(ni)(V(k)) mean
that these time instants are implicit functions of the decision
variables in matrix V(k). The contention constraints (2)-(4)
are embedded with the implicit functions to compute δi(ni)
and γi(ni), which will be presented in the next section.

The benefit of this equivalent formulation is that it can en-
able an event-triggered MPC design, which uses an analytical
timing model to efficiently compute δi(ni) and γi(ni) for any
i and ni. The event-triggered MPC only needs to calculate
the decision variables at the event times instead of every time
step, which can significantly reduce the computation.

III. DYNAMIC TIMING MODEL

The critical events for real-time scheduling of human
attention are contentions. Contentions can only occur at
αi(ni), the time when a new request is generated from a
robot, or γi(ni), the time when a robot finishes the collabora-
tion with a human. Thus, the moments αi(ni) and γi(ni) are
more significant than other times in real-time scheduling. We
developed a method called significant moment analysis (or
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SMA), which studies the system’s timing behavior based on
the significant moments, enabling us to establish a dynamic
model to compute when contentions will occur.

A. Timing States

To develop a dynamic model that describes how tim-
ing evolves, we define the timing states as Z(k) =
(D(k), R(k), O(k), ID(k)) same as in [21]. D(k) =
(d1(k), ..., di(k), ..., dN (k)) is the deadline variable, where
di(k) is how long after time k the next generation of
task τi,ni

will occur. R(k) = (r1(k), ..., ri(k), ..., rN (k))
is the remaining time variable, where ri(k) is the remain-
ing time needed to complete the collaboration of the task
generated the most recently τi,ni

after k. O(k) = (o1(k),
..., oi(k),..., oN (k)) is the response variable, where oi(k) is
how long the completion of the task τi,ni

has been delayed
from its most recent request time αi(ni) to k. The difference
between this paper and [21] lies in ID(k).

Definition 2: The index variable ID(k) is a set {id1(k),
. . . , idm(k), . . . , idM (k)}, where idm(k) is the index of the
robot that is collaborating with the human operator m at time
k. If idm(k) = i, it means that human m is collaborating
with robot i at k, and idm(k) = 0 implies that no robot is
occupying human m’s attention at time k.

To establish a timing model for the MH-MR collaborative
system, we need to redefine the collaboration time Ci and
the preemptive or non-preemptive parameter ϕi of a task.

Definition 3: For all i, ni ≥ 0, we set Ci(k)=Ci(ni) and
ϕi(k)=ϕi(ni) for k ∈ [αi(ni), αi(ni+1)).

The evolution rules for Z(k) can be expressed math-
ematically. These equations lead to a dynamic model to
describe how time evolves based on specific human attention
allocation. It is analytical and efficient to compute, which
supports the implementation of contention-resolving MPC.

B. Timing Model

We divide [k0, kf ] into sub-intervals by the significant
moments. Let kw and kw+1 be two successive significant
moments. Due to the definition, the collaboration generation
or completion only occurs at kw or kw+1, but not at any
time within [kw+1, kw+1−1]. In Figure 1, k0 to k13 are
significant moments of the example and how to compute
them is as follows.

Initially, we set the beginning of the optimization horizon
k0 as the first significant moment. Then, using mathemat-
ical induction, other significant moments can be computed
iteratively based on timing states values. Assume that the
significant moment kw has been calculated.
Case 1: If none of the human operators is working with any
robot at kw, i.e., idm(kw)=0 for all m, i.e.,

∑M
m=1idm(kw)=

0, then the next significant moment is the nearest collabo-
ration generation time. So, the difference between them is
kw+1−kw = min {d1(kw), ..., dN (kw), kf−kw}.
Case 2: If the attention of some humans is occupied by robot
idm(kw) at kw, i.e.,

∑M
m=1 idm(kw)>0, then in addition to

the above requirement, kw+1−kw should be less than or equal
to ridm(kw) so that the closest completion time kw+ridm(kw)

of the collaboration task from robot idm(kw) to human m is
not less than kw+1. Here ridm(k) is a simplified notation for
the remaining time ridm(k)(k) of timing state variable idm at
any k. Similar simplifications apply to didm(k)(k), oidm(k)(k),
ϕidm(k)(k), and vidm(k),m(k). If there is more than one
human whose attention is occupied by robots, let rmin(kw)
be the smallest remaining time of ridm(kw) among all the
tasks at kw, i.e., rmin(kw) = min {ridm(kw) : idm(kw)>0}.
Summarizing the above two cases, we have

kw+1−kw = (8)

sgn

[
M∑

m=1

idm(kw)

]
min{rmin(kw), d1(kw),..., dN (kw),kf−kw}

+

{
1−sgn

[
M∑

m=1

idm(kw)

]}
min{d1(kw), ..., dN (kw),kf−kw}

for all w where sgn(q)=1 if q>0 and sgn(q)=0 if q=0.
After dividing the optimization horizon into sub-intervals

[kw, kw+1), the evolution of Z(k) within any sub-interval
can be derived at kw and within interval (kw, kw+1).
At significant moment kw, timing states will have jumps.
The changes of the state vector (di(kw), ri(kw), oi(kw)) are
the same for preemptive and non-preemptive tasks, depend-
ing on whether a new task of robot i is generated at kw.
Case 1: If a new task of robot i is generated at kw, which
means that the deadline variable of robot i satisfies di(kw−
1)=1, then three timing states are reset to be

di(kw)=Ti, ri(kw)=Ci(kw), oi(kw) = 0. (9)

Case 2: If di(kw−1)> 1, i.e., the next task of robot i will
not generate at kw, there is no jump in the timing states of
robot i. The deadline di(kw−1) decreases by 1 for one time
step. The response variable oi(kw) will increase by 1 if the
collaboration has not been finished, i.e., ri(kw−1)>0. If the
collaboration has been completed before kw, i.e., ri(kw−1)=
0, then oi(kw)=oi(kw−1). For the remaining time variable
ri(kw), if robot i is collaborating with a human at kw−1, i.e.,
i∈ ID(kw−1), then ri(kw−1) decreases by 1 for one time
step. If i is not in the index set ID(kw−1), then ri(kw−1)
remains the same. Let 1(·) be an indicator function which
is defined to be 1 if the condition i ∈ ID(kw−1) holds and
0 otherwise. We can present the changes as

di(kw)=di(kw−1)−1, ri(kw)=ri(kw−1)−1(i∈ID(kw−1)),
and oi(kw) = oi(kw−1)+sgn(ri(kw−1)). (10)

For the index variable idm at kw, if ridm
(kw−1) > 1,

it means that robot idm(kw − 1) has not completed the
collaboration with human m at kw. If the current task of
robot idm is non-preemptive, i.e., ϕidm(kw−1) = 1, then
idm(kw) = idm(kw − 1) as the collaboration cannot be
interrupted until it finishes. If the current task of robot idm
is preemptive, i.e., ϕidm

(kw−1)= 0, idm(kw) must switch
to the robot scheduled to collaborate with human m at
kw, i.e., robot i with vi,m(kw) = 1. If ridm(kw −1) = 1,
robot idm(kw−1) will complete collaboration at kw, then
idm(kw) also switches to robot with vi,m(kw)=1 for either
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preemptive or non-preemptive tasks. Combining the above
cases, the evolution rule for idm(k) at kw is

idm(kw)= idm(kw−1)sgn[ridm(kw−1)−1]ϕidm(kw−1) (11)

+argmax
i

[vi,m(kw)]
{
1−sgn[ridm

(kw−1)−1]ϕidm
(kw−1)

}
.

For any time kw+ϵ∈ [kw+1, kw+1−1], the timing state
idm(kw+ϵ) does not change since kw+1−kw ≤ ridm

(kw)
for any m. If idm(kw) ̸=0, meaning that robot idm(kw) is
assigned to human m in [kw+1, kw+1−1], we have

didm
(kw+ϵ)=didm

(kw)−ϵ, ridm
(kw+ϵ)=ridm

(kw)−ϵ,

oidm
(kw+ϵ)=oidm

(kw)+ϵ, and vidm,m(kw+ϵ)=1. (12)

For all i such that i /∈ ID(kw), we have

di(kw + ϵ) = di(kw)− ϵ, ri(kw + ϵ) = ri(kw) (13)
oi(kw + ϵ) = oi(kw) + sgn(ri(kw))ϵ, and vi,m(kw+ϵ)=0.

The analytical equations from (8) to (13) together form
the generalized timing model for MH-MR collaboration
scheduling, represented by H(·). Given the initial state
Z(k0), the task timing parameter Ci(ni), the period Ti, the
non-preemptiveness parameter ϕi(ni) for all i and ni, and
the value of V(k0 ∼ k), a simplified notation for decision
variables V(κ) for any κ∈ [k0, k], this analytical model can
compute Z(k) at each k as

Z(k)=H(k;Z(k0), (Ci(ni), Ti, ϕi(ni))i=1,...,N ,V(k0∼k)).

Based on the definition of the response variable O(k), the
time delay δi(ni) can be calculated as

δi(ni)=oi(αi(ni+1)−1)+sgn(ri(αi(ni+1)−1))−Ci(ni).

Remark 2: Through (8) to (13), the only case where the
values of the timing states depend on the decision variable
vi,m occurs in (11) at the significant moments kw. Thus, we
only need to determine decision variables vi,m at kw.

IV. CONTENTION-RESOLVING MPC ALGORITHM

In this section, we convert the problem formulated by (7)
into a path planning problem among a weighted decision tree,
which can be solved iteratively. Finding an optimal solution
to (7) is equivalent to finding a path from the root to the end
leaf of the decision tree with minimal cost.

A. Construction of Decision Tree

Due to Remark 2, decision variables vi,m(k) only need
to be determined at significant moments, which trigger the
decision tree generation. Figure 2 shows an example of
a decision tree where each layer of leaves represents one
significant moment computed by (8). Each leaf is associated
with a significant moment. For an arbitrary leaf indexed
by l with the significant moment kw, a branch pointing
out from leaf l is associated with a specific choice of
vi,m(kw) and connects to a leaf in the next layer. Like the
decision tree proposed for a single human scheduling in
[30], the construction of the whole tree is not needed for
the contention-resolving MPC algorithm for the MH-MR

Fig. 2. Decision tree for solving integer optimization in a finite time
window. Grey circles denote the leaves without contention, red circles denote
the leaves with contention, and blue circles denote the merged leaves. The
green circle denotes the end of time. The decision tree expands along the
arrowed branches. Colored rectangles show an example of the task allocation
and the attention schedule for humans along the path with red arrows.

system. However, to clearly present our solution, here we
briefly describe how the tree can be fully constructed.

For each leaf l, we identify Λ(l) as a subset of robots
requesting collaboration or currently collaborating with a
human by timing states. If a request from robot i is generated
at kw, we must have ri(kw) =Ci(kw) due to (9) and (10).
If robot i was collaborating with a human right before kw,
then 0<ri(kw)<Ci(kw). In both cases, we have ri(kw)>0,
so Λ(l) = {i : ri(kw) > 0, i = 1,. . ., N}. The branches
number from leaf l depends on whether contentions occur
at kw associated with l. The following Lemma can check it.

Lemma 1: A contention happens at a significant moment
kw if and only if

∑N
i=1 sgn [ri(kw)]>M .

Proof. Since each robot in the set Λ(l) must satisfy ri(kw)>
0, the total number of elements in Λ(l) can be written as∑N

i=1 sgn(ri(kw)). If this number is greater than the number
of humans, then there is a contention occurring at kw. □

Based on Lemma 1, k0, k3, k5, k8, k10, k11 and k12 of
Figure 1 are the significant moments when contention occurs.

If no contention occurs at kw, i.e.,
∑N

i=1sgn [ri(kw)]≤M ,
the assignment of robots to humans does not affect the robot
performance Pi(k) in [kw, kw+1], as humans are identical
and Ci(k) are the same for each. Any feasible vi,m(kw)
will contribute equally to the cost function in (7). Leaves
with no contention are denoted by grey circles in Figure
2, with only one branch extending from them. Robots with
ongoing non-preemptive tasks at kw are represented as set
ΛNP(l)={idm(kw−1) : [ridm

(kw−1)−1]ϕidm
(kw−1)>0},

and the decision variable vi,m(kw) for robots in ΛNP(l) are
determined at kw as they have to continue the collabora-
tion with the human assigned previously, i.e., vi,m(kw) =
vi,m(kw−1) for all i ∈ ΛNP(l). Denote the set of humans
occupied by robots in ΛNP(l) as ΨNP(l), represented as
ΨNP(l)={m : [ridm

(kw−1)−1]ϕidm
(kw−1)>0}. Then the

rest of the robots that request collaboration at kw are denoted
as Λ(l)\ΛNP(l), with NP(l) as their number. The humans
available at kw are represented as {1, . . . ,M}\ΨNP(l), with
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MP(l) as their number. Since no contention occurs, we have
NP(l) ≤ MP(l). Then, a feasible choice of vi,m(kw) is to
arrange robots with preemptive tasks and available humans
by increasing indices, assigning the first NP(l) humans to
each robot in the increasing index order.

However, if contention occurs at kw, i.e.,
∑

N
i=1sgn[ri(kw)]

> M , we denote the kw as contention time kcl , where
l denotes its corresponding leaf. In Figure 2, red circles
represent the leaves with the contentions. At kcl , the per-
formance of robots without immediate collaboration will
decrease, so different choices of vi,m(kw) lead to different
costs in [kw, kw+1]. Hence, each contention leaf will have
multiple branches, and we only need to design vi,m(kw)
when contentions occur. Same as the leaves with no con-
tention, the decision variable vi,m(kw) for robots in ΛNP(l)
with non-preemptive tasks is determined at kw and cannot
be chosen freely. For the rest of robots in Λ(l) \ΛNP(l),
we choose MP(l) robots and assign available humans to
them. Thus, there will be NP(l)!/ [MP(l)!(NP(l)−MP(l))!]
branches from each contention leaf. In Figure 2, a contention
occurs to all four robots (NP(1)=4) at k0 and both humans
are available (MP(1) = 2). So, we choose 2 robots out of
4 to collaborate with humans at k0, leading to 6 choices of
vi,m(k0) corresponding to 6 branches.

Define a branch cost associated with each branch. Let the
q-th branch from leaf l1 and denote the decision variable
matrix V(k) associated with q as Vq , constants for all i
and k ∈ [kw, kw+1]. Due to Vq , timing states at kw can
be computed by (9),(10) and (11), and the next significant
moment kw+1 scheduled under Vq can be computed by (8),
leading to a new leaf l2 at kw+1. Then we can compute robots
performance

∑N
i=1

∑kw+1

k=kw
[Pi,max−Pi(k)] in k∈ [kw, kw+1]

by the determined Vq and let it be the cost of branch (l1, l2).
See Section IV.B of [30] for the specific formula.

Remark 3: The leaf generation rule in this paper enables
a simplification method to merge leaves and reduce branches
number, which will be introduced next.

B. Tree Structure Simplification

The decision tree will grow exponentially with a larger
number of robots or a longer time horizon [k0, kf ]. Thus,
we propose rules to simplify it.

Lemma 2: For any two leaves la and lb with the same
associated significant moment kw, if

∑N
i=1ri(kw) = 0 for

both leaves, la and lb can be merged.
Proof. Since

∑N
i=1 ri(kw) = 0 means all robots have com-

pleted collaboration at kw, they will start new collaborations
with new initial performance P 0

i (ni) after kw. That is, the
system behavior after kw will be the same for both leaves,
allowing them to be merged and treated as one. □

Such a leaf merging rule can help simplify the structure of
decision tree. Take the example at k0 in Figure 2 again as an
illustration. There are 6 different ways to allocate robots to
humans at k0 to resolve contention. Under each allocation, all
robots can complete their first task before or right at k2. After
k2, they will have new tasks. So, different task allocations
at k0 do not affect the system timing or robots’ performance

after k2, allowing us to merge all the leaves at k2 together.
The same merging occurs at time k8.

If all leaves at a significant moment can be merged
into a single leaf, we call this significant moment a reset
time, denoted as tRp where p is the index. Searching for
the minimal path among the entire tree can be changed to
find the minimal cost segments on the partial tree between
each two successive reset times, simplifying the computation
complexity for contention-resolving MPC. The optimal path
for the entire tree in Figure 2 can be partitioned into three
segments, which are the lowest cost paths from leaf 1 to 8,
leaf 8 to 30, and leaf 30 to 67.

Based on the simplified decision tree with branch costs,
the integer optimization problem in (7) can now be converted
to the problem of finding a path from k0 to kf such that
the whole cost along the path is the lowest. In our previous
work, we presented an optimal path search algorithm that
leverages the A-star algorithm to search for an optimal path
in the decision tree. See [27], [28] for more details.

V. SIMULATION RESULTS

We simulate 4 robots collaborating with 2 humans. The
starting and ending times are k0 = 0 and kf = 120,
respectively. The initial performance values are P 0

i (ni)=0.7
for all i and ni. The parameters for the performance model
are ki,R = 0.25 for all i, and [k1,H , k2,H , k3,H , k4,H ] =
[0.2, 0.15, 0.13, 0.1]. The lower and upper bounds are
Pi,min =0.65 for i< 4, P4,min =0.6, and Pi,max =0.75 for
all i. The periods are [T1, T2, T3, T4] = [20, 30, 30, 40]. The
collaboration times are C1(1)=C1(3)=C1(5)=C1(6)=10,
C1(2)=C1(4)=15, C2(1)=C2(4)=10, C2(2)=15, C2(3)=25,
C3(1) =C3(3) =C3(4) = 10, C3(2) = 5, C4(1) =C4(3) =
10 and C4(2) = 5. Parameters for non-preemptiveness are
ϕ1(4)=ϕ2(2)=ϕ2(3)=1 and the other ϕi=0. Applying the
algorithm, the humans attention occupation result is shown
in Figure 3. The robot performance is shown in Figure 4. The
total computation of our method only took 0.1182 seconds.
Five contentions occur in [0, 120] and the computation time
to find the optimal solution is 0.41 seconds. The cost under
optimal schedule considering the original cost function in
(6) is 34.235, less than the RMS scheduling strategy cost
of 36.086, where the priority of 4 robots is in descending
order, meaning that robot 1 always has the highest priority.
Our proposed method showed better performance than the
state-of-the-art scheduling strategy, and the optimal solution
can be obtained in real-time.

VI. CONCLUSIONS AND FUTURE WORK

Coordinating multiple humans and robots to work together
is a challenging problem and attracts increasing research
interest. We present a novel method to allocate human
resources to achieve maximal robot performance. In the
future, we aim to extend this work to more general scenarios
where humans have different capacities on specific tasks.
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Fig. 3. Human attention occupation to collaborate with four robots. The y
axis value 1 means that the robot is collaborating with a human, 0 means
that the robot is not requesting the collaboration, and 0.5 means that the
robot’s collaboration request is delayed by a contention.
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Fig. 4. Performance of four robots under the optimal schedule. The magenta
dashed line represents Pi,max and the black dashed line represents Pi,min.
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