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Abstract— Our earlier work developed a contention-resolving
model predictive control (or MPC) framework to optimally
schedule a single human operator’s attention to collaborate with
multiple robots. In this paper, we present a generalized design
that can allocate and schedule the limited human attention
in a multi-human and multi-robot collaborative system. We
establish a new analytical timing model for multi-resource
and multi-task real-time systems, where collaboration tasks
can be either preemptive or non-preemptive. Then we derive
the condition to predict the moments when contentions occur
among the collaboration requests to humans. The contention-
resolving MPC is triggered at contention moments to dynam-
ically schedule human attention and determine the robot with
which each human operator should collaborate. The optimal
schedule, which aims to maximize the overall robots perfor-
mance, is computed using an event-triggered and sampling-
based approach with a weighted decision tree. To further
improve computation efficiency, we present a new rule to merge
leaves and simplify the decision tree. This paper also introduces
a reset time for contention-resolving MPC, shortening the time
horizon to search the optimal solution and reduce computa-
tional requirements. The effectiveness of the proposed method
is verified through simulations.

I. INTRODUCTION

With the rapid progress of robotic technology, it can
be envisioned that humans will collaborate with robots in
the very near future in many scenarios [1], such as smart
manufacturing, underground mining, search and rescue, and
surveillance tasks. In those scenarios, robots can work for
long operation hours on repetitive tasks, providing consistent
and precise performance beyond human capability, while
human operators are better at intuitive decision making
and working with uncertainties. The multi-human multi-
robot (or MH-MR) collaboration then has the advantage
of combining the strength of both robots and humans and
becomes a promising setup for future work spaces. Research
on collaboration between humans and robots has gained a
lot of momentum [2]-[5]. However, when it is applied, one
constraint for humans is limited attention capacity. Psychol-
ogy studies [6], [7] has revealed that one human can only
efficiently pay attention to two to four items simultaneously.
Due to this limitation, each human should collaborate with
which subset of robots needs to be determined [8].

Given the variety of possible combinations of heteroge-
neous robots and the scale of MH-MR systems, developing
a generalized framework for human attention allocation is
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challenging [9]-[14]. A multi-level programming model was
proposed to allocate multiple robot and human agents to
maximize the effectiveness of the entire system with limited
resources [15]. Gombolay et al. [16] present a centralized
task assignment algorithm using a mixed-integer program
solver. In addition to human-robot allocation, properly sched-
ule human attention to better assist robots is another impor-
tant problem for MH-MR systems. Well-known scheduling
policies like rate monotonic scheduling (or RMS), which
schedules the system with the smallest period first, and
earliest deadline first (or EDF) [17], which schedules the
system with the most urgent deadline first, can be used
for multi-resource real-time systems. But these algorithms
are designed only for real-time scheduling purposes and are
optimal for minimizing the mean waiting time [18]. Other
scheduling strategies, such as first come first serve [19], the
shortest job first [20] and the highest trust first scheduling
[21] were proposed to ensure fairness, efficiency or maintain
trust level between humans and robots but cannot guarantee
optimal performance. There are fewer recent studies [22]—
[24] that use optimization-based methods to solve scheduling
problems in human and robot collaboration. However, these
existing methods rely on optimization solvers or genetic
algorithms to obtain the optimal solution, which results
in difficulties for real-time computing when considering a
relatively large number of collaboration tasks or repeating
collaboration requirements.

Our previous work suggested a contention-resolving MPC
design that is a promising general method to solve real-time
scheduling and task allocation problem with the applications
in traffic intersection management [25], [26], networked
control systems [27]-[29], and a single-human and multi-
robot collaboration system [30]. However, all those works
so far only focus on scheduling systems with a single shared
resource. The real-time scheduling problem with multiple
shared resources, more general and common in reality, is
much more challenging and complex. Our previous work
assumed purely non-preemptive human-robot collaboration,
meaning it cannot be interrupted until finished. However, in
reality, robot collaboration involves both preemptive and non-
preemptive tasks. An example of preemptive collaboration
is a robot requesting human’s help to detect targets from
its onboard camera, which can be interrupted by other
more important tasks. Such a mix of preemptive and non-
preemptive tasks cannot be handled by our previous work.

In this paper, we present a contention-resolving MPC
to dynamically schedule multiple shared resources for the
FIRST time, applied to an MH-MR collaboration system
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where each human is regarded as a shared resource. Our
method aims to find the optimal allocation of collaboration
tasks and the attention schedule of each human operator
to maximize the overall performance of the robots. The
contributions of this paper are as follows.

1. We model the MH-MR systems as parallel machines in
the job scheduling and develop a generalized timing model to
rigorously describe time evolution in a multi-resource multi-
task real-time system. To the best of our knowledge, this
is the first analytical model for multiple resources. Timing
models for a single resource system from our previous works
are special cases of this generalized timing model.

2. The new proposed timing model unifies the definition
of significant moments for preemptive and non-preemptive
collaborative tasks, previously studied separately in [21] and
[30]. It predicts the critical timings when contentions occur,
considering both preemptive and non-preemptive tasks in the
collaboration system. At each contention time, the contended
robots and available human operators are identified based on
timing states values computed by the new timing model.

3. We develop a generalized contention-resolving MPC to
optimize scheduling for the MH-MR collaborative system.
We present a new rule to merge leaves in decision tree
construction, significantly reducing the number of leaves
and branches. Also, we propose a novel reset time concept,
converting the search for minimal cost path in the entire tree
into searching for minimal cost segments in several sub-trees.
Such conversion improves the computation efficiency of the
contention-resolving MPC algorithm. The effectiveness of
the proposed method is verified by simulations.

II. PROBLEM FORMULATION

We consider M human operators collaborating with N
robots (1 < M < N). Since human operators have higher
intelligence in decision making and adaptation to uncertain-
ties than robots, we assume that robots can improve their
performance with human help through collaboration.

A. Robot Performance Model

For a robot ¢ where :=1, ..., N, we consider two modes
depending on whether a human collaborates with it or not:
the autonomous mode and the interactive mode. The robot
performance, denoted as P;(k) where k represents a discrete
time step, can be quantified according to [31] as

R(k) :uz(k) [(1 *ki,H)Pi (k* 1)+ki,HIDi,max]
+[1—u; (k)] [(1—ks,r)Pi(k — 1)+ki RPi min) , (1)

where P in and P; . are the minimal and maximal
bounds of the robot ¢’s performance value. The parameters
ki r and k; g are coefficients for autonomous and collabora-
tive modes, respectively, and we assume 0<k; g <k; p<1.
The control variable u;(k) is a binary integer that indicates
whether robot 7 is in autonomous mode, or in collaborative
mode with a human. When a robot is in autonomous mode,
u;(k) = 0 and the performance value P;(k) is a convex
combination of P;(k—1) from the previous time step and the
lower bound P; i, due to the range of k; . Thus, P;(k)
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will decrease in the autonomous mode. When a robot is in
collaborative mode, u;(k) = 1 and the performance value
P;(k) is a convex combination of P;(k—1) and the upper
bound P; max. Thus, P;(k) will increase in collaborative
mode. Given that the initial performance values are within
[P min, Pi max], it can be easily shown that P;(k) is always
within [P; min, P; max] for any k.

B. Collaboration Task Model

Each robot will perform a sequence of repeating tasks,
denoted as {71, 7.2, ..., Tin;, --- }» where i is the robot index
and n; is the task index. We assume that all tasks are periodic
with a known period T;. For any n;, C;(n;) is the collabora-
tion time that robot ¢ requires to collaborate with one human
operator for task 7; ,,, satisfying 1 < C;(n;) <T; for all 4
and n;. In an MH-MR system, collaboration task allocation
and human attention scheduling can be modeled as a parallel
machine scheduling [18] with following assumptions.

Assumption 1: Each human operator has the same set of
skills and expertise, i.e., the human resources are identical.
Therefore, the duration of the collaboration time C;(n;) does
not depend on which human operator robot 7 is assigned.

Assumption 2: Each collaboration cannot be divided and
accomplished by two or more than two human operators
simultaneously, meaning that each robot can only collaborate
with one human at any time.

The time robot ¢ starts to execute the n;th task is denoted
by «;(n;). At each «;(n;), the robot performance P;(a;(n;))
is reset to P?(n;) € [P min, Pimax] because each task in
the task sequence can be very different. A collaboration
completion time v;(n;) is the time step when robot ¢ finishes
collaborating with a human operator. Since we modeled the
systems in discrete time, all T;, C;, oy, and ~y; are integers.
In addition to the timing parameters, we also introduce a pa-
rameter ¢;(n;), indicating whether a collaboration task 7 ,,,
is non-preemptive. Define ¢;(n;) =0 if 7;,,, is preemptive
and ¢;(n;)=1 if it is non-preemptive.

Due to Theorem 1 in [30], to maximize overall robot
performance, the optimal strategy for each robot is to obey
the condition of immediate access (or CIA), meaning that ev-
ery robot should start collaboration immediately at «;(n;) if
possible. However, the CIA condition is not always possible
for all robots due to limited resources.

C. Task Allocation and Human Attention Scheduling

To design the allocation, we introduce a selector variable
Vim(k) where i=1,...,N and m=1,..., M.

Definition 1: The selector variable v;.,(k) is a binary
integer. If the current task of robot ¢ is assigned to human
operator m at k, then v; ,, (k) =1. Otherwise, v; (k) =0.

All selector variables for human m lead to a vector
Vo (k)=[v1,m(k), ..., unm (k)] T, denoting the schedule for
human m at k. If v;,,(k) = 1, human m is scheduled to
collaborate with robot ¢ at k. Due to the limitation of human
attention capacity, we make the following assumption:
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Fig. 1. Illustration of scheduling 4 robots to 2 humans. The upper four sub-

figures show collaboration tasks of each robot where the colored rectangles
denote preemptive tasks and shaded rectangles denote non-preemptive tasks.
The lower two sub-figures show the humans attention schedule.

Assumption 3: At any given time, each human operator
can collaborate with at most one robot, i.e.,

%V v;m(k) <1, for any m and k. 2)
This is valid l;Eclause, in most human-robot collaborations,
humans must manually control or pay close attention to
monitor robots’ behavior. It is risky for a human to work
with two robots at the same time.

All column vectors V,, (k) together contribute to a selec-
tor matrix V(k)=[V1(k),..., Vi (k), ..., Vs (k)]. Based on
Assumption 2, we have the constraint

M

Z » vim(k) <1, for any ¢ and k. 3)
Then based on the definitions of v; ,, (k) and wu;(k),
M
u; (k) = Z ) V;.m(k), for any ¢ and k. 4)

Remark 1: When M =1, we have u;(k)=wv; 1(k), which
means that v; 1 (k) and u,;(k) are equivalent if there is only
one human operator in the collaboration system, which is
consistent with the scheduling model used in [30].

Due to constraints (2) and (3), we derive S S°M |
vi.m(k) <M for any k, meaning that at most M robots can
be scheduled to humans at any time. If the number of robots
collaborating with a human at & plus those that have started
new task requests at k exceeds M, a contention occurs. Thus,
some robots cannot collaborate with humans immediately,
delaying their task completion time. To quantify the delay,
we introduce the delay variable d;(n;) >0 so that

vi(ni) = ai(ng) + 0;(ni) + Ci(ny). &)

Consider an example shown by Figure 1 where 4 robots
request to collaborate with 2 humans at k. Since the total
number of requests at ko is greater than that of humans,
contention occurs at ky. Let robot 1 collaborate with human
1 and robot 2 with human 2 at kg, robots 3 and 4 wait to
humans later. Due to the occupation of humans by robots
1 and 2, robots 3 and 4 have time delays d3(1) and d4(1),
shown by red and blue arrows on the left. If we exchange the
schedule between robots 2 and 4, i.e., exchange the value of
vo.1(k) and vy 1 (k) for k€[ (1), a1(2)], robot 2 has a time
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delay but robot 4 will not. This simple example shows that
time delay variables d;(n;) depend on the value of v; ,,, (k).
In Section III, we present a timing model that can accurately
compute d;(n;) given v; ,, (k) for all 4, m, and k.

D. Optimization Formulation

A robot collaboration task allocation and human attention
scheduling problem can be formulated with the selector ma-
trix V(k)=[V1(k), ..., Vin(k), ..., Var(k)]. Given the initial
robot performance (P (n1), ..., P2(n;), ..., P2(ny)) for all
1 and n;, the optimal task allocation and scheduling problem
is to find the optimal V*(k) by solving the optimization
problem in a planning horizon [k, k]

N kg

DD [Prmax—

i=1k=ko

min
V(k)

P;(k)] s.t. (1),(2),(3) and (4), (6)
where the cost function aims to increase the robot per-
formance as much as possible to reach its upper bound.
Equations (1) and (4) are system dynamics. (2) and (3) are
the contention constraints. Since V(k) is a matrix of binary
integers, the problem is binary optimization. It is a non-
convex optimization problem with M xNx(k¢—kq) decision
variables. If we consider a relatively large number of robots
and a long time horizon, the optimization problem in (6) will
be very difficult to solve.

Instead of solving (6), which is commonly adopted for
MH-MR allocation problems [22]-[24], for each time step,
we formulate this problem in an equivalent way

N kg
mlnzz s max — i (k)] s.t. (1), @)
7, 1k=kg
(k) =0, k€ [vi(ni), ai(ng) +6i(ni) (V(k)) — 1],
ui(k)=1,k € [a;(n;) +6i(n:) (V(k)), vi(rni) (V(k))] and
(k)=0,k€ [yi(n:)(V(k))+1, ci(n;+1)—1]

for all n; such that ko < o;(n;) and a;(n;+1) < ky,

where the notations ¢;(n;)(V(k)) and ~;(n;)(V(k)) mean
that these time instants are implicit functions of the decision
variables in matrix V(k). The contention constraints (2)-(4)
are embedded with the implicit functions to compute §;(n;)
and ~y;(n;), which will be presented in the next section.

The benefit of this equivalent formulation is that it can en-
able an event-triggered MPC design, which uses an analytical
timing model to efficiently compute d;(n;) and 7;(n;) for any
1 and n;. The event-triggered MPC only needs to calculate
the decision variables at the event times instead of every time
step, which can significantly reduce the computation.

III. DYNAMIC TIMING MODEL

The critical events for real-time scheduling of human
attention are contentions. Contentions can only occur at
a;(n;), the time when a new request is generated from a
robot, or 7y;(n;), the time when a robot finishes the collabora-
tion with a human. Thus, the moments «;(n;) and v;(n;) are
more significant than other times in real-time scheduling. We
developed a method called significant moment analysis (or
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SMA), which studies the system’s timing behavior based on
the significant moments, enabling us to establish a dynamic
model to compute when contentions will occur.

A. Timing States

To develop a dynamic model that describes how tim-
ing evolves, we define the timing states as Z(k)
(D(k), R(k),O(k),ID(k)) same as in [21]. D(k)
(d1(k),...,d;(k),...,dn(k)) is the deadline variable, where
d;(k) is how long after time k the next generation of
task 7; ,, will occur. R(k) = (ri(k),....,ri(k), ..., (E))
is the remaining time variable, where r;(k) is the remain-
ing time needed to complete the collaboration of the task
generated the most recently 7; ., after k. O(k)
vy 03 (K),...,on(k)) is the response variable, where o;(k) is
how long the completion of the task 7; ,,, has been delayed
from its most recent request time «;(n;) to k. The difference
between this paper and [21] lies in ID(k).

Definition 2: The index variable ID(k) is a set {id;(k),
coyidm(k), ... idar (k) }, where id,, (k) is the index of the
robot that is collaborating with the human operator m at time
k. If id,, (k) =4, it means that human m is collaborating
with robot ¢ at k, and id,,(k) =0 implies that no robot is
occupying human m’s attention at time k.

To establish a timing model for the MH-MR collaborative
system, we need to redefine the collaboration time C; and
the preemptive or non-preemptive parameter ¢; of a task.

Definition 3: For all 4, n; > 0, we set C;(k)=C;(n;) and

The evolution rules for Z(k) can be expressed math-
ematically. These equations lead to a dynamic model to
describe how time evolves based on specific human attention
allocation. It is analytical and efficient to compute, which
supports the implementation of contention-resolving MPC.

B. Timing Model

We divide [ko, k] into sub-intervals by the significant
moments. Let k,, and k.1 be two successive significant
moments. Due to the definition, the collaboration generation
or completion only occurs at k,, or k.1, but not at any
time within [k, + 1, k1 —1]. In Figure 1, ko to ki3 are
significant moments of the example and how to compute
them is as follows.

Initially, we set the beginning of the optimization horizon
ko as the first significant moment. Then, using mathemat-
ical induction, other significant moments can be computed
iteratively based on timing states values. Assume that the
significant moment k,, has been calculated.

Case 1: If none of the human operators is working with any
robot at k., i.e., idy, (ky)=0 for all m, i.e., Z%zlidm(kw):
0, then the next significant moment is the nearest collabo-
ration generation time. So, the difference between them is
kws1—ky = min{di (kw), ..., dn (kw), kf —kw }.

Case 2: If the attention of some humans is occupied by robot
iy (ko) at ky, i€, M id,, (ky) >0, then in addition to
the above requirement, k., 11—k, should be less than or equal
to r;4,, (k) so that the closest completion time k474, (k)

(01(K),
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of the collaboration task from robot id,, (k,,) to human m is
not less than k1. Here r;4,, (k) is a simplified notation for
the remaining time 7,4, () (k) of timing state variable id,,, at
any k. Similar simplifications apply to d;q,,, (k)(k), 0id,, (k)(K)
bid,,(k)(k), and viq  (k),m(k). If there is more than one
human whose attention is occupied by robots, let 7y (k)
be the smallest remaining time of r;4,, (k,) among all the
tasks at k., i.e., Tmin (kw) = min {r;q, (k) : idm (ky) >0}
Summarizing the above two cases, we have

®)

kw-l—l —ky =

M
sgn[Zidm(kw)]min{rmin(kw), di (k) ooy A (Ku) K p — K}

oo

for all w where sgn(q)=1 if ¢>0 and sgn(g)=0 if ¢=0.
After dividing the optimization horizon into sub-intervals
[kw, kw+1), the evolution of Z(k) within any sub-interval
can be derived at k,, and within interval (K, ky11)-
At significant moment k., timing states will have jumps.
The changes of the state vector (d;(ky ), ;i (kw), 0i(ky)) are
the same for preemptive and non-preemptive tasks, depend-
ing on whether a new task of robot ¢ is generated at k.
Case 1: If a new task of robot ¢ is generated at k,,, which
means that the deadline variable of robot 4 satisfies d; (k. —
1)=1, then three timing states are reset to be

dl(kw)znyTz(kw):C'L(kw)>oz(kUI> = 0. (9)

Case 2: If d;(k,—1) > 1, i.e., the next task of robot i will
not generate at k,,, there is no jump in the timing states of
robot ¢. The deadline d;(k,,—1) decreases by 1 for one time
step. The response variable o;(k.,,) will increase by 1 if the
collaboration has not been finished, i.e., r;(k,,—1) > 0. If the
collaboration has been completed before k,,, i.e., r;(k,—1) =
0, then 0;(ky)=0;(ky—1). For the remaining time variable
7; (), if robot 4 is collaborating with a human at k,,—1, i.e.,
1€ID(ky—1), then r;(ky, —1) decreases by 1 for one time
step. If 4 is not in the index set ID(k,,—1), then 7;(k,,—1)
remains the same. Let 1(-) be an indicator function which
is defined to be 1 if the condition ¢ € ID(k,,—1) holds and
0 otherwise. We can present the changes as

di(ky)=d;(ky—1)—1,7;(ky) =7 (kw—1) —1(EEID (ky—1)),
and 0;(ky) = 0;(ky—1)+sgn(r;(ky, —1)). (10)

For the index variable id,, at ky, if r;q, (k,—1) > 1,
it means that robot id,,(k, — 1) has not completed the
collaboration with human m at k,,. If the current task of
robot id,, is non-preemptive, i.e., ¢;q,, (k, —1) = 1, then
tdy(ky) = idpm(ky — 1) as the collaboration cannot be
interrupted until it finishes. If the current task of robot id,,
is preemptive, i.e., ¢;q,, (ky —1) =0, idy,(ky) must switch
to the robot scheduled to collaborate with human m at
ky, ie., robot i with v; (k) = 1. If 7ig, (ky —1) = 1,
robot id,,(k, —1) will complete collaboration at k,,, then
idpm, (ky) also switches to robot with v; ,,, (k) =1 for either

M

> id (k)

m=1

]}min{dl(l@w), oy (k) — )
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preemptive or non-preemptive tasks. Combining the above
cases, the evolution rule for id,, (k) at k,, is

idp (ko) =idm(kw—1)sgn[riq, (kw—1)—1]¢ia,,(kw—1) (11)

+argmax[vi,m (kw)]{ 1- Sgn[ridm(kw - 1) - 1}¢idm(kw_1)} .

For any time k., 4 € € [ky +1, kypya — 1], the timing state
idy (ky +€) does not change since ki1 —kuw < 744, (Kuw)
for any m. If id,, (k) # 0, meaning that robot id,, (k) is
assigned to human m in [k, +1, kyy1—1], we have

didm (kw +€) = didm (kw) —€Tid,, (kw +€) =Tid, (kw) -

€,

Oid,, (kw=+€)=0iq,, (kw)+e€ and vig,, m(ky+e)=1. (12)
For all 4 such that i¢ID(k,, ), we have
di(kw+€) :di(kw)—ﬁ, ’I“i(kw-i-E) :Ti(k‘w) (13)

0;(kw + €) = 0;(kw) + sgn(r;(ky))e, and v; 4, (ky, +€) =0.

The analytical equations from (8) to (13) together form
the generalized timing model for MH-MR collaboration
scheduling, represented by HJ(-). Given the initial state
Z(ko), the task timing parameter C;(n;), the period T, the
non-preemptiveness parameter ¢;(n;) for all ¢ and n;, and
the value of V(ko ~ k), a simplified notation for decision
variables V (k) for any & € [ko, k], this analytical model can
compute Z(k) at each k as

Z(k)=H(k; Z(ko), (Ci(ni), Ts, ds(14) ) i=1 V(ko~E)).

.....

Based on the definition of the response variable O(k), the
time delay §;(n;) can be calculated as

Remark 2: Through (8) to (13), the only case where the
values of the timing states depend on the decision variable
v;,m occurs in (11) at the significant moments k,,. Thus, we
only need to determine decision variables v; ,, at ky,.

IV. CONTENTION-RESOLVING MPC ALGORITHM

In this section, we convert the problem formulated by (7)
into a path planning problem among a weighted decision tree,
which can be solved iteratively. Finding an optimal solution
to (7) is equivalent to finding a path from the root to the end
leaf of the decision tree with minimal cost.

A. Construction of Decision Tree

Due to Remark 2, decision variables v; ,,(k) only need
to be determined at significant moments, which trigger the
decision tree generation. Figure 2 shows an example of
a decision tree where each layer of leaves represents one
significant moment computed by (8). Each leaf is associated
with a significant moment. For an arbitrary leaf indexed
by [ with the significant moment k,, a branch pointing
out from leaf [ is associated with a specific choice of
v; m (k) and connects to a leaf in the next layer. Like the
decision tree proposed for a single human scheduling in
[30], the construction of the whole tree is not needed for
the contention-resolving MPC algorithm for the MH-MR
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Fig. 2. Decision tree for solving integer optimization in a finite time
window. Grey circles denote the leaves without contention, red circles denote
the leaves with contention, and blue circles denote the merged leaves. The
green circle denotes the end of time. The decision tree expands along the
arrowed branches. Colored rectangles show an example of the task allocation
and the attention schedule for humans along the path with red arrows.

system. However, to clearly present our solution, here we
briefly describe how the tree can be fully constructed.

For each leaf [, we identify A(l) as a subset of robots
requesting collaboration or currently collaborating with a
human by timing states. If a request from robot ¢ is generated
at k., we must have r;(ky) = C;(ky) due to (9) and (10).
If robot 7 was collaborating with a human right before k.,
then 0 <7;(ky) <C;(ky). In both cases, we have r;(k,,) >0,
so A(l) = {i: ri(ky) >0, i =1,...,N}. The branches
number from leaf [ depends on whether contentions occur
at k,, associated with [. The following Lemma can check it.

Lemma 1: A contention happens at a significant moment
k,, if and only if Ei\;l sgn [ri(kw)] > M.

Proof. Since each robot in the set A(I) must satisfy r;(k,,) >
0, the total number of elements in A(l) can be written as
vazl sgn(r;(ky)). If this number is greater than the number
of humans, then there is a contention occurring at k,,. [

Based on Lemma 1, k?o, k‘3, If5, k’g, k‘lo, kll and k‘12 of
Figure 1 are the significant moments when contention occurs.

If no contention occurs at k,, i.e., Z;N:lsgn [ri(kw)] <M,
the assignment of robots to humans does not affect the robot
performance P;(k) in [k, kw41], as humans are identical
and C;(k) are the same for each. Any feasible v; ., (kw)
will contribute equally to the cost function in (7). Leaves
with no contention are denoted by grey circles in Figure
2, with only one branch extending from them. Robots with
ongoing non-preemptive tasks at k,, are represented as set
ANP(Z) = {de (k?w — 1) : [Tidm (kw — 1) - 1]¢idm(kw — 1) > 0},
and the decision variable v; ., (k,,) for robots in Axp(l) are
determined at k,, as they have to continue the collabora-
tion with the human assigned previously, i.e., v; y(ky)
Vim (kyw—1) for all ¢ € Axp(l). Denote the set of humans
occupied by robots in Anp(l) as Unp(l), represented as
Unp (l) = {m : [ridm (kw — ].) — 1]¢idm (kw — ].) > 0} Then the
rest of the robots that request collaboration at k,, are denoted
as A(l)\ Axp(1), with Np(l) as their number. The humans
available at k,, are represented as {1,..., M \¥np(l), with
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Mp (1) as their number. Since no contention occurs, we have
Np(l) < Mp(l). Then, a feasible choice of v; ,,(ky) is to
arrange robots with preemptive tasks and available humans
by increasing indices, assigning the first Np(l) humans to
each robot in the increasing index order.

However, if contention occurs at k,, i.e., >~ segn[r; (k)]
> M, we denote the k, as contention time k¢, where
l denotes its corresponding leaf. In Figure 2, red circles
represent the leaves with the contentions. At kj, the per-
formance of robots without immediate collaboration will
decrease, so different choices of vmn(kw) lead to different
costs in [k, k,+1]. Hence, each contention leaf will have
multiple branches, and we only need to design v; p,(ky)
when contentions occur. Same as the leaves with no con-
tention, the decision variable v; ,,, (k,,) for robots in Axp(()
with non-preemptive tasks is determined at k,, and cannot
be chosen freely. For the rest of robots in A(l)\ Axp(l),
we choose Mp(l) robots and assign available humans to
them. Thus, there will be Np(I)!/ [Mp()!(Np(l)—Mp(1))!]
branches from each contention leaf. In Figure 2, a contention
occurs to all four robots (Np(1)=4) at k¢ and both humans
are available (Mp(1) =2). So, we choose 2 robots out of
4 to collaborate with humans at kg, leading to 6 choices of
v; m (ko) corresponding to 6 branches.

Define a branch cost associated with each branch. Let the
g-th branch from leaf /; and denote the decision variable
matrix V(k) associated with ¢ as V,, constants for all ¢
and k € [ky,kyp]. Due to V,, timing states at k, can
be computed by (9),(10) and (11), and the next significant
moment k1 scheduled under V, can be computed by (8),
leading to a new leaf [5 at k,, 1. Then we can compute robots
performance vazl Z’Zi};l [Pi max—Pi(k)] in k € [k, kut1]
by the determined V, and let it be the cost of branch (l1,l2).
See Section IV.B of [30] for the specific formula.

Remark 3: The leaf generation rule in this paper enables
a simplification method to merge leaves and reduce branches
number, which will be introduced next.

B. Tree Structure Simplification

The decision tree will grow exponentially with a larger
number of robots or a longer time horizon [ko, k¢]. Thus,
we propose rules to simplify it.

Lemma 2: For any two leaves [, and [, with the same
associated significant moment k,,, if Zﬁlri(kw) =0 for
both leaves, [, and [, can be merged.

Proof. Since Zfil r;(ky) =0 means all robots have com-
pleted collaboration at k,,, they will start new collaborations
with new initial performance P?(n;) after k,,. That is, the
system behavior after k,, will be the same for both leaves,
allowing them to be merged and treated as one. ]

Such a leaf merging rule can help simplify the structure of
decision tree. Take the example at kq in Figure 2 again as an
illustration. There are 6 different ways to allocate robots to
humans at k( to resolve contention. Under each allocation, all
robots can complete their first task before or right at ko. After
ko, they will have new tasks. So, different task allocations
at ko do not affect the system timing or robots’ performance
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after ko, allowing us to merge all the leaves at ko together.
The same merging occurs at time kg.

If all leaves at a significant moment can be merged
into a single leaf, we call this significant moment a reset
time, denoted as t? where p is the index. Searching for
the minimal path among the entire tree can be changed to
find the minimal cost segments on the partial tree between
each two successive reset times, simplifying the computation
complexity for contention-resolving MPC. The optimal path
for the entire tree in Figure 2 can be partitioned into three
segments, which are the lowest cost paths from leaf 1 to §,
leaf 8 to 30, and leaf 30 to 67.

Based on the simplified decision tree with branch costs,
the integer optimization problem in (7) can now be converted
to the problem of finding a path from kg to &y such that
the whole cost along the path is the lowest. In our previous
work, we presented an optimal path search algorithm that
leverages the A-star algorithm to search for an optimal path
in the decision tree. See [27], [28] for more details.

V. SIMULATION RESULTS

We simulate 4 robots collaborating with 2 humans. The
starting and ending times are kg = 0 and ky = 120,
respectively. The initial performance values are PP (n;)=0.7
for all ¢ and n;. The parameters for the performance model
are k; g = 0.25 for all 4, and [k g, ko, ks, kap] =
[0.2,0.15,0.13,0.1]. The lower and upper bounds are
P; min = 0.65 for 1 <4, Py min=0.6, and P; nax =0.75 for
all 4. The periods are [T4,T», T3, Ty4] = [20, 30, 30, 40]. The
collaboration times are Cy(1)=C1(3)=C1(5)=C1(6)=10,
C1(2)=C1(4)=15, C3(1)=C5(4)=10, C5(2)=15, C(3)=25,
C3(1) = C5(3) = C3(4) = 10, C3(2) =5, Ca(1) = Cu(3) =
10 and C4(2) =>5. Parameters for non-preemptiveness are
¢1(4) =$2(2) =¢2(3) =1 and the other ¢; =0. Applying the
algorithm, the humans attention occupation result is shown
in Figure 3. The robot performance is shown in Figure 4. The
total computation of our method only took 0.1182 seconds.
Five contentions occur in [0, 120] and the computation time
to find the optimal solution is 0.41 seconds. The cost under
optimal schedule considering the original cost function in
(6) is 34.235, less than the RMS scheduling strategy cost
of 36.086, where the priority of 4 robots is in descending
order, meaning that robot 1 always has the highest priority.
Our proposed method showed better performance than the
state-of-the-art scheduling strategy, and the optimal solution
can be obtained in real-time.

VI. CONCLUSIONS AND FUTURE WORK

Coordinating multiple humans and robots to work together
is a challenging problem and attracts increasing research
interest. We present a novel method to allocate human
resources to achieve maximal robot performance. In the
future, we aim to extend this work to more general scenarios
where humans have different capacities on specific tasks.

Authorized licensed use limited to: George Mason University. Downloaded on December 04,2025 at 18:51:04 UTC from IEEE Xplore. Restrictions apply.



Fig.
axis
that

Robot 1

1 T T T T

of ]

0 . . . . . 1 . . . 1 .

0 10 20 30 40 50 60 70 80 90 100 110 120
Robot 2

1 T T T T

05{ }

0 . . . . . . . L

0 10 20 30 40 50 60 70 8 90 100 110 120
Robot 3

ol I L [V A1

0 . 1 . .

0 10 20 30 40 50 60 70 8 90 100 110 120
Robot 4

Iy 7 ]

0 . .

0 10 20 30 40 50 60 70 80 90 100 110 120
Human 1

1

ost U L

0 . . . . . 1 . . . . .

0 10 20 30 40 50 60 70 8 90 100 110 120
Human 2

1 T T

N e I | L

0 . 1 . . . . .

0 10 20 30 40 50 60 70 8 90 100 110 120

3. Human attention occupation to collaborate with four robots. The y
value 1 means that the robot is collaborating with a human, 0 means
the robot is not requesting the collaboration, and 0.5 means that the

robot’s collaboration request is delayed by a contention.

Fig.

Robot 1

100

110 120

4. Performance of four robots under the optimal schedule. The magenta

dashed line represents P; max and the black dashed line represents P; min.

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schiffer, K. Kosuge,
and O. Khatib, “Progress and prospects of the human-robot collabo-
ration,” Autonomous Robots, vol. 42, no. 5, pp. 957-975, 2018.

L. Zhang and R. Vaughan, “Optimal robot selection by gaze direction
in multi-human multi-robot interaction,” in 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). 1EEE,
2016, pp. 5077-5083.

V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human-robot
collaboration in industrial settings: Safety, intuitive interfaces and
applications,” Mechatronics, vol. 55, pp. 248-266, 2018.

E. Matheson, R. Minto, E. G. Zampieri, M. Faccio, and G. Rosati,
“Human-robot collaboration in manufacturing applications: A review,”
Robotics, vol. 8, no. 4, p. 100, 2019.

F. Semeraro et al., “Human-robot collaboration and machine learning:
A systematic review of recent research,” Robotics and Computer-
Integrated Manufacturing, vol. 79, p. 102432, 2023.

G. A. Miller, “The magical number seven, plus or minus two: Some
limits on our capacity for processing information.” Psychological
review, vol. 63, no. 2, p. 81, 1956.

N. Carr, The shallows: What the Internet is doing to our brains. WW
Norton & Company, 2011.

T. Yu, J. Huang, and Q. Chang, “Optimizing task scheduling in human-
robot collaboration with deep multi-agent reinforcement learning,”
Journal of Manufacturing Systems, vol. 60, pp. 487-499, 2021.

M. Majji and R. Rai, “Autonomous task assignment of multiple
operators for human robot interaction,” in 2013 American Control
Conference. 1EEE, 2013, pp. 6454-6459.

363

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

L. Johannsmeier and S. Haddadin, “A hierarchical human-robot
interaction-planning framework for task allocation in collaborative
industrial assembly processes,” IEEE Robotics and Automation Letters,
vol. 2, no. 1, pp. 4148, 2016.

T. Mina, S. S. Kannan, W. Jo, and B.-C. Min, “Adaptive workload
allocation for multi-human multi-robot teams for independent and
homogeneous tasks,” IEEE Access, vol. 8, pp. 152697-152712, 2020.
P. Gupta and V. Srivastava, “On robust and adaptive fidelity selection
for human-in-the-loop queues,” in 2021 European Control Conference
(ECC), 2021, pp. 872-8717.

A. Ali, H. Azevedo-Sa, D. M. Tilbury, and L. P. Robert, “Heteroge-
neous human-robot task allocation based on artificial trust,” Scientific
reports, vol. 12, no. 1, pp. 1-15, 2022.

F. Chen, K. Sekiyama, F. Cannella, and T. Fukuda, “Optimal subtask
allocation for human and robot collaboration within hybrid assembly
system,” IEEE Transactions on Automation Science and Engineering,
vol. 11, no. 4, pp. 1065-1075, 2013.

M. S. Malvankar-Mehta and S. S. Mehta, “Optimal task allocation
in multi-human multi-robot interaction,” Optimization Letters, vol. 9,
no. 8, pp. 1787-1803, 2015.

M. C. Gombolay, R. J. Wilcox, and J. A. Shah, “Fast scheduling of
robot teams performing tasks with temporospatial constraints,” IEEE
Transactions on Robotics, vol. 34, no. 1, pp. 220-239, 2018.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46-61, 1973.

R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of Schedul-
ing. Courier Corporation, 2003.

U. Schwiegelshohn and R. Yahyapour, “Analysis of first-come-first-
serve parallel job scheduling,” in SODA, vol. 98. Citeseer, 1998, pp.
629-638.

S.-Y. Chien, Y.-L. Lin, P.-J. Lee, S. Han, M. Lewis, and K. Sycara,
“Attention allocation for human multi-robot control: Cognitive analysis
based on behavior data and hidden states,” International Journal of
Human-Computer Studies, vol. 117, pp. 30—44, 2018.

X. Wang, Z. Shi, F. Zhang, and Y. Wang, “Dynamic real-time
scheduling for human-agent collaboration systems based on mutual
trust,” Cyber-Physical Systems, vol. 1, no. 2-4, pp. 76-90, 2015.

Z. Shi, L. Wang, P. Liu, and L. Shi, “Minimizing completion time
for order scheduling: Formulation and heuristic algorithm,” IEEE
Transactions on Automation Science and Engineering, vol. 14, no. 4,
pp. 1558-1569, 2015.

K. Bogner, U. Pferschy, R. Unterberger, and H. Zeiner, “Optimised
scheduling in human-robot collaboration—a use case in the assembly of
printed circuit boards,” International Journal of Production Research,
vol. 56, no. 16, pp. 5522-5540, 2018.

A. Casalino, A. M. Zanchettin, L. Piroddi, and P. Rocco, “Optimal
scheduling of human-robot collaborative assembly operations with
time petri nets,” IEEE Transactions on Automation Science and
Engineering, vol. 18, no. 1, pp. 70-84, 2021.

N. Yao, M. Malisoff, and F. Zhang, “Contention-resolving model
predictive control for coordinating automated vehicles at a traffic
intersection,” in 2019 IEEE Conference on Decision and Control
(CDC). IEEE, 2019, pp. 2233-2238.

N. Yao and F. Zhang, “Contention-resolving model predictive control
for an intelligent intersection traffic model,” Discrete Event Dynamic
Systems, pp. 1-31, 2021.

N. Yao, M. Malisoff, and F. Zhang, “Contention resolving optimal
priority assignment for event-triggered model predictive controllers,”
in Proceedings of the 2017 American Control Conference. IEEE,
2017, pp. 2357-2362.

Y. Ningshi, M. Michael, and Z. Fumin, “Contention-resolving model
predictive control for coupled control systems with a shared resource,”
Automatica, vol. 122, p. 109219, 2020.

N. Yao and F. Zhang, “Event-triggered scheduling and control co-
design for networked control systems with sub-schedulability,” in 2022
American Control Conference (ACC). IEEE, 2022, pp. 1733-1738.
Y. Ningshi and Z. Fumin, “Optimal real-time scheduling of human
attention for a human and multi-robot collaboration system,” in 2020
American Control Conference (ACC). IEEE, 2020, pp. 30-35.

J. W. Crandall, M. A. Goodrich, D. R. Olsen, and C. W. Nielsen,
“Validating human-robot interaction schemes in multitasking environ-
ments,” I[EEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, vol. 35, no. 4, pp. 438449, 2005.

Authorized licensed use limited to: George Mason University. Downloaded on December 04,2025 at 18:51:04 UTC from IEEE Xplore. Restrictions apply.



