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Abstract— Our earlier work established a contention-
resolving model predictive control (or MPC) framework to
co-design priorities and control for networked control systems
(or NCSs), assuming the system models are perfect. However,
due to the differences between a model and the real world,
there are inevitable perturbations. In this paper, we focus
on perturbations of the predicted timings, which are rarely
addressed in the literature, and present a robust MPC de-
sign to achieve guaranteed performance under such timing
perturbations. We propose a state-feedback correction term
with dynamic gain, added to the nominal contention-resolving
MPC policy, which can eliminate the state deviation between
perturbed and nominal systems at the predicted task completion
time. Additionally, we identified the largest tolerable timing
perturbation for such a robust MPC design. Under the tolerable
timing perturbations, we analytically proved that the state
deviation can be bounded by a forward invariant set (or FIS)
for all time. The robust MPC policy can be then designed
based on the FIS, such that perturbed system trajectories
are guaranteed to satisfy all the original state and control
constraints. The effectiveness of our proposed method is verified
through simulation.

I. INTRODUCTION
Differences between system models and real system per-

formances are unavoidable, which can be viewed as per-
turbations. Perturbations in NCSs, especailly for timing,
can be caused by unexpected network congestion, sampling
delays, packet dropouts, etc. The control performance can be
dramatically degraded by perturbations. More seriously, the
system states may violate its safety constraints. Traditionally,
the effect of perturbations is often analyzed using input-to-
state stability techniques [1] with strict Lyapunov functions
[2]. When the goal is to show invariance for a specific
set, barrier Lyapunov functions [3], control barrier functions
[4] and other popular Lyapunov-like approaches can be
used. However, these traditional analytical techniques can be
conservative in the sense that they find bounds on tolerable
disturbances that are much smaller than the largest tolerable
disturbance set. If the bounds are too conservative, then they
may sacrifice optimality or even lose feasibility.

In recent years, the tube-based MPC approach [5]–[7] was
developed to compensate for perturbations in system models,
and has been applied to linear time-invariant (or LTI) systems
[8], [9], linear time-varying (or LTV) systems [10], [11], and
nonlinear systems [12], [13]. However, the studies proposed
so far merely focus on the bounded additive perturbation in
system dynamics. In NCSs, another type of perturbation can
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affect the system behavior as well but was less explored,
which is perturbations on the time when a control law is
updated or applied to a control system. Incorrect timing
has been shown to even sabotage the stability of a control
system [14]–[18] in extreme cases. The current tube-based
MPC designs for additive system disturbances have diffi-
culty incorporating disturbances of the timing because the
asynchronization between the nominal and perturbed systems
makes it difficult to analyze the error dynamics.

A few works have considered the problem with inaccurate
timing for control systems, assuming that timing perturbation
is either a constant or obeys a certain distribution. The
authors in [19]–[23] discussed the cases of the delayed
control signal, and [24]–[26] studied the delays in state
measurement, where the timing perturbation is treated as
a fixed constant value. However, those methods are not
applicable for timing perturbations in NCSs because the
perturbations may be introduced by random instances such
as unpredictable system failures. In [27], the random time
delays from the sensor to the controller and from the con-
troller to the actuator were modeled as homogeneous Markov
Chain, and a method for stabilization of networked control
systems with random delays was presented. The work in
[28] also assumes that the sampling periods can be modeled
by a Markov Chain. In reality, a timing perturbation can
be purely random without knowing its distribution. How to
design controllers to compensate for general random timing
perturbations is still an open question.

In this paper, we propose a new tube-based MPC with
dynamic gain for coupled control systems to compensate for
the random timing perturbations existing in an NCS. The
main contributions of this paper are summarized as follows:
1. A feedback controller is designed based on the error
between nominal system and perturbed system states at
the perturbed control updating times. Distinguishing from
the traditional tube-based MPC with the constant feedback
gain, we design the feedback gain as a function of timing
perturbations, so that the error is guaranteed to be zero
at each predicted control updating time. When the timing
perturbations no longer exist, real system trajectories con-
verge to nominal system trajectories immediately under the
proposed controller design, which cannot be achieved by the
traditional tube-based MPC.
2. We identify the tolerable range of the timing perturbation
to guarantee the stability of the perturbed system. Within
such a range, the close-loop error dynamics can be proven
to be asymptotically stable, which guarantees that a for-
ward invariant set (or FIS) for the error dynamics exists,
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Fig. 1. Networked control system with a shared resource.

Fig. 2. The timing of the real-time tasks with time perturbations.

i.e., perturbed system trajectories are bounded by a tube
around nominal trajectories. After computing the FIS, we
can leverage a standard MPC to design the nominal control
law under the shrunk state and control constraints (original
constraints subtract the FIS). The final controller then is the
nominal controller plus the feedback controller for the error
dynamics. The perturbed solution is then guaranteed to stay
within the tube, satisfying all the original constraints.

II. PROBLEM FORMULATION

Consider N control systems with recurring requests use
a shared resource to complete control tasks, as shown in
Fig. 1. Such a shared resource is widely adapted in NCSs
to better utilize limited bandwidth, and we assume that only
one system can occupy the shared resource at the same time
instant. Such an NCS setup can be seen in a shared processor,
or communication media like the control area network (or
CAN) [29]. The i-th system dynamics is

ẋi(t) = Aixi(t) +Biui(t), i=1, . . . , N (1)

where the matrix Ai ∈Rn×n is nonsingular and has exclu-
sively real eigenvalues, Bi ∈ Rn×m is nonsingular and has
linearly independent rows, xi(t)∈Rn is the state vector and
ui(t)∈Rm is the control command. They are subject to the
state and control constraints, respectively

xi(t) ∈ Xi, and ui(t) ∈ Ui, for all t. (2)

A. Priority-based Scheduling for Shared Resource

The i-th system has a sequence of tasks to operate, as
shown in Fig. 2, where each task execution time may vary
from each other, which is denoted by Ci[k], where k ∈ N is
the index of the k-th task. The task generation time is denoted
as αi[k]. When a task finishes the occupation of the shared
resource, the completion time is denoted as γi[k]. Since the
measurement of the system state xi(t) is only accessible to
the controller at the task completion time γi[k], the control
signal of the i-th system can only be updated at γi[k], i.e.,

ui(t) = ui[k], for t ∈ [γi[k], γi[k + 1]), (3)

meaning that the control ui is a piece-wise constant. This
design follows the idea of the zeroth-order-hold (or ZOH)
mechanism that is frequently used in sampling-based control.

Because the shared resource only allows one system to
occupy it at any time, when multiple systems request to use
the shared resource simultaneously, a contention occurs. In
this case, priorities are assigned to the contended systems to
determine which system can access the shared resource first,
where the priority order can be predetermined or obtained by
solving an optimization problem [17]. Only the system with
the highest priority can occupy the shared resource immedi-
ately at αi[k]. All the other systems will have time delays.
Denote δi[k] as the time delay from the task generation time
αi[k] to the actual time when the task begins to occupy the
resource, namely, γi[k] satisfies γi[k] = αi[k]+δi[k]+Ci[k].
Both δi[k] and γi[k] are actually implicit functions of specific
priority assignments, timing parameters αi[k] and Ci[k]. Our
previous work [17] presented an analytical timing model,
which can predict δi[k] and γi[k].

Remark 1: Note that for timing model to accurately com-
pute δi[k] and γi[k], the parameters αi[k] and Ci[k] need to
be known for all k.

B. Perturbed Timing

In real applications, the execution time Ci[k] can be
obtained easily because they are normally pre-defined by the
design of tasks. The timing parameter αi[k] is generated at
run-time and may not be known precisely, due to reasons
such as the clocks of each system in the NCS are not
synchronized. Hence, we assume that Ci[k] are known for all
k, while αi[k] is unknown. The best we can do is to estimate
αi[k]. The work in [30] proposed a method to estimate αi[k],
which was denoted as α̃i[k] on CAN bus, and proved that the
difference between αi[k]−α̃i[k] is non-negative and is non-
increasing as k increases. Therefore, to predict any future
time delay, we can only use α̃i[k] in the timing model, which
can obtain the estimated γ̃i[k], as shown in Fig. 2. In this
paper, we specifically look into the difference between the
actual completion time and the estimated completion time,
denoted as ∆i[k] = γi[k] − γ̃i[k], because this is the direct
perturbation affecting the control applied to each system.

Assumption 1: 0 ≤ ∆i[k] ≤ ∆i is a random variable with
a finite constant upper bound ∆i for all k.

The timing perturbations would cause the system states to
deviate from the predicted system behavior. To distinguish
the difference, we define the predicted system behavior as
the nominal system under the estimated completion time
instants, which follows the dynamic equations

ẋn
i (t) = Aix

n
i (t) +Biu

n
i (t),

un
i (t) = un

i [k], for t ∈ [γ̃i[k], γ̃i[k + 1]), (4)

where xn
i (t) ∈ Rn is the nominal system state, and un

i (t) ∈
Rm is the nominal system control signal.

C. Formulation of Model Predictive Control

The MPC is triggered whenever a task is completed and
the controller obtains a new state measurement xi(t0) at
time t0. We establish MPC problems during the time interval
[t0, t0 + Tp], where the current time t0 is the initial time of
the prediction horizon of MPC optimization and Tp is the

1140

Authorized licensed use limited to: George Mason University. Downloaded on December 04,2025 at 18:51:31 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Tube-based MPC illustration. MPC steers tube towards targeted
equilibrium point, while satisfying state constraints.

prediction length. We set the initial run-time timing parame-
ters for this prediction horizon as αi[0]=γi[0]= t0. Since the
system state measurement is only accessible to the controller
at the future task completion time γi[k] > t0, a control
objective function can only be evaluated at γi[k]. Define
xi[k]=xi(γi[k]), ui[k]=ui(γi[k]) for k=0, 1, . . . ,K , where
K is the largest integer such that γi[K]≤ t0+Tp, and u[k] =
[u1[k], . . . , uN [k]]. Given the initial state value xi(t0), the
initial control law ui[0] = ui(t0), and a specific priority
order, the optimization problem for MPC is represented as

min
u[k]

N∑
i=1

[
K−1∑
k=0

(
∥xi[k]∥2Qi

+ ∥ui[k]∥2Ri

)
+ ∥xi[K]∥2Pi

]
,

s.t. (1), (2), (3), (5)

where Qi, Ri, Pi are positive definite matrices, and ∥xi[k]∥2Qi

denotes the quadratic form of vector xi[k], i.e., xT
i [k]Qixi[k].

The proper u[k] needs to be found as the decision variable
to minimize the cost function.

However, since the actual task completion time γi[k] in
(3) entails the random variable and is not deterministic in the
future prediction horizon, the system state xi[k] in the future
is also undetermined. Thus, directly solving this optimization
problem in (5) of the perturbed system is impossible.

In this case, a tube-based MPC approach is leveraged to
compensate for perturbations in system timing, as illustrated
by Fig. 3. The tube-based robust MPC design is decomposed
into two stages. First, the system dynamics is decomposed
into nominal system dynamics and the error dynamics at
γi[k]. A feedback controller is designed for the error dynam-
ics only and an FIS (or its upper bound), denoted as Si, for
the error dynamics under the designed feedback controller
can be computed. The blue balls in Fig. 3 represent the
FIS for the error dynamics. Second, the nominal dynamics
plus the FIS are considered as a tube. The state and input
constraint sets for the nominal MPC design are extended
to accommodate the tube. Define xn

i [k] = xn
i (γ̃i[k]) and

un
i [k] = un

i (γ̃i[k]) for k = 0, 1, 2, ..., K, where K is the
largest integer such that γ̃i[K] ≤ t0+Tp. Given the initial
nominal state value xn

i (t0) = xi(t0), the initial nominal
control law un

i [0]=ui[0]=ui(t0), the initial estimated timing
parameters γ̃i[0]= γi[0]= t0 and the same priority order, the
optimal nominal control un∗[k] can be obtained by solving
the following optimization problem

min
un[k]

N∑
i=1

K−1∑
k=0

(
∥xn

i [k]∥2Qi
+ ∥un

i [k]∥2Ri

)
+ ∥xn

i [K]∥2Pi

 ,

s.t. (4), xn
i (t) ∈ Xi ⊖ Si, (6)

Fig. 4. Illustration of state-feedback controller for the perturbed system.

where the set subtraction is defined as A⊖B :={x∈Rn|{x}⊕
B ⊆ A}, in which the set addition is A⊕B := {a+b|a ∈
A, b ∈ B} for A,B ∈ Rn, and un[k] = [un

1 [k], . . . , u
n
N [k]].

The standard MPC solver can compute the nominal control
once Si is given. The final controller for the perturbed system
is the nominal controller plus the feedback controller for the
error dynamics.

III. TUBE-BASED MPC WITH DYNAMIC GAIN

We first explain why a traditional tube-based MPC dis-
cussed in work such as [6], [31] cannot work for random
timing perturbations and then present our robust MPC design.

Since the control command is a piece-wise constant func-
tion , we can discretize the continuous-time system into
a discrete-time system xi[k+1] = Ai[k]xi[k]+Bi[k]ui[k],
where xi[k+ 1] = xi(γi[k+ 1]), xi[k] = xi(γi[k]), Ai[k]
= eAi(γi[k+1]−γi[k]) = eAi(γ̃i[k+1]+∆i[k+1]−γ̃i[k]−∆i[k]) =
eAi(∆i[k+1]−∆i[k])eAi(γ̃i[k+1]−γ̃i[k]) (depending on γ̃i[k+1]−
γ̃i[k]), and Bi[k] = (Ai[k]−I)A−1

i Bi with I as an n×n
identity matrix. The traditional tube-based MPC within time
interval t∈ [γi[k], γi[k+1]) is

ui[k] = un
i [k]−Kc [xi(γi[k])− xn

i (γi[k])] . (7)

Fig. 4 presents an illustration of the tube-based MPC design
with the feedback correction term utilizing the error between
the actual states and nominal states at the actual task comple-
tion time. Once a task is completed, we can directly measure
the current system state value xi(γi[k]). The nominal system
state xn

i (γi[k]) can be easily obtained through simulations.
Here the constant feedback gain Kc should be designed

such that Ai[k]−Bi[k]Kc is Hurwitz for all 0≤k≤K. How-
ever, since both Ai[k] and Bi[k] depend on random timing
perturbations, Ai[k] and Bi[k] are time-varying and undeter-
mined. In this case, it is very hard to find a Kc to guarantee
Ai[k]−Bi[k]Kc stable for all k. In [11], a tube-based MPC
has been presented for LTV systems. But the method in
[11] requires all (Ai[k], Bi[k]) ∈ Conv

{
(Aj , Bj), ∀j =

1, 2, . . . , L
}

where (Aj , Bj) are vertices of a convex hull
and L is the number of vertices of the convex hull, i.e., any
(Ai[k], Bi[k]) is the convex combination of (Aj , Bj), which
does not apply here. The best we can do to design a constant
Kc is to leverage the estimated task completion time γ̃i[k]
to approximate Ai[k] and Bi[k] as Ãi[k]=eAi(γ̃i[k+1]−γ̃i[k])

and B̃i[k] = (Ãi[k]− I)A−1
i Bi, and design Kc such that

Ãi[k]−B̃i[k]Kc is Hurwitz. But the actual Ai[k]−Bi[k]Kc can
be unstable for some k due to the timing perturbations. To
resolve this, we present a dynamic feedback gain K(∆i[k])
design that can ensure Ai[k]−Bi[k]K(∆i[k]) Hurwitz for all
k, which will be introduced in the next subsection.
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A. Dynamic Feedback Gain Design
Our dynamic state-feedback controller design for the per-

turbed system is

ui[k] = un
i [k]−K(∆i[k]) [xi(γi[k])− xn

i (γi[k])] , (8)

where the feedback controller gain K(∆i[k]) is equal to

K(∆i[k])=B†
iAi

[
eAi(γ̃i[k+1]−γi[k])−I

]−1

eAi(γ̃i[k+1]−γi[k])

=B†
iAi

[
eAi(γ̃i[k+1]−̃γi[k]−∆i[k])−I

]−1

eAi(γ̃i[k+1]−̃γi[k]−∆i[k]) (9)

where B†
i ∈Rm×n is pseudo-inverse of Bi with BiB

†
i =I .

Remark 2: Notice that the proposed dynamic gain
K(∆i[k]) is computable at run-time. Once a task is com-
pleted, we can directly measure the current time, i.e. γi[k].
The estimated task completion time instants γ̃i[k] and γ̃i[k+1]
can be predicted by the timing model presented in [17].

Here, we present the following Lemma which shows that
under the proposed feedback control law, the perturbed
system trajectory will oscillate around the nominal system
trajectory, and the perturbed system state equals the nominal
system state at each estimated task completion time.

Lemma 1: With the proposed state-feedback controller
design in (8) and (9), the perturbed and nominal system states
are identical to each other at each estimated task completion
time, i.e., xi(γ̃i[k]) = xn

i (γ̃i[k]), for all k=0, 1, . . . , K.
Proof. We will prove this Lemma by mathematical induction.
Initially, since xi(t0)=xn

i (t0)=xi,0 and γ̃i[0]= t0, we have
xi(γ̃i[0])=xn

i (γ̃i[0]).
Assume xi(γ̃i[k]) = xn

i (γ̃i[k]) for an arbitrary k. We can
prove xi(γ̃i[k+1])=xn

i (γ̃i[k+1]). Due to the nominal system
dynamics in (4), we can get the analytical form of xn

i (γ̃i[k+
1]), which is xn

i (γ̃i[k+1]) = eAi(γ̃i[k+1]−γ̃i[k])xn
i (γ̃i[k])+∫ γ̃i[k+1]

γ̃i[k]
eAi(γ̃i[k+1]−τ)Biu

n
i (τ)dτ . Since matrix Bi is con-

stant, and un
i (τ) = un

i [k] for any τ ∈ [γ̃i[k], γ̃i[k+1]) in
the nominal system, the integral item in the above equation
can be simplified as eAiγ̃i[k+1]

∫ γ̃i[k+1]

γ̃i[k]
e−AiτdτBiu

n
i [k].

Take the integration of the exponential function, we have∫ γ̃i[k+1]

γ̃i[k]
e−Aiτdτ=−

(
e−Aiγ̃i[k+1]−e−Aiγ̃i[k]

)
A−1

i . Thus,

xn
i (γ̃i[k+1])=eAi(γ̃i[k+1]−γ̃i[k])xn

i (γ̃i[k])

+[eAi(γ̃i[k+1]−γ̃i[k])−I]A−1
i Biu

n
i [k]. (10)

Similarly, the perturbed system state xi(γ̃i[k + 1]) at
the estimated completion time γ̃i[k + 1] can be repre-
sented as xi(γ̃i[k + 1]) = eAi(γ̃i[k+1]−γ̃i[k])xi(γ̃i[k]) +∫ γ̃i[k+1]

γ̃i[k]
eAi(γ̃i[k+1]−τ)Biui(τ)dτ . Since the perturbed sys-

tem’s control commands are ui(τ) = ui[k − 1] for τ ∈
[γ̃i[k], γi[k]) and ui(τ) = ui[k] for τ ∈ [γi[k], γ̃i[k+1]),
the above equation can be rewritten as xi(γ̃i[k + 1]) =

eAi(γ̃i[k+1]−̃γi[k])xi(γ̃i[k])+
∫ γi[k]

γ̃i[k]
eAi(γi[k]−τ)Biui[k−1]dτ +∫ γ̃i[k+1]

γi[k]
eAi(γ̃i[k+1]−τ)Biui[k]dτ , which leads to

xi(γ̃i[k+1])=eAi(γ̃i[k+1]−̃γi[k])xi(γ̃i[k])

+
[
eAi(γ̃i[k+1]−̃γi[k])−eAi(γ̃i[k+1]−̃γi[k]−∆i[k])

]
A−1

i Biui[k−1]

+
[
eAi(γ̃i[k+1]−̃γi[k]−∆i[k])−I

]
A−1

i Biui[k]. (11)

Subtracting (11) by (10), the difference between the per-
turbed and the nominal systems can be computed

xi(γ̃i[k + 1])− xn
i (γ̃i[k + 1])

= eAi(γ̃i[k+1]−̃γi[k]) [xi(γ̃i[k])− xn
i (γ̃i[k])]

+
[
eAi(γ̃i[k+1]−̃γi[k])−eAi(γ̃i[k+1]−̃γi[k]−∆i[k])

]
A−1

i Biui[k−1]

+
[
eAi(γ̃i[k+1]−γ̃i[k]−∆i[k]) − I

]
A−1

i Biui[k]

−
[
eAi(γ̃i[k+1]−γ̃i[k]) − I

]
A−1

i Biu
n
i [k]. (12)

Since we assume xn
i (γ̃i[k]) = xi(γ̃i[k]), then first term

eAi(γ̃i[k+1]−̃γi[k]) [xi(γ̃i[k])− xn
i (γ̃i[k])] in (12) equals 0.

To further simplify (12), we will represent ui[k] as a
function of ui[k − 1] and un

i [k], based on (8) and (9).
The feedback term xi(γi[k]) − xn

i (γi[k]), based on the
analytical form for LTI, can be derived as xi(γi[k]) =
eAi(γi[k]−γ̃i[k])xi(γ̃i[k])+

[
eAi(γi[k]−γ̃i[k])−I

]
A−1

i Biui[k−1]
because the perturbed system control for t ∈ [γ̃i[k], γi[k])
is ui[k − 1], and xn

i (γi[k]) = eAi(γi[k]−γ̃i[k])xn
i (γ̃i[k]) +[

eAi(γi[k]−γ̃i[k])−I
]
A−1

i Biu
n
i [k] because the nominal sys-

tem control for t ∈ [γ̃i[k], γi[k]) is un
i [k]. We can derive

xi(γi[k])−xn
i (γi[k])=eAi∆i[k]xi(γ̃i[k])−eAi∆i[k]xn

i (γ̃i[k])

+(eAi∆i[k]−I)A−1
i Biui[k−1]−(eAi∆i[k]−I)A−1

i Biu
n
i [k]

= (eAi∆i[k]−I)A−1
i Bi(ui[k−1]−un

i [k]), (13)

because xi(γ̃i[k]) = xn
i (γ̃i[k]) as assumed.

For simplicity of the rest of this proof, we define
M1 = eAi(γ̃i[k+1]−̃γi[k]), and M2 = eAi(γ̃i[k+1]−̃γi[k]−∆i[k]).
The term M2 = eAi(γ̃i[k+1]−̃γi[k]−∆i[k]) can be rewrit-
ten as eAi(γ̃i[k+1]−̃γi[k]−∆i[k])

(
eA∆i[k] − I

)(
eAi∆i[k] − I

)−1
=[

eAi(γ̃i[k+1]−̃γi[k])−eAi(γ̃i[k+1]−̃γi[k]−∆i[k])
](
eA∆i[k]−I

)−1
=

(M1−M2)
(
eA∆i[k]−I

)−1
. Bringing M1, M2 and xi(γi[k])

−xn
i (γi[k]) in (8) leads to control law for perturbed system

ui[k]=un
i [k]−B†

iAi (M2 −I)
−1

M2 [xi(γi[k])− xn
i (γi[k])]

=un
i [k]−B†

iAi(M2 −I)
−1
(M1 −M2) (e

Ai∆i[k]−I)−1

· (eAi∆i[k] − I)A−1
i Bi (ui[k − 1]− un

i [k]) (14)

=un
i [k]+B†

iAi(M2−I)−1(M2−M1)A
−1
i Bi(ui[k−1]−un

i [k]).

Using M1 and M2 in (12), we have

xi(γ̃i[k+1])−xn
i (γ̃i[k+1])=(M1−M2)A

−1
i Biui[k−1]

−(M1−I)A−1
i Biu

n
i [k]+(M2−I)A−1

i Biui[k], (15)

where the last term (M2−I)A−1
i Biui[k] = (M2−I)A−1

i Bi

[un
i [k]+B

†
iAi(M2−I)−1(M2−M1)A

−1
i Bi(ui[k−1]−un

i [k])]
with (15). Multiplying (M2−I)A−1

i Bi inside the bracket, it
equals (M2−I)A−1

i Biu
n
i [k]+(M2−I)A−1

i BiB
†
iAi(M2−

I)−1(M2−M1)A
−1
i Bi(ui[k−1]−un

i [k]). Since BiB
†
i = I ,

then (M2 − I) · A−1
i · BiB

†
iAi(M2 − I)−1 = I . Then we

can derive (M2 − I)A−1
i Biui[k] = (M2 − I)A−1

i Biu
n
i [k] +

(M2 − M1)A
−1
i Bi(ui[k − 1] − un

i [k]). Thus, the equa-
tion (12) is equivalent to xi(γ̃i[k+1])− xn

i (γ̃i[k + 1]) =
(M1−M2)A

−1
i Biui[k−1]− (M1− I)A−1

i Biu
n
i [k]+ (M2−

I)A−1
i Biu

n
i [k]+(M2−M1)A

−1
i Bi(ui[k−1]−un

i [k]). After
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grouping all the terms corresponding to ui[k− 1] and un
i [k]

together, respectively, we obtain xi(γ̃i[k+1])−xn
i (γ̃i[k+1]) =

[(M1 −M2)+ (M2 −M1)]ui[k− 1]+ [−(M1 − I)+ (M2 −
I)− (M2 −M1)]u

n
i [k] = 0, which completes the proof. □

B. Error Dynamics

In the proof of Lemma 1, we can see that xi(γi[k]) ̸=
xn
i (γi[k]) if ui[k−1] ̸= un

i [k], according to (13). The per-
turbations on timing cause the perturbed solution to deviate
from the nominal solution. It does not exist a steady state
for the deviation. What can hope for is to impose tight
bounds on the perturbed solution, so that it can stay in a
tube with changing volume over time. Hence, we analyze the
error dynamics between the perturbed and nominal systems
at the actual task completion time γi[k]. Define the error
ei[k] = xi[k]− xn

i [k] = xi(γi[k])− xn
i (γi[k]).

Lemma 2: The error dynamics can be represented as

ei[k + 1] = Acl
i [k]ei[k] + wi[k], (16)

where Acl
i [k] = −[eAi∆i[k+1]−I][eAi(γ̃i[k+1]−γ̃i[k]−∆i[k])−

I]−1eAi(γ̃i[k+1]−γ̃i[k]−∆i[k]) and wi[k] = (eAi∆i[k+1] −
I)A−1

i Bi(u
n
i [k]−un

i [k+1]).
Proof. To compute ei[k+1]=xi[k+1]−xn

i [k+1], we first need
to obtain xi[k+1] and xn

i [k+1]. Since ui(t) is a constant
ui[k] within [γi[k], γi[k+1]), it is easy to compute xi[k+1]=
eAi(γi[k+1]−γi[k])xi[k]+[e

Ai(γi[k+1]−γi[k])−I]A−1
i Biui[k]. For

the nominal system, since un
i (t)=un

i [k] for t∈ [γi[k], γ̃i[k+
1]) and un

i (t) = un
i [k + 1] for t ∈ [γ̃i[k+1], γi[k+1]),

we can compute that xn
i [k+1] = eAi(γi[k+1]−γi[k])xn

i [k] +
[eAi(γi[k+1]−γi[k])−eAi∆i[k+1]]A−1

i Biu
n
i [k] + (eAi∆i[k+1] −

I)A−1
i Biu

n
i [k+1]. Hence, the error

ei[k+1]=eAi(γi[k+1]−γi[k])(xi[k]−xn
i [k]) (17)

+[eAi(γi[k+1]−γi[k])−I]A−1
i Biui[k]− [eAi(γi[k+1]−γi[k])

− eAi∆i[k+1]]A−1
i Biu

n
i [k]−[eAi∆i[k+1]−I]A−1

i Biu
n
i [k+1].

For simplicity, let M3 = eAi(γi[k+1]−γi[k]). The control law
(8) is ui[k] = un

i [k]−K(∆i[k])(xi[k]−xn
i [k]) = un

i [k]−
K(∆i[k])ei[k], bring it into (17) to replace ui[k], we get
ei[k+1]=M3ei[k]+ (M3−I)A−1

i Bi [u
n
i [k]−K(∆i[k])ei[k]]−

(M3−eAi∆i[k+1])A−1
i Biu

n
i [k]−

(
eAi∆i[k+1]−I

)
A−1

i Biu
n
i [k+

1]. Group all terms corresponding to ei[k], un
i [k] and un

i [k+
1], it has ei[k+1]=

[
M3−(M3−I)A−1

i BiK(∆i[k])
]
ei[k]+[

(M3−I)−(M3−eAi∆i[k+1])
]
A−1

i Biu
n
i [k] − (eAi∆i[k+1] −

I)A−1
i Biu

n
i [k+1], where the system matrix Acl

i [k] =M3−
(M3−I)Ai

−1BiK(∆i[k]), and the additive disturbance is

wi[k]=[eAi∆i[k+1] − I]A−1
i Bi (u

n
i [k]−un

i [k + 1]) . (18)

Plug controller gain K(∆i[k]) from (9) into Acl
i [k], it has

Acl
i [k] = M3−(M3 − I)A−1

i BiB
†
iAi(M2−I)−1M2

= M3 − (M3 − I)(M2 − I)−1M2. (19)

Since M3 = eAi(γ̃i[k+1]+∆i[k+1]−̃γi[k]−∆i[k]) = eAi∆i[k+1]

eAi(γ̃i[k+1]−γ̃i[k]−∆i[k]) = eAi∆i[k+1]M2, we can rewrite
the term M3 − I as M3 − eAi∆i[k+1] + eAi∆i[k+1] −
I =

(
eAi∆i[k+1]M2−eAi∆i[k+1]

)
+ eAi∆i[k+1] − I =

eAi∆i[k+1](M2 − I) + (eAi∆i[k+1] − I), and take it back
into (19), we obtain Acl

i [k] =M3− [eAi∆i[k+1](M2 − I)+
(eAi∆i[k+1]−I)](M2−I)−1M2. Multiply (M2−I)−1M2 into
the bracket, then we have Acl

i [k] = M3−eAi∆i[k+1](M2−
I)(M2−I)−1M2−(eAi∆i[k+1]−I)(M2−I)−1M2 = M3−
eAi∆i[k+1]M2−(eAi∆i[k+1]−I)(M2−I)−1M2, which equals
−(eAi∆i[k+1]−I)(M2−I)−1M2 since M3 = eAi∆i[k+1]M2.
Thus, the closed-loop system matrix for error dynamics is

Acl
i [k]=−[eAi∆i[k+1] − I][eAi(γ̃i[k+1]−γ̃i[k]−∆i[k])−I]−1

· eAi(γ̃i[k+1]−γ̃i[k]−∆i[k]), (20)

which completes this proof. □
Since the state deviation satisfies (16), it means ei[k] =

(
∏k−1

j=0 A
cl
i [j])ei[0] +

∑k−1
j=0

[
(
∏k−1

q=j+1 A
cl
i [q])wi[j]

]
, where

ei[0]=xi[0]−xn
i [0] = 0. Then set Si[k] combined by ei[k] can

be computed by Si[k] =
∑k−1

j=0

[(∏k−1
q=j+1 A

cl
i [q]

)
Wi[j]

]
=

Wi[k−1]⊕Acl
i [k−1]Wi[k−2]⊕ ...⊕

(∏k−1
q=1 A

cl
i [q]

)
Wi[0].

When k goes to infinity, we get Si,∞ = lim
k→∞

Si[k], which
is the outer bound of Si[k].

C. Forward Invariant Set for the Error Dynamics

This sub-section shows that there exists an FIS for the
error dynamics (16) if the upper bound of the timing pertur-
bation satisfies the following condition.

Define ∆tm as the minimal time interval of two consecu-
tive estimated task completion time, i.e., ∆tm = min

k
{γ̃i[k+

1]− γ̃i[k]} for k = 0, 1,. . ., K, and λj to be an eigenvalue of
the system matrix Ai, with j = 1,. . ., n. We have a further
assumption on the bound of the timing perturbation.

Condition 1: If matrix Ai only has negative eigenval-
ues, then the timing perturbation ∆i[k] satisfies ∆i[k] <
1
2∆tm, ∀k. If matrix Ai has any positive eigenvalues, then
the timing perturbation ∆i[k] satisfies ∆i[k] < ∆tm −
1

λM
ln

{
(eλM∆tm+1)/2

}
, ∀k, where λM is the largest eigen-

value of matrix Ai.
Proposition 1: The matrix Acl

i [k] is stable if the timing
perturbation ∆i[k] satisfies Assumption 1 and Condition 1
for all k = 1, 2, . . . , K.
Proof. Define Acl

i [k]=f(Ai) as a function of Ai. According
to the property of eigenvalues in [32], an eigenvalue of f(Ai)
equals f(λj)=−[eλj∆i[k+1]−1][eλj(γ̃i[k+1]−γ̃i[k]−∆i[k])−1]−1

eλj(γ̃i[k+1]−γ̃i[k]−∆i[k]), where λj is an eigenvalue of Ai.
To show that Acl

i [k] is stable, we need to show eigenvalues
magnitudes of Acl

i [k] are less than 1, i.e.,

|f(λj)|=
∣∣eλj∆i[k+1]−1

∣∣∣∣eλj(γ̃i[k+1]−γ̃i[k]−∆i[k])
∣∣∣∣eλj(γ̃i[k+1]−γ̃i[k]−∆i[k]) − 1

∣∣ <1. (21)

Denote ∆t = γ̃i[k+1]− γ̃i[k], then the magnitude of f(λj)
can be demonstrated to be smaller than 1 in two cases.
Case 1: For λj < 0, since ∆i[k] < 1

2∆t for all k from
Condition 1, we have ∆i[k]+∆i[k+1] < ∆t, which can be
rewritten as ∆i[k+1] < ∆t−∆i[k]. Since λj is negative, we
have λj∆i[k+1] > λj(∆t−∆i[k]). Because the exponential
function is monotonically increasing, it is easy to obtain
eλj∆i[k+1] > eλj(∆t−∆i[k]). Since both λj∆i[k + 1] and
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λj(∆t−∆i[k]) are non-positive, we have 0 ≥ eλj∆i[k+1] −
1 > eλj(∆t−∆i[k])− 1. Note that both sides of the inequality
are smaller than 0, thus

∣∣eλj∆i[k+1]−1
∣∣< ∣∣eλj(∆t−∆i[k])−1

∣∣,
i.e.,

∣∣eλj∆i[k+1]−1
∣∣ / ∣∣eλj(∆t−∆i[k])−1

∣∣ < 1. Also be-
cause eλj(∆t−∆i[k]) ∈ (0, 1), it has |eλj∆i[k+1] − 1| ·
|eλj(∆t−∆i[k])|/|eλj(∆t−∆i[k]) − 1| < 1, i.e., |f(λj)| < 1.
Case 2: For λj > 0, we define the function g(∆t, λj) =

∆t− 1
λj

ln
(

eλj∆t+1
2

)
. Take the partial derivative of g(∆t, λj)

with respect to λj , we have

∂g(∆t, λj)

∂λj
=

ln
(

eλj∆t+1
2

)
− λj∆t eλj∆t

eλj∆t+1

λ2
j

, (22)

and we can show ∂g(∆t,λj)
∂λj

≤ 0 (see detailed proof in the
Appendix), meaning that g(∆t, λj) is non-increasing with
respect to λj . Therefore, g(∆t, λM ) ≤ g(∆t, λj). Besides,
the partial derivative of g(∆t, λM ) to ∆t is ∂g(∆t,λM )

∂∆t =
1/(eλM∆t + 1) > 0, which means g(∆t, λM ) is monotoni-
cally increasing with respect to ∆t. So, it has g(∆tm, λM ) ≤
g(∆t, λM ). Therefore, the function g(∆t, λj) obtains min-
imum at (∆tm, λM ). Also because the Condition 1 must
be satisfied by ∆i, we have that ∆i < g(∆tm, λM ) ≤
g(∆t, λj) = ∆t− 1

λj
ln( e

λj∆t+1
2 ). Rearrange this inequality,

we have ln
[
(eλj∆t + 1)/2

]
<λj(∆t −∆i) Since the expo-

nential function is monotonically increasing, the inequation
sign would not change to get (eλj∆t + 1)/2 < eλj(∆t−∆i),
then eλj∆t + 1 < 2eλj(∆t−∆i). Rearrange the inequa-
tion again, it has eλj∆t − eλj(∆t−∆i) < eλj(∆t−∆i) − 1.
Since eλj∆t − eλj(∆t−∆i) = eλj(∆t−∆i)(eλj∆i − 1), we
can rewrite this inequality as eλj(∆t−∆i)(eλj∆i − 1) <

eλj(∆t−∆i) − 1. Note that both sides of the inequality are
positive, let them be divided by the right side item, we have
eλj(∆t−∆i)(eλj∆i−1)

eλj(∆t−∆i)−1
= eλj(∆t−∆i)

eλj(∆t−∆i)−1
·
(
eλj∆i−1

)
<1. Because

eλj(∆t−x)

eλj(∆t−x)−1
=1+ 1

eλj(∆t−x)−1
is increasing as x increases, and

∆i[k] ≤ ∆i, then 0 < eλj(∆t−∆i[k])

eλj(∆t−∆i[k])−1
≤ eλj(∆t−∆i)

eλj(∆t−∆i)−1
. Also

because the function eλjx−1 is monotonically increasing,
and ∆i[k+1] ≤ ∆i, it is easy to acquire 0 < eλj∆i[k+1]−
1 ≤ eλj∆i −1. Combining these two inequalities, we have
eλj(∆t−∆i[k])

eλj(∆t−∆i[k])−1

(
eλj∆i[k+1]−1

)
<1, which means |f(λj)| =∣∣(eλj∆i[k+1] − 1)

∣∣ ∣∣eλj(∆t−∆i[k])
∣∣/∣∣eλj(∆t−∆i[k])−1

∣∣<1.
Combining these two cases, all eigenvalues magnitudes of

Acl
i [k] are smaller than 1, ∀k, which completes the proof. □
Thus, ei[k+1]=Acl

i [k]ei[k] is asymptotic stable.
Lemma 3: The set Wi= {wi[k]}, comprising all additive

disturbance wi[k], is a compact set that contains the origin.
Proof. Since Ui is compact, it is bounded and closed due to
Heine Borel’s Theorem [33]. Then the set {un

i [k]−un
i [k+1]}

made of two elements subtraction in Ui is also bounded
and closed. Since ∆i[k] ∈ [0,∆i] is bounded and closed
due to Assumption 1, with constant matrices Ai and Bi,
the term

[
eAi∆i[k+1]−I

]
A−1

i Bi(u
n
i [k] − un

i [k + 1]) as a
function of ∆i[k] is bounded and closed. So, the set wi[k] =[
eAi∆i[k+1]−I

]
A−1

i Bi(u
n
i [k]− un

i [k+1]) is bounded and

closed, i.e., compact. Also, wi[k] = 0 if ∆i[k+1] = 0 or
un
i [k] = un

i [k+1]. So, Wi contains the origin. □
Theorem 1: The set Si,∞ exists and is a positive forward

invariant set (or FIS).
Proof. Since the closed-loop matrix Acl

i [k] is proven to be
asymptotic stable for all k in Proposition 1, and the set Y =
{wi[k]} is proven to be a compact set in Lemma 3, then the
set Si,∞ must exist, referring to [34].

The set Si,∞ is normally hard or computationally expen-
sive to compute. An outer bound of Si,∞, denoted as S̃i can
be leveraged to approximate the FIS of the tube, using either
analytical methods [34] or numerical methods [35].

IV. SIMULATION

This section presents four scalar systems using one
shared resource with timing perturbations. The nominal
system models are ẋn

i (t) = aix
n
i (t) + un

i (t), where
ai=[1, 6

5 ,
4
3 ,

3
2 ] for i=1, 2, 3, 4. Their initial conditions are

xi(0)=xn
i (0)=1. The time horizon is from 0 to 6 seconds.

Given nominal system control constraints un
i (t) ∈ [−3, 3],

we use the same schedule as in [17], where the task
completion time γ̃1[k]=[0, 1, 1.3, 2.5, 3.5, 4.35, 5.3], γ̃2[k]=
[0, 0.7, 1.8, 2.8, 4.05, 5.6], γ̃3[k] = [0, 0.4, 1.7, 3.3, 4.7],
and γ̃4[k] = [0, 0.2, 2.2, 4.75]. The cost function is
1
2

∑4
i=1

{∑Ki−1
k=0

(
xn
i [k]

2+0.0001un
i [k]

2
)
+xn

i [Ki]
2
}

, for Ki

=[6, 5, 4, 3]. Note that all nominal systems are stabilized.
For perturbed systems, Condition 1 should be satis-

fied. Since all the open-loop systems are unstable, tim-
ing perturbations of system 1 satisfy ∆1[k] < 0.3 −
1
1 ln[(e

0.3×1) + 1)/2] ≈ 0.1387. Similarly, the other sat-
isfies ∆2[k] < 0.3582,∆3[k] < 0.3978, and ∆4[k] <
0.4297. With these conditions, we set timing perturbations
to be ∆1[k] = [0, 0.138, 0, 0.138, 0.13, 0.135, 0.09], ∆2[k] =
[0, 0.35, 0.08, 0.3, 0, 0.35], ∆3[k] = [0, 0.2, 0.1, 0.39, 0], and
∆4[k] = [0, 0.42, 0.05, 0.15] in simulation. For tradi-
tional tube-based MPC, we design constant gains Kc =
[1.83, 1.64, 1.68, 1.565] for all i.

The simulation results are shown in Fig. 5. First, all four
systems become unstable if there is no compensation. Thus,
we do need the robust MPC design for timing perturbations.
With the traditional tube-based MPC (shown by green lines),
the perturbed system trajectories can be stabilized but the
performance is worse than our method (larger deviations
from nominal trajectories). This is because Ai[k]−Bi[k]Kc

is unstable in some time intervals. For example, system
2 is unstable in [4.05, 5.95]s, and system 3 is unstable
in [2.09, 3.3]s. For our control law (8) with dynamic gain
K(∆i[k]) (showing by red lines), the perturbed and nominal
system states are identical at γ̃i[k], and perturbed systems
are bounded at γi[k]. Also, all perturbed systems can be
stabilized, verifying that our control policy is more effective.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we provided a tube-based MPC policy for
the LTI system to compensate for timing perturbations. We
also identified the upper bound of the allowed timing per-
turbations for system stability. Additionally, we have proven
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Fig. 5. States of four systems. The x axes represent time and the y axes represent xi(t) in each sub-figure, respectively. The black solid lines show
the nominal system. The blue dashed lines show the perturbed system without compensation. The green dashed lines show the perturbed system with
tube-based MPC with constant Kc. The red dashed lines show the perturbed system with our robust control policy (8).

that the state deviation is bounded by an FIS, which can
help find a feasible solution to MPC optimization problems.
For future work, we will generalize the proposed design to
time-varying and nonlinear systems.

VI. APPENDIX

Denote λj∆t as x, we can define the numerator of (22) as
L(x)=ln

(
ex+1

2

)
− xex

ex+1 . When x=0, it is trivial that L(0)=
0. Taking derivative of L(x) with respect to x, we have
dL(x)
dx = ex

ex+1−
(xex)′(ex+1)−xex·ex

(ex+1)2 = ex

ex+1−
e2x+xex+ex

(ex+1)2 =
ex(ex+1)−(e2x+xex+ex)

(ex+1)2 = − xex

(ex+1)2 . Since λj > 0 in Case 2,

we have x = λj∆t ≥ 0 and dL(x)
dx = − xex

(ex+1)2 ≤ 0, meaning
that L(x) is non-increasing for x ≥ 0, which leads to
L(x) ≤ 0 when x ≥ 0. Therefore, ∂g(∆t,λj)

∂λj
=

L(λj∆t)

λ2
j

≤ 0.
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