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ABSTRACT
Background: Amphibians are experiencing substantial declines attributed to
emerging pathogens. Efforts to understand what drives patterns of pathogen
prevalence and differential responses among species are challenging because
numerous factors related to the host, pathogen, and their shared environment can
influence infection dynamics. Furthermore, sampling across broad taxonomic and
geographic scales to evaluate these factors poses logistical challenges, and
interpreting the roles of multiple potentially correlated variables is difficult with
traditional statistical approaches. In this study, we leverage frozen tissues stored in
natural history collections and machine learning techniques to characterize infection
dynamics of three generalist pathogens known to cause mortality in frogs.
Methods: We selected 12 widespread and abundant focal taxa within three
ecologically distinct, co-distributed host families (Bufonidae, Hylidae, and Ranidae)
and sampled them across the eastern two-thirds of the United States of America. We
screened and quantified infection loads via quantitative PCR for three major
pathogens: the fungal pathogen Batrachochytrium dendrobatidis (Bd),
double-stranded viruses in the lineage Ranavirus (Rv), and the alveolate parasite
currently referred to as Amphibian Perkinsea (Pr). We then built balanced random
forests (RF) models to predict infection status and intensity based on host taxonomy,
age, sex, geography, and environmental variables and to assess relative variable
importance across pathogens. Lastly, we used one-way analyses to determine
directional relationships and significance of identified predictors.
Results: We found approximately 20% of individuals were infected with at least one
pathogen (231 single infections and 25 coinfections). The most prevalent pathogen
across all taxonomic groups was Bd (16.9%; 95% CI [14.9–19%]), followed by Rv
(4.38%; 95% CI [3.35–5.7%]) and Pr (1.06%; 95% CI [0.618–1.82%]). The highest
prevalence and intensity were found in the family Ranidae, which represented 74.3%
of all infections, including the majority of Rv infection points, and had significantly
higher Bd intensities compared to Bufonidae and Hylidae. Host species and
environmental variables related to temperature were key predictors identified in RF
models, with differences in importance among pathogens and host families. For Bd
and Rv, infected individuals were associated with higher latitudes and cooler, more
stable temperatures, while Pr showed trends in the opposite direction. We found no
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significant differences between sexes, but juvenile frogs had higher Rv prevalence and
Bd infection intensity compared to adults. Overall, our study highlights the use of
machine learning techniques and a broad sampling strategy for identifying important
factors related to infection in multi-host, multi-pathogen systems.

Subjects Biodiversity, Ecology, Data Mining and Machine Learning
Keywords Batrachochytrium dendrobatidis, Ranavirus, Amphibian Perkinsea, Random forests,
Amphibian disease, Bufonidae, Hylidae, Ranidae

INTRODUCTION
In the last century, amphibians have experienced declines and extinctions attributed to a
myriad of anthropogenic stressors, including climate change, habitat destruction, and
species introductions (Bellard, Genovesi & Jeschke, 2016; Miller et al., 2018; Cordier et al.,
2021). These factors have collectively led to classifying 41% of known species as threatened
or endangered by the International Union for Conservation of Nature (Luedtke et al.,
2023). Investigations following enigmatic declines have further identified the emergence of
infectious diseases as a significant contributor to amphibian biodiversity loss (Berger et al.,
1998; Smith, Acevedo-Whitehouse & Pedersen, 2009; Scheele et al., 2019; Rollins-Smith,
2020). With the projected increase in infectious disease spread alongside anticipated
climatic shifts (Rollins-Smith, 2017; Price et al., 2019), there is a pressing need for
continued disease surveillance and assessment of multi-pathogen infection dynamics
within host communities.

Across North American frogs, mortality events have been linked to three major
pathogens—the aquatic fungus Batrachochytrium dendrobatidis (Bd, Scheele et al., 2019),
double-stranded viruses in the genus Ranavirus (Rv,Miller, Gray & Storfer, 2011), and the
protozoan endoparasite known as Amphibian Perkinsea (Pr, Isidoro-Ayza et al., 2017).
Since their respective discoveries, research has shown that infection prevalence and impact
vary across and within host taxa (e.g., Greenberg, Palen & Mooers, 2017), demographic
traits such as age (Humphries et al., 2022) and sex (Adams et al., 2017; Belasen et al., 2019),
and environmental conditions related to latitude, elevation, and seasonality (Petersen et al.,
2016;Whitfield et al., 2017; Sasso, McCallum & Grogan, 2021). These studies, however, are
often limited by reduced taxonomic and geographic breadth and investigate only one
pathogen at a time. Standardized screening efforts for multiple pathogens across
susceptible host species sampled within the same environments are needed to effectively
capture the complex interactions of factors driving infectious disease patterns.

Although Bd, Pr, and Rv can infect a diverse range of host taxa, susceptibility is not
uniform across all taxonomic groups (Bancroft et al., 2011) and certain life history traits
have been attributed to pathogen-specific infection risk. For example, due to the reliance
on water as a mechanism for pathogen spread and persistence, Bd, Pr, and Rv infections
are more prevalent in species associated with aquatic habitats (Bd—Greenberg, Palen &
Mooers, 2017), such as ephemeral ponds (Rv—Hoverman et al., 2011; Pr—Hartmann et al.,
2024). Additionally, variation in infection outcomes across and within species has also
been demonstrated both in ex situ pathogen challenge experiments (e.g., Bd: Gervasi et al.,
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2013; Becker et al., 2014; Rv: Hoverman, Gray & Miller, 2010) and in situ community-wide
surveys (e.g., Bd: Whitfield et al., 2017). These differences in infection outcome among
species may be explained by a combination of ecological and life history traits (Becker et al.,
2014), host genetics (Savage, Becker & Zamudio, 2015), immunogenetics (Savage et al.,
2019; Trujillo et al., 2021), as well as environmental factors known to impact the host’s
immune responses (Raffel et al., 2006; Rollins-Smith, 2017), further highlighting the
challenges of assessing broad infection dynamics in natural systems.

Additionally, host demographic traits such as age class (reviewed in Humphries et al.,
2022) and sex (Adams et al., 2017; Belasen et al., 2019), as well as coinfection with multiple
pathogens (Ramsay & Rohr, 2021; Atkinson & Savage, 2023b), can further explain
population-level variation in infection dynamics. For example, some studies show that
metamorphic and post-metamorphic adult frogs suffer higher mortality rates compared to
larvae when infected with Bd (Abu Bakar et al., 2016; Humphries et al., 2024), presumably
due to the higher percentage of keratinized skin cells which the fungus uses as its primary
resource. In contrast, frogs during their adult life stage tend to have the lowest prevalence
of Pr and Rv infection, likely due to the increased competence of the host’s immune system
after metamorphosis (Gray, Miller & Hoverman, 2009; Karwacki et al., 2018; Karwacki,
Martin & Savage, 2021). Moreover, in some species, males exhibit higher Bd prevalence
(Adams et al., 2017) and lower Bd survival rates compared to females (Carey et al., 2006),
which could be because of differences in behavior related to exposure (e.g., males
congregate in water for longer periods during breeding) or physiology (e.g., higher levels of
testosterone may suppress immune function). To complicate things even further,
harboring multiple pathogens can impact host tolerance to infection (Johnson & Buller,
2011), with coinfections of Bd and Rv resulting in inhibited growth and increased mortality
(Ramsay & Rohr, 2021). Due to the context-dependent nature of interactions between host
and pathogen dynamics, capturing this broad variation in susceptibility and mortality
across communities is challenging and requires extensive surveys to better understand the
generality of these patterns.

Environmental variables, including aspects of temperature and precipitation, influence
pathogen distributions across susceptible hosts (e.g., Sasso, McCallum & Grogan, 2021).
Though Bd and Rv differ in their thermal limits (Longcore, Pessier & Nichols, 1999; Ariel
et al., 2009), with Bd being more sensitive to higher temperatures, both pathogens have
been reported across much of North America (Peterson & McKenzie, 2014; Bartlett et al.,
2021). Pathogen mediated mortality, however, has been strongly associated with
temperature seasonality, where Bd and Rv die-off events tend to peak over winter months,
at more northern latitudes, and at higher elevations (Bd: Raffel et al., 2013, 2015; Li et al.,
2021; Rv: Gray, Miller & Hoverman, 2009; Balseiro et al., 2010; Rollins-Smith, 2017). Little
is currently known about the full distribution and limits of Pr, but seasonal outbreaks have
been reported in the Southeastern U.S., mirroring conditions related to Bd and Rv
mortality events in this region (Karwacki et al., 2018; Atkinson & Savage, 2023b). The
overlap in geographic distribution, suitable environmental conditions, and susceptible host
species across all three pathogens leads to high potential for pathogen interactions and
warrants further study.
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One reason for this gap in research is that multi-host, multi-pathogen studies face
sampling challenges due to the number of specimens required to detect pathogens and
derive meaningful disease patterns (Stallknecht, 2007). Despite targeted research efforts,
achieving sufficient taxonomic and geographic coverage is logistically difficult in a single
study. Additionally, while less invasive methods like skin swabs are useful in Bd
monitoring surveys, particularly of sensitive species, they are often single-use and may be
less accurate at detecting low-level infections and other pathogens (Bd: DiRenzo &
Campbell Grant, 2019; Rv:Miller, Gray & Storfer, 2011). Natural history collections offer a
potential solution and opportunity for wildlife disease studies (Colella et al., 2021;
Thompson et al., 2021). Linking pathogen and parasite data with a vouchered host
specimen aligns with the FAIR Data Principles (defined in Wilkinson et al., 2016), which
aim to increase data Findability, Accessibility, Interoperability, and Reusability. Vouchered
samples facilitate extended genomic, physical, and molecular analyses critical to key
discoveries in disease studies (Colella et al., 2021; Karwacki, Martin & Savage, 2021).
Therefore, integrating natural history collections into the study of amphibian diseases can
help address the large-scale data requirements needed to understand multi-pathogen
dynamics, while also allowing for future research to more easily expand on previous
discoveries.

Even with adequate sampling, disentangling the interconnected traits related to
host-pathogen dynamics is challenging with standard linear statistics (O’Brien, Van Riper
& Myers, 2009). Given the high correlation and nonlinearity of potential predictor
variables (e.g., aspects of geography, temperature, precipitation), one flexible tool to
analyze these complex factors is machine learning. Unlike traditional linear models,
machine learning is adept at managing large datasets with numerous correlated variables
and is frequently employed in bioinformatic applications (Schwalbe & Wahl, 2020).
Specifically, random forests (RF) is a machine learning algorithm that integrates multiple
decision trees to predict a response based on many selected variables (Breiman, 2001). This
approach can identify features important to amphibian host-pathogen dynamics (Bancroft
et al., 2011); however, RF is highly sensitive to class imbalance, which is common when
handling disease datasets where one response (e.g., either infected or uninfected) is more
strongly represented than the other. In such cases, models are built for and prioritize
prediction accuracy of majority cases (e.g., uninfected status) while overlooking the
minority cases (e.g., infected status). To address this issue, balanced RF techniques, such as
building models with random equal sampling of both majority and minority cases through
either downsampling the majority class or upsampling the minority class, can be employed
as a correction (Chen, Liaw & Breiman, 2004). In this study, we use balanced RF to
evaluate the relative importance of host taxonomy, demographic traits, and geographic
and environmental factors for predicting pathogen-specific infection status and intensity.

Investigating geographic regions and species with high pathogen occurrence, but
relatively low population decline, can provide valuable insights about the implied infection
risk of sensitive co-occurring species. Here, we used range-wide comparisons of
widespread and abundant frog species sampled across the central and eastern U.S. to
characterize infection status and intensity across multiple hosts, pathogens, and
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environments. First, we described the prevalence and intensity of Bd, Pr, and Rv infections
and coinfections within three anuran families using museum tissue collections, allowing
the assessment of differences across host taxonomy and geographic distributions. Second,
we applied machine learning to determine which host traits and environmental factors
were most important for predicting pathogen infection status. Lastly, we validated our
models and further investigated correlation and directional relationship of identified
predictors, i.e., host family, species, age, sex, latitude, elevation, and associated temperature
and precipitation variables related to pathogen occurrence and infection loads using
traditional statistical methods.

MATERIALS AND METHODS
Sampling
We obtained tissue samples through field collections and museum loans (Table S1).
Individuals were largely sampled during summer breeding months from 2009–2023 under
appropriate state and local permits (see Field Study Permissions below) and were archived
at the Museum of Southwestern Biology (MSB), University of New Mexico (UNM).
Post-metamorphic frogs were captured by hand, often along public roadways or near lentic
waterways, while tadpoles were collected via dipnet. Individuals were either toe clipped
and released at the site of capture or euthanized shortly after capture following protocols
approved by the UNM Institutional Animal Care and Use Committee (Protocols 20-
201006-MC & 23-201375-MC) and Florida State University (FSU) Animal Care and Use
Committee (Protocols 1017 & 1313). Specifically, we applied 20% benzocaine to the ventral
side of the frog, as described in the Guidelines for Use of Live Amphibians and Reptiles in
Field and Laboratory Research (Herpetological Animal Care and Use Committee (HACC),
2004). Once the frog was completely unresponsive, we removed the heart as a secondary
means of euthanasia. Dissection tools were flame sterilized between individuals, but not
between tissue types collected. Tissues (toe, tail, muscle, and/or liver) were preserved either
in 95% ethanol or tissue buffer (20% DMSO, 0.25 M EDTA, salt-saturated), or were
immediately flash frozen in liquid nitrogen and kept frozen until DNA extraction.

In total, we obtained 1,281 samples from 32 states across the central and eastern U.S.
(Fig. 1). Samples were selected to represent three major anuran families (Bufonidae
n = 320, Hylidae n = 456, Ranidae n = 505) with four taxa in each family (11 species and
one species complex; Fig. 1). Specifically, we targeted common and abundant species with
overlapping distributions to facilitate comparisons across families while controlling for
geographic and environmental variables.

Molecular methods
Genomic DNA was extracted from tissue samples that consisted of either external only
(toe, tail n = 259), internal only (liver, muscle n = 363), or a combination of both tissue
types (n = 586; Fig. S1). We note that the use of internal tissues is not recommended for
detecting Bd (World Organisation for Animal Health (WOAH), 2021a); however, during
dissection, Bd zoospores are occasionally transferred from the skin to internal tissues. We
therefore expected occasional, but not reliable detection of Bd from internal tissues
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Figure 1 Maps of sampling distribution by taxonomic group. (A–C) Aggregated sampling depth for each family, with the number of individuals
sampled shown at each site. (D–O) Species within each family sampled. Black dots represent sampled sites, and the colored regions depict native
ranges obtained from the international union for conservation of nature red list (IUCN, 2022). (J) Combined ranges of cryptic species Hyla
chrysoscelis and H. versicolor. Silhouettes of frogs were obtained from phylopic.org. Full-size DOI: 10.7717/peerj.18901/fig-1
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(demonstrated in a comparison by Torres López et al., 2024), which is why extractions of
these samples were included in select downstream analyses.

We used the E.Z.N.A. Tissue DNA Extraction Kit (Omega Bio-tek, Inc, Norcross, GA,
USA) following the manufacturer’s recommendations. Whole genomic DNA
concentrations were determined using the Broad Range Qubit Assay (Invitrogen, Eugene,
OR, USA) and standardized to DNA concentrations of 9–15 ng/µL. Pathogen presence and
quantity were determined via quantitative PCR (qPCR) following established protocols
(Bd—Boyle et al., 2004; Rv—Allender, Bunick & Mitchell, 2013; Pr—Karwacki et al., 2018).
Reactions were prepared in a UV-sterilized, clean air workstation. For each pathogen-
specific qPCR, we used 25 mL reaction volumes, each containing 5 mL of extracted DNA
template, 2 µL each of 10 mM forward and reverse primers, 5 µL of 1 mM probe (Eurofins
Genomics, Louisville, KY, USA), and 8 µL SsoAdvanced Universal Probes Supermix (Bio-
Rad, Hercules, CA, USA). Serial dilutions of pathogen-specific gBlocks (idtDNA,
Coralville, IA, USA) were mixed with 0.1 ng/mL yeast tRNA carrier (Eurofins Genomics) to
prevent small nucleic fragments from binding to the low-bind tubes and were used in
duplicate as standards on each plate. Two positive controls (5 mL at 10 ng/mL
concentration of known positive samples: Bd—MSB:Herp:104601; Rv—MSB:
Herp:104600; Pr—MSB:Herp:104643) and two negative controls (molecular grade water)
were included on each plate. Plates were run on a CFX96 Touch Real-Time PCR Detection
System (Bio-Rad, Hercules, CA, USA), with cycling conditions of 95 !C for 5 min, followed
by 40 cycles of 95 !C for 15 s and either 60 !C for 1 min (Bd/Rv) or 59 !C for 1 min (Pr).

Initial screening included two independent runs on each sample for each pathogen type;
samples that tested negative in both runs were deemed uninfected, requiring no further
screening. Partial and consistent positives underwent re-testing on two more independent
plates to rule out false positives and to obtain final infection intensity values, resulting in at
least four independent qPCR runs. Infection intensity values were calculated using the
amplification curves (Cq) converted into starting quantities of pathogen DNA (SQ), with
averages derived from the final two qPCR runs to account for differences in reagent
sensitivity between runs. Individuals testing positive half of the time over the four plates of
screening were categorized as “low” infections and included in all prevalence evaluations,
but their infection intensity values were unreliable and were not considered in downstream
analyses.

Calculating pathogen prevalence and infection loads
Pathogen prevalence was determined by summing the number of individuals found
positive for each pathogen within a family, species, age, and sex, divided by the total
number of samples within that category (Tables S2–S4). Because of the relatively low
proportion of infected individuals within groups, we calculated 95% binomial confidence
intervals using the logit method available in the binom package in R (R Core Team, 2023;
Sundar, 2006). All individuals were taxonomically assigned and identified to the species or
species complex level (i.e., Hyla chrysoscelis-versicolor). Samples lacking age class or sex
identification at the time of collection were categorized as an unknown and were excluded
from prevalence or infection intensity comparisons for those factors.
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Reducing dimensionality of environmental variables
We obtained 11 temperature and nine precipitation bioclimatic variables at 30 s (~1 km2)
resolution from the WorldClim 2.1 database, which includes climate data from 1970–2000
(Fick & Hijmans, 2017). Variables were centered, scaled, and reduced via principal
components analyses (PCAs) using the prcomp() function in R, with separate analyses
conducted for temperature and precipitation. The first two axes for temperature (hereafter,
TPC1-2) explained a combined 88.7% of the variation and the first two axes for
precipitation (PPC1-2) explained 95.8% of the variation (Fig. S2). Variable loadings
indicated TPC1 primarily represented year-round temperatures, with higher values
relating to warmer, more stable overall temperatures, while TPC2 represented mean
diurnal temperature ranges, with higher values relating to more extreme daily temperature
fluctuations. Similarly, PPC1 described the overall precipitation amount, with higher
values indicating wetter conditions, whereas PPC2 represented precipitation variability,
with higher values representing more variability in rainfall (Tables S5 and S6).

Identifying factors related to infection status and intensity via random
forests
We employed the machine learning technique, RF, to identify important predictor
variables related to infection status and infection intensity. We created classification
models to predict pathogen status (infected or uninfected) for datasets with sufficient
infection counts, including models encompassing all frogs (Bd_all: n = 1,281, Rv_all:
n = 1,187) and family-specific models for Bd only (Bd_Bufonidae: n = 320, Bd_Hylidae:
n = 456, Bd_Ranidae: n = 505). We also created a Bd infection status model excluding
internal only and unknown tissues to investigate the impacts of tissue type on our results
(Bd_external: n = 845). Additionally, we created an RF regression model for Bd infections
(n = 216) to examine variables important to infection intensity (average SQ values).
Models were created and assessed using the randomForests (Liaw & Wiener, 2002) and
caret (Kuhn, 2008) R packages.

To address the large imbalance between infected and uninfected cases across the data,
classification models were first balanced by either downsampling or upsampling. For
downsampling, majority cases (uninfected) were randomly subsampled with replacement
to equal the number of minority cases (infected). For upsampling, minority cases
(infected) were randomly duplicated with replacement to equal the number of majority
cases (uninfected). RF models were then optimized to predict both majority and minority
cases by using the “strata” and “sampsize” functions to pull equal counts of infected and
uninfected cases when creating forests. We assessed model overfitting via cross-validation
and selected the model with the highest performance without overfitting, ultimately using
downsampling for all models.

To further mitigate effects of small sample sizes of infected cases, we employed
regularization via limited maximum depth by using the optimal mtry with the tuneRF()
function of the randomForests package. We also used feature selection methods to reduce
over-fitting of the data and determined variables for inclusion in our final classification
models by comparing average out-of-bag (OOB) error rates. Cross-validations were
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performed using the predict() function from the stats package (R Core Team, 2023) to
create a confusion matrix to assess predictive accuracy. To assess regression models, we
used mean squared error and R! metrics. Final models were constructed with 2,000 trees
and 100 permutations, runs were averaged over 100 iterations, and mean error rates were
recorded. Average relative importance for each independent variable in the final model was
measured using the importance() function and visualized using the ggplot2 package
(Wickham, 2016).

Lastly, we evaluated final model performance, assessed predictive accuracy, and
documented misclassification by splitting the data into training (70%) and testing (30%)
datasets with equal proportions of positive infections and passed testing data through final
models 100 times. We applied cross-validation to the final models to assess performance
using the same methods described above.

One-way analyses of infection status and intensity
We used parametric and non-parametric tests via the stats R package to examine
relationships between the potential factors associated with infection prevalence and
intensity. We assessed model assumptions using the plotNormalhistogram() function in
the rcompanion package and the var.test() function in the stats package. To assess
differences in infection prevalence among categorical variables such as family, species, age
class, sex, and tissue type, we used Pearson’s chi-squared tests for each pathogen type. We
compared aspects of geography (latitude and elevation) and environmental variables
(TPC1-2, PPC1-2) between infected and uninfected frogs using Student’s two-tailed t-tests.
We performed logistic regressions to examine odds of infection across continuous
variables such as latitude, longitude, elevation, TPC1-2, and PPC1-2 using the stats
package and assessed model assumptions using the rcompanion package.

To examine differences in infection intensity between categories (family, species, age
class, sex), we performed one-way ANOVAs assuming equal variances or Welch’s
ANOVAs for tests with unequal variances. When comparing mean infection intensity
between two groups (e.g., Rv species infection intensity, age class, and sex), we performed
two-tailed Student’s t-tests. When significant differences were detected in ANOVA results,
post-hoc analyses were carried out as follows. For parametric data, multiple two-tailed
t-tests with Bonferroni correction or Tukey’s Honest Significant Difference tests were
employed, while for non-parametric data, Games-Howell post-hoc tests were conducted
using the rstatix package (Kassambara, 2023). Additionally, given the possibility of
coinfections acting synergistically to increase negative infection outcomes (reviewed in
Herczeg et al., 2021), we also evaluated differences in infection intensity between coinfected
individuals and individuals with single infections of each pathogen using two-tailed t-tests.
Finally, we performed linear regressions to assess infection intensity across continuous
variables such as latitude, longitude, elevation, TPC1-2, and PPC1-2 using the stats
package and assessed model assumptions using the erikmisc package (Erhardt, 2024). All R
code and datasets are available from Figshare (https://doi.org/10.6084/m9.figshare.
26849554), specimens are searchable via Arctos (arctos.database.museum; Cicero et al.,
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2024), and pathogen data are available on the Amphibian Disease Portal (Expedition
GUID: https://n2t.net/ark:/21547/FkC2).

RESULTS
Pathogen prevalence summary
Approximately 20% (n = 256) of the 1,281 individual frogs screened were infected with at
least one pathogen, 231 with single infections and 25 with coinfections. We found
substantial variation in prevalence among pathogens (Figs. 2 and S3), with Bd exhibiting
the highest prevalence (16.9%; 95% CI [14.9–19%]), followed by Rv (4.38%; 95% CI
[3.35–5.7%]) and Pr (1.06%; 95% CI [0.618–1.82%]). Significant variation in Bd and Rv
infections was evident both between and within family groups (Fig. 2A; Table 1), with
Pearson residual scores indicating higher-than-expected counts for both pathogens in the
family Ranidae (Fig. S4). For Bd, we found higher counts of infection in the species
R. catesbeiana, R. clamitans, and R. sphenocephala (Fig. S5). Within Bufonidae and
Hylidae, Bd infections were primarily associated with a single species in each family,
namely A. americanus and P. crucifer (Fig. 2A; Table S2). For Rv, we also observed higher-
than-expected counts in Ranidae, specifically R. catesbeiana and R. clamitans (Table 1,
Fig. S5). Pr prevalence was consistently low with no discernable pattern of infection across
taxonomic groups.

Rv infection prevalence was notably higher in juveniles compared to adults (Tables 1
and S7). We found no significant difference in pathogen prevalence between sexes for any
pathogen (Table S8). For Bd, as expected, there were significant differences based on tissue
type, with fewer infections from internal only tissues compared to external and
combination tissue types (Table 1; Fig S6; Table S9). When we re-ran Bd analyses
excluding internal only tissues, family and species remained significant factors for Bd
infection status (Table S10).

Bd coinfections represented more than half of the individuals infected with Pr (7 of 13,
or 53%) and about a third of those infected with Rv (18 of 52, or 35%). Whereas only 12%
of samples infected with Bd represented a coinfection (25 out of 216).

Infection intensity summary
Overall, infection intensities were low, with the highest values observed in Bd infections
(Table S11). Bd and Rv intensity varied significantly among families, with the highest Bd
intensity found in Ranidae, followed by Hylidae and Bufonidae (Table 1, Fig. 2B). For Bd,
significant differences in infection intensity across families were primarily driven by
Ranidae and Bufonidae, while for Rv, differences were driven by Hylidae and Ranidae
(Figs. 2B and 2D; Table S11). No clear pattern was found in Pr infection intensities across
families due to small sample sizes. Interspecific variation revealed differences in infection
intensity among species, with significantly higher Bd intensity in R. clamitans compared to
A. americanus, R. catesbeiana, and R. pipiens (Fig. 2C; Table S12). Rv intensity was
somewhat higher in R. catesbeiana than R. clamitans, but the difference was not significant
(Fig. 2E; Table S12).
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Figure 2 Pathogen prevalence and intensity of infection across host taxonomy. (A) The number (ni) of individuals infected out of the number
sampled (n) and the associated proportion that tested positive for each pathogen (%). Phylogeny is based on relationships obtained from Vertlife.org
(Jetz & Pyron, 2018) and edited using FigTree v1.3.1 (Rambaut, 2010). (B–E) Infection intensity values represented by log transformed starting
quantities (SQ) for Bd and Rv pathogens with sample sizes in grey boxes. Significant differences (p < 0.05) between means for each paired com-
parison are indicated by differing letters (a, b). Silhouettes of frogs were obtained from phylopic.org. Full-size DOI: 10.7717/peerj.18901/fig-2
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We found slightly higher Bd infection intensity in juveniles compared to adults, but
there was no significant variation in infection intensity for any pathogen screened related
to sex (Fig. S7; Tables S13 and S14). When we re-ran Bd analyses excluding internal only
tissues, family and species remained significant for Bd infection intensity, while age class
became significant (Table S10). We found no significant differences between Bd infection
intensity for individuals with single infections compared to individuals coinfected with Rv
or Pr, nor were there differences in Rv or Pr infection intensity between single infections
and coinfections with Bd (Table 1).

RF classification and regression models
The Bd_all RF classification model identified species-level taxonomic rank as the most
important factor associated with Bd infection status (Fig. 3A). Overall annual temperature
(TPC1), latitude, and daily temperature fluctuations (TPC2) were also important
predictors (Fig. 3A). The most important variable differed depending on which infection
status class was being considered, with species as the top predictor of uninfected Bd cases

Table 1 Summary of parametric and non-parametric statistical analyses.

Bd status Pr status Rv status

p value df χ2 p value df χ2 p value df χ2

Family <0.001 2 134 0.499 2 1.4 <0.001 2 35.8

Species <0.001 10 179 0.922 6 1.98 <0.001 8 67.8

Age class 0.134 1 2.25 – – – <0.001 1 14.3

Sex 0.918 1 0.011 0.58 1 0.308 0.599 1 0.278

Tissue type <0.001 1 59.7 0.724 1 0.125 0.874 1 0.025

p value df t stat p value df t stat p value df t stat

Latitude <0.001* 289 −4.76 0.005 13.2 3.35 0.002 1,185 −3.15

Log10 (Elevation) 0.291 1,279 −1.06 0.687 1,222 −0.4 0.195 1,185 −1.3

TPC1 <0.001* 289 5.29 0.038 12.9 −2.32 0.001 1,185 3.27

TPC2 <0.001 290 4.79 <0.001 13 −6.29 0.354 1,185 0.928

PPC1 0.211 1,279 1.26 0.259 12.9 −1.18 0.386 1,185 0.867

PPC2 <0.001* 346 −3.36 0.641 1,222 0.466 0.131 1,185 −1.51

Bd intensity Pr intensity Rv intensity

p value df F/t stat p value df F/t stat p value df F/t stat

Family 0.01 2, 189 (F) 4.69 0.351 2, 7 (F) 1.22 0.035 2, 2.62 (F) 15.5

Species 0.002 5, 57.2 (F) 4.32 – – – 0.584 20 (t) 0.566

Age class 0.004 156 (t) −3.63 – – – 0.807 21 (t) −0.25

Sex 0.472 105 (t) −0.723 – – – 0.222 10 (t) 1.3

Bd & Rv co-infection 0.589 181 (t) −0.541 – – – 0.931 27 (t) 0.088

Bd & Pr co-infection 0.552 171 (t) 0.597 0.157 8 (t) 1.57 – – –

Note:
Values from tests of pathogen status across 11 factors are shown at the top and tests of pathogen intensity across six factors are shown on the bottom. The test statistic (χ2,
t stat, or F stat), degrees of freedom (df), and p value are shown for Bd, Rv, and Pr. Blank cells indicate tests were not run for that pathogen and factor combination because
of insufficient data. Bold text denotes significance (p < 0.05). An asterisk (*) denotes variables that are no longer significant when excluding samples derived from internal
and unknown tissue types.
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(Fig. 3B), while overall temperature (TPC1) and daily fluctuations (TPC2) showed greater
accuracy in predicting infected Bd cases (Fig. 3C). The model exhibited a consistent error
rate across classification types at 23.6%, achieving an overall accuracy of 74%. Notably, the
model performed similarly at classifying both infected and uninfected cases with sensitivity
and specificity scores of 0.70 and 0.79, respectively. The top predictors and model
performance for Bd infection status were consistent when we excluded internal only tissues
(Fig. S8).

Though there were fewer infection points to sample from, the Rv_all classification
model also identified species as the most important predictor of Rv, followed by family,
latitude, and TPC1 (Fig. 3D). Species was the most important predictor of uninfected
status, while latitude and overall temperature (TPC1) were the top contributing factors to
infected Rv cases (Figs. 3E and 3F). The model had an average error rate of 30.2%, with
slightly lower error rates for predicting infected status (28.0%) compared to uninfected
status (32.5%). Model validation showed moderate accuracy at 71%, with 0.75 sensitivity
and 0.71 specificity.

Family-specific RF classification models highlighted differences in top predictors
depending on the dataset (Fig. S9). Specifically, for the Bd_Bufonidae and Bd_Hylidae
models, species was the most important factor (Figs. S9A–S9F). These results differed from
the Bd_Ranidae model, where we observed that species had low importance for predicting
infection status and that daily temperature fluctuation (TPC2) was instead the most
important factor, followed by latitude and year-round temperature (TPC1; Figs. S9G–S9I).
The Bd_Ranidae model had an average error rate of 27.7%, with slightly lower error rates
at predicting infected status (27.4%) compared to uninfected (28.0%). Model validation
showed moderate accuracy at 70%, with 0.62 sensitivity and 0.74 specificity. For
Bd_Bufonidae and Bd_Hylidae, cross-validation revealed higher model accuracy (87% and
89%, respectively), but both models showed signs of model class imbalance, with low
sensitivity values (0.5, and 0.55) and high specificity (0.9, 0.91; Figs. S9A and S9D).

The Bd infection intensity RF regression model indicated latitude, overall temperature
(TPC1), and precipitation (PPC1) were the top predictors. The model only explained
12.6% of variation, however, with validation showing large mean absolute error
(MAE = 1,173) and low R2 (0.14; Fig. S10).

Geographic and environmental predictors of infection
We observed significant differences in latitude between infected and uninfected individuals
across all pathogens (Table 1). For Bd and Rv, infected individuals tended to occur at
higher mean latitudes than uninfected (Figs. 4A and 4C), while Pr infections were only
found at lower latitudes (Fig. 4B). Within species, the difference in mean latitude between
Bd infected and uninfected samples was only statistically significant for R. clamitans, with
infected samples tending to occur at higher latitudes (Fig. S11). A similar trend was
observed in A. americanus and R. catesbeiana, while P. crucifer showed a trend in the
opposite direction, with infected individuals tending to occur at lower latitudes.

Elevation and overall precipitation (PPC1) did not exhibit significant differences
between infected and uninfected individuals for any pathogen, but differences in the other
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environmental variables (TPC1, TPC2, PPC2) were significant for one or more of the three
pathogens (Table 1; Fig. 4). For Bd and Rv, infected individuals were found at lower mean
TPC1 than uninfected, suggesting an association with cooler year-round temperatures,
while Pr infections were only found at higher TPC1 values (Figs. 4D–4F). For TPC2, Bd
infections were associated with lower daily temperature fluctuations, Pr infections with
higher daily temperature fluctuations, while the differences between infected and
uninfected individuals were not significant for Rv (Figs. 4G–4I). PPC2 only differed for Bd,
with slightly higher mean values for infected individuals compared to uninfected (Figs.
4J–4L), indicating Bd infections were associated with higher variability in rainfall. When
we re-ran Bd analyses excluding internal only tissues, only differences in TPC2 remained
significant (Table S10).

No significant relationships were identified between infection intensity and geographic
and environmental factors for any pathogen, but there was a trend of higher infection
intensities associated with lower TPC2, which only increased in significance once we
removed internal-only samples.

DISCUSSION
Our study design enabled comparisons of infection dynamics across multiple pathogens
infecting widespread, co-distributed host taxa, while accounting for geographic and
environmental variation. Through this design, we detected different infection patterns

Figure 3 Variable importance for random forests (RF) models of infection status. (A) Overall model of Bd infection status. (B, C) Variables
important for Bd uninfected and infected status, respectively. (D) Overall model of Rv infection status. (E, F) Variables important for Rv uninfected
and infected status, respectively. For all panels, variable importance is measured as mean decrease in accuracy, averaged across 100 iterations, and
ranked from highest (left) to lowest (right) as determined by balanced classification RF analyses. Average out-of-bag (OOB) classification error rates
are shown. Predictive accuracy, sensitivity, and specificity values of the final models were derived from cross-validation, with 70% of the data used for
training and 30% for testing. Full-size DOI: 10.7717/peerj.18901/fig-3
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across pathogens, temperature conditions, host taxonomy, and age groups of frogs
distributed throughout the central and eastern United States. Even though our study did
not sample across seasons, which are known to impact amphibian pathogen dynamics
(Duffus et al., 2015; Sasso, McCallum & Grogan, 2021; Atkinson & Savage, 2023b), we were
able to capture significant prevalence of amphibian pathogens across this region. We
observed widespread Bd infections at low relative intensities across 29 states, supporting
the idea that this pathogen is endemic throughout much of this region. We also found that
coinfections accounted for more than half of Pr and a third of Rv infections, despite these
pathogens typically affecting only larval stages. This suggests that coinfections in adults
may play a role in altering susceptibility to pathogens that usually target earlier life stages.
In our dataset, individuals infected with Bd and Rv were associated with higher latitudes
with lower, more stable overall temperatures, while Pr infections were limited to southern
latitudes with increased daily temperature fluctuations, though we note that additional Pr
sampling is needed.

Figure 4 Distribution of latitude and environmental variables across infected and uninfected groups. (A, D, G, J) Individuals tested for Bd and
found to be infected (teal) or uninfected (grey). (B, E, H, K) Individuals tested for Pr and found to be infected (tan) or uninfected (grey). (C, F, I, L)
Individuals tested for Rv and found to be infected (purple) or uninfected (grey). Distribution of latitude in degrees (A–C), TPC1 (D–F), TPC2 (G–I),
and PPC2 (J–L) for infected and uninfected individuals. Significant differences (p < 0.05) between means for each paired comparison are indicated by
differing letters (a, b). Full-size DOI: 10.7717/peerj.18901/fig-4
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Our balanced RF models successfully identified factors important to Bd and Rv
infection status. Specifically, each model determined host species as the top predictor with
~70% accuracy, suggesting other factors not captured here are also important in predicting
infection status. Broadly speaking, species in the family Ranidae, especially Rana
catesbeiana and R. clamitans, harbored the majority of Bd and Rv infections, adding to the
mounting evidence that these species act as potential pathogen reservoirs in this region.
Furthermore, we detected higher Rv prevalence and Bd infection intensity in juvenile frogs
compared to adults. These findings underscore the complex interplay between host traits,
environmental conditions, and pathogen dynamics in shaping infection patterns across
this region. We examine these results in relation to previous amphibian pathogen research,
discuss sampling limitations, and highlight the challenges and advances that machine
learning can provide to large-scale wildlife disease research in the sections below.

Prevalence and geographic distribution vary among pathogens
Batrachochytrium dendrobatidis (Bd)—Our survey is consistent with previous reports
(Li et al., 2021), distribution models (Rödder, Schulte & Toledo, 2013; Olson et al., 2021),
and public database counts (https://amphibiandisease.org; Koo et al., 2021) that indicate
the widespread occurrence of Bd across much of the central and eastern United States. We
found at least one frog infected with Bd in 29 of the 32 states screened, reinforcing the
conclusion that Bd is likely endemic throughout much of this region (Longcore et al.,
2007). We also note that northern states such as Maine, Vermont, and Indiana exhibited
the highest proportion of Bd infections, with nearly half of all frogs screened testing
positive. This high relative prevalence at higher latitudes could be explained by lower
overall summer temperatures, which support fungal growth while limiting exposure to
above-optimal temperatures that slow disease progression (Lindauer, Maler & Voyles,
2020). Similar patterns have been observed across the U.S. (Petersen et al., 2016; Sonn, Utz
& Richards-Zawacki, 2019; Belasen et al., 2024) and Australia (Kriger, Pereoglou & Hero,
2007). However, it is important to acknowledge that our assessment likely underestimates
the prevalence of Bd within southeastern regions since many of these samples were derived
from internal tissues (e.g., liver, muscle) which are not reliable when screening for Bd
(Fig. S1; World Organisation for Animal Health (WOAH), 2021a).

When we excluded samples derived from internal and unknown tissue types, TPC2
(corresponding to mean diurnal temperature range) remained significantly correlated with
Bd prevalence. Experimental studies have shown reduced growth and reproduction in Bd
when exposed to heat pulses compared to constant temperature treatments (Greenspan
et al., 2017; Lindauer, Maler & Voyles, 2020). Likewise, our results suggest that areas with
more stable daily temperatures—such as humid, temperate regions near bodies of water—
may serve as important refugia for Bd, while more fluctuations in daily temperatures result
in decreased pathogen prevalence. Although extensive research has examined climate in
relation to Bd infection patterns (e.g., reviewed in Sasso, McCallum & Grogan, 2021), the
effect of daily temperature fluctuations in relation to pathogen prevalence and distribution
is underreported.
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Amphibian Perkinsea (Pr)—Our results support three key insights regarding the
distribution of Pr. First, our study suggests the current known distribution of Pr is likely
underestimated, as we document novel infections in Missouri and Oklahoma (Isidoro-
Ayza et al., 2017; Garner & Ruden, 2019;Midwest Association of Fish andWildlife Agencies
(MAFWA), 2020). Second, the westward range expansion to these states, along with
reported mortality events as far north as Wisconsin (Isidoro-Ayza, 2019) and Alaska
(Isidoro-Ayza et al., 2017), indicate that Pr likely possesses broad climatic tolerances.
Although researchers have yet to successfully culture Pr in the lab to explore these limits,
previous surveys have identified seasonal Pr outbreaks throughout the southeastern U.S.
(Atkinson & Savage, 2023b). Lastly, the low infection prevalence we document here
supports the hypothesis that Pr infections are currently localized and rare in adult frogs
during summer months, though not impossible (Jones et al., 2012; Karwacki et al., 2018).
Nonetheless, with rising concern for species in recent decline, potentially due to the
introduction of Pr, such as Rana capito (Crawford et al., 2022; Devitt et al., 2023) and Rana
sevosa (Atkinson, 2016), we recommend targeted screening across seasons of abundant
co-distributed adult frogs that do not currently show significant population declines, such
as R. catesbeiana, R. sphenocephala, and R. clamitans, to assess how these pathogens are
potentially spread and maintained in the wild.

Ranavirus (Rv)—Rv has been documented widely across North America, as shown in
the Global Ranavirus Reporting System (brunnerlab.shinyapps.io/GRRS_Interactive/) and
subsequent reviews (e.g., Duffus et al., 2015; Brunner et al., 2021). It is important to note
that the GRRS database includes reports of infections in both wild and captive frog
populations. Therefore, even though Rv distributions are recorded widely, some states only
have Rv outbreaks documented in captivity (Duffus et al., 2015). Our study adds such a
novel case of Rv infection in wild frogs of Mississippi. The majority of Rv infections,
however, were detected in northern states such as Maine and New Jersey, where 28% and
13% of individuals tested were found positive, respectively. Similar to Bd research, and in
line with previous observational studies (e.g., Youker-Smith et al., 2018), we observed
significantly higher Rv prevalence in areas characterized by cooler year-round
temperatures. We note, however, that the higher Rv prevalence we found in high-latitude
areas may be influenced by the species sampled at northern sites (primarily Rana
catesbeiana and R. clamitans) and the age class of those sampled (many juveniles), both of
which are factors that could conceivably correspond with increased infection.

The relatively low overall prevalence of Pr and Rv in our study was likely influenced by a
few factors. First, while both liver and toe clips can reliably detect Rv (Torres López et al.,
2024) and are recommended diagnostic tissues (World Organisation for Animal Health
(WOAH), 2021b), the use of toe clips for Pr detection has not yet been validated.
Additionally, the absence of larval stages in our sampling likely had a strong impact on
prevalence of both Pr and Rv. While infections (Gray, Miller & Hoverman, 2009; Karwacki
et al., 2018) and mortality (Teacher, Cunningham & Garner, 2010) have been documented
in adult frogs, mass die-off events for both pathogens primarily occur before and during
metamorphosis (Rv: Green, Converse & Schrader, 2002; Pr: Isidoro-Ayza, 2019). This trend
is at least partly explained by the underdeveloped immune response documented in hosts
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prior to and during larval development (Gray, Miller & Hoverman, 2009; Miller, Gray &
Storfer, 2011;Herczeg et al., 2021), as well as the habitat overlap between these water-borne
pathogens and larval stages (Miller, Gray & Storfer, 2011; Itoïz et al., 2022). We did,
however, record higher than expected Rv infections in post-metamorphic juvenile frogs
compared to adults, perhaps explained by the continued lag in host immune function
between metamorphosis and sexual maturity (Rollins-Smith, 1998; Gantress et al., 2003).
Lastly, the presence of both Rv and Pr infections in adult frogs in our study may either
represent coincidental infections prior to clearance or be related to other mechanisms,
such as coinfections, discussed below.

Coinfections account for many cases of rare pathogen infections
Even though we report no significant differences in infection intensity between single and
coinfected individuals, we still document a surprising proportion of coinfections between
Bd-Pr and Bd-Rv. This observation, along with findings from other recent multi-pathogen
screening efforts (e.g., Landsberg et al., 2013; Karwacki, Martin & Savage, 2021; Atkinson &
Savage, 2023b), support the idea that coinfections may facilitate heightened susceptibility
in frogs (Herczeg et al., 2021), but more work is needed to understand how these
coinfections are affecting seemingly robust species such as Rana catesbeiana and
R. clamitans. Though we did not find coinfections between Pr and Rv, which primarily
impact larval stages, infection with Bd may increase susceptibility of adult frogs to Pr and
Rv. One concerning aspect of this finding is that given their increased immune function,
adults can maintain chronic, low-level infections, thus providing a potential mechanism
for pathogen spread and persistence in populations. Further investigation in a controlled
setting is warranted to assess how coinfections at different life stages may impact the
infection dynamics and outcomes we observe in natural environments and communities.

Infection prevalence differs across host taxonomy
Our study adds to a growing body of research that aims to understand differences in
infection prevalence among hosts. Specifically, we found significantly higher Bd and Rv
prevalence in four species in the family Ranidae compared to other families (Fig. 2; Fig. S2),
while Pr counts were too low to draw significant conclusions. Higher pathogen prevalence
in the family Ranidae has been reported from other surveys of wild communities (e.g.,
Olson et al., 2013; Rothermel et al., 2016; Karwacki et al., 2018), and increased susceptibility
has been directly reported in controlled experiments (e.g., Hoverman, Gray & Miller, 2010;
Gahl, Longcore & Houlahan, 2012). One potential explanation for increased pathogen
prevalence in this family could be proximity and time spent in permanent and
semi-permanent breeding ponds that act as pathogen refugia (Hoverman et al., 2011;
Greenberg, Palen & Mooers, 2017).

Two species, Rana catesbeiana and R. clamitans, accounted for 38% of all infected frogs
and 64% of all coinfections in our dataset. Both species have been classified as pathogen
reservoirs which contribute to the maintenance of Bd and Rv across their native ranges
over time (Rothermel et al., 2016; Yap et al., 2018; Brunner et al., 2019; Hoverman, Chislock
& Gannon, 2019; Hossack et al., 2023). In addition, the global invasion of
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pathogen-positive R. catesbeiana has been linked to the spread of both Bd and Rv with
primarily negative effects for native species (reviewed in Atkinson & Savage, 2023a). Other
species-level differences observed in our study, such as increased Bd prevalence in
Anaxyrus americanus and Pseudacris crucifer compared to other species in their respective
families, also warrants further investigation to identify potential drivers of increased
susceptibility outside of primary habitat type. Research into mechanisms of resistance and
tolerance (e.g., Eskew et al., 2015), host-pathogen coevolutionary history (e.g., Carvalho
et al., 2024) and immunogenetic adaptation (e.g., Trujillo et al., 2021) focused on additional
host species could provide further important insights.

Infection intensity varies across host taxonomy and age class
In amphibians, infection intensity serves as a proxy for infection outcomes, with higher
pathogen loads often corresponding with increased spread and host mortality (Vredenburg
et al., 2010). Our survey of widespread species that are not currently documented as
experiencing pathogen-induced decline, still showed significant associations between
infection intensity, host species, and age class. Specifically, we found the highest Bd
infection intensities in Rana clamitans (Fig. 2B) and significantly higher Bd intensity in
juveniles compared to adults (Table S1). The majority of Bd-positive juvenile frogs in our
dataset were R. clamitans, however, meaning that our data lack the power to distinguish
infection intensity variation between age classes and species-level correlates. Importantly,
multiple studies have shown that Bd infection intensities increase during winter months
(Savage, Sredl & Zamudio, 2011), which our study also fails to capture. Therefore, more
research is needed to assess the differences in Bd intensity across life stages within
R. clamitans and across seasons to extrapolate the mechanisms responsible for this pattern.

Broadly, age class has been associated with pathogen-induced host mortality, but these
results have been mixed. For example, Bd-induced mortality has been documented during
metamorphosis (Humphries et al., 2024) and in juvenile stages (Abu Bakar et al., 2016), but
also the inverse has been recorded, where juveniles harbor lower infection loads compared
to adult frogs (Bradley et al., 2019). This inconsistency demonstrates the contextual nature
of infection dynamics, where multiple aspects can influence infection outcomes. Factors
such as length of exposure (Lips, 2016; Bielby et al., 2021), host skin peptides and
microbiomes (Woodhams et al., 2007; Bernardo-Cravo et al., 2020), infection history
(Greenberg, Palen & Mooers, 2017), and phylogenetic constraint (Hoverman et al., 2011;
Longo, Lips & Zamudio, 2023) have all been shown to affect pathogen-specific infection
intensities and/or host mortality. Continued work documenting species-specific
mechanisms of pathogen tolerance and resistance is needed to better understand the
drivers of infection intensity differences and host survival.

Application and limitations of RF models in multi-pathogen dynamics
Our application of balanced RF classification models builds on efforts that have used
machine learning to address factors influencing both species-level (Murray et al., 2013)
and site-specific (Atkinson & Savage, 2023b; Roth, Griffis-Kyle & Barnes, 2024) amphibian
infection dynamics. Machine learning techniques have also been applied to examine
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projected distributions of Bd in the context of future climate change (Xie, Olson &
Blaustein, 2016). We demonstrated the utility of RF models to quickly and efficiently
provide valuable insights into the complex patterns encountered in observational disease
ecology studies (Cutler et al., 2007). Though there are limitations such as over-fitting due
to small sample sizes or amplifying noise in the data rather than true relationships, models
built from balanced training datasets with ample sample sizes can achieve moderately low
out-of-bag error rates and have high predictive accuracy, specificity, and sensitivity. The
application of RF models to other wildlife disease systems such as avian malaria-causing
parasites (e.g., Aželytė et al., 2023), Pseudogymnoascus destructans, which causes
white-nose syndrome in bats, or Ophidiomyces ophiodiicola, which causes snake fungal
disease, are other promising avenues for discovery.

CONCLUSIONS
Frogs in North America have faced infectious disease pressures from emerging pathogens
for over a century (Karwacki, Martin & Savage, 2021). While fine-scale, pathogen-specific
research has been essential for understanding the mechanisms driving large-scale infection
dynamics, our study underscores the need for multi-pathogen screening efforts to
effectively monitor diseases across diverse frog communities. We showed that host species
and environmental factors were top predictors of pathogen prevalence, but their relative
importance differed among pathogens and host families. Moreover, large-scale studies like
ours depend on tissue donations to natural history collections. This practice, along with the
deposition of whole specimens, can provide valuable histological and morphometric
insights that extend beyond the sample’s original research scope, promoting reproducible
and extendable science. Lastly, amphibian pathogens present a unique opportunity to
develop machine learning models that capture multi-pathogen infection dynamics on a
broad scale. The extensive body of research available within this field can enhance model
predictions, while the substantial screening efforts can provide ample data to yield valuable
insights, when made available via public databases. Overall, the multifaceted nature of
host-pathogen dynamics poses a challenge to comprehensive, large-scale wildlife disease
studies; therefore, future research that embraces data sharing and flexible analytical
approaches will pave the way for deeper insights into these complex systems.

ACKNOWLEDGEMENTS
This research is part of the dissertation of DLFW. The authors thank the members of the
Amphibian and Reptile Biodiversity Lab for their valuable input on earlier versions of the
manuscript and analyses; J. Tom Giermakowski and members of the Division of
Amphibians and Reptiles and Mariel Campbell of the Division of Genomic Resources, and
the LSU Museum of Natural Science Collection of Genetic Resources, for access to
materials and tissues; Melissa Sanchez for laboratory assistance and equipment; and Erik
Erhardt in the Department of Mathematics and Statistics and Davorka Gulisija in the
Department of Biology for consultation on statistical analyses. We also thank the creators
of the original silhouette images: Steven Traver (Bufo gargarizans gargarizans), Jose Carlos
Arenas-Monroy (Sarcohyla bistincta), and Beth Reinke (Rana temporaria).

Wiley et al. (2025), PeerJ, DOI 10.7717/peerj.18901 20/31

http://dx.doi.org/10.7717/peerj.18901
https://peerj.com/


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This material is based upon work supported by the National Science Foundation Graduate
Research Fellowship Program to Daniele L. F. Wiley under Grant No. (2439853) and
funding to Lisa N. Barrow from NSF (DEB-2112946) and the University of New Mexico
(UNM) Office of the Vice President for Research through a Research Allocations
Committee award. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views
of the funders. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Science Foundation Graduate Research Fellowship Program: 2439853.
NSF: DEB-2112946.
University of New Mexico (UNM) Office of the Vice President for Research through a
Research Allocations Committee award.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Daniele L. F. Wiley conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

. Kadie N. Omlor performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

. Ariadna S. Torres López performed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

. Celina M. Eberle performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

. Anna E. Savage conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

. Matthew S. Atkinson conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

. Lisa N. Barrow conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

Animal Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

Florida State University Animal Care and Use Committee; University of New Mexico
Institutional Animal Care and Use Committee.

Wiley et al. (2025), PeerJ, DOI 10.7717/peerj.18901 21/31

http://dx.doi.org/10.7717/peerj.18901
https://peerj.com/


Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

Alabama Department of Conservation and Natural Resources; Arkansas Game and Fish
Commission; Florida Fish and Wildlife Conservation Commission; Georgia Department
of Natural Resources; Iowa Department of Natural Resources; Illinois Department of
Natural Resources; Indiana Department of Natural Resources; Kansas Department of
Wildlife and Parks; Kentucky Department of Fish and Wildlife Resources; Louisiana
Department of Wildlife and Fisheries; Maryland Department of Natural Resources; Maine
Department of Inland Fisheries and Wildlife; Michigan Department of Natural Resources;
Minnesota Department of Natural Resources; Missouri Department of Conservation;
Mississippi Department of Wildlife, Fisheries, and Parks; North Carolina Wildlife
Resources Commission; North Dakota Game and Fish Department; Nebraska Game and
Parks Commission; New Jersey Division of Fish and Wildlife; New Mexico Department of
Game and Fish; New York State Department of Environmental Conservation; Ohio
Department of Natural Resources; Oklahoma Department of Wildlife Conservation;
Pennsylvania Fish and Boat Commission; South Carolina Department of Natural
Resources; State of South Dakota Department of Game, Fish, and Parks; Tennessee
Wildlife Resources Agency; Texas Parks and Wildlife; Virginia Department of Wildlife
Resources; Vermont Fish and Wildlife Department; Wisconsin Department of Natural
Resources.

Data Availability
The following information was supplied regarding data availability:

The data and r-scripts are available at Figshare: Wiley, Daniele (Dani) (2024). CFPCS
DATA & R-SCRIPTS. figshare. Dataset. https://doi.org/10.6084/m9.figshare.26849554.v5.

The pathogen screening data are available at the Amphibian Disease Portal (GEOME):
https://n2t.net/ark:/21547/R2587.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.18901#supplemental-information.

REFERENCES
Abu Bakar A, Bower DS, Stockwell MP, Clulow S, Clulow J, Mahony MJ. 2016. Susceptibility to

disease varies with ontogeny and immunocompetence in a threatened amphibian. Oecologia
181(4):997–1009 DOI 10.1007/s00442-016-3607-4.

Adams AJ, Kupferberg SJ, Wilber MQ, Pessier AP, Grefsrud M, Bobzien S, Vredenburg VT,
Briggs CJ. 2017. Extreme drought, host density, sex, and bullfrogs influence fungal pathogen
infection in a declining lotic amphibian. Ecosphere 8(3):e01740 DOI 10.1002/ecs2.1740.

Allender MC, Bunick D, Mitchell MA. 2013.Development and validation of TaqMan quantitative
PCR for detection of frog virus 3-like virus in eastern box turtles (Terrapene carolina carolina).
Journal of Virological Methods 188(1–2):121–125 DOI 10.1016/j.jviromet.2012.12.012.

Wiley et al. (2025), PeerJ, DOI 10.7717/peerj.18901 22/31

https://doi.org/10.6084/m9.figshare.26849554.v5
https://n2t.net/ark:/21547/R2587
http://dx.doi.org/10.7717/peerj.18901#supplemental-information
http://dx.doi.org/10.7717/peerj.18901#supplemental-information
http://dx.doi.org/10.1007/s00442-016-3607-4
http://dx.doi.org/10.1002/ecs2.1740
http://dx.doi.org/10.1016/j.jviromet.2012.12.012
http://dx.doi.org/10.7717/peerj.18901
https://peerj.com/


Ariel E, Nicolajsen N, Christophersen MB, Holopainen R, Tapiovaara H, Bang Jensen B. 2009.
Propagation and isolation of ranaviruses in cell culture. Aquaculture 294(3–4):159–164
DOI 10.1016/j.aquaculture.2009.05.019.

Atkinson MS. 2016. The effects of the protist parasite Dermomycoides sp., on the dusky gopher frog
(Rana sevosa) and the southern leopard frog (Rana sphenocephala). PhD thesis, Western
Carolina University, Cullowhee, NC, USA.

Atkinson MS, Savage AE. 2023a. Invasive amphibians alter host-pathogen interactions with
primarily negative outcomes for native species. Biological Conservation 286(3):110310
DOI 10.1016/j.biocon.2023.110310.

Atkinson MS, Savage AE. 2023b. Widespread amphibian Perkinsea infections associated with
Ranidae hosts, cooler months and Ranavirus co-infection. Journal of Animal Ecology
92(9):1856–1868 DOI 10.1111/1365-2656.13977.

Aželytė J, Wu-Chuang A, Maitre A, Žiegytė R, Mateos-Hernández L, Obregón D,
Palinauskas V, Cabezas-Cruz A. 2023. Avian malaria parasites modulate gut microbiome
assembly in canaries. Microorganisms 11(3):563 DOI 10.3390/microorganisms11030563.

Balseiro A, Dalton KP, Del Cerro A, Márquez I, Parra F, Prieto JM, Casais R. 2010. Outbreak of
common midwife toad virus in alpine newts (Mesotriton alpestris cyreni) and common midwife
toads (Alytes obstetricans) in Northern Spain: a comparative pathological study of an emerging
ranavirus. The Veterinary Journal 186(2):256–258 DOI 10.1016/j.tvjl.2009.07.038.

Bancroft BA, Han BA, Searle CL, Biga LM, Olson DH, Kats LB, Lawler JJ, Blaustein AR. 2011.
Species-level correlates of susceptibility to the pathogenic amphibian fungus Batrachochytrium
dendrobatidis in the United States. Biodiversity and Conservation 20(9):1911–1920
DOI 10.1007/s10531-011-0066-4.

Bartlett P, Ward T, Brue D, Carey A, Duffus A. 2021. Ranaviruses in North America: a brief
review in wild herpetofauna. Journal of North American Herpetology 2021(2):19–26
DOI 10.17161/jnah.v2021i2.15747.

Becker CG, Rodriguez D, Toledo LF, Longo AV, Lambertini C, Corrêa DT, Leite DS,
Haddad CFB, Zamudio KR. 2014. Partitioning the net effect of host diversity on an emerging
amphibian pathogen. Proceedings of the Royal Society B: Biological Sciences 281(1795):20141796
DOI 10.1098/rspb.2014.1796.

Belasen AM, Bletz MC, Leite DDS, Toledo LF, James TY. 2019. Long-term habitat fragmentation
is associated with reduced MHC IIB diversity and increased infections in amphibian hosts.
Frontiers in Ecology and Evolution 6:236 DOI 10.3389/fevo.2018.00236.

Belasen AM, Peek RA, Adams AJ, Russell ID, De León ME, Adams MJ, Bettaso J,
Breedveld KGH, Catenazzi A, Dillingham CP, Grear DA, Halstead BJ, Johnson PG,
Kleeman PM, Koo MS, Koppl CW, Lauder JD, Padgett-Flohr G, Piovia-Scott J, Pope KL,
Vredenburg V, Westphal M, Wiseman K, Kupferberg SJ. 2024. Chytrid infections exhibit
historical spread and contemporary seasonality in a declining stream-breeding frog. Royal
Society Open Science 11(1):231270 DOI 10.1098/rsos.231270.

Bellard C, Genovesi P, Jeschke JM. 2016. Global patterns in threats to vertebrates by biological
invasions. Proceedings of the Royal Society B: Biological Sciences 283(1823):20152454
DOI 10.1098/rspb.2015.2454.

Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R,
Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H. 1998.
Chytridiomycosis causes amphibian mortality associated with population declines in the rain
forests of Australia and Central America. Proceedings of the National Academy of Sciences of the
United States of America 95(15):9031–9036 DOI 10.1073/pnas.95.15.9031.

Wiley et al. (2025), PeerJ, DOI 10.7717/peerj.18901 23/31

http://dx.doi.org/10.1016/j.aquaculture.2009.05.019
http://dx.doi.org/10.1016/j.biocon.2023.110310
http://dx.doi.org/10.1111/1365-2656.13977
http://dx.doi.org/10.3390/microorganisms11030563
http://dx.doi.org/10.1016/j.tvjl.2009.07.038
http://dx.doi.org/10.1007/s10531-011-0066-4
http://dx.doi.org/10.17161/jnah.v2021i2.15747
http://dx.doi.org/10.1098/rspb.2014.1796
http://dx.doi.org/10.3389/fevo.2018.00236
http://dx.doi.org/10.1098/rsos.231270
http://dx.doi.org/10.1098/rspb.2015.2454
http://dx.doi.org/10.1073/pnas.95.15.9031
http://dx.doi.org/10.7717/peerj.18901
https://peerj.com/


Bernardo-Cravo AP, Schmeller DS, Chatzinotas A, Vredenburg VT, Loyau A. 2020.
Environmental factors and host microbiomes shape host-pathogen dynamics. Trends in
Parasitology 36(7):616–633 DOI 10.1016/j.pt.2020.04.010.

Bielby J, Price SJ, Monsalve-Carcaño C, Bosch J. 2021.Host contribution to parasite persistence is
consistent between parasites and over time, but varies spatially. Ecological Applications
31(3):e02256 DOI 10.1002/eap.2256.

Boyle D, Olsen DH, Morgan J, Hyatt A. 2004. Rapid quantitative detection of chytridiomycosis
(Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay.
Diseases of Aquatic Organisms 60:141–148 DOI 10.3354/dao060141.

Bradley PW, Brawner MD, Raffel TR, Rohr JR, Olson DH, Blaustein AR. 2019. Shifts in
temperature influence how Batrachochytrium dendrobatidis infects amphibian larvae. PLOS
ONE 14(9):e0222237 DOI 10.1371/journal.pone.0222237.

Breiman L. 2001. Random forests. Machine Learning 45(1):5–32 DOI 10.1023/A:1010933404324.

Brunner JL, Olson DH, Gray MJ, Miller DL, Duffus ALJ. 2021. Global patterns of ranavirus
detections. FACETS 6:912–924 DOI 10.1139/facets-2020-0013.

Brunner JL, Olson AD, Rice JG, Meiners SE, Le Sage MJ, Cundiff JA, Goldberg CS, Pessier AP.
2019. Ranavirus infection dynamics and shedding in American bullfrogs: consequences for
spread and detection in trade. Diseases of Aquatic Organisms 135(2):135–150
DOI 10.3354/dao03387.

Carey C, Bruzgul JE, Livo LJ, Walling ML, Kuehl KA, Dixon BF, Pessier AP, Alford RA,
Rogers KB. 2006. Experimental exposures of boreal toads (Bufo boreas) to a pathogenic chytrid
fungus (Batrachochytrium dendrobatidis). EcoHealth 3(1):5–21
DOI 10.1007/s10393-005-0006-4.

Carvalho T, Belasen AM, Toledo LF, James TY. 2024. Coevolution of a generalist pathogen with
many hosts: the case of the amphibian chytrid Batrachochytrium dendrobatidis. Current Opinion
in Microbiology 78:102435 DOI 10.1016/j.mib.2024.102435.

Chen C, Liaw A, Breiman L. 2004. Using random forest to learn imbalanced data. Vol. 110.
Berkeley: University of California, 24.

Cicero C, Koo MS, Braker E, Abbott J, Bloom D, Campbell M, Cook JA, Demboski JR, Doll AC,
Frederick LM, Linn AJ, Mayfield-Meyer TJ, McDonald DL, Nachman MW, Olson LE,
Roberts D, Sikes DS, Witt CC, Wommack EA. 2024. Arctos: community-driven innovations
for managing natural and cultural history collections. PLOS ONE 19(5):e0296478
DOI 10.1371/journal.pone.0296478.

Colella JP, Stephens RB, Campbell ML, Kohli BA, Parsons DJ, Mclean BS. 2021. The
open-specimen movement. BioScience 71(4):405–414 DOI 10.1093/biosci/biaa146.

Cordier JM, Aguilar R, Lescano JN, Leynaud GC, Bonino A, Miloch D, Loyola R, Nori J. 2021.A
global assessment of amphibian and reptile responses to land-use changes. Biological
Conservation 253(80):108863 DOI 10.1016/j.biocon.2020.108863.

Crawford BA, Farmer AL, Enge KM, Greene AH, Diaz L, Maerz JC, Moore CT. 2022. Breeding
dynamics of gopher frog metapopulations over 10 years. Journal of Fish and Wildlife
Management 13(2):422–436 DOI 10.3996/JFWM-21-076.

Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ. 2007. Random
forests for classification in ecology. Ecology 88(11):2783–2792 DOI 10.1890/07-0539.1.

Devitt TJ, Enge KM, Farmer AL, Beerli P, Richter SC, Hall JG, Lance SL. 2023. Population
subdivision in the gopher frog (Rana capito) across the fragmented longleaf pine-wiregrass
savanna of the southeastern USA. Diversity 15(1):93 DOI 10.3390/d15010093.

Wiley et al. (2025), PeerJ, DOI 10.7717/peerj.18901 24/31

http://dx.doi.org/10.1016/j.pt.2020.04.010
http://dx.doi.org/10.1002/eap.2256
http://dx.doi.org/10.3354/dao060141
http://dx.doi.org/10.1371/journal.pone.0222237
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1139/facets-2020-0013
http://dx.doi.org/10.3354/dao03387
http://dx.doi.org/10.1007/s10393-005-0006-4
http://dx.doi.org/10.1016/j.mib.2024.102435
http://dx.doi.org/10.1371/journal.pone.0296478
http://dx.doi.org/10.1093/biosci/biaa146
http://dx.doi.org/10.1016/j.biocon.2020.108863
http://dx.doi.org/10.3996/JFWM-21-076
http://dx.doi.org/10.1890/07-0539.1
http://dx.doi.org/10.3390/d15010093
http://dx.doi.org/10.7717/peerj.18901
https://peerj.com/


DiRenzo GV, Campbell Grant EH. 2019. Overview of emerging amphibian pathogens and
modeling advances for conservation-related decisions. Biological Conservation
236(1827):474–483 DOI 10.1016/j.biocon.2019.05.034.

Duffus ALJ, Waltzek TB, Stöhr AC, Allender MC, Gotesman M, Whittington RJ, Hick P,
Hines MK, Marschang RE. 2015. Distribution and host range of Ranaviruses. In: Gray MJ,
Chinchar VG, eds. Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates. Cham: Springer
International Publishing, 9–57.

Erhardt E. 2024. Erikmisc: Erik Erhardt’s miscellaneous functions for solving complex data
analysis workflows. R package version 0.2.12. Available at https://github.com/erikerhardt/
erikmisc.

Eskew EA, Worth SJ, Foley JE, Todd BD. 2015. American Bullfrogs (Lithobates catesbeianus)
Resist infection by multiple isolates of Batrachochytrium dendrobatidis, including one
implicated in wild mass mortality. EcoHealth 12(3):513–518 DOI 10.1007/s10393-015-1035-2.

Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global
land areas. International Journal of Climatology 37:4302–4315 DOI 10.1002/joc.5086.

Gahl MK, Longcore JE, Houlahan JE. 2012. Varying responses of northeastern North American
amphibians to the chytrid pathogen Batrachochytrium dendrobatidis. Conservation Biology
26(1):135–141 DOI 10.1111/j.1523-1739.2011.01801.x.

Gantress J, Maniero GD, Cohen N, Robert J. 2003. Development and characterization of a model
system to study amphibian immune responses to iridoviruses. Virology 311(2):254–262
DOI 10.1016/s0042-6822(03)00151-x.

Garner DL, Ruden RM. 2019. Midwest fish and wildlife health committee 2019 status report.
Midwest Fish and Wildlife Health Committee. Available at https://www.mafwa.org/wp-content/
uploads/2020/11/Part3_4.pdf.

Gervasi S, Gondhalekar C, Olson DH, Blaustein AR. 2013. Host identity matters in the
amphibian-Batrachochytrium dendrobatidis system: Fine-scale patterns of variation in responses
to a multi-host pathogen. PLOS ONE 8(1):e54490 DOI 10.1371/journal.pone.0054490.

Gray M, Miller D, Hoverman J. 2009. Ecology and pathology of amphibian ranaviruses. Diseases
of Aquatic Organisms 87:243–266 DOI 10.3354/dao02138.

Green DE, Converse KA, Schrader AK. 2002. Epizootiology of sixty-four amphibian morbidity
and mortality events in the USA, 1996–2001. Annals of the New York Academy of Sciences
969(1):323–339 DOI 10.1111/j.1749-6632.2002.tb04400.x.

Greenberg DA, Palen WJ, Mooers AØ. 2017. Amphibian species’ traits, evolutionary history, and
environment predict Batrachochytrium dendrobatidis infection patterns, but not extinction risk.
Evolutionary Applications 10(10):1130–1145 DOI 10.1111/eva.12520.

Greenspan SE, Bower DS, Webb RJ, Roznik EA, Stevenson LA, Berger L, Marantelli G,
Pike DA, Schwarzkopf L, Alford RA. 2017. Realistic heat pulses protect frogs from disease
under simulated rainforest frog thermal regimes. Functional Ecology 31(12):2274–2286
DOI 10.1111/1365-2435.12944.

Hartmann AM, Sash K, Hill EP, Claunch NM, Maddox ML, McGrath-Blaser S, McKinstry CC,
Ossiboff RJ, Longo AV. 2024. Partitioning the influence of host specificity in amphibian
populations threatened by multiple emerging infectious diseases. Biological Conservation
296:110685 DOI 10.1016/j.biocon.2024.110685.

Herczeg D, Ujszegi J, Kásler A, Holly D, Hettyey A. 2021. Host-multiparasite interactions in
amphibians: a review. Parasites & Vectors 14(1):296 DOI 10.1186/s13071-021-04796-1.

Herpetological Animal Care and Use Committee (HACC). 2004. Guidelines for use of live
amphibians and reptiles in field and laboratory research. Revised by the Herpetological Animal

Wiley et al. (2025), PeerJ, DOI 10.7717/peerj.18901 25/31

http://dx.doi.org/10.1016/j.biocon.2019.05.034
https://github.com/erikerhardt/erikmisc
https://github.com/erikerhardt/erikmisc
http://dx.doi.org/10.1007/s10393-015-1035-2
http://dx.doi.org/10.1002/joc.5086
http://dx.doi.org/10.1111/j.1523-1739.2011.01801.x
http://dx.doi.org/10.1016/s0042-6822(03)00151-x
https://www.mafwa.org/wp-content/uploads/2020/11/Part3_4.pdf
https://www.mafwa.org/wp-content/uploads/2020/11/Part3_4.pdf
http://dx.doi.org/10.1371/journal.pone.0054490
http://dx.doi.org/10.3354/dao02138
http://dx.doi.org/10.1111/j.1749-6632.2002.tb04400.x
http://dx.doi.org/10.1111/eva.12520
http://dx.doi.org/10.1111/1365-2435.12944
http://dx.doi.org/10.1016/j.biocon.2024.110685
http://dx.doi.org/10.1186/s13071-021-04796-1
http://dx.doi.org/10.7717/peerj.18901
https://peerj.com/


Care and Use Committee (HACC) of the American Society of Ichthyologists and Herpetologists.
Available at https://ssarherps.org/wp-content/uploads/2014/07/guidelinesherpsresearch2004.pdf.

Hossack BR, Oja EB, Owens AK, Hall D, Cobos C, Crawford CL, Goldberg CS, Hedwall S,
Howell PE, Lemos-Espinal JA, MacVean SK, McCaffery M, Mosley C, Muths E, Sigafus BH,
Sredl MJ, Rorabaugh JC. 2023. Empirical evidence for effects of invasive American bullfrogs on
occurrence of native amphibians and emerging pathogens. Ecology Applications 33(2):e2785
DOI 10.1002/eap.2785.

Hoverman JT, Chislock MF, Gannon ME. 2019. Ranavirus reservoirs: assemblage of American
bullfrog and green frog tadpoles maintains Ranavirus infections across multiple seasons.
Herpetological Review 50(2):275–278.

Hoverman JT, Gray MJ, Haislip NA, Miller DL. 2011. Phylogeny, life history, and ecology
contribute to differences in amphibian susceptibility to Ranaviruses. EcoHealth 8(3):301–319
DOI 10.1007/s10393-011-0717-7.

Hoverman JT, Gray M, Miller D. 2010. Anuran susceptibilities to ranaviruses: role of species
identity, exposure route, and a novel virus isolate. Diseases of Aquatic Organisms 89:97–107
DOI 10.3354/dao02200.

Humphries JE, Lanctôt CM, McCallum HI, Newell DA, Grogan LF. 2024. Chytridiomycosis
causes high amphibian mortality prior to the completion of metamorphosis. Environmental
Research 247(4):118249 DOI 10.1016/j.envres.2024.118249.

Humphries JE, Lanctôt CM, Robert J, McCallum HI, Newell DA, Grogan LF. 2022. Do immune
system changes at metamorphosis predict vulnerability to chytridiomycosis? An update.
Developmental & Comparative Immunology 136:104510 DOI 10.1016/j.dci.2022.104510.

Isidoro-Ayza M. 2019.Mass mortality of green frog (Rana clamitans) tadpoles in Wisconsin, USA,
associated with severe infection with the pathogenic Perkinsea clade. Journal of Wildlife Diseases
55(1):262–265 DOI 10.7589/2018-02-046.

Isidoro-Ayza M, Lorch JM, Grear DA, Winzeler M, Calhoun DL, Barichivich WJ. 2017.
Pathogenic lineage of Perkinsea associated with mass mortality of frogs across the United States.
Scientific Reports 7(1):10288 DOI 10.1038/s41598-017-10456-1.

Itoïz S, Metz S, Derelle E, Reñé A, Garcés E, Bass D, Soudant P, Chambouvet A. 2022. Emerging
parasitic protists: The case of Perkinsea. Frontiers in Microbiology 12:735815
DOI 10.3389/fmicb.2021.735815.

IUCN. 2022. The IUCN red list of threatened species. Version 2022. Available at https://www.
iucnredlist.org (accessed 7 November 2023).

Jetz W, Pyron RA. 2018. The interplay of past diversification and evolutionary isolation with
present imperilment across the amphibian tree of life. Nature Ecology & Evolution: 1. Available
at https://www.nature.com/articles/s41559-018-0515-5 (accessed 1 March 2024).

Johnson PTJ, Buller ID. 2011. Parasite competition hidden by correlated coinfection: using
surveys and experiments to understand parasite interactions. Ecology 92(3):535–541
DOI 10.1890/10-0570.1.

Jones M, Armién A, Rothermel B, Pessier A. 2012. Granulomatous myositis associated with a
novel alveolate pathogen in an adult southern leopard frog (Lithobates sphenocephalus). Diseases
of Aquatic Organisms 102(2):163–167 DOI 10.3354/dao02539.

Karwacki EE, Atkinson MS, Ossiboff RJ, Savage AE. 2018. Novel quantitative PCR assay specific
for the emerging Perkinsea amphibian pathogen reveals seasonal infection dynamics. Diseases of
Aquatic Organisms 129(2):85–98 DOI 10.3354/dao03239.

Wiley et al. (2025), PeerJ, DOI 10.7717/peerj.18901 26/31

https://ssarherps.org/wp-content/uploads/2014/07/guidelinesherpsresearch2004.pdf
http://dx.doi.org/10.1002/eap.2785
http://dx.doi.org/10.1007/s10393-011-0717-7
http://dx.doi.org/10.3354/dao02200
http://dx.doi.org/10.1016/j.envres.2024.118249
http://dx.doi.org/10.1016/j.dci.2022.104510
http://dx.doi.org/10.7589/2018-02-046
http://dx.doi.org/10.1038/s41598-017-10456-1
http://dx.doi.org/10.3389/fmicb.2021.735815
https://www.iucnredlist.org
https://www.iucnredlist.org
https://www.nature.com/articles/s41559-018-0515-5
http://dx.doi.org/10.1890/10-0570.1
http://dx.doi.org/10.3354/dao02539
http://dx.doi.org/10.3354/dao03239
http://dx.doi.org/10.7717/peerj.18901
https://peerj.com/


Karwacki EE, Martin KR, Savage AE. 2021. One hundred years of infection with three global
pathogens in frog populations of Florida, USA. Biological Conservation 257:109088
DOI 10.1016/j.biocon.2021.109088.

Kassambara A. 2023. Rstatix: pipe-friendly framework for basic statistical tests. R Package Version
0.7.2. Available at https://CRAN.R-project.org/package=rstatix.

Koo MS, Vredenburg VT, Deck JB, Olson DH, Ronnenberg KL, Wake DB. 2021. Tracking,
synthesizing, and sharing global Batrachochytrium data at AmphibianDisease.org. Frontiers in
Veterinary Science 8:728232 DOI 10.3389/fvets.2021.728232.

Kriger KM, Pereoglou F, Hero J. 2007. Latitudinal variation in the prevalence and intensity of
chytrid (Batrachochytrium dendrobatidis) infection in Eastern Australia. Conservation Biology
21(5):1280–1290 DOI 10.1111/j.1523-1739.2007.00777.x.

Kuhn M. 2008. Building predictive models in R using the caret package. Journal of Statistical
Software 28(5):1–26 DOI 10.18637/jss.v028.i05.

Landsberg J, Kiryu Y, Tabuchi M, Waltzek T, Enge K, Reintjes-Tolen S, Preston A, Pessier A.
2013. Co-infection by alveolate parasites and frog virus 3-like ranavirus during an amphibian
larval mortality event in Florida, USA. Diseases of Aquatic Organisms 105(2):89–99
DOI 10.3354/dao02625.

Li Z, Wang Q, Sun K, Feng J. 2021. Prevalence of Batrachochytrium dendrobatidis in amphibians
from 2000 to 2021: a global systematic review and meta-analysis. Frontiers in Veterinary Science
8:791237 DOI 10.3389/fvets.2021.791237.

Liaw A, Wiener M. 2002. Classification and regression by randomForest. R News 2:18–22.

Lindauer AL, Maler PA, Voyles J. 2020. Daily fluctuating temperatures decrease growth and
reproduction rate of a lethal amphibian fungal pathogen in culture. BMC Ecology 20(1):18
DOI 10.1186/s12898-020-00286-7.

Lips KR. 2016. Overview of chytrid emergence and impacts on amphibians. Philosophical
Transactions of the Royal Society B: Biological Sciences 371(1709):20150465
DOI 10.1098/rstb.2015.0465.

Longcore JR, Longcore JE, Pessier AP, Halteman WA. 2007. Chytridiomycosis widespread in
anurans of northeastern United States. The Journal of Wildlife Management 71(2):435–444
DOI 10.2193/2006-345.

Longcore JE, Pessier AP, Nichols DK. 1999. Batrachochytrium dendrobatidis gen. et sp. nov., a
chytrid pathogenic to amphibians. Mycologia 91(2):219–227
DOI 10.1080/00275514.1999.12061011.

Longo AV, Lips KR, Zamudio KR. 2023. Evolutionary ecology of host competence after a chytrid
outbreak in a naive amphibian community. Philosophical Transactions of the Royal Society B:
Biological Sciences 378(1882):20220130 DOI 10.1098/rstb.2022.0130.

Luedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A, Borzée Aël, Hamidy A,
Aowphol A, Jean A, Sosa-Bartuano Ál, Fong GA, de Silva A, Fouquet A, Angulo A,
Kidov AA, Muñoz Saravia A, Diesmos AC, Tominaga A, Shrestha B, Gratwicke B,
Tjaturadi B, Martínez Rivera CC, Vásquez Almazán CR, Señaris C, Chandramouli SR,
Strüssmann C, Cortez Fernández CF, Azat C, Hoskin CJ, Hilton-Taylor C, Whyte DL,
Gower DJ, Olson DH, Cisneros-Heredia DF, Santana DJ, Nagombi E, Najafi-Majd E,
Quah ESH, Bolaños F, Xie F, Brusquetti F, Álvarez FS, Andreone F, Glaw F, Castañeda FE,
Kraus F, Parra-Olea G, Chaves G, Medina-Rangel GF, González-Durán G, Ortega-
Andrade HM, Machado IF, Das I, Dias IR, Urbina-Cardona JN, Crnobrnja-Isailović J,
Yang J-H, Jianping J, Wangyal JT, Rowley JJL, Measey J, Vasudevan K, Chan KO,
Gururaja KV, Ovaska K, Warr LC, Canseco-Márquez L, Toledo LF, Díaz LM, Khan MMH,

Wiley et al. (2025), PeerJ, DOI 10.7717/peerj.18901 27/31

http://dx.doi.org/10.1016/j.biocon.2021.109088
https://CRAN.R-project.org/package=rstatix
http://dx.doi.org/10.3389/fvets.2021.728232
http://dx.doi.org/10.1111/j.1523-1739.2007.00777.x
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.3354/dao02625
http://dx.doi.org/10.3389/fvets.2021.791237
http://dx.doi.org/10.1186/s12898-020-00286-7
http://dx.doi.org/10.1098/rstb.2015.0465
http://dx.doi.org/10.2193/2006-345
http://dx.doi.org/10.1080/00275514.1999.12061011
http://dx.doi.org/10.1098/rstb.2022.0130
http://dx.doi.org/10.7717/peerj.18901
https://peerj.com/


Meegaskumbura M, Acevedo ME, Napoli MF, Ponce MA, Vaira M, Lampo M, Yánez-
Muñoz MH, Scherz MD, Rödel M-O, Matsui M, Fildor M, Kusrini MD, Ahmed MF, Rais M,
Kouamé N’Goran G, García N, Gonwouo NL, Burrowes PA, Imbun PY, Wagner P, Kok PJR,
Joglar RL, Auguste RJ, Brandão RA, Ibáñez R, von May R, Hedges SB, Biju SD, Ganesh SR,
Wren S, Das S, Flechas SV, Ashpole SL, Robleto-Hernández SJ, Loader SP, Incháustegui SJ,
Garg S, Phimmachak S, Richards SJ, Slimani T, Osborne-Naikatini T, Abreu-Jardim TPF,
Condez TH, De Carvalho TR, Cutajar TP, Pierson TW, Nguyen TQ, Kaya U, Yuan Z,
Long B, Langhammer P, Stuart SN. 2023. Ongoing declines for the world’s amphibians in the
face of emerging threats. Nature 622(7982):308–314 DOI 10.1038/s41586-023-06578-4.

Midwest Association of Fish and Wildlife Agencies (MAFWA). 2020. Missouri 2020 wildlife
disease status update. Missouri Department of Conservation Wildlife Health Program. Available
at https://www.mafwa.org/wp-content/uploads/2020/11/Part3_7.pdf.

Miller DAW, Grant EHC, Muths E, Amburgey SM, Adams MJ, Joseph MB, Waddle JH,
Johnson PTJ, Ryan ME, Schmidt BR, Calhoun DL, Davis CL, Fisher RN, Green DM,
Hossack BR, Rittenhouse TAG, Walls SC, Bailey LL, Cruickshank SS, Fellers GM,
Gorman TA, Haas CA, Hughson W, Pilliod DS, Price SJ, Ray AM, Sadinski W, Saenz D,
Barichivich WJ, Brand A, Brehme CS, Dagit R, Delaney KS, Glorioso BM, Kats LB,
Kleeman PM, Pearl CA, Rochester CJ, Riley SPD, Roth M, Sigafus BH. 2018. Quantifying
climate sensitivity and climate-driven change in North American amphibian communities.
Nature Communications 9(1):3926 DOI 10.1038/s41467-018-06157-6.

Miller D, Gray M, Storfer A. 2011. Ecopathology of Ranaviruses infecting amphibians. Viruses
3(11):2351–2373 DOI 10.3390/v3112351.

Murray KA, Skerratt LF, Garland S, Kriticos D, McCallum H. 2013.Whether the weather drives
patterns of endemic amphibian chytridiomycosis: a pathogen proliferation approach. PLOS
ONE 8(4):e61061 DOI 10.1371/journal.pone.0061061.

O’Brien C, Van Riper C, Myers DE. 2009. Making reliable decisions in the study of wildlife
diseases: using hypothesis tests, statistical power, and observed effects. Journal of Wildlife
Diseases 45(3):700–712 DOI 10.7589/0090-3558-45.3.700.

Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Garner TWJ,
Weaver G, The Bd Mapping Group, Fisher MC. 2013. Mapping the global emergence of
Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLOS ONE 8(2):e56802
DOI 10.1371/journal.pone.0056802.

Olson DH, Ronnenberg KL, Glidden CK, Christiansen KR, Blaustein AR. 2021. Global patterns
of the fungal pathogen Batrachochytrium dendrobatidis support conservation urgency. Frontiers
in Veterinary Science 8:685877 DOI 10.3389/fvets.2021.685877.

Petersen CE, Lovich RE, Phillips CA, Dreslik MJ, Lannoo MJ. 2016. Prevalence and seasonality
of the amphibian chytrid fungus Batrachochytrium dendrobatidis along widely separated
longitudes across the United States. EcoHealth 13(2):368–382 DOI 10.1007/s10393-016-1101-4.

Peterson AC, McKenzie VJ. 2014. Investigating differences across host species and scales to
explain the distribution of the amphibian pathogen Batrachochytrium dendrobatidis. PLOS ONE
9(9):e107441 DOI 10.1371/journal.pone.0107441.

Price SJ, Leung WTM, Owen CJ, Puschendorf R, Sergeant C, Cunningham AA, Balloux F,
Garner TWJ, Nichols RA. 2019. Effects of historic and projected climate change on the range
and impacts of an emerging wildlife disease. Global Change Biology 25(8):2648–2660
DOI 10.1111/gcb.14651.

R Core Team. 2023. R: a language and environment for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing. Available at https://www.R-project.org/.

Wiley et al. (2025), PeerJ, DOI 10.7717/peerj.18901 28/31

http://dx.doi.org/10.1038/s41586-023-06578-4
https://www.mafwa.org/wp-content/uploads/2020/11/Part3_7.pdf
http://dx.doi.org/10.1038/s41467-018-06157-6
http://dx.doi.org/10.3390/v3112351
http://dx.doi.org/10.1371/journal.pone.0061061
http://dx.doi.org/10.7589/0090-3558-45.3.700
http://dx.doi.org/10.1371/journal.pone.0056802
http://dx.doi.org/10.3389/fvets.2021.685877
http://dx.doi.org/10.1007/s10393-016-1101-4
http://dx.doi.org/10.1371/journal.pone.0107441
http://dx.doi.org/10.1111/gcb.14651
https://www.R-project.org/
http://dx.doi.org/10.7717/peerj.18901
https://peerj.com/


Raffel TR, Halstead NT, McMahon TA, Davis AK, Rohr JR. 2015. Temperature variability and
moisture synergistically interact to exacerbate an epizootic disease. Proceedings of the Royal
Society B: Biological Sciences 282(1801):20142039 DOI 10.1098/rspb.2014.2039.

Raffel TR, Rohr JR, Kiesecker JM, Hudson PJ. 2006. Negative effects of changing temperature on
amphibian immunity under field conditions. Functional Ecology 20(5):819–828
DOI 10.1111/j.1365-2435.2006.01159.x.

Raffel TR, Romansic JM, Halstead NT, McMahon TA, Venesky MD, Rohr JR. 2013. Disease and
thermal acclimation in a more variable and unpredictable climate. Nature Climate Change
3(2):146–151 DOI 10.1038/nclimate1659.

Rambaut A. 2010. FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh,
Edinburgh. Available at http://tree.bio.ed.ac.uk/software/figtree (accessed 1 March 2024).

Ramsay C, Rohr JR. 2021. The application of community ecology theory to co-infections in
wildlife hosts. Ecology 102(3):e03253 DOI 10.1002/ecy.3253.

Rödder D, Schulte U, Toledo LF. 2013. High environmental niche overlap between the fungus
Batrachochytrium dendrobatidis and invasive bullfrogs (Lithobates catesbeianus) enhance the
potential of disease transmission in the Americas. North-Western Journal of Zoology
9(1):178–184.

Rollins-Smith LA. 1998. Metamorphosis and the amphibian immune system. Immunological
Reviews 166(1):221–230 DOI 10.1111/j.1600-065x.1998.tb01265.x.

Rollins-Smith LA. 2017. Amphibian immunity-stress, disease, and climate change. Developmental
& Comparative Immunology 66(2):111–119 DOI 10.1016/j.dci.2016.07.002.

Rollins-Smith LA. 2020. Global amphibian declines, disease, and the ongoing battle between
Batrachochytrium fungi and the immune system. Herpetologica 76(2):178–188
DOI 10.1655/0018-0831-76.2.178.

Roth SA, Griffis-Kyle KL, Barnes MA. 2024. Batrachochytrium dendrobatidis in the arid and
thermally extreme Sonoran Desert. EcoHealth 20(4):370–380
DOI 10.1007/s10393-023-01668-1.

Rothermel B, Miller D, Travis E, Gonynor McGuire J, Jensen J, Yabsley M. 2016. Disease
dynamics of red-spotted newts and their anuran prey in a montane pond community.Diseases of
Aquatic Organisms 118(2):113–127 DOI 10.3354/dao02965.

Sasso T, McCallum H, Grogan L. 2021.Occurrence of Batrachochytrium dendrobatidis within and
between species: a review of influential variables as identified from field studies. Biological
Conservation 262(1795):109300 DOI 10.1016/j.biocon.2021.109300.

Savage AE, Becker CG, Zamudio KR. 2015. Linking genetic and environmental factors in
amphibian disease risk. Evolutionary Applications 8(6):560–572 DOI 10.1111/eva.12264.

Savage AE, Muletz-Wolz CR, Campbell Grant EH, Fleischer RC, Mulder KP. 2019. Functional
variation at an expressed MHC class IIβ locus associates with Ranavirus infection intensity in
larval anuran populations. Immunogenetics 71(4):335–346 DOI 10.1007/s00251-019-01104-1.

Savage AE, Sredl MJ, Zamudio KR. 2011. Disease dynamics vary spatially and temporally in a
North American amphibian. Biological Conservation 144(6):1910–1915
DOI 10.1016/j.biocon.2011.03.018.

Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, Acevedo AA,
Burrowes PA, Carvalho T, Catenazzi A, De la Riva I, Fisher MC, Flechas SV, Foster CN,
Frías-Álvarez P, Garner TWJ, Gratwicke B, Guayasamin JM, Hirschfeld M, Kolby JE,
Kosch TA, La Marca E, Lindenmayer DB, Lips KR, Longo AV, Maneyro R, McDonald CA,
Mendelson J III, Palacios-Rodriguez P, Parra-Olea G, Richards-Zawacki CL, Rödel M-O,
Rovito SM, Soto-Azat C, Toledo LF, Voyles J, Weldon C, Whitfield SM, Wilkinson M,

Wiley et al. (2025), PeerJ, DOI 10.7717/peerj.18901 29/31

http://dx.doi.org/10.1098/rspb.2014.2039
http://dx.doi.org/10.1111/j.1365-2435.2006.01159.x
http://dx.doi.org/10.1038/nclimate1659
http://tree.bio.ed.ac.uk/software/figtree
http://dx.doi.org/10.1002/ecy.3253
http://dx.doi.org/10.1111/j.1600-065x.1998.tb01265.x
http://dx.doi.org/10.1016/j.dci.2016.07.002
http://dx.doi.org/10.1655/0018-0831-76.2.178
http://dx.doi.org/10.1007/s10393-023-01668-1
http://dx.doi.org/10.3354/dao02965
http://dx.doi.org/10.1016/j.biocon.2021.109300
http://dx.doi.org/10.1111/eva.12264
http://dx.doi.org/10.1007/s00251-019-01104-1
http://dx.doi.org/10.1016/j.biocon.2011.03.018
http://dx.doi.org/10.7717/peerj.18901
https://peerj.com/


Zamudio KR, Canessa S. 2019. Amphibian fungal panzootic causes catastrophic and ongoing
loss of biodiversity. Science 363(6434):1459–1463 DOI 10.1126/science.aav0379.

Schwalbe N, Wahl B. 2020. Artificial intelligence and the future of global health. The Lancet
395(10236):1579–1586 DOI 10.1016/S0140-6736(20)30226-9.

Smith KF, Acevedo-Whitehouse K, Pedersen AB. 2009. The role of infectious diseases in
biological conservation. Animal Conservation 12(1):1–12
DOI 10.1111/j.1469-1795.2008.00228.x.

Sonn JM, Utz RM, Richards-Zawacki CL. 2019. Effects of latitudinal, seasonal, and daily
temperature variations on chytrid fungal infections in a North American frog. Ecosphere
10(11):e02892 DOI 10.1002/ecs2.2892.

Stallknecht DE. 2007. Impediments to wildlife disease surveillance, research, and diagnostics.
In: Childs JE, Mackenzie JS, Richt JA, eds.Wildlife and Emerging Zoonotic Diseases: The Biology,
Circumstances and Consequences of Cross-Species Transmission. Berlin, Heidelberg: Springer,
445–461.

Sundar D. 2006. binom: binomial confidence intervals for several parameterizations. Version 1.1
DOI 10.32614/CRAN.package.binom.

Teacher AGF, Cunningham AA, Garner TWJ. 2010. Assessing the long-term impact of Ranavirus
infection in wild common frog populations. Animal Conservation 13(5):514–522
DOI 10.1111/j.1469-1795.2010.00373.x.

Thompson CW, Phelps KL, Allard MW, Cook JA, Dunnum JL, Ferguson AW, Gelang M,
Khan FAA, Paul DL, Reeder DM, Simmons NB, Vanhove MPM, Webala PW, Weksler M,
Kilpatrick CW. 2021. Preserve a voucher specimen! The critical need for integrating natural
history collections in infectious disease studies. mBio 12(1):e02698-20
DOI 10.1128/mBio.02698-20.

Torres López AS, Wiley DLF, Omlor KN, Eberle CM, Barrow LN. 2024. Dynamics of amphibian
pathogen detection using extended museum specimens. Journal of Wildlife Diseases
60(4):1004–1010 DOI 10.7589/JWD-D-24-00025.

Trujillo AL, Hoffman EA, Becker CG, Savage AE. 2021. Spatiotemporal adaptive evolution of an
MHC immune gene in a frog-fungus disease system. Heredity 126(4):640–655
DOI 10.1038/s41437-020-00402-9.

Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ. 2010. Dynamics of an emerging disease
drive large-scale amphibian population extinctions. Proceedings of the National Academy of
Sciences of the United States of America 107(21):9689–9694 DOI 10.1073/pnas.0914111107.

Whitfield S, Alvarado G, Abarca J, Zumbado H, Zuñiga I, Wainwright M, Kerby J. 2017.
Differential patterns of Batrachochytrium dendrobatidis infection in relict amphibian
populations following severe disease-associated declines. Diseases of Aquatic Organisms
126(1):33–41 DOI 10.3354/dao03154.

Wickham H. 2016. Ggplot2. Cham: Springer International Publishing.

Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, Blomberg N,
Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M,
Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG,
Groth P, Goble C, Grethe JS, Heringa J, ’t Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J,
Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M,
van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA,
Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P,
Wolstencroft K, Zhao J, Mons B. 2016. The FAIR guiding principles for scientific data
management and stewardship. Scientific Data 3:160018 DOI 10.1038/sdata.2016.18.

Wiley et al. (2025), PeerJ, DOI 10.7717/peerj.18901 30/31

http://dx.doi.org/10.1126/science.aav0379
http://dx.doi.org/10.1016/S0140-6736(20)30226-9
http://dx.doi.org/10.1111/j.1469-1795.2008.00228.x
http://dx.doi.org/10.1002/ecs2.2892
http://dx.doi.org/10.32614/CRAN.package.binom
http://dx.doi.org/10.1111/j.1469-1795.2010.00373.x
http://dx.doi.org/10.1128/mBio.02698-20
http://dx.doi.org/10.7589/JWD-D-24-00025
http://dx.doi.org/10.1038/s41437-020-00402-9
http://dx.doi.org/10.1073/pnas.0914111107
http://dx.doi.org/10.3354/dao03154
http://dx.doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.7717/peerj.18901
https://peerj.com/


Woodhams DC, Ardipradja K, Alford RA, Marantelli G, Reinert LK, Rollins-Smith LA. 2007.
Resistance to chytridiomycosis varies among amphibian species and is correlated with skin
peptide defenses. Animal Conservation 10(4):409–417 DOI 10.1111/j.1469-1795.2007.00130.x.

World Organisation for Animal Health (WOAH). 2021a. Manual of diagnostic tests for aquatic
animals: Chapter 2.1.1.—infection with Batrachochytrium dendrobatidis. Manual of Diagnostic
Tests for Aquatic Animals. Available at https://www.woah.org/fileadmin/Home/eng/Health_
standards/aahm/current/2.1.01_Bdendro.pdf.

World Organisation for Animal Health (WOAH). 2021b. Infection with Ranavirus. In: Manual
of Diagnostic Tests for Aquatic Animals. Available at https://www.woah.org/fileadmin/Home/
eng/Health_standards/aahm/current/2.1.03_RANAVIRUS.pdf (Accessed March 2024).

Xie GY, Olson DH, Blaustein AR. 2016. Projecting the global distribution of the emerging
amphibian fungal pathogen, Batrachochytrium dendrobatidis, based on IPCC climate futures.
PLOS ONE 11(8):e0160746 DOI 10.1371/journal.pone.0160746.

Yap TA, Koo MS, Ambrose RF, Vredenburg VT. 2018. Introduced bullfrog facilitates pathogen
invasion in the western United States. PLOS ONE 13(4):e0188384
DOI 10.1371/journal.pone.0188384.

Youker-Smith TE, Boersch-Supan PH, Whipps CM, Ryan SJ. 2018. Environmental drivers of
Ranavirus in free-living amphibians in constructed ponds. EcoHealth 15(3):608–618
DOI 10.1007/s10393-018-1350-5.

Wiley et al. (2025), PeerJ, DOI 10.7717/peerj.18901 31/31

http://dx.doi.org/10.1111/j.1469-1795.2007.00130.x
https://www.woah.org/fileadmin/Home/eng/Health_standards/aahm/current/2.1.01_Bdendro.pdf
https://www.woah.org/fileadmin/Home/eng/Health_standards/aahm/current/2.1.01_Bdendro.pdf
https://www.woah.org/fileadmin/Home/eng/Health_standards/aahm/current/2.1.03_RANAVIRUS.pdf
https://www.woah.org/fileadmin/Home/eng/Health_standards/aahm/current/2.1.03_RANAVIRUS.pdf
http://dx.doi.org/10.1371/journal.pone.0160746
http://dx.doi.org/10.1371/journal.pone.0188384
http://dx.doi.org/10.1007/s10393-018-1350-5
http://dx.doi.org/10.7717/peerj.18901
https://peerj.com/

	Leveraging machine learning to uncover multi-pathogen infection dynamics across co-distributed frog families
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References


