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Calcium imaging allows recording from hundreds of neurons in vivo with the ability to resolve single 
cell activity. Evaluating and analyzing neuronal responses, while also considering all dimensions 
of the data set to make specific conclusions, is extremely difficult. Often, descriptive statistics are 
used to analyze these forms of data. These analyses, however, remove variance by averaging the 
responses of single neurons across recording sessions, or across combinations of neurons, to create 
single quantitative metrics, losing the temporal dynamics of neuronal activity, and their responses 
relative to each other. Dimensionally Reduction (DR) methods serve as a good foundation for these 
analyses because they reduce the dimensions of the data into components, while still maintaining the 
variance. Nonnegative Matrix Factorization (NMF) is an especially promising DR analysis method for 
analyzing activity recorded in calcium imaging because of its mathematical constraints, which include 
positivity and linearity. We adapt NMF for our analyses and compare its performance to alternative 
dimensionality reduction methods on both artificial and in vivo data. We find that NMF is well-suited 
for analyzing calcium imaging recordings, accurately capturing the underlying dynamics of the data, 
and outperforming alternative methods in common use.
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Recent advances in neural recording methods have made it possible to collect large, complex data sets that can 
be used to study context-dependent neural dynamics in great detail1,2. For example, calcium imaging allows 
simultaneous recording from hundreds of neurons in a single brain region in vivo, while maintaining single cell-
resolution3–7. Other tools allow cell “tagging” based on factors, including activity during a specified time window 
and molecular genotype8–11. The resultant data set consists of several hundred time series thousands of points 
long, multiplicatively increasing per experimental condition added, in addition to any tagging data. The process 
of characterizing such single-cells responses, relating them to those of other cells across time, and accounting 
for the tagging information, all while considering changes in animal behavior, is a difficult but essential task.

Basic descriptive statistics (mean, median, variance) are a common approach to analyze large neural datasets. 
However, these approaches are limited because they average over the temporal dynamics of neuronal activity 
and can obscure interactions among neurons at fine time scales12,13. Dimensionality reduction (DR) is a more 
sophisticated approach that can help to reveal low-dimensional dynamics by transforming high-dimensional 
data into interpretable, low-dimensional components14. Compressing the data in this way can preserve temporal 
patterns and correlations and focus subsequent analysis on the dynamical patterns of interest.

DR approaches have many applications in the analysis of neural data, including analysis of electrophysiological 
recordings12,15,16, automation of trace extraction of neuronal activity in fluorescent recordings1,17–25, and as a pre-
processing step to more complex behavioral decoding26. To analyze network dynamics in calcium recordings, 
non-linear DR methods have emerged to map dynamics to low dimensional manifolds27–30. While excellent 
for very low dimensional visualization31,32, the dynamics are difficult to interpret beyond the manifold being 
modeled, with manifolds being difficult to interpret beyond three dimensions. Further, dynamical non-linear 
methods have been applied to recover neural trajectories as a function of latent variables33. Linear DR methods 
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have likewise been employed to either statically cluster cells21,34–36, or to abstractly analyze activity in low-
dimensional subspaces37–40.

While each methods have their own strengths as a function of different low dimensional representations, 
we aim to decompose our data into a lower dimensional series of neuronal sub-networks and their activities, 
to detect how neurons form flexible, correlated cell assemblies under different experimental contexts. We argue 
more generalized linear DR methods will provide a more interpretable representation of the data, at the cost 
of a few more dimensions than non-linear methods, dynamical or non-dynamical, as a function of having 
fewer tunable parameters and simpler mathematical decompositions. We further argue Nonnegative Matrix 
Factorization (NMF) is an especially promising linear decomposition method for analysis of activity recorded 
in calcium imaging in this context. NMF operates under the constraint that every element in the data, and 
the decomposition, be nonnegative41, as is naturally true for neuronal calcium traces21. Further, the positivity 
constraint, coupled with the linearity of the reduced dimensions, ensures that each of the dimensions sum to 
form a low dimensional representation of the data, simplifying the interpretation of the data42. In neuroscience, 
specifically in the context of calcium imaging, NMF has emerged as the state of the art method to estimate 
single neuron activity from fluorescent recordings17–19,22,24,25,43, demonstrating efficacy signal de-mixing and 
functional imaging activity extraction23. However for analyzing the dynamics of recorded neurons, it has been 
applied sparingly, either for quantifying single cell pairwise relationships44 or statically clustering cells under 
a series of strict assumptions35. Here, we develop an application of NMF to analyze holistic network activity 
(Fig. 1), comparing it to the most widely employed methods that provide a similar decomposition, capturing how 
precise sub-networks of neuronal dynamics evolve in different experimental contexts. To assess performance of 
the NMF approach, we generate artificial calcium imaging data from simulated ground-truth networks and 
assess how well our approach captures the underlying network structures responsible for the emergent dynamics 
of the network. We then apply the same NMF framework to characterize the dynamics of a representative in vivo 
calcium imaging data set. We conclude that, compared to alternative methods, NMF best captures the ground 

Fig. 1.  Representative Model Pipeline. (a) Recording Field of View (FOV) with Regions of Interest (ROIs). 
(b) Extracted fluorescent activity traces from ROIs. (c) Same recording FOV shown in (a) with ROIs colored 
according to largest component contribution. (d) Decomposed activities of the components shown in (c). (e) 
Sample truncated heatmap showing neuronal contribution or weight for each component.
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truth networks that underlie the observed calcium dynamics and provides a useful low-dimensional description 
of complex physiological data.

Results
We test NMF against three existing DR approaches in common use: UMAP, PCA, and ICA. We do so using 
two different simulated neuronal network architectures to assess the relative performance of each DR approach, 
when the network structure is known. We first build a simple network with five groups of independent neurons, 
each with 20 neurons, in which the neurons in each independent node are perfectly connected (Fig. 2). In this 
architecture, a spike in one neuron in a node will drive all other neurons in that node to spike. We use such an 
architecture to test if, and how well, models can identify the five nodes given traces of simulated activity.

To further evaluate the performance between DR methods, we examine a more intricate network architecture 
aligned with our spontaneous calcium recordings. In doing so, we create five distinct random processes driving 
150 neurons at varying degrees of strength (Fig. 3). This approach better reflects the dynamics we aim to capture, 
encompassing underlying activity patterns in diverse contexts driven by weighted sub-networks of neurons. 
Utilizing this surrogate architecture, our objective is to assess how effectively the models can extract both the 
underlying activity patterns, and the corresponding contributions by individual neurons, given a clear end target 
for performance assessment. We present two different analyses for both simulated network architectures. We 
both perform a qualitative analysis for a single generated network, and a more scaled quantitative approach 
for a series of 256 random instantiations and simulations of the networks. We find that NMF best captures 
the dynamics of the simulated networks, with components summing to provide an accurate macroscopic low 
dimensional representation of the data. We argue the parts-based representation provided inherently by NMF 
supports the improved performance for these data and the goal of interpretably extracting low dimensional 
neuronal network dynamics.

Perfectly intraconnected, independent nodes
We generate the nodal networks and fit each of the DR methods to the simulated calcium traces. Initially, we 
evaluate the average variance explained and the Akaike Information Criterion (AIC) across 256 networks to 
gauge how well the models capture the original data at different lower dimensionality levels. Both NMF and 
PCA exhibit similar variance explanation patterns across all components, with the average variance explained 
stabilizing at five components (Fig. 4a, left axis), as required to capture the dynamics of simulated activity in five 
nodes. This stabilization is influenced by the introduction of unique noise increments in each trace (Eqs. 13, 
14). Additionally, the AIC for the NMF method consistently minimizes at five components across all 256 model 
instantiations, effectively optimizing for the correct number of nodes (Fig. 4a, right axis). We note that the shape 
of the information criterion curve takes an inverse of the NMF variance explained curve until the inflection 
point, reflecting the inherent relationship between these two measures, arising from the AIC’s balance between 
model fit and complexity, contrasting with the NMF’s focus on maximizing explained variance.

Fig. 2.  Nodal Network Architecture. (a) Diagram showing perfect intraconnection between neurons and 
independence between nodes. (b) Randomly selected calcium traces generated by the network. (c) Same 
randomly selected calcium traces shown in (b), but sorted according to node.

 

Scientific Reports |        (2024) 14:27899 3| https://doi.org/10.1038/s41598-024-78448-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


To evaluate how the different approaches capture the independent nodes of activity as components, we 
devised a discrete metric to determine success or failure of individual node assignment to components, detailed 
in the methods, for each architecture. We show the assignment success for a single model for each of the detailed 
DR methods (Fig. 4b). We find the best performance with the NMF method, which successfully maps each node 
to a component, followed by PCA, ICA, and UMAP. We repeat this process for 256 replicate models (Fig. 4e) 
and find that NMF always maps each node to a separate component, followed by PCA which performs with a 
mean accuracy of 0.8578, and then ICA and UMAP which perform with mean accuracies 0.6445 and 0.6242, 
respectively, and typically fail to successfully map the entire model.

We then visualize how each of the DR methods map the nodal patterns of activity to each of the components. 
We do so by showing the weight for each neuron, for each component, for each method, delimited by node 
(Fig. 4c), for a single instantiation of the simulated neural activity. In this example, we find a very clear separation 
of weights from each node for the NMF method; each component assigns weights to the neurons within a node. 
We argue this separation is a result of the parts-based representation that NMF inherently embodies42. In a 
parts-based representation, each component contributes an additive combination of components to faithfully 
represent the original data. This means that NMF decomposes the overall activity into identifiable parts, enabling 
a clear separation of weights for each node. Conversely, the PCA and ICA methods produce distributions of 
node weights with less clear separations within a component. While the first 5 components of the PCA method 
each identify neurons in each node, the constraints of the method result in counterbalancing variables that 
obfuscate the underlying input resulting in the data, hindering performance45. UMAP poorly separates nodes 

Fig. 3.  Artificial random propagating process network architecture. (a) Sample connection diagram showing 
all random processes projecting to all neurons. (b) Single histogram of generated connections between 
processes and neurons from sampled distribution.
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into five components because a strength of UMAP, and manifold learning in general (e.g., TSNE), is visualization 
in very low dimensions (restricted to two or three dimensions)31,32.

To provide a quantitative assessment of model performance, we calculate the average displacement between 
neuronal weights assigned to a component and all other weights within the same component, for all components 
of each of the 256 instantiations of the model (Fig. 4d). We do so to provide a quantitative and continuous 
measurement of model performance (separation between weights in node and not in node, at assigned 
component) beyond binary success/failure, with the magnitude indicating the degree of separation between 
the neurons in the assigned node and all other neurons within a given component. Normalized per model, a 
positive value describes an assigned node whose average weight was higher than the weights of the other node 
in that component. A negative value would then describe the opposite, with the magnitude of the displacement 
describing the degree of difference between the weights. Our findings reveal NMF best separates nodes into 
components, followed by PCA, UMAP, and ICA. While this supports our finding that NMF specifically assigns 
patterns of nodal activity to components, the other methods do tend to separate a majority of the nodes of 
neurons individually in each component (the normalized distance tends to exceed 0), with the differing 
representations being attributable to the different mathematical constraining during fitting (UMAP—very low 
dimensional manifold, PCA—orthogonality, ICA—independence). However, as we show in our next case, this 
structure breaks down on the introduction of more complicated data.

Random process propagation
We simulate a network with a more complicated architecture to further evaluate model performance. This 
architecture involves generating five underlying random processes to drive the network activity. Each underlying 
random process provides input to each of 150 neurons, with a weight randomly sampled from a generated 
exponential distribution (Fig. 3). By analyzing these artificial networks, we aim to probe how well NMF maps the 

Fig. 4.  Artificial Nodal Network Analysis. (a) Variance Explained for NMF and PCA, left axis (n = 256 
networks) per component added to the model, and Akaike Information Criterion (AIC) for NMF, right 
axis (n = 256 networks). (b) Prediction visualization between nodes and components for single network. 
(c) Neuronal weights (y axis) for each model (panel) for each node (color) for each component (x axis). (d) 
Average between neurons inside and outside predicted nodes for each component (n = 256 networks). (e) 
Model assignment accuracy (n = 256 networks).
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random process by observations from the received neuronal inputs to components. We similarly aim to compare 
the performance and low dimensional representation of NMF and the other methods we implement.

Analyzing the average variance explained for all 256 uniquely seeded networks of this architecture, we find 
that NMF explains significantly more at all components (Fig. 5a, left axis). We argue this is a function of the 
difference between optimizations. Rather than having a strict orthogonality constraint between dimensions as in 
PCA, NMF aims to reconstruct the data with as little error as possible into the specified number of dimensions, 
allowing for explaining more variance with fewer components. The AIC shows a minimum at five components, 
the number of random processes used to generate the network (Fig. 5a, right axis), seeing a similar inverted 
relationship between AIC and variance explained.

We quantify assignment success of this model differently from the nodal architecture, due to the more 
continuous nature of the data, detailed in the methods. For or an example model instantiation (Fig. 5b), only 
the NMF method successfully assigns each process to one component. Assessing the performance over 256 
realizations of the network (Fig. 5f), we find that NMF successfully assigns each random process to a component. 
Consistent with the results for the nodal architecture, the other methods (PCA, ICA, and UMAP) have reduced 
performance. We conclude that NMF reconstructs the latent network structure from the observed data, 
capturing the five underlying random processes in a parts-based representation. Beyond discrete prediction, we 
consider the correlation between the assigned connection probabilities from the latent processes to the observed 
neurons, and the neuronal weights of the predicted component. To start, we visualize the results for one instance 
of the NMF model, relating the neuronal weights of each component to the assigned outgoing connection 
probability from the assigned underlying random process to each neuron (Fig. 5c). We find that large neuronal 
weights in each component tend to occur for large connection probabilities for the predicted random process 
with a high correlation of 0.84 (Fig. 5d). Repeating this analysis for 256 realizations of the model, and regardless 
of prediction success, we find that NMF consistently infers components with high correlations between the 
connection probabilities and weights (Fig. 5e), and is always able to successfully map all underlying processes to 
separate components (Fig. 5f). The other methods have reduced performance, consistent with the results for the 
nodal architecture with PCA, ICA, and UMAP following in performance, respectively.

We finally analyze how the activity of each component correlates with the activity of the underlying random 
process. Qualitatively, for a single realization of the model, the component activity captures the underlying 
processes very well (Fig.  5g) with correlations between the activities exceeding 0.85. Repeating this analysis 
across 256 realizations of the network, we once again find that NMF best captures the activity of the latent input 
processes, followed by PCA and ICA (Fig. 5h); we note that UMAP does not estimate the times series of the 
latent processes. To assess computational performance, we compare the median run time for the 256 models 
of this architecture. Because PCA is a well solved linear algebra problem (singular value decomposition of a 
matrix)45, it is the shortest median run time of 0.0245 s. Of the three optimization methods, NMF and ICA 
have comparable median run times (0.7349  s and 0.7342  s, respectively. UMAP has the longest median run 
time of 1.4906 s, even after we exclude UMAP’s rather high overhead for initialization. This discrepancy can be 
attributed to model complexity (linearity of NMF and ICA, and non-linearity for UMAP).

We propose that the positivity and parts-based representation of the NMF method enable accurate 
reconstruct of the high-dimensional activity through low dimensional inputs. We propose that the constraints 
implemented by the PCA and ICA methods may obfuscate inputs to the observed neural network in its low 
dimensional representations. Finally, we interpret the poor performance of the UMAP method as indicating 
this method is better adapted for low dimensional visualization of less variant data. We conclude that NMF 
accurately reconstructs the latent inputs to a biophysically-motivated neuronal network that simulates calcium 
fluorescence recordings, despite multiple barriers to accurate identification (e.g., the underlying process is 
unobserved, with random connectivity to the observed neurons whose calcium signal is obfuscated with two 
types of noise). These results demonstrate NMF outperforms existing methods in common use to extract the 
underlying dynamics present in a series of neuronal activities recorded in calcium imaging.

Awake-state data
As a final proof of concept, we analyze application of the DR methods to awake state calcium imaging recordings 
from 36 mice. In doing so we apply the same analytical framework as for the simulated data. Analysis of the 
variance explained for each model (Fig. 6a) shows similar performance between the NMF and PCA methods, 
with a small but highly significant trend towards increased values for the NMF method (p < 10− 6, Wilcoxon 
Signed-Rank test). This small advantage in increased variance explained may be due to the NMF method acting 
to capture the original data as quickly as possible into a set number of components (Eq. 2), rather than using a 
complex geometrical constraint to analyze the data46. We further find that NMF, using AIC, identifies an optimal 
number of components to describe the data in each of the recordings (Fig. 6b), with number of neurons helping 
inform the number of components at a correlation of 0.662. We qualitatively characterize an NMF model fit 
to a single recording, using 18 components as determined by AIC. When characterizing the neuronal weights 
estimated by the NMF method, we find behavior consistent with the simulated random process network (Fig. 6c); 
the NMF method results in in the neuronal weights with an approximate exponential distribution (Fig. 6d), with 
most neurons contributing little to the overall network activity, and few neurons very significantly contributing. 
We further briefly characterize the correlations between the activity for each decomposed component (Fig. 6e), 
finding that pairwise correlations are consistently low between them (Fig. 6f). Given that the correlations are 
low, and we capture a significant portion of the variance, we interpret these results to indicate that NMF, and the 
parts-based nature of the model, successfully extracts unique predominant patterns of activity in the data. We 
conclude that, applied to these in vivo calcium imaging recordings, the NMF method identifies components with 
distinct (uncoupled) dynamics.
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Fig. 5.  Artificial Random Propagating Process Network Analysis. (a) Variance Explained for NMF and PCA, 
left axis (n = 256 networks) per component added to the model, and Akaike Information Criterion (AIC) for 
NMF, right axis (n = 256 networks). (b) Assignment visualization between nodes and components for single 
network. (c) Neuronal weights for NMF model (y axis) for each component (x axis) compared to assigned 
connection probabilities (color scale) for the predicted random process. (d) Correlation between neuronal 
weights for NMF model (y axis) and the respective assigned connection probability (x axis). (e) Average 
Correlation between neuronal weights for model and the respective assigned connection probabilities (n = 256 
networks). (f) Model assignment accuracy (n = 256 networks). (g) Correlation between component activity 
from NMF model and assigned random process activity. (h) Correlations between component activity from 
model and assigned random process activity (n = 256 networks).
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Fig. 6.  Baseline Awake State Network Analysis (a) Variance Explained for NMF and PCA, left axis (n = 36 
mice) per component added to the model, and Akaike Information Criterion (AIC) for NMF, right axis (n = 36 
mice). (b) Correlation between number of neurons (x axis) and number of optimized components (y axis) 
(n = 36 mice). (c) Neuronal weights for NMF model (y axis) for each component (x axis) for a single mouse. 
(d) Neuronal weight histogram from NMF model for the same mouse as (c). (e) Component activity for NMF 
model of the same mouse as in (c) and (d). (f) Pairwise correlations between component activities shown in (e)
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We note the comparison between NMF and PCA for variance explained (Fig.  6a) is the only objective 
comparison possible here, because the in vivo dataset lacks ground truth, making further comparison between 
methods confusing and counterproductive.

While we demonstrate here that we successfully decompose statistically similar data from our simulations 
into statistically similar models, future work will relate inferred components and dynamics to experimentally 
elucidating biological mechanisms and behavior. We conclude that the NMF method is a promising tool to 
analyze neuronal network dynamics and identify meaningly sub-network activity via a relatively simple and 
interpretable approach.

Discussion
We have developed an analytical pipeline to more thoroughly model neuronal network dynamics with NMF, 
considering all information provided by the model in its low dimensional representation. We generate a series 
of calcium traces recorded from ground-truth artificial neuronal networks at two degrees of complexity to 
assess how well our analyses extract the ground-truth responsible for the simulated dynamics, and compare the 
performance of NMF to UMAP, PCA, and ICA. We find the NMF significantly performs the best, followed by 
PCA, ICA, and UMAP, respectively. We then apply our NMF pipeline to a series of in vivo baseline recordings 
and find that NMF confers a similar, and easily interpretable representation to the underlying random process 
network.

We argue this performance is a result of the “parts-based representation” conferred by NMF42. Because every 
single element of the model is necessarily positive, and the decomposition is aiming to recapture the original data, 
every component sums to give a low dimensional macroscopic representation of the original data. Interpreting 
the decomposition as the sum of its parts, rather than a complex cancelling of variables to achieve an algebraic 
constraint, as in PCA45, results in NMF being able to provide a better representation of the dynamics. Further, 
the only fundamental assumption made in NMF is that the data can be represented exclusively as positive values. 
Our other methods require more stringent assumptions. UMAP makes the assumption that the data can be 
embedded on a low-dimensional manifold47. While very advantageous in less variant data (large scale trial 
averaged electrophysiological recordings48), we argue our data is far too variant with limited scalability (single 
trial, single recording) for this method to be as effective. ICA assumes that components are both non-normal, 
and independent46. While the assumption of non-normality of traces, variables, is a positive feature given that 
calcium traces are clearly non-normal data, we argue it is unfair to assume sub-network dynamics are completely 
independent of each other. Finally, PCA assumes the data is best described by the eigenvectors of the covariance 
matrix45. We note that this algebraic constraint does provide PCA the unique attribute of the model being the 
same for the first k components, regardless of the number of components fit. NMF, UMAP, AND ICA will differ 
in their representation of the data, dependent on the number of components fit to. As a result, PCA is guaranteed 
to perfectly lossless in an inverse transformation of the data, given all components. However, PCA is clearly less 
efficient than NMF in generating compact descriptions of data like ours.

As we mention in the introduction, a version of NMF, specifically Constrained Nonnegative Matrix 
Factorization (CNMF) has become nearly ubiquitous for automated trace extraction from calcium 
recordings1,17,18,20,25, including a adaptions for microscopic endoscope data22. CNMF allows for the incorporation 
of constraints when there is a priori knowledge to build them. With our data, we have no a priori knowledge 
regarding connectivity, and we show that the unconstrained NMF method performs well. However, it would be 
feasible to modify our analytical pipeline to account for known constraints in other cases.

While clearly productive for analyzing local calcium recordings, NMF’s nonnegativity assumption makes it 
well-suited for potentially analyzing large-scale anatomical connectome data or functional imaging experiments 
(given the data were nonnegative). It can identify patterns of co-activation or synchronization among brain 
regions, revealing the modular organization of brain activity and interactions between assemblies. In the context 
of anatomical connectome mapping, NMF could uncover patterns of structural connectivity that give rise to 
modules in the brain. However, the structure in functional imaging and anatomical connectome data is complex 
and multifaceted. In specific analysis cases such as these constraining towards a particular solution (CNMF) 
could be advantageous.

Hierarchical clustering has also emerged as a prominent method to analyze these large scale data49. While 
both hierarchical clustering and NMF aim to reveal underlying network structures, there are key differences 
between these approaches. Hierarchical clustering discretely assigns each neuron to single clusters based on 
activity similarity, while NMF reduce the data into components with each neuron having a weighted contribution 
to each component. This allows NMF to capture overlapping and graded membership of neurons in multiple 
sub-networks. Moreover, NMF’s parts-based nature provides a more interpretable representation compared to 
that of static clustering, which can be more difficult to interpret.

NMF’s performance is dependent on the statistical characteristics we outline above, and different DR 
methods may emphasize different aspects of the data structure dependent on their assumptions and the analysis 
objectives. For example, PCA identifies orthogonal components capturing maximum variance, while ICA 
identifies statistically independent sources. These methods may capture different facets of the brain’s functional 
and structural organization compared to NMF.

Similarly, inhibitory responses, where the fluorescence drops below the neuron’s baseline fluorescence, 
have been observed in calcium imaging50. Here, where we focus on extracting the dominant patterns and 
underlying structure of the neuronal activity, the impact of these minor negative deviations in the fluorescence 
are statistically very minor. As a result, such minor effects can be lost amongst the other variability present in the 
activity, which can be captured by alternative statistical methods50.

This pipeline was developed with the intent of analyzing state dependent neuronal network dynamics, and 
future work will analyze differential network dynamics that arise from unique experimental contexts. However, 
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NMF, and other DR methods, require an underlying structure in the data and can be especially sensitive to 
potential extremes in the number of components and rates of activity in the network. An extreme sparsity or 
extreme saturation of events will lead to a much noisier representation in the model. Further, a fundamental 
assumption of DR is that the data can be represented with significantly fewer components than there are 
neurons12. Data that would carry hundreds of underlying drivers of activity (or any case where the number of 
patterns approach the number of neurons) would be obfuscated in a model such as this. Deep learning, on the 
other hand, requires immense “ground truth” data sets for training. While deep learning models have recently 
emerged as an excellent tool for supervised learning, generally in neuroscience51–54, and specifically for decoding 
behavioral events recorded with calcium imaging26,55, in this case we are seeking to describe data with no such 
training set or “ground truth” available. Instead, we compare unsupervised methods to solve the specific problem 
of detecting reducing hundreds of neurons into components, or sub-networks, or cell assemblies.” Therefore, 
this approach will enable more sophisticated and nuanced unsupervised analysis of different states of neuronal 
networks, and how they shift as a function of context.

In sum, NMF provides a superior method for the holistic analysis of network dynamics recorded in calcium 
imaging. This analysis is able to go beyond summary statistics, providing a low dimensional representation of 
dynamics while still considering the activities of each neuron. The mathematical constraints required by NMF, 
linearity and positivity, complement the nature of fluorescent recording and neuronal activities well. Further, 
the parts-based nature of NMF provides a simple and interpretable representation of sub-networks of activity 
summing to drive macroscopic dynamics. As a result, we have developed an NMF pipeline to be an exceptionally 
valuable tool for elegantly demystifying shifting neuronal network dynamics.

Methods
Dimensionality reduction (DR) methods
Nonnegative matrix factorization (NMF)
NMF is a linear, matrix-decomposition method requiring all elements be nonnegative41. Each reduced dimension, 
or component, identified in NMF can be interpreted as a specific combination of input features representing 
distinct sources of variance in the data42. The components then sum to represent the original data, rather than 
canceling variables (using negativity) to achieve a geometrically strict representation45. Mathematically, NMF 
decomposes an original matrix X into two constituent, lower rank, matrices W and H, given by:

	 X = W H � (1)

with the aim of iteratively updating W and H to minimize an objective function so that the product of the two 
deconstructed matrices optimally reconstructs the original41. Here, X is a column-wise representation of the 
data, where each column is the time-series fluorescent activity of a neuron (Fig. 1b) extracted from the recording 
(Fig. 1a), that is decomposed into two lower rank matrices, W and H. For NMF, W can be interpreted as a feature 
matrix, each vector representing a distinct pattern in the input data, and H interpreted as a coefficient matrix, 
representing the contribution of each feature vector to each point in the original matrix. When using DR for 
analyses, especially in the context of neural recordings, the underlying assumption is that the original matrix can 
be decomposed into a lower rank series of matrices. The rank, k, should be significantly smaller than n (k < < n), 
the number of neurons recorded, while still recapturing a majority of the variance present in the data56. Model 
performance can be assessed by the variance explained as represented by the coefficient of determination (R2)57, 
given by:

	
R2 = 1 − SSres

SStot
,� (2)

where

	
SSres =

∑
i,j

(Xi,j − (W H)i,j)2,� (3)

	
SStot =

∑
i,j

(Xi,j − X̄)2.� (4)

Thus, the model captures the original data perfectly in the limit as R2 approaches one. R2 increases as components 
are added, because the rank of the two constituent matrices are increasing, capturing more variance. Akaike 
Information Criterion (AIC) has been adapted for NMF to inform the rank to which the dimensionality should 
be reduced42,58, with the optimal model minimizing it59; for our implementation of NMF:

	 AIC = 2
(
SSres/(2 ∗ σ2) + k ∗ (n + t)

)
.� (5)

Where R2 is the reconstruction error defined in Eq. (2), σ2 is the estimated variance of the data set, k is the 
number of components the model is decomposing into, n is the number of neurons in the recording, and t is 
the number of time points in each of the time series being decomposed. For our analysis, we interpret each row 
of H as a sub-network, with each entry of that row as a neuron’s contribution of to that sub-network (Fig. 1e). 
Each column of W is then interpreted as the time-series for that sub-network (Fig. 1d). Further, the neurons in 
the original recording FOV can be artificially reconstructed to provide visualization of sub-network contribu-
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tion (Fig. 1c). We provide the pseudocode from an implementation of the NMF analysis pipeline:

The above pipeline describes the sequence of using AIC to find an optimal number of components, and then 
fit a model to that number of components. Our implementation of NMF is a modification of the implementation 
found in Python’s Scikit-Learn package60. We manually initialize W and H, as opposed to the automated method 
found in the package, due to the wide variety of initialization methods possible for NMF61,62, and to maintain 
consistent, precise, and easily reproduceable control over the initial conditions of our models. For the analyses 
found in this paper, we apply nonnegative dual singular value decomposition (nndsvd), a consistent and efficient 
initialization method63. Further, we implement variance explained and AIC for automatic model selection, as 
they are not part of the base implementation in the package.

Principal component analysis (PCA)
We implement PCA because of its widespread use in neural data analysis15,21,37–39,64–66. PCA, efficiently calculated 
by a Singular Value Decomposition (SVD)45:

	 X = UΣ V T � (6)

where X is a column-wise representation of our data (i.e., each column is the time-series fluorescent activity of 
a neuron, assumed to have zero mean) decomposed into U, Σ, and VT. VT is the set of basis or singular vectors, 
also referred to as the principal components (PCs) of the original matrix, where each row of this matrix is a 
component of the data. Further, each of the PCs are necessarily orthogonal to each other by construction. U is 
the projection of the original matrix X onto the principal components in VT, and Σ is a matrix containing the 
singular values of X describing the magnitude of the transformation, ordered by decreasing singular values45. 
The variance explained by a PC is the proportion of its singular value compared to the sum of all singular 
values. For our analysis, we interpret each PC as a sub-network or prevalent pattern of activity, with each entry 
of the PC being a neuron’s weight or contribution to that PC. We then interpret the projection of the data onto 
each PC as the activity or time series of that sub-network, attributing the dominance of that sub-network to 
the variance explained. Our implementation of PCA is a modification of the implementation found in Python’s 
Scikit-Learn package60. We provide the pseudocode from an implementation of the PCA pipeline below:
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This is a modification of the implementation of PCA found in sklearn60. PCA calls for every variable, or 
trace in our case, to be centered about zero45. However, we remove the uniform normalization from sklearn’s 
implementation to allow for finer tuning of data normalization before decomposition with the model.

Independent component analysis (ICA)
We implement ICA because of its ability to extract independent sources from complex signals, which could 
help separate overlapping patterns of neural activity in a single calcium recording. While ICA has been used for 
automated trace extraction in calcium recordings67, this approach has seen limited application in the further 
analyses of neural signals estimated calcium recordings. ICA is a statistical technique that aims to decompose a 
multivariate signal into statistically independent components46, rather than a set of orthogonal components, as 
found in PCA. ICA operates under the assumption that k independent sources produce the data, and that the 
data are a linear mixture of these underlying sources. ICA assumes the data to be a linear mixture of sources:

	 x = As� (7)

where x is the original data, s are the underlying independent sources, and A is a mixing matrix that mixes the 
components of the sources46.

In practice, the independent sources found in s, are decomposed using an unmixing matrix, W, such that the 
linear transformation of the data by W, estimates the underlying independent sources46:

	 ŝ = W x� (8)

 

Given that W transforms x to estimate the independent sources, we interpret the components of W as the 
contribution of each neuron to the sub-network activities, which are the independent sources in s. Here, we 
interpret the s independent sources as the underlying patterns of activity of each sub-network that drive the 
observed dynamics. Like PCA, ICA assumes that inputs are zero mean. While PCA is designed to maximize 
the variance of the data along the principal components45, ICA attempts to separate the data into k independ-
ent sources. We use the fastICA implementation found in sklearn60, and provide the pseudocode from an 
implementation of the ICA analysis pipeline below:

While ICA calls for unit variance for each of the features, which in this case would be the calcium time 
series, we maintain the relative difference in variance between each neuronal time series to maintain the relative 
difference in activity recorded as a function of the fluorescence.

Uniform manifold-approximation projection (UMAP)

We implement UMAP because of its increasing use to analyze life science data48,68 and its ability to capture 
non-linear relationships. UMAP has been shown to capture complex patterns to visualize and cluster data in 
very low dimensions47, though the technique remains untested on calcium recordings. Briefly, UMAP aims to 
optimize between preserving local and global structures, where structure is local between neighboring points 
and global between data points extending beyond the neighborhood. In neuronal calcium imaging, “neighbor-
hood” refers to local relationships among neurons with similar activity patterns at a time point, while global re-
lationships extend beyond those neighbors at the same point. UMAP subsequently directly maps this structure 
to a lower dimension47, resulting in the output being a single matrix (the equivalent of H, VT, and S), and not a 
product of matrices. Therefore, UMAP does not provide temporal information about the activity of the lower 
dimensional patterns or sub-networks (Table 1). Further, there is no well-established way to quantify variance 
explained in UMAP as in the other linear methods. We use the python package UMAP-learn to implement 
UMAP, and provide the pseudocode from an implementation of the UMAP analysis pipeline below:
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In addition to the number of components, k, being a manually set hyperparameter, the number of points in 
the neighborhood is also manually set, in addition to the dozens of other tunable parameters in the package47. 
Because our main objective is to identify how neurons group to form sub-networks and shift as a function 
of experimental contexts, we apply UMAP to decompose the data X into a k x n matrix. k is the number of 
components or subnetworks we determine to decompose into, while n is the number of neurons, aiming to give 
a similar representation to H, VT, and S in our other methods.

Network simulation methods
To assess performance of the DR methods, we implement two simulation paradigms. In each paradigm, we 
simulate the spiking activity in a network of interconnected neurons and estimate calcium imaging traces for 
each neuron. We then apply each DR approach to the simulated calcium fluorescence data. We describe each 
simulation paradigm below.

Perfectly intraconnected, independent nodes
We first consider a network of 100 neurons organized into 5 independent nodes, each consisting of 20 neurons. 
Neurons within the same node are perfectly connected, such that a spike by any neuron in one node produces 
a spike in all other neurons in that node. Neurons in different nodes are disconnected, such that activity in 
two neurons of different nodes are independent (Fig. 2a). The activity of a single neuron is governed by a basic 
Poisson spike generator69, given by:

	 spike [t] = xrand < r ∗ dt� (9)

where a neuron spikes at time t if xrand (uniform [0, 1]) is less than the product of the set firing rate, r, and the time 
step, dt. We update this generator to include additional network effects, and a refractory period. We represent the 
connectivity between neurons as an adjacency matrix A. Within any node of 20 neurons, A is 1, while between 
nodes A is 0; we exclude self-connections by setting the diagonal of A to 0. We also include a refractory period 
of duration q time steps, such that after a spike a neuron is temporarily unable to generate a subsequent spike.

We simulate the spiking activity of a single neuron in this network n = {1,2, … N} as:

	
spike [t]n = xrand <

(
rk

N
dt + An x N ∗ spikes [t − 1]N x 1

T
)

∗ RS [t]n� (10)

where r = 3 is the set nominal rate, N = 100 is the total number of neurons, k = 5 is the number of nodes, and 
dt is the time step. A is the adjacency matrix of dimensions N x N, where each row represents the incoming 
connections to a neuron, and each column represents the outgoing connections of a neuron, and RS [t]n = {0,1} 
is the refractory state of neuron n at time t. A neuron spikes at time t if the randomly generated number 
xrand (uniform [0,1]) is less than the product in Eq. (10). We note that any multiplication of an adjacency of 1 
to neuron n, in conjunction with a spike at time t-1 will result in a spike at time t in neuron n, given the neuron 
n is not in a refractory state. After simulating the network we convolve each spike train with a calcium kernel35,70 
as described below. The result is a series of 100 fluorescent neuronal activities (Fig. 2b), of which there are five 
groups of twenty that are perfectly correlated (Fig. 2c).

Random process propagation
We generate a second simulation paradigm to more closely represent a physiologically relevant dynamic in 
calcium fluorescence data: a small number of independent random spiking patterns simultaneously driving 
calcium events in all neurons. To do so, we first simulate k = 5 independent spiking patterns as,

	 process spike [t]n = xrand < r dt.� (11)

Model Variance explained Information criterion Neuronal weights Decomposed activity

NMF ✓ ✓ ✓ ✓

UMAP X X ✓ X

PCA ✓ X ✓ ✓

ICA X X ✓ ✓

Table 1.  Model attributes.
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We then consider a population of N = 150 neurons that receive inputs from each of the underlying spiking patters 
(Fig. 3a) weighted as follow: 20% of the neurons have weights uniformly distributed between 0.2 and 1.0, and 
80% of the neurons have weights exponentially distributed (rate parameter λ = 8.0472) with maximum value 
of 0.2 (Fig. 3b). In this way, most neurons are connected with weights following an exponential distribution71, 
and the few neurons with strong weights drive a majority of the activity. The resulting adjacency matrix A 
between the k spiking patterns and N neurons has dimensions k x N, where each element describes the weight of 
the kth underlying process input to neuron n = {1, 2, … N}. We simulate each neuron’s spike train as:

	 neuron spike [t]n = xrand <
(

An x k ∗ process spike [t − 1]k x 1

)
∗ RSn� (12)

where n indicates the nth neuron, k indicates the kth underlying spike processes, and we include a refractory 
period for each neuron. Doing so results in N = 150 neuronal spike trains. We convolve the spike train of each 
neuron with the calcium kernel35,70, resulting in simulated calcium data similar to our in vivo recordings, 
mirroring: activity rate, activity distribution, underlying macroscopic drivers, and calcium neuronal time series 
characteristics.

Calcium kernel
We convolve the simulated spike trains with the following calcium kernel to represent the fluorescence recorded 
from the genetically encoded calcium (GECI) kernel jGCaMP7f:

	
[Ca+2]t − [Ca+2]t−1 = − dt

τ

(
[Ca+2]t−1 − [Ca+2]b

)
+ A ∗ spike [t] + σ c

√
dt ϵt� (13)

where Ca+ 2
t, t−1,b are the calcium concentrations at t, t-1, and the baseline, respectively. Here, dt is the time step, 

τ  is the time constant of the GECI, σc is the variance of the calcium noise, and ϵt is a random variable following 
the standard gaussian distribution. We then calculate the fluorescence as:

	 Ft = α
(
[Ca+2]t

)
+ β + σ F ϵt, � (14)

where Ft is the fluorescence at time t, α is the intensity, β  is the bias, σF is the variance of the calcium noise, and 
ϵt is a random variable following the standard gaussian distribution. We set τ  to 0.265 and σc to 0.5 to match the 
kinetics of jGCaMP7f72. We set the calcium baseline to 0.1, A and α to 5, β to 10, and σF to 135.

Component assignment success
Perfectly intraconnected, indpendent nodes

To assess whether nodes were successfully assigned to components, we develop a framework for each of our 
generated network architectures. For the nodal model, we begin by summing the weights for each node, in 
each of the decomposed components, described by the pseudocode below:

The result is a five by five matrix, where the element [ i, j ] is the sum of the weights for neurons in the ith 
node for the jth component. To then determine success of prediction, we establish two conditions that must be 
met. First, within a particular component, the sum of weights for the node with the highest value should exceed 
the sums of weights for all other nodes within the same component. Second, this highest sum should also be the 
greatest for the node, across all components. By applying these conditions, we can assess the assignment for each 
node individually. In essence, once we obtain the aggregated weight matrix, an ideal model would exhibit the 
same element as the maximum value for each row and column.

Random process propagation
We calculate a 5 × 5 correlation matrix between the weights in each of the 5 components and the connection 
probabilities from each of the 5 generated random processes sampled from the defined exponential distribution. 
To assess assignment, we again consider two conditions. First, for a chosen component, the highest correlation 
with the connection probabilities from one random process should surpass the correlation to the other random 
processes in the same component. Second, this highest correlation within each component should identify 
a different random process; i.e., each component should identify a unique random process. We consider a 
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component successfully assigned to one of the five random processes if its highest correlation is more correlated 
with that process than the other four processes.

Awake-state data
To investigate the application of each DR technique to in vivo recordings, we also consider calcium imaging data 
recorded from 36 awake mice. Briefly, recordings in layer 2/3 of murine S1 13 were collected during the awake, 
resting state11. Traces representing calcium transients were extracted from the recordings and processed using 
standard techniques73.

Data availability
Code to simulate synthetic neuronal networks is available in python, and all statistics of all models fit to the 
simulated neuronal networks are available in python .pkl format (Figs. 4 and 5). The extracted activity of the 
36 awake baseline recordings, and all optimum models fit to them are further available in python .pkl format 
(Fig.  6). All materials can be requested by contacting the corresponding author, John A. White, and will be 
shared in their entirety upon request.
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