
Temporal Tensor Factorization: A Framework for
Low-Rank Multilinear Time Series Forecasting

Jackson Cates∗, Randy C. Hoover∗, Kyle Caudle†, David Marchette‡, Karissa Schipke∗

∗Department of Electrical Engineering and Computer Science, South Dakota Mines, Rapid City, South Dakota, USA
†Department of Mathematics, South Dakota Mines, Rapid City, South Dakota, USA

‡Naval Surface Warfare Center, Dahlgren Division, Dahlgren, Virginia, USA

Abstract—In the era of big data, there are increasing demands
to forecast incomplete, sparse, and nonstationary data. The
current research aims to solve these problems for multilinear
time series through a combination of tensor autoregression and
low-rank tensor factorization. We propose an expansion of TMF
to second-order data: temporal tensor factorization (TTF). The
current research aims to interpolate missing values via low-rank
tensor factorization, which produces a latent time series. We
perform forecasting in the latent space with a transform-based
tensor autoregression (L−TAR) process. We present experimental
results of the proposed method with other state-of-the-art meth-
ods on the benchmark datasets which include video imaging,
dynamic networks, and energy usage.

I. INTRODUCTION

Time series forecasting is a well-studied task in the area
of machine learning. Many time series problems involve
extrapolation: forecasting future observations based on present
and past observations. Historically, numerous methods have
been created to meet the challenges of forecasting, including
exponential smoothing and neural networks [1]–[6]. A famous
classical method is the Box-Jenkins Vector Autoregressive
(VAR) model, where the forecast is made with a linear
combination of recent historical values, also known as lags [4].
An important selection for this model is the “order”, which
dictates the number of lags to be used. For example, given
a time series matrix Y ∈ Rℓ×T with ℓ variables and T
observations, the pth order VAR model can be written as

yt = A1yt−1 +⋯ +Apyt−p + ϵt, (1)

where yt ∈ Rℓ is the multivariate observation at time t, and
also the tth column of Y . The goal is to estimate the model
parameters θ = {A1,A2, . . . ,Ap}, where Ai ∈ Rℓ×ℓ is a
collection of learnable parameter matrices for i = 1,2, . . . , p.
Additionally, it is generally assumed that p ≪ T , the errors
are independent and identically distributed, i.e., ϵt ∼ N(0,Σ),
and the observations yt are stationary.

In many applications, observations can be expressed in more
complex natural structures, such as dynamic networks, video

The current research was supported in part by the Department of the Navy,
Naval Engineering Education Consortium under Grant No. (N00174-19-1-
0014) and the National Science Foundation under Grant No. (2007367). Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
Naval Engineering Education Consortium or the National Science Foundation.

sequencing, correlated image sets, and geospatial data [7]–
[11]. In these cases, observations are no longer vectors but
viewed as a lateral slice of a tensor Yt ∈ Rℓ×1×m. While possi-
ble to employ VAR methods in these applications by flattening
the observations Yt into a vector, performing this operation
destroys the spatial representation of the observations, which
can lead to poor forecasts. Therefore, many researchers focus
on developing methods that perform forecasting while keeping
the natural representation of the observations [12]–[14]. The
authors in [14] focus on extending the VAR model into a tensor
autoregressive problem. They achieve this by dividing the
tensor autoregressive problem into multiple independent VAR
problems via a tensor-transform. Because they utilize a tensor-
transform, they refer to their method as the transform-based
tensor autoregressive model, or L−TAR. Given a multilinear
time series tensor Y ∈ Rℓ×T×m, the pth order L−TAR model
would be written as,

Yt = Ai ●L Yt−1 +⋯ +Ap ●L Yt−p + Et (2)

where Yt is the multilinear observation at time t, and also
the tth lateral slice of Y . ●L indicates the tensor-product1

as outlined in Section II. Similar to the VAR model, the
goal is to estimate the model parameters Θ = {A1, . . . ,Ap}

where Ai is a collection of learnable parameter tensors for
i = 1, . . . , p. Additionally, it is assumed that p ≪ T , the
errors are independent and identically distributed, and the
observations are stationary. Stationary can be addressed with
lagged differencing, as outlined by the authors in [14], [15].

In many real-world problems, data is often messy
and incomplete. Additionally, observations are often high-
dimensional which may lead to the curse of dimensionality.
To address these issues researchers focused on integrating the
VAR model with low-rank matrix factorization techniques,
called Temporal Matrix Factorization (TMF) [16]–[18]. The
goal is to factorize the time series matrix Y ∈ Rℓ×T into
two latent factor matrices W ∈ Rℓ×r,X ∈ Rr×T with rank r.
The main idea is that X will contain the low-rank dynamics
of the time series. Forecasts are made in the latent time
series X , which is typically approximated by a VAR process.
TMF has shown promise in forecasting time series with

1For brevity, we will drop L for the tensor-product ● for the remainder of
the paper.



missing observations, and there are many extensions of this
framework [16]–[18]. In [17], the authors designed a temporal
regularizer to apply temporal structure into the standard matrix
factorization formulation, aptly named Temporal Regularized
Matrix Factorization (TRMF). Additionally, the authors in [18]
focus on forecasting nonstationary time series by differencing
the latent time series, aptly named the Nonstationary Tempo-
ral Matrix Factorization (NoTMF). The general optimization
problem of TMF can be summarized as

min
W,X,A

1

2
∣∣PΩ(WX − Y )∣∣2F +

λ

2

T

∑
t=p+1

∣∣xt −

p

∑
i=1

Aixt−i∣∣22 (3)

where W,X are the rank r factor matrices and Ai ∈ Rr×r are
the coefficient matrices for the latent time series X . xt is the
latent time series observation at time t, and also the tth column
of X . λ is a weight parameter for regularization, and PΩ is
a linear mapping on the observed index set Ω, where entries
that are not in Ω are set to 0. This linear mapping PΩ ensures
that missing entries are not included during gradient descent
by setting them to 0.

Multilinear time series may have similar data quality issues
to their multivariate counterparts. However as mentioned,
applying multivariate methods to multilinear observations de-
stroys their natural representation. In previous research tensor
completion methods have been used to approximate the miss-
ing observations within a tensor. Typically these methods use
the tensor nuclear-norm to promote low-rank structures [19],
[20]. While these authors show promise in tensor completion,
they do not focus on forecasting or incorporating temporal
structure. The authors in [21] extend matrix factorization
techniques into a tensor format, which is called low-rank
tensor factorization. Given a data tensor Y ∈ Rℓ×T×m, the goal
of low-rank tensor factorization is to factorize the tensor into
two latent factor tensors W ∈ Rℓ×r×m,X ∈ Rr×T×m with rank
r such that Y ≈ W ●X .

In the following paper, we propose Temporal Tensor Fac-
torization (TTF) to model multilinear, incomplete, and nonsta-
tionary time series. Building on the work in [14] and [21], we
integrate the L−TAR model with low-rank tensor factorization
to perform tensor completion. TTF is a natural extension
of TMF for multilinear observations. Similar to multivariate
counterparts, we factorize the time series Y to capture the low-
rank temporal dynamics by a latent time series X . We perform
forecasting by applying the L−TAR process to the latent time
series. The main contributions of this paper are:

1) Development of the TTF model which is obtained by
integrating L−TAR with low rank tensor factorization.

2) Presentation of a novel minimization framework to learn
the parameter tensors W,X , and A1, . . . ,Ap.

3) Outline a differencing process that allows the TTF model
to be applied to nonstationary observations.

The remainder of the paper is organized as follows: In
Section II we provide some mathematical background for
the tensor linear algebra we use throughout the paper. In

Section III we present our TTF framework, and derive an
effective and efficient training procedure to find the latent fac-
tor tensors W,X and coefficient tensors A1, . . . ,Ap. We also
introduce a rolling forecast mechanism and demonstrate how
our framework can be extended for nonstationary observations.
In Section IV we present some experimental results with the
proposed method and compare/contrast with the state-of-the-
art. Section V contains our conclusions and future directions.

II. MATHEMATICAL PRELIMINARIES

To keep this paper self-contained, we will outline some
of the mathematical foundations of the tensor notation and
operations presented in [22]–[30].

A. Notation

In the context of this paper, the term tensor refers to a multi-
dimensional array of numbers, sometimes called an n-way or
n-mode array. If, for example, A ∈ Rℓ×m×n then we say A is a
third-order tensor where order is the number of ways or modes
of the tensor. Thus, matrices and vectors are second-order and
first-order tensors, respectively. It will be convenient to divide
a tensor A ∈ Rℓ×m×n into various slices and tubal elements.
The ith lateral slice will be denoted Ai whereas the jth frontal
slice will be denoted A(j). The ith, jth frontal tube will be
denoted aij . The ith, jth, kth element will be denoted aijk.
In terms of Python slicing, this means Ai ≡ A[∶, i, ∶], A(j) ≡
A[∶, ∶, j], aij ≡ A[i, j, ∶], and aijk ≡ A[i, j, k]. Additionally,
we will need to define a “zero” tensor (tensor containing only
zeros), which will be denoted as 0ℓ×m×n where ℓ,m,n are the
dimensions of the tensor.

B. Tensor Definitions and Operations

An important operation is the transform of a tensor via any
invertible discrete transform L ∶ Cn → Cn [31]. As such, we
have the following definition:

Definition 1. The L-transform of the tensor A, given by

Ã = L(A) ∈ Cℓ×m×n,

is computed by applying the discrete transform2 L of your
choice along the frontal tubes aij of A.

Using this formulation, we define the product of two third-
order tensors which results in a third-order tensor. This oper-
ation, referred to as the tensor-product, is defined as follows:

Definition 2. Given two third-order tensors A ∈ Cℓ×m×n and
B ∈ Cm×p×n, the face-wise product A∆B performs matrix
multiplication for each of the frontal slices of A and B. This
results in a third-order tensor C ∈ Cℓ×p×n and is defined as

C
(i)
= A

(i)
⋅ B
(i),

for i = 1, . . . , n.

2Note: the current work focuses on the DWT and DCT. However, the DFT
framework also applies here.



Fig. 1: Illustration of the TTF framework. The original multilinear time series Y contains some missing entries, and Ω would
be the set of all known entries (solid blue). Y is factored into a latent spatial tensor W and a latent temporal tensor X . This
figure was adapted from its multivariate counterpart in [18].

Definition 3. Given two third-order tensors A ∈ Cℓ×m×n and
B ∈ Cm×p×n, the tensor-product ● between A and B is defined
as:

Ã = L(A)

B̃ = L(B)

A ● B = L
−1
(Ã∆B̃)

Definition 4. The tensor norm ∥A∥F ∈ R for A ∈ Rℓ×m×n is
given by

∥A∥F =

¿
Á
Á
ÁÀ

ℓ

∑
i=1

m

∑
j=1

n

∑
k=1

a2ijk.

For a given tensor A ∈ Rℓ×m×n there are two definitions to
describe its rank: multi-rank and tubular rank [24]. Tubular
rank is defined by the tensor singular value decomposition
(t-SVD).

Definition 5. The identity tensor I ∈ Rℓ×ℓ×n is the tensor
whose first frontal slice is the ℓ × ℓ identity matrix and the
other frontal slices are zeros in the transform domain.

Definition 6. If A ∈ Rℓ×m×n, then the tensor transpose AT ∈

Rm×ℓ×n is computed by transposing the frontal slices of A in
the transform domain.

Definition 7. A tensor A ∈ Rℓ×m×n is orthogonal if A●AT =

AT ● A = I.

Definition 8. (t-SVD [23]) For A ∈ Rℓ×m×n, then there exists
tensors U ,S,V such that

A = U ● S ● V
T

where U ∈ Rℓ×ℓ×n is an orthogonal tensor of left-singular
matrices (analogous to left-singular vectors in second-order
tensors), V ∈ Rm×m×n is an orthogonal tensor of right-singular
matrices (analogous to right-singular vectors in second-order
tensors), and S ∈ Rℓ×m×n is a f-diagonal tensor (analogous to
singular values in second-order tensors). A f-diagonal tensor
is where the frontal tubes for the ith row and jth column are
nonzero for i = j and zero otherwise.

Definition 9. For A ∈ Rℓ×m×n, its tubular rank is the number
of nonzero singular tubes of S . Its multi-rank is a vector
defined as r = [rank(Ã

(1)
), . . . , rank(Ã

(n)
)] [23], [24].

III. PROPOSED APPROACH TO LOW-RANK MULTILINEAR
TIME-SERIES FORECASTING

In this section, we discuss the details of our proposed
method TTF. Namely, we give an overview of our framework,
derive the alternating minimization framework, and introduce
our forecasting mechanism.

A. Formulation of Temporal Tensor Factorization

Let Y ∈ Rℓ×T×m be a partially observed multilinear time
series tensor with T observations for t = 1, . . . , T . Also, let
Yt be the tth lateral slice of Y , and the given observation at
time t. For this problem, Y contains all the observations Yt
but may have some missing data. Therefore, let Ω be the set
of observed entries {aijk ∣ (i, j, k) ∈ Ω}. This is illustrated in
Fig. 1, where Y contains missing data. The solid blue cells
indicates the observed entries Ω. Our goal is to factor the
observation Y into a spatial latent tensor W ∈ Rℓ×r×m and a
temporal latent tensor X ∈ Rr×T×m such that r < min(ℓ, T )
and

Y ≈ W ●X . (4)

This step is necessary in order to capture the spatial and
temporal correlations of the original time series Y . In addition,
this operation allows us to perform tensor completion for the
missing entries in Y .

After factoring the time series Y , the temporal latent tensor
X contains the low-rank temporal dynamics of Y . In fact,
we define the lateral slices X1,X2, . . . ,Xt as the latent time
series of Y . Additionally, X contains no missing entries, so
a L−TAR process can be applied here. We apply a pth order
L−TAR process as

Xt ≈

p

∑
i=1
Ai ● Xt−i (5)

where Ai ∈ Rr×r×m is the coefficient tensor for lag i for i =
1, . . . , p. Similar to the definition in Eqn. (2), we assume that
the observations Xt are stationary, i.i.d., and p ≪ T . After
a forecast is obtained, i.e. X̂ ∈ Rr×w×m for a forecast of w



steps, we map the latent forecast X̂ back into the original
feature space by the latent spatial tensor W as

Ŷ ≈ W ● X̂ ∈ Rℓ×w×m. (6)

Ŷ will now contain the forecast of our original time series in
its original feature space. Additionally, this forecast is made
for all entries in Ŷ due to our tensor factorization framework.
A visual illustration of this process is shown in Fig. 1.

B. Optimization

In order to effectively learn the latent factors W,X and
the coefficient tensors Ai for i = 1, . . . , p, we define the
optimization problem for TTF as

min
W,X ,A

1

2
∣∣PΩ(W●X−Y)∣∣

2
F+

λ

2

T

∑
t=p+1

∣∣Xt−

p

∑
i=1
Ai●Xt−i∣∣2F . (7)

Similar to the multivariate counterparts, this objective function
balances the low-rank tensor factorization loss and the tempo-
ral loss with a regularization parameter λ. This regularization
is crucial to maintain important temporal and spatial relation-
ships [12]–[14]. PΩ is a linear mapping on the observed index
set Ω such that

PΩ(A) =

⎧⎪⎪
⎨
⎪⎪⎩

aijk if (i, j, k) ∈ Ω
0 if (i, j, k) ∉ Ω.

(8)

Because Y may have missing entries, a L-transform cannot be
directly computed. To solve this problem, in a similar fashion
to the standard tensor factorization framework in [21], we
introduce an auxiliary variable C to solve the problem (7) more
conveniently:

min
W,X ,A,C

1

2
∣∣W ● X − C∣∣

2
F +

λ

2

T

∑
t=p+1

∣∣Xt −

p

∑
i=1
Ai ● Xt−i∣∣2F ,

s.t. PΩ(C − Y) = 0ℓ×T×m.
(9)

Using the L-transform, we can transform TTF to a set of
m independent TMF problems [12], [14], [21]. Therefore, the
problem (9) is equivalent to

min
W̃(j)

,X̃ (j),Ã(j),C̃(j)
1

m

m

∑
j=1

1

2
∣∣W̃

(j)
X̃
(j)
− C̃
(j)
∣∣
2
F

+
λ

2

T

∑
t=p+1

∣∣X̃
(j)
t −

p

∑
i=1
Ã
(j)
i X̃

(j)
t−i∣∣

2
F ,

s.t. PΩ(C − Y) = 0ℓ×T×m,

(10)

for j = 1, . . . ,m. To simply the problem further, we define a
sequence of temporal operators that allow us to represent our
latent time series as the full tensor X as

Ψk = [0(T−p)×(p−k) IT−p 0(T−p)×k] ∈ R(T−p)×T (11)

for k = 0,1, . . . , p [18]. This allows us to further rewrite the
problem (10) to

min
W̃(j)

,X̃ (j),Ã(j),C̃(j)
1

m

m

∑
j=1

1

2
∣∣W̃

(j)
X̃
(j)
− C̃
(j)
∣∣
2
F

+
λ

2
∣∣X̃
(j)

ΨT
0 − Ã

(j)
(Id ⊗ X̃

(j)
)ΨT
)∣∣

2
F ,

s.t. PΩ(C − Y) = 0ℓ×T×m,

(12)

where ⊗ denotes the Kronecker product, Ã
(j)

=

[Ã
(j)
1 ⋯Ã

(j)
p ] ∈ Rr×rp, and Ψ = [Ψ1⋯Ψp] ∈ R(T−p)×pT .

Let f be the optimization problem outlined in Eqn. (12). f
can be solved with an alternating minimization framework
for the parameters W,X ,A, and, C. Additionally, since each
TMF problem is independent, each problem can be solved
efficiently in parallel.

1) Updating the Auxiliary Variable: To update C, we can
perform the update as follows:

C = W ●X +PΩ(Y −W ●X). (13)

2) Updating the Latent Spatial Tensor: To update W , we
can derive the update as follows:

∂f

∂W̃
(j) = (W̃

(j)
X̃
(j)
− C̃
(j)
)(X̃

(j)
)
∗
= 0ℓ×r,

W̃
(j)
X̃
(j)
(X̃
(j)
)
∗
− C̃
(j)
(X̃
(j)
)
∗
= 0ℓ×r,

W̃
(j)
= C̃
(j)
(X̃
(j)
)
∗
(X̃
(j)
(X̃
(j)
)
∗
)

†. (14)

3) Updating the Latent Time Series Tensor: To update X ,
we can derive the update as follows:

∂f

∂X̃
(j) = (W̃

(j)
)
∗
(W̃

(j)
X̃
(j)
− C̃
(j)
)

+λ
p

∑
i=1
(Ã
(j)
i )

∗
(

p

∑
k=1
Ã
(j)
k X̃

(j)
ΨT

k )Ψi = 0r×T .
(15)

Eqn. (15) is a generalized Sylvester equation [18], [32]. This
equation can be converted to a system of linear equations
to solve for X̃

(j)
, however, that would be computationally

expensive as solving Eqn. (15) would take O(T 3). The
authors in [18] overcomes this challenge by approximating
the solution X̃

(j)
with a conjugate gradient method. They

demonstrated that the conjugate gradient is an effective method
to approximate their latent time series matrix while requiring
a small number of iterations. More details on the specific
implementation can be found in [18].

4) Updating the Coefficient Tensors: To update A, we can
derive the update as follows:

∂f

∂Ã(j) = −λ(X̃
(j)

ΨT
0 − Ã

(j)
(Ip ⊗X

(j)˜
)ΨT )Ψ(Ip ⊗ X̃

(j)
)T

= 0r×rp,

Ã
(j)
= X̃

(j)
ΨT

0 ((Ip ⊗ X̃
(j)
)ΨT )†.

(16)



Algorithm 1 TTF

Input: Multilinear time series Y ∈ Rℓ×T×m, p lags and rank
r.
Initialize X ,Y, and A randomly
while not converged do

Update C by (13) and compute C̃ = L(C)
for j = 1,. . . ,m do

Update W̃
(j)

by (14)
Update X̃

(j)
by (15) using conjugate gradient descent

Update Ã
(j)

by (16)
end for
epoch = epoch + 1

end while
return W , X , and A

C. Training Procedure

We formulate our training procedure based on the update
derivations in the previous section. Eqns. (14), (15), and (16)
are all in the transform domain, and as such the parameters
W,X , and A can be kept in the transform domain during
training. Eqn. (13) requires W●X to be in the spatial domain
to compute PΩ(Y − W ● X). Therefore, the most efficient
method is to compute G̃

(j)
= W̃

(j)
X̃
(j)

for j = 1, . . . ,m and
then compute G = L−1(G̃) = W ● X . After C is computed,
we directly compute C̃ = L(C) and utilize C̃ to update
Eqns. (14), (15), and (16), which can be done in parallel.
Nevertheless, the overall training procedure is quite efficient
and has a runtime of O(T ). The overall training procedure is
shown in Algorithm 1.

D. Handling Nonstationary Observations

The original formation of L−TAR requires that the ob-
servations Xt are stationary. However, in many applications
and domains, Y may not be necessarily stationary, as the
observations can contain seasonality or trends. It is generally
assumed that the latent time series X will carry the same
temporal characteristics as Y , and the stationarity condition
for L−TAR may be violated [16], [18]. As such, we extend
our formulation of TTF to handle nonstationary observations.
We use the differencing operations that were developed in [14].

The temporal operator Ψ defined in Eqn. 11 already handles
the p-lag temporal shifts in the L−TAR process. To handle
nonstationary observations, we utilize the temporal operators
defined in [18], which will apply a dth lagged difference to
the latent time series X . The temporal operator Ψ with a dth

lagged difference is formulated as

Ψk = [0(T−p−d)×(p−k) −IT−p−d 0(T−p−d)×(k+d)]

+ [0(T−p−d)×(p+d−k) IT−d−p 0(T−p−d)×k]

∈ R(T−p−d×T ).
(17)

Algorithm 2 TTF Rolling Forecast for Online Learning

Input: Multilinear time series Y ∈ Rℓ×T×m, W ∈ Rℓ×r×m,
X ∈ Rr×T×m, and A ∈ Rr×r×m for i = 1, . . . , p.
t = T+1
while True do

Retrieve a new observation Yt and append to Y
Update C by (13) and compute C̃ = L(C)
for j = 1,. . . ,m do

Update X̃
(j)

by (15) using conjugate gradient descent

Update Ã
(j)

by (16)
Generate a forecast Ŷt with Eqns. (4) and (5).

end for
t = t + 1

end while
return W , X , and A

To apply dth lagged difference to our original formation of
TTF, we simply apply the new temporal operator Ψ outlined
in Eqn. (17) to the update Eqns. (15) and (16).

E. Rolling Forecast Mechanism

Unlike the work in [14], a rolling forecast mechanism is
nontrivial due to the latent time series X . That is, if Xt

is learned for timesteps t = 1, . . . , T , Xt is unknown for
t > T . As such, multivariate methods outlined in [33] and
[18] employ a dictionary learning scheme to learn the latent
time series Xt for t > T . It is assumed that the spatial
information of the time series will remain static, while the
temporal dynamics may change [33]. Therefore, this dictionary
learning scheme will keep the latent spatial tensor W static
while updating the temporal parameters X and A. This results
in a similar procedure to Algorithm 1, without the update for
W in Eqn. 14.

IV. EXPERIMENTAL RESULTS

In this section, we compare our proposed TTF model
with baseline models in the literature. We illustrate how
our framework can learn the underlying spatial and temporal
relationships with partially observed data.

A. Baseline Models and Experimental Methology

We compare our approach against the current state-of-
the-art TMF models. Namely, the original Temporal Matrix
Factorization TMF, the temporal regularizer version TRMF,
and the nonstationary version NoTMF [16]–[18]. In addition
as a baseline, we will also compare against L−TAR [14]. An
overview of all baseline models:
● TMF: The standard Temporal Matrix Factorization. The

observations Yt are flattened into vectors and treated as
a multivariate problem.

● TRMF: Temporal Matrix Factorization with temporal
regularization. The observations Yt are flattened into
vectors and treated as a multivariate problem.



Fig. 2: Illustration of cross-validation for time series. The time
series is split into a train/test set, with the test set split further
into 5 groups. For each group, a model is trained using the
sections colored in blue. The model is then validated with the
observations colored in orange. The gray-colored observations
are omitted from testing. At the end, the error from each group
(orange) is averaged to give a cross-validated metric.

● NoTMF: Temporal Matrix Factorization designed to
handle nonstationary observations by applying lagged
differencing in the latent time series. The observations
Yt are flattened into vectors and treated as a multivariate
problem.

● L−TAR: A transform-based tensor autoregressive model.
Originally not designed to handle missing observations,
so entries that are not in the index set Ω are set to 0
before fitting.

We evaluate all baseline models by cross-validation. We
split each dataset into a train and test set. The test set is
divided into 5 equal groups. For each group, the training set is
all observations that accrued prior to the first observation that
forms the test set [34]. All of the group’s error is averaged
to give a cross-validated metric. This process is illustrated
graphically in Fig. 2. Similar to other multilinear models in
the literature, we utilize relative error as a performance metric

∥Yt − Ŷt∥F

∥Yt∥F
, (18)

where Yt is the observed observation at time t, and Ŷt is the
forecast [12]–[14]. In addition to cross-validation, we compute
two types of forecast: 1) A single-step forecast, which uses the
rolling forecast mechanism as outlined in Section III-E, and 2)
a multi-step forecast, where all observations in a given group
are forecast at once. This is to evaluate each model’s ability to
perform both short-term and long-term forecasts. The single-
step forecast will be much more accurate due to the much
smaller forecasting horizon.

B. Datasets

We utilize a combination of baseline datasets from [14]
and [18]. These datasets are designed for multilinear fore-
casting, where the observations have a natural representa-
tion as a tensor. The datasets include geospatial data, video
imaging, and dynamic graphs. Namely: (a) the JERICHO-E-
usage dataset of energy usage across different regions and
energy sectors in Germany [7]; (b) a grid of sea-surface
temperatures [8]; (c) an adapted version of the MovingMNIST

TABLE I: Hyperparameters for Each Method and Dataset

Method Dataset p r d λ ρ

TTF JERICHO-E 1 5 168 1 -
TTF SST 1 3 24 1 -
TTF MovingMNIST 2 5 0 0.5 -
TTF NYC Trip Record 2 20 7 2 -

TMF JERICHO-E 6 10 - 1 1
TMF SST 6 5 - 0.5 1
TMF MovingMNIST 3 15 - 0.1 0.5
TMF NYC Trip Record 6 20 - 1 1.5

TRMF JERICHO-E 6 15 - 1 1
TRMF SST 6 10 - 0.5 1
TRMF MovingMNIST 3 15 - 0.1 0.5
TRMF NYC Trip Record 6 20 - 1 1

NoTMF JERICHO-E 1 10 168 2 1
NoTMF SST 2 5 24 1 1
NoTMF MovingMNIST 1 10 1 1 2
NoTMF NYC Trip Record 3 20 7 1 0.5

L-TAR JERICHO-E 2 - 24 - -
L-TAR SST 1 - 24 - -
L-TAR MovingMNIST 2 - 0 - -
L-TAR NYC Trip Record 6 - 0 - -

dataset that contains a grid of bouncing MNIST digits [9],
[10]; (d) a dynamic traffic network of the taxicab trips in
the New York Manhattan area [11]. To evaluate how well the
methods can handle missing observations, 20% of entries were
randomly removed from each dataset.

1) JERICHO-E-usage: The JERICHO-E-usage dataset
contains energy consumption usage across 38 regions of
Germany [7]. The time series breaks down into 4 categories:
residential, industrial, commerce, and mobility. This dataset
records the hourly consumption for the whole year of 2019
(8,760 observations), giving a multilinear time series Y ∈
R38×8760×4. The last 2 months of data (1,488 observations) are
used for testing and the remaining data (7,272 observations)
are used for training. Additionally, the dataset has obvious
24-hour seasonality.

2) SST: The SST dataset is a 5 × 6 grid of sea-surface
temperatures, where the observations were recorded every
hour [8]. This dataset records hourly temperature readings
for T = 2000 observations, giving a multilinear time series
Y ∈ R5×2000×6. The last 2 weeks of data (336 observations) are
used for testing and the remaining data (1,664 observations)
are used for training. Additionally, the dataset has obvious
24-hour seasonality.

3) MovingMNIST: The MovingMNIST dataset is a video
of bouncing MNIST digits within a 50×50 grid [9], [10]. We
generated 2000 frames of the digits 1, 3, and 5 bouncing within
a 50×50 grid, giving a multilinear time series Y ∈ R50×2000×50.
The last 400 frames are used for testing and the remaining data
(1,600 observations) are used for training.

4) NYC Trip Record: The NYC Trip Record dataset con-
tains taxicab pickup and dropoff locations for the New York
Manhattan area [11]. The original dataset splits the area into
263 pickup and dropoff zones. These zones can be represented
as nodes in a dynamic graph. While the dataset spans between



Fig. 3: Qualitative evaluation of our framework’s ability to cap-
ture underlying temporal/spatial patterns in the MovingMNIST
dataset. Top row: A sampling of 3 multilinear observations
for t = 1600,1610,1620, which is part of the test set. Note the
20% missing entries (pixels) are set to 0 and colored as black.
Bottom row: A single-step forecast for the above samples. We
generate a forecast from the TTF model outlined in Table I.

January 2015 to the present (June 2024), we only use a subset
between January 2015 to December 2019 as COVID-19 caused
a dramatic decrease in the amount of trips. With daily taxicab
trips, this gives a multilinear time series Y ∈ R263×1825×263.
We use the last year (365 observations) for testing and the
remaining years (1,460 observations) are used for training.

C. Experimental Results

In this section, we report the experimental results of the
forecasting performance for all baseline models. To optimize
the performance of each model, we conducted hyperparam-
eter tuning using a grid search approach. Grid search was
chosen because it systematically explores a specified range
of hyperparameters, ensuring that each model is thoroughly
evaluated. The parameters selected for the grid search were
based on domain knowledge and previous experiments out-
lined in [14], [15], [18]. For factorization methods (TMF,
TRMF, NoTMF, & TTF), these parameters include the rank
r and various regularization parameters λ. We evaluate the
models for ranks r = 3,5,10,15,20 and λ = 0.1,0.5,1,1.5,2.
For all methods, we also consider the order p and lagged
differencing d. In the grid search, we evaluate the models for
p = 1,2, . . . ,6 and d = 0,1. The JERICHO-E-usage, SST, and
NYC Taxicab datasets may contain some seasonality, so we
include lagged differencing for various seasonality patterns.
For the JERICHO-E-usage and SST datasets, we include both
weekly and daily seasonality differencing (s = 24,168), and
for the NYC Taxi Cab dataset, we include weekly and yearly
seasonality differencing (d = 7,365). All the final parameters
are listed in Table I.

Fig. 3 demonstrates our framework’s ability to learn under-
lying temporal/spatial patterns for the MovingMNIST dataset.
As illustrated, our method can learn the underlying correlations
from partially observed data. Additionally, this illustrates
TTF’s predictive capability. While not perfect, post-processing
techniques can easily clean the image sequences. Since TTF

TABLE II: Experimental results for all baseline models. Errors
are reported by average relative error outlined in Eqn. (18)

Dataset TTF TMF TRMF NoTMF L-TAR

Single-step Forecast
JERICHO-E 0.101 0.654 0.610 0.424 0.357
SST 0.128 0.253 0.206 0.187 0.144
MovingMNIST 0.107 0.221 0.157 0.198 0.216
NYC Trip Record 0.221 0.386 0.314 0.289 0.247

Multi-step Forecast
JERICHO-E 0.286 0.945 0.913 0.549 0.684
SST 0.194 0.291 0.292 0.207 0.291
MovingMNIST 0.170 0.376 0.360 0.312 0.235
NYC Trip Record 0.382 0.519 0.428 0.323 0.319

performs dimensionality reduction to represent the partially
observed data as a latent time series, the forecast appears
smoother and more generalized, which effectively captures the
essential features of the data while filtering out noise.

Table II provides the summary results for each of the
forecasting methods. These results highlight the robustness and
effectiveness of the TTF framework in both single-step and
multi-step forecasting across all datasets. This also demon-
strates that our framework performs well within a wide range
of domains and applications. Our framework outperforms
the baseline methods in almost all datasets, except for the
multi-step forecasting in the NYC Trip Record dataset. Our
framework outperforms the multivariate counterparts because
we are able to represent observations Yt as their natural tensor
representation. We also outperform the L−TAR model due to
its inability to address missing entries. Additional, our method
performs well when the time series contains seasonality, as
shown in the JERICHO-E-usage, SST, and NYC Trip Record
datasets.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We propose a novel temporal tensor factorization frame-
work to forecast a partially observed multilinear time series.
We factor the time series into two latent tensors in order
to learn the underlying spatial/temporal relationships. This
enables us to 1) maintain the natural tensor representation
of the time series and 2) provide a latent time series where
a forecast can be made by an L−TAR process. We derive
an alternating minimization framework that effectively and
efficiently learns the latent factor and coefficient tensors in
O(T ). We also demonstrate how we enable our framework
to handle nonstationary observations and a rolling forecast
mechanism. Compared to multivariate factorization techniques
and L−TAR, our framework outperforms the state of the art
in geospatial datasets, video sequences, and dynamic graphs.

Future work will include developing a rank estimation
scheme to learn the optimal rank r for the factor tensorsW,X ,
as the rank in Section IV was picked via grid search. Future
work will also investigate the advantages of running the update
equations (14), (15), (16) in parallel. Additionally, we would
like to explore how low-rank tensor factorization can extend



other multivariate frameworks, such as non-negative matrix
factorization which is commonly used for clustering [35]–[37].

REFERENCES

[1] G. Box., “Understanding exponential smoothin-a simple way to forecast
sales and inventory,” Quality Engineering, vol. 4, no. 3, pp. 561–566,
1991.

[2] R. Brown, Statistical Forecasting for Inventory Control. New York:
McGraw-Hill, 1959.

[3] ——, Smoothing, Forecasting, and Prediction. NJ: Pretice Hall,
Englewood Cliffs, 1963.

[4] Box, P.J., GM, and R., Time Series Analysis: Forecasting & Control,
2008.

[5] S. Haykin, Neural Networks and Learning Machines (3rd ed.). New
York: Pearson, 2009.

[6] T. Hill, L. Marquez, M. O’Connor, and W. Remus, “Artificial neural
network models for forecasting and decision making,” International
Journal of Forecasting, vol. 10, pp. 5–15, 1994.

[7] J. Priesmann, L. Nolting, C. Kockel, and A. Praktiknjo, “Time series
of useful energy consumption patterns for energy system modeling,”
Scientific Data, vol. 8, no. 1, pp. 1–12, 2021.

[8] NOAA/Pacific Marine Environmental Laboratory, “Tropical atmosphere
ocean project,” http://www.pmel.noaa.gov/tao/data deliv/deliv.html, ac-
cessed: May 23, 2013.

[9] N. Srivastava, E. Mansimov, and R. Salakhutdinov, “Unsupervised
learning of video representations using LSTMs,” 2015.

[10] J. Cates, R. C. Hoover, K. Caudle, D. Marchette, and C. Ozdemir,
“Anomaly detection from multilinear observations via time-series analy-
sis and 3dtpca,” in 2022 21st IEEE International Conference on Machine
Learning and Applications (ICMLA), 2022, pp. 677–680.

[11] “Nyc trip record data,” 2022. [Online]. Available: https://www1.nyc.
gov/site/tlc/about/tlc-trip-record-data.page

[12] W. Lu, X.-Y. Liu, Q. Wu, Y. Sun, and A. Elwalid, “Transform-Based
Multilinear Dynamical System for Tensor Time Series Analysis,” in
Neural Information Processing (NIPS) Workshop on Spatiotemporal
Data, 2018.

[13] M. Rogers, L. Li, and S. J. Russell, “Multilinear dynamical systems for
tensor time series,” in in Neural Information Processing Systems (NIPS),
2013, pp. 2634–2642.

[14] J. Cates, R. C. Hoover, and K. Caudle, “Transform-based tensor auto
regression for multilinear time series forecasting,” in 2021 IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA),
2021.

[15] J. Cates, R. C. Hoover, K. Caudle, C. Ozdemir, K. Braman, and
D. Machette, “Forecasting multilinear data via transform-based tensor
autoregression,” 2022.

[16] Y.-Y. Lo, W. Liao, C.-S. Chang, and Y.-C. Lee, “Temporal matrix
factorization for tracking concept drift in individual user preferences,”
IEEE Transactions on Computational Social Systems, vol. 5, no. 1, pp.
156–168, 2018.

[17] H.-F. Yu, N. Rao, and I. S. Dhillon, “Temporal regularized matrix
factorization for high-dimensional time series prediction,” in Advances
in Neural Information Processing Systems, D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29. Curran Associates,
Inc., 2016.

[18] X. Chen, C. Zhang, X.-L. Zhao, N. Saunier, and L. Sun, “Nonstationary
temporal matrix factorization for multivariate time series forecasting,”
2022.

[19] Q. Song, H. Ge, J. Caverlee, and X. Hu, “Tensor completion algorithms
in big data analytics,” ACM Trans. Knowl. Discov. Data, vol. 13, no. 1,
jan 2019.

[20] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 1, pp. 208–220, 2013.

[21] P. Zhou, C. Lu, Z. Lin, and C. Zhang, “Tensor factorization for low-rank
tensor completion,” IEEE Transactions on Image Processing, vol. 27,
no. 3, pp. 1152–1163, 2018.

[22] M. E. Kilmer, C. D. Martin, and L. Perrone, “A third-order generalization
of the matrix SVD as a product of third-order tensors,” Tufts University,
Department of Computer Science, Tech. Rep. TR-2008-4, October 2008.

[23] M. E. Kilmer and C. D. Moravitz Martin, “Factorization strategies for
third-order tensors,” Linear Algebra and Its Applications, no. Special
Issue in Honer of G.W.Stewart’s 75th birthday, 2009.

[24] K. Braman, “Third-order tensors as linear operators on a space of
matrices,” Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241
– 1253, 2010.

[25] N. Hao, M. E. Kilmer, K. S. Braman, and R. C. Hoover, “New tensor
decompositions with applications in facial recognition,” SIAM Journal
on Imaging Science (SIIMS), vol. 6, no. 1, pp. 437–463, Feb. 2013.

[26] M. E. Kilmer, K. S. Braman, N. Hao, and R. C. Hoover, “Third
order tensors as operators on matrices: A theoretical and computational
framework with applications in imaging,” SIAM Journal on Matrix
Analysis and Applications (SIMAX), vol. 34, no. 1, pp. 148–172, Feb.
2013.

[27] R. C. Hoover, K. S. Braman, and N. Hao, “Pose estimation from a single
image using tensor decomposition and an algebra of circulants,” in Int.
Conf. on Intel. Robots and Sys., 2011.

[28] R. C. Hoover, K. Caudle, and K. Braman, “Multilinear discrimi-
nant analysis through tensor-tensor eigendecomposition,” in 2018 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA), 2018, pp. 578–584.

[29] X.-Y. Liu and X. Wang, “Fourth-order tensors with multidimensional
discrete transforms,” 2017.

[30] C. Ozdemir, R. C. Hoover, K. Caudle, and K. Braman, “High-order mul-
tilinear discriminant analysis via order-n tensor eigendecomposition,”
2022.

[31] E. Kernfeld, M. Kilmer, and S. Aeron, “Tensor–tensor products with
invertible linear transforms,” Linear Algebra and its Applications, vol.
485, pp. 545–570, 2015.

[32] G. H. Golub and C. F. van Loan, Matrix Computations, 4th ed. JHU
Press, 2013.

[33] S. Gultekin and J. Paisley, “Online forecasting matrix factorization,”
IEEE Transactions on Signal Processing, vol. 67, no. 5, pp. 1223–1236,
2019.

[34] G. Hyndman R. J., & Athanasopoulous, Forecasting: principles and
practice. OTexts, 2018.

[35] Y.-X. Wang and Y.-J. Zhang, “Nonnegative matrix factorization: A
comprehensive review,” IEEE Transactions on Knowledge and Data
Engineering, vol. 25, no. 6, pp. 1336–1353, 2013.

[36] N. Gillis, “The why and how of nonnegative matrix factorization,”
Regularization, optimization, kernels, and support vector machines,
vol. 12, no. 257, pp. 257–291, 2014.

[37] V. P. Pauca, J. Piper, and R. J. Plemmons, “Nonnegative matrix factor-
ization for spectral data analysis,” Linear algebra and its applications,
vol. 416, no. 1, pp. 29–47, 2006.

http://www.pmel.noaa.gov/tao/data_deliv/deliv.html
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

	Introduction
	Mathematical Preliminaries
	Notation
	Tensor Definitions and Operations

	Proposed Approach to Low-Rank Multilinear Time-Series Forecasting
	Formulation of Temporal Tensor Factorization
	Optimization
	Updating the Auxiliary Variable
	Updating the Latent Spatial Tensor
	Updating the Latent Time Series Tensor
	Updating the Coefficient Tensors

	Training Procedure
	Handling Nonstationary Observations
	Rolling Forecast Mechanism

	Experimental Results
	Baseline Models and Experimental Methology
	Datasets
	JERICHO-E-usage
	SST
	MovingMNIST
	NYC Trip Record

	Experimental Results

	Conclusions and Future Directions
	References

