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Abstract. The aim of this research is to explore new homogenization results

for a stochastic linear coupled thermoelastic model. We focus on a stochastic

equation of motion coupled with a stochastic heat equation, representing the
linear thermoelastic behavior of composite anisotropic materials with a periodic

heterogeneous structure. These materials are subjected to random external

forces and heat sources. By employing the periodic unfolding method and
leveraging probabilistic compactness results from Prokhorov and Skorokhod,

we obtain homogenization, convergence of the associated stochastic energies,

and corrector results.

1. Introduction. Thermoelasticity, the study of the interplay between heat con-
duction and mechanical deformation, has captivated physicists, engineers, and ap-
plied mathematicians due to its broad spectrum of applications across various scien-
tific and industrial domains. This theory examines the interdependence of temper-
ature and strain fields, as evidenced by numerous physical experiments (see [24, 32]
and references therein). The foundational mathematical model of thermoelasticity,
introduced by Biot [4] and now known as the classical coupled theory of thermoelas-
ticity, consists of two coupled partial differential equations: a hyperbolic equation
governing motion and a parabolic equation describing energy transfer.

When applied to composite or perforated materials, the classical model exhibits
an oscillatory behavior on a small scale, denoted by ε, with highly varying coef-
ficients. These oscillations, often arising from periodic structures or perforations,
necessitate the use of homogenization techniques to derive simplified “effective”
models suitable for analytical or numerical analysis. Homogenization enables the
replacement of equations with rapidly varying coefficients by ones with effective
properties in a fixed domain.
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The first significant contributions to the homogenization of thermoelasticity were
made by G. A. Francfort [13] in 1983, employing a semigroup approach. Since
then, numerous advances have been made. For instance, W. J. Parnell [26] in 2006
used asymptotic expansions to homogenize a fully coupled one-dimensional linear
thermoelastic model. V. L. Savatorova et al. [31] extended this work in 2013 through
multi-scale modeling, examining the behavior of composite materials with periodic
structures under thermal and mechanical stress. More recently, S. Nafiri [25] in
2023 applied two-scale convergence methods to homogenize a linear thermoelastic
wave model.

While these studies focused on deterministic systems, incorporating stochastic
effects into thermoelastic models is critical for addressing natural randomness in
thermal processes and material behavior. In this work, we investigate a coupled
hyperbolic-parabolic system describing the interaction between deformation and
temperature fields in a composite material under heat sources and body forces,
where stochasticity arises from environmental thermal interactions.

Our main goal is to establish homogenization results for this stochastic model. To
achieve this, we employ the periodic unfolding method, a powerful tool in homoge-
nization theory (see [7, 8, 9, 10]), along with probabilistic compactness techniques
[3]. Although significant progress has been made in the deterministic homogeniza-
tion of hyperbolic systems (see [11, 12, 15, 16]), the stochastic setting remains less
explored. Pioneering work by M. Mohammed and M. Sango [20, 21, 22, 23] laid
the foundation for the homogenization of stochastic systems. However, the homog-
enization of stochastic partial differential equations in perforated domains is still
a developing field (see [29, 30, 17, 18, 14]), particularly for practical applications
[2, 19].

To the best of our knowledge, this is the first work to analyze the asymptotic
behavior of solutions for a coupled stochastic hyperbolic-parabolic system in a per-
forated domain.

This paper is organized as follows. Section 2 introduces the model, the functional
framework, and the assumptions necessary for the analysis. In Section 3, we derive
key a priori estimates essential for subsequent arguments. Section 4 presents the
periodic unfolding operator, which forms the core of our homogenization frame-
work. Section 5 addresses the tightness of probability measures associated with the
solution sequence, enabling the application of Skorokhod’s and Prokhorov’s theo-
rems to construct a limiting process that solves the homogenized system. Section 6
derives the homogenization results using the periodic unfolding method and proba-
bilistic compactness tools. Finally, Section 7 establishes energy convergence results
and corrector estimates. We conclude the paper with a summary of the research
objectives, the main findings, and their implications.

2. The model and functional setting. Let us go over some of the notations and
functional spaces that are frequently utilized in this paper, see [11, 5] for detailed
definitions:

• D is an open bounded subset of Rn, n = 1, 2 or 3.
• [0, T ], T > 0 is the time interval.
• Y = (0, 1)× (0, 1)× · · · × (0, 1) ⊂ Rn is the reference cell.
• Y1 ⊂ Y such that Ȳ1 ∩ ∂Y = ∅ and ∂Y1 is smooth enough. Furthermore,

Y2 = Y \Ȳ1 such that ϑ = |Y2|
|Y | = |Y2|.

• {ε} is a sequence of positive integers such that ε goes to zero.
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• Dε
0 =

⋃
k∈Zn

{
ε
(
Y1 +

∑n
j=1 kjej

)
:
(
Y1 +

∑n
j=1 kjej

)
⊂ D

}
is the pore skele-

ton.
• Dε = D\Dε

0 is the pore volume.

• ∂Dε
0 =

⋃
k∈Zn

{
ε
(
∂Y1 +

∑n
j=1 kjej

)
:
(
∂Y1 +

∑n
j=1 kjej

)
⊂ D

}
is the skele-

ton surface.
• Γε = ∂Dε

0 ∪ ∂D.

• D̂ε is the interior of Dε and Λε = D\D̂ε.
• For any open subset O of Rn, Lp(O) and W 1,p(O) (1 ≤ p ≤ ∞) (resp.) are

the well known Lebesgue’s and Sobolev’s spaces (resp.). For p = 2, they are
also known to be Hilbert’s spaces.

• Lp(0, T ;Lq(O)) and Lp(0, T ;W 1,q(O)), (1 ≤ p, q ≤ ∞) (resp.) are the time-
space version of Lebesgue’s and Soboleve’s spaces (resp.).

• L2(Ω;Lp(0, T ;Lq(O))) and , L2(Ω;Lp(0, T ;W 1,q(O))), (1 ≤ p, q ≤ ∞) (resp.)
are the probabilistic time-space version of Lebesgue’s and Sobolev’s spaces
(resp.).

• We define the following Hilbert’s spaces

V(Dε) =
{
vε = (vεk)1≤k≤n|vε ∈ [W 1,2(Dε)]n; vε = 0 on ∂D

}
,

and
S(Dε) =

{
ψε|ψε ∈W 1,2(Dε);ψε = 0 on ∂D

}
,

Equipped with the norms

‖vε‖2V(Dε) =

∫
Dε
|∇vε|2dx and ‖ψε‖2S(Dε) =

∫
Dε
|∇ψε|2dx.

We denote by V ′
(Dε) and S ′

(Dε) the dual space of V(Dε) and S(Dε) respec-
tively, and 〈·, ·〉V(Dε),V′ (Dε) and 〈·, ·〉S(Dε),S′ (Dε) are the usual duality pairings.

• MO(f) = 1
|O|
∫
O f(x)dx for any function f ∈ L1(O) where O is open and

bounded subset of Rn.

In what follows, we introduce our model, which describes stochastic linear ther-
moelastic waves in anisotropic composite materials with highly heterogeneous coef-
ficients.

ρεd

(
∂uε

∂t

)
− [div (Aε∇uε)−∇ (βεθε)]dt

= fε1dt+ fε2dW1 in Ω×Dε × (0, T ),

ρεcεvdθ
ε −

[
div (κε∇θε)− βεdiv

∂uε

∂t

]
dt

= gε1dt+ gε2dW2 in Ω×Dε × (0, T ),

uε = 0 = θε on Ω× ∂D×(0, T ),

Aε∇uε · ν = 0 = κε∇θε · ν on Ω× ∂Dε
0 × (0, T ),

(Aε∇uε − βεθε) · ν = 0 on Ω× ∂Dε
0 × (0, T ),

uε(x, 0) = hε1(x),
∂uε

∂t
(x, 0) = hε2(x), θε(x, 0) = hε3(x) in Dε;

(1)

where (x, t) ∈ DT = D × (0, T ), T > 0, Dε is the perforated domain. Here D
and Dε are bounded subset of Rn. The vector uε = (uε1, u

ε
2, · · · , uεn), n = 1, 2 or 3

represents the displacement, θε stands for the increment in temperature, ρε = ρ
(
x
ε

)
is the material density, cεv = cv

(
x
ε

)
is heat capacity Aε =

(
aijkl

(
x
ε

))
1≤i,j,k,l≤n is
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the stiffness (4-order) tensor, βε =
(
βi,j

(
x
ε

))
1≤i,j≤n is an nonzero (2-order) tensor,

such that βi,j = aijklbkl where bkl is the component of the thermal expansion , κε =(
κij
(
x
ε

))
1≤i,j≤n is the thermal conductivity tensor. fεi =

(
fij
(
x
ε , t
))

1≤j≤n , i =

1, 2 and n = 1, 2 or 3 and fε1dt+ fε2dW1 represents the body forces and gε1dt+gε2dW2

represents the heat source, while W1 and W2 are one-dimensional Brownian motions
defined on a complete probability space (Ω,P,F) with a filtration Ft, t ∈ (0, T ) and
expectation E. ν represents the unit outward normal vector to Dε

0.

Assumptions.

A.1. ρε(x) = ρ(y) and cεv(x) = cv(y) are both Y−periodic and for some α > 0 we
have, 0 < ρ(y), cv(y) ≤ α for all y ∈ Y .

A.2. The stiffness tensor A(y) = (aijkl (y))1≤i,j,k,l≤n is Y−periodic and symmetric

for all i, j, k and l. Furthermore A(y) is bounded in L∞(Y ) and for some
constants α1, α2 ∈ R such that 0 < α1 < α2, we have

α1|η|2 ≤ Aηη ≤ α2|η|2, (2)

for all symmetric tensor η=(ηij)1≤i,j≤n ∈ Rn×Rn, where |η| =
(∑n

i,j=1 η
2
ij

) 1
2
.

A.3. The thermal conductivity tensor κ(y) = (κij (y))1≤i,j≤n is Y−periodic, and is

bounded in L∞(Y ). Furthermore there exist α3, α4 ∈ R such that 0 < α3 < α4

and

α3|ξ|2 ≤ κξξ ≤ α4|ξ|2, (3)

for all vector ξ = (ξi)1≤i≤n ∈ Rn.
A.4. The functions fε1(x, t) = f1(x/ε, t) and fε2(x, t) = f2(x/ε, t) both in the space

L2(0, T ; [L2(Dε)]n) and gε1(x, t) = g1(x/ε, t) and gε2(x, t) = g2(x/ε, t) both in
the space L2(0, T ;L2(Dε)).

A.5. hε1(x) = h1(x/ε) = (h1
1(x/ε), h2

1(x/ε), · · · , hn1 (x/ε)) ∈ V(Dε), hε2(x) = h2(x/ε)
= (h1

2(x/ε), h2
2(x/ε), · · · , hn2 (x/ε)) ∈ [L2(Dε)]n and hε3(x) = h3(x/ε) ∈ L2(Dε).

A.6. βε(x) a non-zero symmetric tensor, where βi,j ∈ W 1,2
per(Y2) for all i, j =

1, 2, · · · , n and

|βεη| ≤ α5|η| for positive constant α5 and η ∈ Rn. (4)

As is customary in elasticity, we write the strain and stress tensors as:

e(uε) =
1

2

(
∇uε + (∇uε)T

)
and σε = Aεe(uε)− βεθε, (5)

where (Aεe(uε))i,j = aijkl
∂uεk
∂xl

. By the symmetry of the tensor e(uε), one sees that

α1|e(uε)|2 ≤ Aεe(uε)e(uε) ≤ α2|e(uε)|2. (6)

From [11, Proposition 10.5 ], we have for some constants c1, c2 > 0∫
Dε
|e(uε)|2dx ≤ c1‖uε‖2V(Dε) and ‖uε‖2V(Dε) ≤ c2

∫
Dε
|e(uε)|2dx. (7)

Furthermore,
∫
Dε
|e(uε)|2dx defines an equivalent norm to that of V(Dε), lets

denote it by |||e(uε)|||2V(Dε).

Theorem 2.1. For fixed ε and under the assumptions (A1) − (A6), there exists a

unique strong probabilistic solution
(
uε, ∂u

ε

∂t , θ
ε
)

such that:
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•
uε ∈ C([0, T ];V(Dε)) ∩ L2(Ω;L2(0, T ;V(Dε))),

∂uε

∂t
∈ C([0, T ]; [L2(Dε)]n) ∩ L2(Ω;L2(0, T ; [L2(Dε)]n)),

and

θε ∈ C([0, T ];S(Dε)) ∩ L2(Ω;L2(0, T ;S(Dε))).

•
(
uε, ∂u

ε

∂t , θ
ε
)
-Ft-measurable.

• For all t ∈ [0, T ] and (v, ψ) ∈ V(Dε)×S(Dε), we have that
(
uε, ∂u

ε

∂t , θ
ε
)

admit
the following weak formulation∫ t

0

(
ρεd

(
∂uε

∂t

)
, v

)
L2(Dε)

+

∫ t

0

(Aεe(uε), e(v))L2(Dε)dτ

−
∫ t

0

(βεθε,∇v)L2(Dε)dτ =

∫ t

0

(fε1, v)L2(Dε)dτ

+

∫ t

0

(fε2, v)L2(Dε)dW1(τ), (8)

and∫ t

0

(ρεcεvdθ
ε, ψ)L2(Dε) +

∫ t

0

(κε∇θε,∇ψ)L2(Dε)dτ

−
∫ t

0

(βε
∂uε

∂t
,∇ψ)L2(Dε)dτ + ε

∫ t

0

(∇βε ∂u
ε

∂t
, ψ)L2(Dε)dτ

=

∫ t

0

(gε1, ψ)L2(Dε)dτ +

∫ t

0

(gε2, ψ)L2(Dε)dW2(τ). (9)

Sketch of the Proof. We give a sketch of the proof in the following steps.

Proof. 1. The first step is to construct finite-dimensional approximating sub-
spaces Vn = Span{vε1,vε2, · · · ,vεn} and Sn = Span{ϕε1, ϕε2, · · · , ϕεn}, where
vεk ∈ V(Dε) and ϕk ∈ S(Dε) for all k = 1, 2, · · · , n and (vεk)1≤k≤n and
(ϕεk)1≤k≤n are orthonormal basis of [L2(Dε)]n and L2(Dε), respectively.

2. Using the above constructed spaces, one introduces the following finite dimen-

sional approximating problem: Find uεn,
∂uεn
∂t and θεn such that

uεn =

n∑
k=1

`nk (t)vεk,
∂uεn
∂t

=

n∑
k=1

∂`nk
∂t

(t)vεk and θεn =

n∑
k=1

bnk (t)ϕεk,

where `nk (t) = (uεn,v
ε
k) and bnk (t) = (θεn, ϕ6εk) such that

d

(
ρε
∂uεn
∂t

,vk

)
L2(Dε)

+ (Aεe(uεn)e(vk))L2(Dε)dt− (βεθεn,∇vk)L2(Dε) dt

= (fε1,vk)L2(Dε) dt+ (fε2dW1(t),vk)L2(Dε) , (10)

and

d(ρεcεvθ
ε
n, ϕk)L2(Dε) + (κε∇θεn,∇ϕk)L2(Dε)dt−

(
βε
∂uεn
∂t

,∇ϕk
)
L2(Dε)

dt

+ ε

(
∇βε ∂uε

∂t
, ϕk

)
L2(Dε)

dt = (gε1, ϕk)L2(Dε)dτ + (gε2dW2(t), ϕk)L2(Dε),

(11)
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with appropriate initial conditions that converge to the initial conditions of
the original problem. This system is interpreted as a system of stochastic
differential equations which has a unique solution by a classical result.

3. In this step, we prove some estimates on uεn,
∂uεn
∂t and θεn similar to the ones

obtained in Theorem 3.1 below.
4. Using the previous uniform estimates, we pass to the limit on the weak for-

mulations (10) and (11). Furthermore, we establish that the limits satisfy the
same previous estimates.

5. Finally, we show a pathwise uniqueness, then together with the Yamada-
Watanabe theorem we complete the proof of the theorem.

3. A priori bounds and estimates. Here, we prove key results for passing to
the limits in the system above.

Theorem 3.1. Under the assumptions A.1.−A.6. the following estimates hold true

E
∥∥∥∥∂uε∂t

∥∥∥∥2

L∞(0,T ;[L2(Dε)]n)

+ E‖uε‖2L∞(0,T ;V(Dε)) ≤ C (12)

E‖θε‖2L∞(0,T ;L2(Dε)) + E‖θε‖2L2(0,T ;S(Dε)) ≤ C, (13)

E|||e(uε)|||2L∞(0,T ;V(Dε)) ≤ C. (14)

for some C > 0.

Proof. We apply Itô’s lemma to the function Φ(t, ∂u
ε

∂t (t)) = ‖ρε ∂u
ε

∂t (t)‖2L2(Dε) in the

first equation of the system (1) and to the function Ψ(t, θε(t)) = ‖ρεcεvθε(t)‖2L2(Dε)

in the second equation of the system (1), we get:

d

∥∥∥∥ρε ∂uε∂t
∥∥∥∥2
L2(Dε)

= 2

[(
div (Aε∇uε) , ∂u

ε

∂t

)
L2(Dε)

−
(
∇(βεθε), ∂u

ε

∂t

)
L2(Dε)

]
dt

+ 2

(
fε1,

∂uε

∂t

)
L2(Dε)

+ ‖fε2‖2L2(Dε)dt+ 2

(
fε2dW1,

∂uε

∂t

)
L2(Dε)

, (15)

and

d‖ρεcεvθε‖2L2(Dε) = 2

[
(−κε∇θε,∇θε)L2(Dε) −

(
βεdiv

(
∂uε

∂t

)
, θε
)
L2(Dε)

]
dt

+2(g1, θ
ε)L2(Dε) + ‖gε2‖2L2(Dε)dt+ 2(gε2dW2, θ

ε)L2(Dε). (16)

Using integration by parts, the symmetry assumption of the stiffness tensor, and
the fact that βεdiv

(
∂uε

∂t

)
= div

(
βε ∂u

ε

∂t

)
− ε∇βε ∂u

ε

∂t , we have

d

[ ∥∥∥∥ρε ∂uε∂t
∥∥∥∥2
L2(Dε)

+ (Aεe(uε), e(uε))L2(Dε)

]

= 2

[(
βε∇θε, ∂u

ε

∂t

)
L2(Dε)

− ε
(
θε∇βε, ∂u

ε

∂t

)
L2(Dε)

]
dt

+ 2

(
fε1,

∂uε

∂t

)
L2(Dε)

+ ‖fε2‖2L2(Dε)dt+ 2

(
fε2dW1,

∂uε

∂t

)
L2(Dε)

, (17)

and

d‖ρεcεvθε‖2L2(Dε) + (κε∇θε,∇θε)L2(Dε)
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= 2

[
−
(
βε
∂uε

∂t
,∇θε

)
L2(Dε)

+ ε

(
∇βε ∂uε

∂t
, θε
)
L2(Dε)

]
dt

+ 2(g1, θ
ε)L2(Dε) + ‖gε2‖2L2(Dε)dt+ 2(gε2dW2, θ

ε)L2(Dε). (18)

Adding together (17) and (18), we obtain

d

[ ∥∥∥∥ρε ∂uε

∂t

∥∥∥∥2

L2(Dε)

+ ‖ρεcεvθε‖2L2(Dε) + (Aεe(uε), e(uε))L2(Dε)

]
+ (κε∇θε,∇θε)L2(Dε)

= 2

(
fε1,

∂uε

∂t

)
L2(Dε)

+ 2(g1, θ
ε)L2(Dε)dt

+ ‖gε2‖2L2(Dε) + ‖fε2‖2L2(Dε)dt+ 2

(
fε2dW1,

∂uε

∂t

)
L2(Dε)

+ 2(gε2dW2, θ
ε)L2(Dε). (19)

Using the assumptions A.1.-A.4., the relation in (7) and integrate from 0 to t
where t ∈ [0, T ], we have

α2

∥∥∥∥∂uε

∂t

∥∥∥∥2

L2(Dε)

+ α4‖θε‖2L2(Dε) + α2c1‖uε‖2V(Dε) + α4

∫ t

0

‖∇θε‖2L2(Dε)ds

≤C + 2

∫ t

0

(
fε1,

∂uε

∂t

)
L2(Dε)

ds+ 2

∫ t

0

(g1, θ
ε)L2(Dε)ds

+ 2

∫ t

0

(
fε2dW1(s),

∂uε

∂t

)
L2(Dε)

+ 2

∫ t

0

(gε2dW2(s), θε)L2(Dε). (20)

Taking the sup over 0 ≤ t ≤ T , followed by the expectation, we have

α2E sup
t

∥∥∥∥∂uε

∂t
(t)

∥∥∥∥2

L2(Dε)

+ α4E sup
t
‖θε(t)‖2L2(Dε) + α2c1E sup

t
‖uε(t)‖2V(Dε)(Dε)

+ α4E
∫ T

0

‖∇θε(t)‖2L2(Dε)dt ≤ C + 2E
∫ T

0

∣∣∣∣∣
(

fε1,
∂uε

∂t

)
L2(Dε)

∣∣∣∣∣ ds
+ 2E

∫ T

0

∣∣(g1, θ
ε)L2(Dε)

∣∣ ds+ 2E sup
t

∣∣∣∣∣
∫ t

0

(
fε2dW1(s),

∂uε

∂t

)
L2(Dε)

∣∣∣∣∣
+ 2E sup

t

∣∣∣∣∫ t

0

(gε2dW2(s), θε)L2(Dε)

∣∣∣∣ . (21)

Cauchy’s and Young’s inequalities imply the following

E
∫ T

0

∣∣∣∣∣
(

fε1,
∂uε

∂t

)
L2(Dε)

∣∣∣∣∣ ds
≤ δE sup

t

∥∥∥∥∂uε

∂t
(t)

∥∥∥∥2

L2(Dε)

+ C(δ)

(∫ T

0

‖fε1(t)‖2L2(Dε)

)2

, (22)

where δ is sufficiently small. Similarly

E
∫ T

0

∣∣∣(gε1, θε)L2(Dε)

∣∣∣ ds
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≤ δE sup
t
‖θε(t)‖2L2(Dε) + C(δ)

(∫ T

0

‖gε1(t)‖2L2(Dε)

)2

, (23)

Following that, we can deduce from the Burkholder-Gundy-Davis inequality, fol-
lowed by the Cauchy-Schwarz and Young inequalities, that

E sup
t

∣∣∣∣∣
∫ t

0

(
fε2dW1(s),

∂uε

∂t

)
L2(Dε)

∣∣∣∣∣
≤ CE

(∫ T

0

(
fε2,

∂uε

∂t

)2

L2(Dε)

dt

) 1
2

≤ CE

(∫ T

0

‖fε2‖2L2(Dε)

∥∥∥∥∂uε

∂t

∥∥∥∥2

L2(Dε)

dt

) 1
2

≤ E sup
t

∥∥∥∥∂uε

∂t
(t)

∥∥∥∥
L2(Dε)

(∫ T

0

‖fε2‖2L2(Dε)dt

) 1
2

≤ ςCE sup
t

∥∥∥∥∂uε

∂t
(t)

∥∥∥∥2

L2(Dε)

+ C(ς)

∫ T

0

‖fε2‖2L2(Dε)dt, (24)

where ς is sufficiently small. In a similar way we show that

E sup
t

∣∣∣∣∫ t

0

(gε2dW2(s), θε)L2(Dε)

∣∣∣∣
≤ %CE sup

t
‖θε(t)‖2L2(Dε) + C(%)

∫ T

0

‖gε2‖2L2(Dε)dt, (25)

where % is sufficiently small. Substituting (22), (23), (24) and (25) into (21), and
using Grönwall’s inequality, we obtain (12) and (13). The proof of (14) is an easy
consequences of (7).

Theorem 3.2. Assume that the assumptions (A.1.-A.5.) are satisfied, with the
additional assumptions fε2 ∈ L2(0, T ; [L4(Dε)]n) and gε2 ∈ L2(0, T ;L4(Dε)). Then,

E
∫ T−s

0

∥∥∥∥∂uε∂t (t+ s)− ∂uε

∂t
(t)

∥∥∥∥2

V′ (Dε)

dt ≤ Cs, (26)

and

E
∫ T−s

0

‖θε(t+ s)− θε(t)‖2S′ (Dε)
dt ≤ Cs, (27)

where C, is a positive constant independent of ε.

Proof. Let us proof (26), we have

∂uε

∂t
(t+ s)− ∂uε

∂t
(t) =

1

ρε

∫ t+s

t

divAε∇uε(τ)dτ − 1

ρε

∫ t+s

t

∇βεθε(τ)dτ

+
1

ρε

∫ t+s

t

fε1(τ)dτ +
1

ρε

∫ t+s

t

fε2(τ)dW1(τ). (28)

From this and the assumptions on the data, we have

E
∫ T−s

0

∥∥∥∥∂uε

∂t
(t+ s)− ∂uε

∂t
(t)

∥∥∥∥2

V′ (Dε)

dt
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≤ CE
∫ T−s

0

∥∥∥∥∫ t+s

t

divAε∇uε(τ)dτ

∥∥∥∥2

V′ (Dε)

dt

+ CE
∫ T−s

0

∥∥∥∥∫ t+s

t

∇βεθε(τ)dτ

∥∥∥∥2

V′ (Dε)

dt

+ C

∫ T−s

0

∥∥∥∥∫ t+s

t

fε1(τ)dτ

∥∥∥∥2

V′ (Dε)

dt

+ CE
∫ T−s

0

∥∥∥∥∫ t+s

t

fε2(τ)dW1(τ)

∥∥∥∥2

V′ (Dε)

dt. (29)

Let us estimate the terms on the right hand side of (29), we let ψ ∈ V(Dε) such
that ‖ψ‖V(Dε) = 1, then we have∥∥∥∥∫ t+s

t

divAε∇uε(τ)dτ

∥∥∥∥2

V′ (Dε)

≤

(
sup
ψ

∣∣∣∣∣
〈∫ t+s

t

divAε∇uε(τ)dτ, ψ

〉
V′ (Dε),V(Dε)

∣∣∣∣∣
)2

≤

(
sup
ψ

∫
Dε

∫ t+s

t

divAε∇uε(x, τ)ψ(x)dτdx

)2

. (30)

We use Fubini’s lemma, integration by parts, and (2) we get∥∥∥∥∫ t+s

t

divAε∇uε(τ)dτ

∥∥∥∥2

V′ (Dε)

≤

(
sup
ψ

∫ t+s

t

(∫
Dε
|∇uε(x, τ)∇ψ(x)|dx

)
dτ

)2

≤
(∫ t+s

t

‖∇uε(τ)‖L2(Dε)dτ

)2

.

From this and Cauchy-Schwartz’s inequality, we have

E
∫ T−s

0

∥∥∥∥∫ t+s

t

divAε∇uε(τ)dτ

∥∥∥∥2

V′ (Dε)

dt

≤ E
∫ T−s

0

(∫ t+s

t

‖∇uε(τ)‖L2(Dε)dτ

)2

dt

≤ E
∫ T−s

0

(∫ t+s

t

12dτ

)(∫ t+s

t

‖∇uε(τ)‖2L2(Dε)dτ

)
dt

≤ sE
∫ T

0

‖∇uε(τ)‖2L2(Dε)dt ≤ Cs (31)

For the second term, we use (4), to get∥∥∥∥∫ t+s

t

∇βεθε(τ)dτ

∥∥∥∥2
V′ (Dε)

≤

(
sup
ψ

∣∣∣∣∣
〈∫ t+s

t

∇βεθε(τ)dτ, ψ

〉
V′ (Dε),V(Dε)

∣∣∣∣∣
)2
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≤ α5

(
sup
ψ

∫
Dε

∫ t+s

t

θε(x, τ)∇ψ(x)dτdx

)2

≤ α5

(
sup
ψ

∫ t+s

t

∫
Dε
θε(x, τ)∇ψ(x)dxdτ

)2

≤ α5

(∫ t+s

t

‖θε(τ)‖L2(Dε)dτ

)2

.

From this and Cauchy-Schwartz’s inequality, we have

E
∫ T−s

0

∥∥∥∥∫ t+s

t

∇βεθε(τ)dτ

∥∥∥∥2

V′ (Dε)

dt

≤ α5E
∫ T−s

0

(∫ t+s

t

‖θε(τ)‖L2(Dε)dτ

)2

dt

≤ α5E
∫ T−s

0

(∫ t+s

t

12dτ

)(∫ t+s

t

‖θε(τ)‖2L2(Dε)dτ

)
dt

≤ sα5E
∫ T

0

‖θε(τ)‖2L2(Dε)dt ≤ Cs. (32)

Similarly, for the third term, we have∫ T−s

0

∥∥∥∥∫ t+s

t

fε1(τ)dτ

∥∥∥∥2

V′ (Dε)

dt ≤
∫ T−s

0

(∫ t+s

t

‖fε1(τ)‖L2(Dε)dτ

)2

dt

≤
∫ T−s

0

(∫ t+s

t

12dτ

)(∫ t+s

t

‖fε1(τ)‖2L2(Dε)dτ

)
dt

≤ s
∫ T

0

‖fε1(τ)‖2L2(Dε)dt ≤ Cs. (33)

Lastly, since L2(Dε) is continuously embedded in V ′
(Dε), we use Itô’s isometry

and Fubini’s Lemma to obtain

E
∫ T−s

0

∥∥∥∥∫ t+s

t

fε2(τ)dW1(τ)

∥∥∥∥2

V′ (Dε)

≤ E
∫ T−s

0

∫ t+s

t

‖fε2(τ)‖2L2(Dε) d(τ)

≤ E
∫ T−s

0

(∫ t+s

t

12dτ

) 1
2
(∫ t+s

t

‖fε2(τ)‖4L2(Dε) d(τ)

) 1
2

≤ s 1
2

(∫ T

0

‖fε2(τ)‖4L2(Dε) d(τ)

) 1
2

≤ Cs 1
2 . (34)

Using estimates (31),(32), (33) and (34) into (29), we obtain (26). In a similar
manner we can prove (27).
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4. Unfolding operator. In this part, we will quickly discuss the key definitions
and properties associated with unfolding operators. The periodic unfolding mecha-
nism was first presented in [6] (see also [8] for a complete description and thorough-
depth proofs). It was broadened to perforated domains in [7, 9], and then further
refined in [15] to address time-dependent problems (see also [12, 33, 18]). Let us
decompose any x ∈ Rn as x = ε

([
x
ε

]
Y

+
{
x
ε

}
Y

)
where

[
x
ε

]
Y

represents the unique

integer part for x
ε and

{
x
ε

}
Y

the non-integer part of x
ε .

Definition 4.1. For a Lebesgue measurable vector v : (x, t) ∈ Dε × (0, T ) →
v(x, t) ∈ Rn, n = 1, 2 or 3. We define

Tε(v)(x, y, t) =


v
(
ε
[
x
ε

]
Y

+ εy, t
)

a.e. (x, y, t) ∈ D̂ε × Y2 × (0, T ),

0 a.e. (x, y, t) ∈ Λε × Y2 × (0, T ).

The next lemma states the main features of the unfolding operator within do-
mains with periodic perforations.

Lemma 4.2. [12, 33, 18]. The above constructed operator satisfies the following:

1. Tε : Lp(0, T ; [Lq(Dε)]n) → Lp(0, T ; [Lq(D × Y2)]n), 1 ≤ p, q ≤ ∞, n = 1, 2 or
3 is continuous and linear.

2. For all vectors v, u ∈ Lp(0, T ; [Lq(Dε)]n), we have Tε(v · u) = Tε(v) ·Tε(u).
3. For all vectors v ∈ Lp(0, T ; [Lq(D)]n), we have

Tε(v)→ v strongly in Lp(0, T ; [Lq(D)]n). (35)

4. For all vectors v ∈ Lp(0, T ; [Lq(Dε)]n), we have∫
D̂ε×(0,T )

v(x, t)dxdt

=

∫
Dε×(0,T )

v(x, t)dxdt−
∫

Λε×(0,T )

v(x, t)dxdt

=
1

|Y |

∫
D×Y2×(0,T )

Tε(v)(x, y, t)dxdydt. (36)

5. If vε ∈ Lp(0, T ; [Lq(D)]n) where

vε → v strongly in Lp(0, T ; [Lq(D)]n).

Then

Tε(vε)→ v strongly in Lp(0, T ; [Lq(D × Y2)]n).

6. Let v ∈ LP (0, T ;Lq(Y2)) be a Y−periodic vector with vε(x, t) = v(xε , t), then
Tε(vε)(x, y, t) = v(y, t) a.e. in D × Y2 × (0, T ).

5. Compactness and convergences in probability. Before we obtain some
probabilistic compactness that leads to probabilistic convergences, we should note
that we are working on a varying domain, which necessitates extra caution when
passing to the limit; for this, we employ the concept of macro-micro operators. For
all v ∈ Lp(0, T ; [Lq(Dε)]n), n = 1, 2 or 3 and 1 ≤ p, q ≤ ∞, we define the macro
operator

Qε : v ∈ Lp(0, T ; [Lq(Dε)]n) 7−→ Qε(v) ∈ Lp(0, T ; [W 1,∞(D̂Yε )]n),



2360 HAKIMA BESSAIH, MOGTABA MOHAMMED AND ISMAIL M. TAYEL

as:

Qε(v)(εξ, t) =
1

|Y2|

∫
Y2

v(ε (ξ + y) , t)dy,

where the remainder Rε(v) = v−Qε(v) almost everywhere in
[
D̂ε ∩ D̂Yε

]
× (0, T ),

for more details on the set D̂Yε , we refer to [12]. For simplicity, we write

Qε(v) = v̄ and Rε(v) =
¯
v.

With the above setting, the oscillations resulting from perforations are shifted
into a second variable y, which is related to a fixed domain Y2, while the original
variable x is in the domain D. Now, one uses the estimates in Theorem 3.1 and
follow along the lines of [12, Proposition 2.15] to obtain the following result.

Theorem 5.1. Assume that
(
uε, ∂u

ε

∂t , θ
ε
)

is the solution of system (1) and the
assumptions A.1.-A.5. hold, then

E
∥∥∥∥∂ūε∂t

∥∥∥∥2

L2(0,T ;[L2(D̂Y
ε )]n)

+ E‖ūε‖2
L2(0,T ;V(D̂Y

ε ))

+E‖θ̄ε‖2
L2(0,T ;L2(D̂Y

ε ))
+ E‖θ̄ε‖2

L2(0,T ;S(D̂Y
ε ))
≤ C, (37)

E ‖
¯
uε‖2L2(0,T ;[L2(D̂ε∩D̂Y

ε )]n) + E ‖
¯
θε‖2L2(0,T ;L2(D̂ε∩D̂Y

ε )) ≤ εC, (38)

and

E ‖
¯
uε‖2L2(0,T ;V(D̂ε∩D̂Y

ε )) + E ‖
¯
θε‖2L2(0,T ;S(D̂ε∩D̂Y

ε )) ≤ C. (39)

Another bounds on the macro operator is needed before obtaining probabilistic
compactness. This is the object of the following theorem.

Theorem 5.2. Let the assumptions of theorem 3.2 hold, then∥∥∥∥∂ūε∂t
∥∥∥∥2

l2(Ω;L2(0,T ;V′ (D̂Y
ε ))

≤ C
∥∥∥∥∂uε∂t

∥∥∥∥2

l2(Ω;L2(0,T ;V′ (Dε))

(40)

and ∥∥θ̄ε∥∥2

l2(Ω;L2(0,T ;V′ (D̂Y
ε ))
≤ C ‖θε‖2l2(Ω;L2(0,T ;V′ (Dε)) (41)

Proof. Let us first note that∥∥∥∥∂ūε

∂t

∥∥∥∥2

l2(Ω;L2(0,T ;V′ (D̂Y
ε ))

= E
∫ T

0

∥∥∥∥∂ūε

∂t
(t)

∥∥∥∥2

V′ (D̂Y
ε )

dt (42)

Now, for all φ ∈ V(D̂Yε ) with ‖φ‖V(D̂Y
ε ) = 1, we have∥∥∥∥∂ūε

∂t

∥∥∥∥2

V′ (D̂Y
ε )

= sup
φ

∣∣∣∣〈∂ūε

∂t
, φ

〉∣∣∣∣ = sup
φ

∣∣∣∣∣
∫
D̂Y
ε

∂ūε

∂t
φdx

∣∣∣∣∣ ,
≤ sup

φ

1

|Y2|

∣∣∣∣∣
∫
D̂Y
ε

[∫
Y2

∣∣∣∣∂uε

∂t
(ε(ξ + y), t)

∣∣∣∣ dy]φdx
∣∣∣∣∣ ,

≤ sup
φ

1

εn|Y2|

∣∣∣∣∣
∫
D̂Y
ε

[∫
ε(ξ+Y2)

∣∣∣∣∂uε

∂t
(x, t)

∣∣∣∣ dx
]
φdx

∣∣∣∣∣ .
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Using Fubini’s theorem, we have∥∥∥∥∂ūε

∂t

∥∥∥∥2

V′ (D̂Y
ε )

≤ sup
φ

ε(ξ + Y2)

εn|Y2|

∣∣∣∣∣
∫
D̂Y
ε

∣∣∣∣∂uε

∂t
(x, t)

∣∣∣∣φdx
∣∣∣∣∣

≤ C sup
φ

∫
Dε

∣∣∣∣∂uε

∂t
(x, t)φ(x, t)

∣∣∣∣ dx = C

∥∥∥∥∂uε

∂t

∥∥∥∥2

V′ (Dε)

.

From this and (42), we obtain (40). Similarly we obtain the proof of (41).

The results of Theorems 5.2 and 3.2 lead to the following finite difference estimate

for the macro operators in the fixed domain D̂Yε .

E
∫ T−s

0

∥∥∥∥∂ūε

∂t
(t+ s)− ∂ūε

∂t
(t)

∥∥∥∥2

V′ (D̂Y
ε )

dt ≤ Cs, (43)

and

E
∫ T−s

0

‖θ̄ε(t+ s)− θ̄ε(t)‖2V′ (D̂Y
ε )
dt ≤ Cs. (44)

The extension by zero of
(
ūε, ∂ū

ε

∂t , θ̄
ε
)

from D̂Yε to D and of
(

¯
uε,

∂
¯
uε

∂t , ¯
θε
)

from

D̂ε ∩ D̂Yε to D satisfies the estimates (37), (38), (39), (43) and (44). We now define
the set Kω = K1 ×K2 ×K3, where

K1 =

{
v : v ∈ l2(Ω;L2(0, T ;V(D)) and

∂v

∂t
∈ l2(Ω;L2(0, T ; [L2(D)]n))

}
,

K2 =

{
w : w ∈ L2(Ω;L2(0, T ; [L2(D)]n))

and E sup
n

1

an
sup
|s|≤bn

(∫ T−s

0

‖w(t+ s)−w(t)‖2V′ (D)
dt

)
<∞

}
,

and

K3 =

{
ϕ : ϕ ∈ L2(Ω;L2(0, T ;L2(D))) ∩ L2(Ω;L2(0, T ;S(D)))

and E sup
n

1

an
sup
|s|≤bn

(∫ T−s

0

‖ϕ(t+ s)− ϕ(t)‖2S′ (D)
dt

)
<∞

}
,

where the sequences {an} and {bn} satisfy an, bn ≥ 0 for all n ∈ N and an, bn → 0
when n → ∞. It is clear that the extension (with the same notation) by zero

of
(
ūε, ∂ū

ε

∂t , θ̄
ε
)

belongs to the set Kω. Also, the set K1 is compactly embedded

in the space L2(Ω;L2(0, T ;L2(D))). In [20] it was proved that K2 is compactly

embedded in L2(Ω;L2(0, T ;V ′
(D))) for scalar functions, also in [1] it was shown

that K3 is compact in L2(Ω;L2(0, T ;L2(D))). Let us denote to the probability law

of
(
ūε, ∂ū

ε

∂t , θ̄
ε,W1,W2

)
by Πε, then one can follow along the lines of [20, Lemma 7

] to show that Πε is tight in Xω = Kω × C([0, T ];R) × C([0, T ];R). This tightness
leads to relative compactness (and hence weak convergence) by Prokhorov’s theorem
i.e. there exists a subsequence Πεn of Πε and a probability low Π where Πε ⇀ Π
weakly in Xω. Now, we are able to apply Skorokhod’s representation theorem, by
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which we construct a new probability space (Ω1,P1,F1) together with the sequence

of random variables
(
ūεn , ∂

¯uεn

∂t ,
¯θεn ,W εn

1 ,W εn
2

)
and

(
ū, ∂ū∂t , θ̄, Ŵ1, Ŵ2

)
such that(

ūεn ,
∂ūεn

∂t
, ¯θεn ,W εn

1 ,W εn
2

)
→
(

ū,
∂ū

∂t
, θ̄, Ŵ1, Ŵ2

)
in B(Xω)P1 − a.s., (45)

as n → ∞ and εn → 0, where B(Xω) is the Borel set of Xω. The system (8)-(9) is

satisfied by
(
ūεn , ∂

¯uεn

∂t ,
¯θεn ,W εn

1 ,W εn
2

)
, as we claim in the following lemma. As a

result, we show that the sequence of solutions has better properties—that is, strong
probabilistic convergence. For the proof, we adhere to the logic in [28, P.352-356].

Lemma 5.3. Take the σ−algebra generated by
{
ūεn , ∂

¯uεn

∂t ,
¯θεn ,W εn

1 ,W εn
2

}
0≤s≤t

(denoted by F1t) as a filtration on the Skorokhod’s probability space (Ω1,P1,F1).
Then

(1)
(
Ŵ1, Ŵ2

)
are correlated one-dimensional Wiener processes.

(2)
(
uεn , ∂u

εn

∂t , θ
εn ,W εn

1 ,W εn
2

)
admits with P1−almost surely the following:∫ t

0

(ρεnd
∂uεn

∂t
, ψ)L2(Dεn )dτ +

∫ t

0

(Aεne(uεn), e(ψ))L2(Dεn )dτ

−
∫ t

0

(βεnθεn ,∇ψ)L2(Dεn )dτ

=

∫ t

0

(fεn1 , ψ)L2(Dεn )dτ +

∫ t

0

(fεn2 , ψ)L2(Dεn )dW1(τ), (46)

and∫ t

0

(ρεncεnv dθ
εn , φ)L2(Dεn )dτ +

∫ t

0

(κεn∇θεn ,∇φ)L2(Dεn )dτ

−
∫ t

0

(βεn
∂uεn

∂t
,∇φ)L2(Dεn )dτ + εn

∫ t

0

(∇βεn ∂u
εn

∂t
, φ)L2(Dεn )dτ

=

∫ t

0

(gεn1 , ψ)L2(Dεn )dτ +

∫ t

0

(gεn2 , ψ)L2(Dεn )dW2(τ), (47)

for all (ψ, φ) ∈ S(Dεn) × V(Dεn). With the initial conditions uεn(x, 0) =

hεn1 (x), ∂uεn

∂t (x, 0) = hεn2 (x) and θεn(x, 0) = hεn3 (x).

6. Homogenization results. For the sake of brevity, we will remove the index n
from εn in this section. We have the following theorem

Theorem 6.1. Suppose that the assumptions of Theorem 3.2 hold and ‖hε1‖V(Dε) ≤
C such that(

h̃ε1, h̃
ε
2

)
⇀ ϑ (h1,h2) weakly in [L2(D)]n × [L2(D)]n, (48)(

f̃ε1, f̃
ε
2

)
⇀ ϑ (f1, f2) weakly in L2(0, T ; [L2(D)]n)× L2(0, T ; [L2(D)]n), (49)(

g̃ε1, g̃
ε
2,
)
⇀ ϑ (g1, g2) weakly in L2(0, T ;L2(D))× L2(0, T ;L2(D)), (50)

h̃ε3 ⇀ ϑh3 weakly in L2(D). (51)
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Furthermore, let
(
uε, ∂u

ε

∂t , θ
ε,W ε

1 ,W
ε
2

)
be the solution of system (46)-(47). Then

there exists a set of random variables
{
u, û, ∂u∂t , θ, θ̂, Ŵ1, Ŵ2

}
defined on the proba-

bility space (Ω1,P1,F1) such that

1. Tε(uε) ⇀ u weakly in L2(Ω, L(0, T ; [L2(D;W 1,2(Y2))]n)), P1 − a.s..
2. Tε(uε)→ u strongly in L2(Ω, L(0, T ; [L2(D;W 1,2(Y2))]n)), P1 − a.s..
3. Tε(∇uε) ⇀ ∇xu+∇yû weakly in L2(Ω, L2(0, T ; [L2(D×Y2)]n×n)), P1−a.s..
4. Tε

(
∂uε

∂t

)
⇀ ∂u

∂t weakly in L2(Ω, L2(0, T ; [L2(D × Y2)]n)), P1 − a.s..
5. Tε(θε) ⇀ θ weakly in L2(Ω, L(0, T ; [L2(D;W 1,2(Y2))]n)), P1 − a.s..
6. Tε(θε)→ θ strongly in L2(Ω, L(0, T ; [L2(D;W 1,2(Y2))]n)), P1 − a.s..
7. Tε(∇θε) ⇀ ∇xθ +∇y θ̂ weakly in L2(Ω, L2(0, T ; [L2(D × Y2)]n)), P1 − a.s.,

where

u ∈ L2(Ω;L2(0, T ;V(D)),
∂u

∂t
∈ L2(Ω;L2(0, T ; [L2(D)]n)),

θ ∈ L2(Ω;L2(0, T ;V(D)) ∩ L2(Ω;L2(0, T ;L2(D))),

û ∈ L2(Ω;L2(0, T ; [L2(D;W 1,2
per(Y2))]n)), θ̂ ∈ L2(Ω;L2(0, T ;L2(D;W 1,2

per(Y2))),

with MY2(û) =MY2(θ̂) = 0 is a unique probabilistic solution to the system:

|Y2|MY2
(ρ)

∫
D

d

(
∂u

∂t

)
ϕdx

+

∫
D×Y2

A(y)(∇xu +∇yû) · (∇xϕ+∇yϕ̂)dxdydt

+ |Y2|MY2
(β)

∫
D

∇θϕdxdt = |Y2|
∫
D

f1ϕdxdt

+ |Y2|
∫
D

f2ϕdŴ1, (52)

and

|Y2|MY2
(ρcv)

∫
D

dθψdx

+

∫
D×Y2

(κ(y)∇xθ +∇y θ̂) · (∇xψ +∇yψ̂)dxdydt

+ |Y2|MY2
(β)

∫
D

div

(
∂u

∂t

)
ψdxdt = |Y2|

∫
D

g1ψdxdt

+ |Y2|
∫
D

g2ψdŴ2, (53)

where

û(t, x, y) = Φ(y)∇xu(x, t) + V (y)θ(x, t),

and

θ̂(t, x, y) = Ψ(y) · ∇xθ(x, t) + V (y)
∂u

∂t
(x, t),

such that Φ = (Φklm)1≤k,l,m≤n, V = ((Vk)1≤k≤n) and Ψ = ((Ψk)1≤k≤n) solve
uniquely the following cell problems

div (A(y)∇y(Φklm + ym)) = 0 in Y2,

A(y)∇y(Φklm + ym) · ν = 0 on ∂Y1,

MY2
(Φklm) = 0 Φklm is Y−periodic,

(54)
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
divy (A(y)(∇yV (y))− β(y)) = 0 in Y2,

A(y) [(∇yV (y))− β(y)] · ν = 0 on ∂Y1,

MY2
(V ) = 0 V is Y−periodic,

(55)

and 
div (κ(y)∇y(Ψk + yk)) = 0 in Y2,

κ(y)∇y(Ψk + yk) · ν = 0 on ∂Y1,

MY2(Ψk) = 0 Ψk is Y−periodic.

(56)

Moreover,
(
u, ∂u∂t , θ

)
a unique solution to the strong formulation:

MY2(ρ)d
(
∂u
∂t

)
(x, t)−A0∆u(x, t)dt+ β0∇θ(x, t)dt

= f1(x, t))dt+ f2(x, t)dŴ1(t), in Ω×D × (0, T ),

MY2
(ρcv)dθ(x, t)− κ0∆θ(x, t)dt+ β0div

(
∂u
∂t

)
(x, t)dt

= g1(x, t))dt+ g2(x, t)dŴ2(t), in Ω×D × (0, T ),

u(x, t) = 0 = θ(x, t) on Ω× ∂D × (0, T ),

u(x, 0) = h1(x), ∂u
∂t (x, 0) = h2(x) and θ(x, 0) = h3(x) in D,

(57)

where the constant tensor , A0 = (a0
ijkl)(1≤i,j,k,l≤n) is symmetric for all i, j, k and l

and elliptic where

a0
ijkl =

1

|Y2|

∫
Y2

(
aijkl(y) + aijmn(y)

∂Φklm
∂yn

(y)

)
dy, (58)

0 6= β0 = (β0
ij)(1≤i,j≤n) such that

β0
ij =

1

|Y2|

∫
Y2

(
βij(y)− aijmn(y)

∂Vm
∂yn

(y)

)
dy, (59)

and κ0 = (κ0
ij)(1≤i,j≤n) is elliptic such that

κ0
ij =

1

|Y2|

∫
Y2

(
κij(y) + κik(y)

∂Ψj

∂yk
(y)

)
dy. (60)

Proof. By considering the a priori bounds found in Theorem 3.1 and arguing as in
[12, Lemmas 2.16 and 2.17], we establish that the solution of system (1) fulfills the
following convergences (up to subsequence) P1−a.s.

Tε(ūε) ⇀ u weakly in L2(Ω, L2(0, T ; [L2(D;W 1,2(Y2))]n)), P1 − a.s., (61)

Tε(∇ūε) ⇀ ∇xu weakly in L2(Ω, L2(0, T ; [L2(D × Y2)]n×n)), P1 − a.s., (62)

1

ε
Tε(

¯
uε) ⇀ û weakly in L2(Ω, L2(0, T ; [L2(D;W 1,2(Y2))]n)), P1 − a.s., (63)

Tε(∇
¯
uε) ⇀ ∇yû weakly in L2(Ω, L2(0, T ; [L2(D;W 1,2(Y2))]n×n)) P1 − a.s., (64)

Tε(
¯
uε)→ 0 strongly in L2(Ω, L2(0, T ; [L2(D;W 1,2(Y2))]n)), P1 − a.s., (65)

Tε
(
∂uε

∂t

)
⇀

∂u

∂t
weakly in L2(Ω, L2(0, T ; [L2(D × Y2)]n×n)), P1 − a.s., (66)

Tε(θ̄ε) ⇀ θ weakly in L2(Ω, L2(0, T ;L2(D;W 1,2(Y2)))), P1 − a.s., (67)



HOMOGENIZATION FOR STOCHASTIC THERMOELASTIC MODEL 2365

Tε(∇θ̄ε) ⇀ ∇xθ weakly in L2(Ω, L2(0, T ; [L2(D × Y2)]n)), P1 − a.s., (68)

1

ε
Tε(

¯
θε) ⇀ θ̂ weakly in L2(Ω, L2(0, T ;L2(D;W 1,2(Y2)))), P1 − a.s., (69)

Tε(∇
¯
θε) ⇀ ∇y θ̂ weakly in L2(Ω, L(0, T ; [L2(D;W 1,2(Y2))]n)) P1 − a.s., (70)

Tε(
¯
θε)→ 0 strongly in L2(Ω, L2(0, T ;L2(D;W 1,2(Y2)))), P1 − a.s., (71)

where

u ∈ L2(Ω;L2(0, T ;V(D)),
∂u

∂t
∈ L2(Ω;L2(0, T ; [L2(D)]n)),

θ ∈ L2(Ω;L2(0, T ;V(D)) ∩ L2(Ω;L2(0, T ;L2(D))),

û ∈ L2(Ω;L2(0, T ; [L2(D;W 1,2
per(Y2))]n)), θ̂ ∈ L2(Ω;L2(0, T ;L2(D;W 1,2

per(Y2))),

with MY2
(û) = MY2

(θ̂) = 0. Apart from the aforementioned convergences, the
strong convergence (45) that is derived from Skorokhod’s representation theorem
and Lemma 4.2 (5) gives us the following:

Tε(ūε)→ u strongly in [H(D × Y2)]n, P1 − a.s., (72)

Tε(θ̄ε)→ θ strongly in H(D × Y )2), P1 − a.s. (73)

Convergences (61)-(73), gives the desired convergences (1)-(7). Let’s now test
equations (46) and (47) by v(x)w(t), where (v, w) ∈ C∞0 (D) × C∞0 ([0, T ]) and
in each of its terms, we pass to the limit using the above convergences and the
properties of the unfolding operator. We have

lim
ε→0

∫ T

0

∫
Dε
ρεd

(
∂uε

∂t

)
(x, t)v(x)w(t)dxdt

= − lim
ε→0

∫ T

0

∫
D×Y2

ρ(y)Tε
(
∂uε

∂t

)
Tε(v)

dw

dt
dxdydt

= −|Y2|MY2
(ρ)

∫ T

0

∫
D

∂u

∂t
(x, t)v(x)

dw

dt
(t)dxdt. (74)

For the second term and third term, we have

lim
ε→0

∫ T

0

∫
Dε
Aε∇uε(x, t)∇v(x)w(t)dxdt

= lim
ε→0

∫ T

0

∫
D×Y2

Tε (Aε)Tε (∇uε)Tε(∇v)wdxdydt

=

∫ T

0

∫
D×Y2

A(y) (∇u(x, t) +∇yû(x, y, t))∇v(x)w(t)dxdydt. (75)

Similarly, we have

lim
ε→0

∫ T

0

∫
Dε
∇ (βεθε) v(x)w(t)dxdt

= − lim
ε→0

∫ T

0

∫
D×Y2

β(y)Tε (θε)Tε (∇v)w(t)dxdt

= −
∫ T

0

∫
D×Y2

β(y)θ(x, t)∇v(x)w(t)dxdydt. (76)
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For the first term on the right hand side of (46), we easily use the weak limit
(49) to get

lim
ε→0

∫ T

0

∫
D

f̃ε1(x, t)v(x)w(t)dxdt

= |Y2|
∫ T

0

∫
D

f1(x, t)v(x)w(t)dxdt. (77)

As for the stochastic integral, we write

lim
ε→0

∫ T

0

∫
D

f̃ε2(x, t)v(x)w(t)dxdW ε
1 (t)

= lim
ε→0

∫ T

0

∫
D

f̃ε2(x, t)v(x)w(t)dxd[W ε
1 (t)− Ŵ1(t)]

+ lim
ε→0

∫ T

0

∫
D

f̃ε2(x, t)v(x)w(t)dxdŴ1(t). (78)

For the second term on the right hand side of (78), we use the weak convergence
(49) and stochastic convergence theorem by Rozovskii [27, Theorem 4, pg 63] to get

lim
ε→0

∫ T

0

∫
D

f̃ε2(x, t)v(x)w(t)dxdŴ1(t)

= |Y2|
∫ T

0

∫
D

f2(x, t)v(x)w(t)dxdŴ1(t).

For the first term on the right hand side of (78), we define a regularization

function to the intensity f̃ε2 (denoted by f̃ε2δ), where f̃ε2δ is differentiable in time,

‖f̃ε2δ‖L2(0,T ;L2(D)) ≤ C‖f̃ε2‖L2(0,T ;L2(D)) and

f̃ε2δ → f̃ε2 strongly in L2(0, T ;L2(D)) as δ → 0. (79)

With this setting, we rewrite the first term on the right hand side of (78) as

lim
ε→0

∫ T

0

∫
D

f̃ε2(x, t)v(x)w(t)dxd[W ε
1 (t)− Ŵ1(t)]

= lim
ε→0

∫ T

0

∫
D

[f̃ε2(x, t)− f̃ε2δ(x, t)]v(x)w(t)dxd[W ε
1 (t)− Ŵ1(t)]

+ lim
ε→0

∫ T

0

∫
D

f̃ε2δ(x, t)v(x)w(t)dxd[W ε
1 (t)− Ŵ1(t)]. (80)

Because of the strong convergence (79) and Burkholder-Davis-Gundy’s inequal-
ity, the first term on the right-hand side of (80) approaches to zero with probability
almost surly. We use the integration by parts (because the regularization is differ-
entiable in t) and the strong convergence (45) for the second term. As a result, the
second term also attends to zero. Thus

lim
ε→0

∫ T

0

∫
D

f̃ε2(x, t)v(x)w(t)dxdW ε
1 (t)

= |Y2|
∫ T

0

∫
D

f2(x, t)v(x)w(t)dxdŴ1(t). (81)
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The following is obtained by combining convergences (74), (75), (76), (77) and
(81)

|Y2|MY2
(ρ)

∫ T

0

∫
D

d

(
∂u

∂t

)
(x, t)v(x)w(t)dxdt

+

∫ T

0

∫
D×Y2

A(y) (∇u(x, t) +∇yû(x, y, t)) · ∇v(x)w(t)dxdydt

−
∫ T

0

∫
D×Y2

β(y)θ(x, t)∇v(x)w(t)dxdydt

= |Y2|
∫ T

0

∫
D

f1(x, t)v(x)w(t)dxdt

+ |Y2|
∫ T

0

∫
D

f1(x, t)v(x)w(t)dxdŴ1(t). (82)

In a similar way we pass to the limit into the heat equation, we have

lim
ε→0

∫ T

0

∫
Dε
ρεcεvdθ

ε(x, t)v(x)w(t)dx

= −|Y2|MY2
(ρcv)

∫ T

0

∫
D

θ(x, t)v(x)
dw

dt
(t)dxdt, (83)

lim
ε→0

∫ T

0

∫
Dε
κε∇θε(x, t)∇v(x)w(t)dxdt

=

∫ T

0

∫
D×Y2

κ(y)
(
∇θ(x, t) +∇y θ̂(x, y, t)

)
∇v(x)w(t)dxdydt, (84)

lim
ε→0

∫ T

0

∫
Dε
βε(x)

∂uε

∂t
(x, t)∇v(x)w(t)dxdt

=

∫ T

0

∫
D×Y2

β(y)
∂u

∂t
(x, t)∇v(x)w(t)dxdydt. (85)

For the following term we note that εTε (∇βε) = Tε (∇yβε) = ∇yβ(y) and from
the assumption A.6. and [11, Proposition 3.49], we have MY2

(∇yβ) = 0. Then

lim
ε→0

∫ T

0

∫
Dε
ε∇βε(x)

∂uε

∂t
(x, t)v(x)w(t)dxdt

= lim
ε→0

∫ T

0

∫
D×Y2

εTε (∇βε)Tε
(
∂uε

∂t

)
Tε (v)w(t)dxdt

= lim
ε→0

∫ T

0

∫
D×Y2

εTε (∇βε)Tε
(
∂uε

∂t

)
Tε (v)w(t)dxdt

= lim
ε→0

∫ T

0

∫
D×Y2

Tε (∇yβε)Tε
(
∂uε

∂t

)
Tε (v)w(t)dxdt

= |Y2|MY2(∇yβ)

∫ T

0

∫
D

∂u

∂t
(x, t)v(x)w(t)dxdt = 0. (86)
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As in (77) and (81), we obtain the corresponding limits and thus we have:

|Y2|MY2(ρcv)

∫ T

0

∫
D

dθ(x, t)v(x)w(t)dx

+

∫ T

0

∫
D×Y2

κ(y)(∇xθ(x, t) +∇y θ̂(x, y, t)) · ∇v(x)w(t)dxdydt

−
∫ T

0

∫
D×Y2

β(y)
∂u

∂t
(x, t)∇v(x)w(t)dxdydt

= |Y2|
∫ T

0

∫
D

g1(x, t)v(x)w(t)dxdt

+ |Y2|
∫ T

0

∫
D

g2(x, t)v(x)w(t)dxdŴ2. (87)

The aim now is to identify the functions û and θ̂. To do this, εv(x)ψε(x)w(t) is
substituted for the test function v(x)w(t), where ψ ∈W 1,2

per(Y2). It is clear that

Tε(εvψε)→ 0 strongly in L2(D × Y2), (88)

and

Tε (∇ (εvψε)) = ε(Tε(∇v)) + Tε(v∇yψ)→ v∇yψ strongly in L2(D × Y2). (89)

The following convergences hold:

lim
ε→0

ε

∫ T

0

∫
Dε
ρεd

(
∂uε

∂t

)
(x, t)v(x)ψε(x)w(t)dxdt

= − lim
ε→0

ε

∫ T

0

∫
D×Y2

ρ(y)Tε
(
∂uε

∂t

)
Tε(v)Tε(ψε)

∂w

∂t
dxdydt = 0. (90)

In similar way and in view of (89), we have

lim
ε→0

ε

∫ T

0

∫
Dε
Aε∇uε(x, t)∇ (v(x)ψε(x))w(t)dxdt

=

∫ T

0

∫
D×Y2

A(y) (∇u +∇yû) (x, t)v(x)∇yψ(y)w(t)dxdydt, (91)

− lim
ε→0

ε

∫ T

0

∫
Dε
∇ (βεθε) (x, t)v(x)ψε(x)w(t)dxdt

= lim
ε→0

∫ T

0

∫
Dε
βεθε(x, t)∇ (εv(x)ψε(x))w(t)dxdt

=

∫ T

0

∫
D×Y2

β(y)θ(x, t)v(x)∇yψ(y)w(t)dxdydt, (92)

and

lim
ε→0

ε

∫ T

0

∫
D

f̃ε1(x, t)v(x)ψε(x)w(t)dxdt = 0. (93)

The stochastic integral treated using Burkhlder-Davis-Gundy’s inequality as fol-
lows

lim
ε→0

εE1 sup
t

∣∣∣∣∣
∫ T

0

∫
D

f̃ε2(x, t)v(x)ψε(x)w(t)dxdW ε
1 (t)

∣∣∣∣∣
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≤ C lim
ε→0

ε

(∫ T

0

w(t)

(∫
D

f̃ε2(x, t)v(x)ψε(x)dx

)2

dt

) 1
2

= 0. (94)

Convergences (90)-(94) and the weak formulation (46) lead to∫ T

0

∫
D×Y2

[A(y) (∇u +∇yû(x, y, t))− β(y)θ] v∇yψ(y)wdxdydt = 0. (95)

This gives,

divy [A(y) (∇u +∇yû(x, y, t))− β(y)θ] = 0, (96)

Following [31] and because u and θ are independent of y and MY2
(û) = 0, we

may express the solution of (96) as:

û(t, x, y) = Φ(y)∇xu(x, t) + V (y)θ(x, t), (97)

where Φ = (Φklm)1≤k,l,m≤n is a 3-dimensional tensor and V = (Vm)1≤m≤n solve
uniquely the following cell problems

divy (A(y)∇y(Φklm + ym)) = 0 in Y2,

A(y)∇y(Φklm + ym) · ν = 0 on ∂Y1,

MY2
(Φklm) = 0 Φklm is Y−periodic,

and 
divy (A(y)(∇yVm(y))− β(y)) = 0 in Y2,

A(y) [(∇yV (y))− β(y)] · ν = 0 on ∂Y1,

MY2(V ) = 0 V is Y−periodic,

Following the same process as above, we get∫ T

0

∫
D×Y2

[
κ(y)

(
∇θ +∇y θ̂(x, y, t)

)
− β(y)

∂u

∂t

]
v∇yψ(y)wdxdydt = 0, (98)

from which we have

divy

[
κ(y)

(
∇θ +∇y θ̂(x, y, t)

)
− β(y)

∂u

∂t

]
= 0, (99)

Similar to the above we write

θ̂(t, x, y) = Ψ(y) · ∇xθ(x, t) + V (y)
∂u

∂t
(x, t), (100)

where V = (Vm)1≤m≤n is defined as above and Ψ = (Ψk)1≤k≤n solve uniquely the
following problem:

divy (κ(y)∇y(Ψk + yk)) = 0 in Y2,

κ(y)∇y(Ψk + yk) · ν = 0 on ∂Y1,

MY2(Ψk) = 0 Ψk is Y−periodic,

Using (97) into (82) and (100) into (87), we get

MY2
(ρ)d

(
∂u

∂t

)
(x, t)−A0∆u(x, t)dt+ β0∇θ(x, t)dt

= f1(x, t))dt+ f2(x, t)dŴ1(t), (101)

and

MY2
(ρcv)dθ(x, t)− κ0∆θ(x, t)dt+ β0div

(
∂u

∂t

)
(x, t)dt
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= g1(x, t))dt+ g2(x, t)dŴ2(t), (102)

where A0 and κ0 are constant elliptic matrices given by (58) and (60) respectively.
Now, let’s show that the initial conditions are satisfied. We choose as a test function
v(x)w(t) where (v, w) ∈ C∞0 (D)×C∞([0, T ]) and w(0) = 1 and w(T ) = 0. We have

−
∫ T

0

∫
Dε
ρε
(
∂uε

∂t

)
(x, t)v(x)

dw

dt
(t)dxdt−

∫
Dε
ρεhε2(x)v(x)dx

+

∫
Dε
Aε∇uε(x, t)∇v(x)w(t)dxdt

+

∫ T

0

∫
Dε
∇ (βεθε) (x, t)v(x)w(t)dxdt

=

∫ T

0

∫
Dε

fε1(x, t)v(x)w(t)dxdt+

∫ T

0

∫
Dε

fε2(x, t)v(x)w(t)dxdW ε
1 (t).

Making passage to the limit in the above equation, we get

− |Y2|MY2(ρ)

∫ T

0

∫
D

∂u

∂t
(x, t)v(x)

dw

dt
(t)dxdt

− |Y2|MY2
(ρ)

∫
D

h2(x)v(x)dx

+

∫ T

0

∫
D×Y2

A(y) (∇u +∇yû) (x, t)∇v(x)w(t)dxdydt

+ |Y2|MY2(β)

∫ T

0

∫
D

∇θ(x, t)v(x)w(t)dxdt

= |Y2|
∫ T

0

∫
D

f1(x, t)v(x)w(t)dxdt

+ |Y2|
∫ T

0

∫
D

f1(x, t)v(x)w(t)dxdŴ1(t). (103)

Integration by parts in the first term in (103) gives

|Y2|MY2
(ρ)

∫ T

0

∫
D

d

(
∂u

∂t
(x, t)

)
v(x)

dw

dt
(t)dxdt

+ |Y2|MY2(ρ)

∫ T

0

∫
D

∂u

∂t
(x, 0)v(x)dxdt− |Y2|MY2

(ρ)

∫
D

h2(x)v(x)dx

+

∫ T

0

∫
D×Y2

A(y) (∇u +∇yû) (x, t)∇v(x)w(t)dxdydt

+ |Y2|MY2
(β)

∫ T

0

∫
D

∇θ(x, t)v(x)w(t)dxdt

=|Y2|
∫ T

0

∫
D

f1(x, t)v(x)w(t)dxdt

+ |Y2|
∫ T

0

∫
D

f1(x, t)v(x)w(t)dxdŴ1(t).

From this and the limit problem (82), we have ∂u
∂t (x, 0) = h2(x). With the same

test function one can easily show that θ(x, 0) = h3(x). If we choose w(t) such
that w(0) = w(T ) = dw

dt (T ) = 0 and dw
dt (0) = 1, we show that u(x, 0) = h1(x).
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As a result, we were able to formulate the limit problem in both the weak and
strong formulations. However, the convergences were limited to sub-sequences; in
order for the entire sequence

(
uε, ∂u

ε

∂t , θ
ε,W ε

1 ,W
ε
2

)
to converge, it was necessary to

demonstrate that the limit
(
u, û, ∂u∂t , θ, θ̂, Ŵ1, Ŵ2

)
was uniquely determined. We

have the following theorem for this.

Theorem 6.2. The system (52) and (53) has at most one solution.

Proof. We first state that by standard argument, see for example [11] the functions

û(t, x, y) and θ̂(t, x, y) are unique solutions to (95) and (98) respectively.

Assume that
(
u1,

∂u1

∂t , θ1, Ŵ1, Ŵ2

)
and

(
u2,

∂u2

∂t , θ2, Ŵ1, Ŵ2

)
are two solutions

to the system (101) and (102) and write U = u1 − u2, ∂U
∂t = ∂u1

∂t −
∂u2

∂t and

V = θ1 − θ2. Applying Ito’s formula to the functions φ
(
t, ∂U∂t (t)

)
=
∥∥∂U
∂t (t)

∥∥2
and

ψ (t, V ) = ‖V (t)‖2, we get after integration by parts

d

[
MY2

(ρ2)

∥∥∥∥∂U

∂t

∥∥∥∥2

+ (A0e(U), e(U))

]
= −β0

(
∇V, ∂U

∂t

)
dt (104)

and

dMY2(ρ2c2v)‖V ‖2 + (κ0∇V,∇V )dt = β0

(
∂U

∂t
,∇V

)
dt. (105)

Adding together (104) and (105), we obtain

d

[
MY2(ρ2)

∥∥∥∥∂U

∂t

∥∥∥∥2

+ (A0e(U), e(U)) +MY2(ρ2c2v)‖V ‖2
]

+ (κ0∇V,∇V )dt = 0. (106)

Using the ellipticity of the matrices A0 and κ0, the assumptions on the data and
integration over (0, t), we complete the proof.

7. Convergence of associated energies and corrector results. In this section,
we study the asymptotic behaviour of the energy associated to the problem (1) to
the energy associated to the limit problem (57). Let us define the associated energies
for the problems (1) and (57). We have

Eε (uε, θε) (t) = E1

∥∥∥∥ρε ∂uε

∂t
(t)

∥∥∥∥2

L2(Dε)

+ E1 ‖ρεcεvθε(t)‖
2
L2(Dε)

+ E1

∫
Dε
Aεe(uε)(t)e(uε)(t)dx

+ 2E1

∫ t

0

∫
Dε
κε∇θε(τ) · ∇θε(τ)dxdτ, (107)

and

E (u, θ) (t) =MY2
(ρ2)E1

∥∥∥∥∂uε

∂t
(t)

∥∥∥∥2

L2(D)

+MY2
(ρ2c2v)E1 ‖θ(t)‖2L2(D)

+ E1

∫
D

A0e(u)(t)e(u)(t)dx

+ E1

∫ t

0

∫
D

κ0∇θ(τ)∇θ(τ)dxdτ. (108)
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As before, we apply Itô’s lemma to the function Φ(t, ∂u
ε

∂t (t)) = ‖ρε ∂u
ε

∂t (t)‖2L2(Dε)

in the first equation of system (1) and to the function Ψ(t, θε(t)) = ‖ρεcεvθε(t)‖2L2(Dε)

in the second equation of system (1). Next, we add up the resulting equations, take
the expectation and integrate from 0 to t ≤ T , we obtain

Eε (uε, θε) (t) = ‖ρεhε2‖2L2(Dε) + ‖ρ
εcεvh

ε
3‖2L2(Dε) +

∫
Dε
Aεe(hε1)e(h

ε
1)dx

+ 2E1

∫ t

0

(
fε1(τ),

∂uε

∂t
(τ)

)
L2(Dε)

dτ + 2E1

∫ t

0

(gε1(τ), θ
ε(τ))L2(Dε) dτ

+

∫ t

0

‖fε2(τ)‖2L2(Dε)dτ +

∫ t

0

‖gε2(τ)‖2L2(Dε)dτ. (109)

Following the same process, we obtain

E (u, θ) (t) =MY2
(ρ2) ‖h2‖2L2(D) +MY2

(ρ2c2v) ‖h3‖2L2(D)

+

∫
D

A0e(h1)e(h1)dx+ 2E1

∫ t

0

(
f1(τ),

∂u

∂t
(τ)

)
L2(D)

dτ

+ 2|E1

∫ t

0

(g1(τ), θ(τ))L2(D) dτ +

∫ t

0

‖f2(τ)‖2L2(D)dτ

+

∫ t

0

‖g2(τ)‖2L2(D)dτ. (110)

As usual when proving convergence of energies, some stronger assumptions on
the data are needed, see for example [12, 17]. So, we have the following assumptions:

‖hε2 − h2‖[L2(Dε)]n → 0 as ε→ 0, (111)

‖hε3 − h3‖L2(Dε) → 0 as ε→ 0, (112)

‖fε1 − f1‖L2(0,T ;[L2(Dε)]n) → 0 as ε→ 0, (113)

‖fε2 − f2‖L2(0,T ;[L2(Dε)]n) → 0 as ε→ 0, (114)

‖gε2 − g2‖L2(0,T ;[L2(Dε)]n) → 0 as ε→ 0, (115)

where (h2, h3) ∈ [L2(D)]n × L2(D), (f1, f2) ∈ L2(0, T ; [L2(Dε)]n) × L2(0, T ; [L2(Dε)]n)

and (g1, g2) ∈ L2(0, T ; [L2(Dε)]n)× L2(0, T ; [L2(Dε)]n). As for the function hε1, we
assume that it satisfies the following problem:

−div (Aεe(hε1)) = Lε (A0e(h1)) in Dε

Aεe(hε1) · ν = 0 on ∂Dε
0,

hε1 = 0 on ∂D,

such that h1 is given by (48) and the operator Lε (A0e(h1)) : V(Dε)→ R is defined
as:

Lε (A0e(h1)) (v) =

∫
Dε
A0e(h1)(˜̄v)|Dεdx, for all v ∈ V(Dε),

where, ˜̄v is the extension by zero to the macro operator of the function v. With
this assumptions, see [12, Proposition 4.2.], it is easy to see that, ‖hε1‖V(Dε) ≤ C
for some constant independent of ε, (48) hold true, and:∫

Dε
Aεe(hε1)e(hε1)dx→ |Y2|

∫
D

A0e(h1)e(h1)dx. (116)
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We now state and prove the convergence result for the energy associated with
the micro-model to the one associated with the macro-model.

Theorem 7.1. Let
(
uε, ∂u

ε

∂t , θ
ε,W ε

1 ,W
ε
2

)
be the solution of system (46)-(47) and

assume that (111)-(116) hold, then

Eε (uε, θε) (t)→ |Y2|E (u, θ) (t) strongly in C([0, T ]). (117)

Proof. We use the assumptions (111)-(115) together with [12, Proposition 2.12.] to
obtain

Tε(hε2)→ h2 strongly in [L2(D × Y2)]n, (118)

Tε(hε3)→ h3 strongly in L2(D × Y2), (119)

Tε(fε1)→ f1 strongly in L2(0, T ; [L2(D × Y2)]n), (120)

Tε(fε2)→ f2 strongly in L2(0, T ; [L2(D × Y2)]n), (121)

Tε(gε2)→ g2 strongly in L2(0, T ;L2(D × Y2)). (122)

Also, the integral on Λε for the square of the functions hε2, hε3, fε1, fε2, gε1, and gε2
converges to zero. We now pass to the limit on (109), from convergences (118) and
(119) and the definition of ρε and Aε we have the following two limits:

lim
ε→0

∫
Dε

(ρεhε2)
2
dx = lim

ε→0

∫
D×Y2

(Tε(ρε)Tε(hε2))
2
dxdy

lim
ε→0

∫
D×Y2

ρ2(y) (Tε(hε2))
2
dxdy = |Y2|MY2

(ρ2) ‖h2‖2L2(D) , (123)

and

lim
ε→0

∫
Dε

(ρεcεvh
ε
3)

2
dx = lim

ε→0

∫
D×Y2

(Tε(ρεcεv)Tε(hε3))
2
dxdy

lim
ε→0

∫
D×Y2

ρ2(y)c2v(y) (Tε(hε3))
2
dxdy = |Y2|MY2(ρ2c2v) ‖h3‖2L2(D) . (124)

From the weak convergence (66) and the strong convergence (120), we have

lim
ε→0

E1

∫ t

0

∫
Dε

fε1
∂uε

∂t
dxdτ = lim

ε→0
E1

∫ t

0

∫
D×Y2

Tε(fε1)Tε
(
∂uε

∂t

)
dxdydτ

= |Y2|E1

∫ t

0

∫
D

f1
∂u

∂t
dxdτ. (125)

From the weak convergence (50) and the strong convergence (6), we have

lim
ε→0

E1

∫ t

0

∫
Dε
gε1θ

εdxdτ = lim
ε→0

E1

∫ t

0

∫
D×Y2

Tε(gε1)Tε (θε) dxdydτ

= |Y2|E1

∫ t

0

∫
D

g1θdxdτ. (126)

From convergences (121) and (122), we have

lim
ε→0

E1

∫ t

0

∫
Dε

fε2f
ε
2dxdτ = lim

ε→0
E1

∫ t

0

∫
D×Y2

Tε(fε2)Tε (fε2) dxdydτ

= |Y2|E1

∫ t

0

∫
D

|f2|2dxdτ, (127)
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and

lim
ε→0

E1

∫ t

0

∫
Dε
gε2g

ε
2dxdτ = lim

ε→0
E1

∫ t

0

∫
D×Y2

Tε(gε2)Tε (gε2) dxdydτ

= |Y2|E1

∫ t

0

∫
D

|g2|2dxdτ. (128)

Combining convergences (123)-(128) together with (116), we see that

lim
ε→0
Eε (uε, θε) (t) = |Y2|E (u, θ) (t) for all t ∈ [0, T ].

So far, we have proved the point wise convergence of Eε (uε, θε) to E (u, θ), we
must now demonstrate that the sequence Eε (uε, θε) belongs to a compact subset of
C([0,T]) by demonstrating that Eε (uε, θε) is uniformly bounded and equicontinuous
on [0, T ], and so Arzela-Ascoli’s theorem will entail the proof. A direct application
of Theorem 3.1 in the definition (107) on easily see that |Eε (uε, θε) (t)| ≤ C for all
t ∈ [0, T ]. For the equicontinuity, we see that

|Eε (uε, θε) (t+ s)− Eε (uε, θε) (t)|

≤ 2E1

∫ t+s

t

∫
Dε

∣∣∣∣fε1(τ)
∂uε

∂t
(τ)

∣∣∣∣ dxdτ
+ 2E1

∫ t+s

t

∫
Dε
|gε1(τ), θε(τ)| dxdτ

+

∫ t+s

t

‖fε2(τ)‖2L2(Dε)dτ +

∫ t+s

t

‖gε2(τ)‖2L2(Dε)dτ

≤ 2E1

(∫ t+s

t

∥∥∥∥∂uε

∂t
(τ)

∥∥∥∥2

[L2(Dε)]n
dτ

) 1
2 (∫ t+s

t

‖fε1(τ)‖2[L2(Dε)]n dτ

) 1
2

+ 2E1

(∫ t+s

t

‖θε(τ)‖2L2(Dε) dτ

) 1
2
(∫ t+s

t

‖gε1(τ)‖2L2(Dε) dτ

) 1
2

+

(∫ t+s

t

12dτ

) 1
2
(∫ t+s

t

‖fε2(τ)‖4L2(Dε) dτ

) 1
2

+

(∫ t+s

t

12dτ

) 1
2
(∫ t+s

t

‖gε2(τ)‖4L2(Dε) dτ

) 1
2

≤ 2s
1
2E1 sup

t

∥∥∥∥∂uε

∂t
(t)

∥∥∥∥
[L2(Dε)]n

(∫ t+s

t

‖fε1(τ)‖2[L2(Dε)]n dτ

) 1
2

+ 2s
1
2E1 sup

t
‖θε(t)‖L2(Dε)

(∫ t+s

t

‖gε1(τ)‖2L2(Dε) dτ

) 1
2

+ s
1
2

(∫ t+s

t

‖fε2(τ)‖4L2(Dε) dτ

) 1
2

+ s
1
2

(∫ t+s

t

‖gε2(τ)‖4L2(Dε) dτ

) 1
2

. (129)

From the estimates obtained in Theorem 3.1 and the assumptions on fε2 and gε2,
we have

|Eε (uε, θε) (t+ s)− Eε (uε, θε) (t)| ≤ Cs 1
2 , for all t ∈ [0, T − s], (130)
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which implies that Eε (uε, θε) is equicontinuous and therefore the proof is complete.

We are now in the position to prove the following corrector results

Theorem 7.2. Assume that the assumptions in Theorems 3.1, 3.2, and 7.1 are
correct. Then the following strong convergences apply(∥∥∥∥ρε ∂uε∂t

∥∥∥∥
L2(Ω;L2(0,T ;[L2(Λε)]n))

, ‖ ∇uε‖L2(Ω;L2(0,T ;[L2(Λε)]n×n)) ,

‖Aεθε‖L2(Ω;L2(0,T ;L2(Λε))) , ‖ ∇θ
ε‖L2(Ω;L2(0,T ;L2(Λε)))

)
→ 0, (131)

Tε
(
ρε
∂uε

∂t

)
→MY2(ρ)

∂u

∂t
strongly in L2(Ω;L2(0, T ; [L2(D × Y2]n)), (132)

Tε(∇uε)→ ∇u +∇yû strongly in L2(Ω;L2(0, T ; [L2(D × Y2]n×n)), (133)

Tε (Aεθε)→MY2(c)θ strongly in L2(Ω;L2(0, T ; [L2(D × Y2]n)), (134)

Tε(∇θε)→ ∇θ +∇y θ̂ strongly in L2(Ω;L2(0, T ; [L2(D × Y2]n)). (135)

Proof. Let us first notice that from (58), we have∫ T

0

∫
D

A0∇u∇udxdt =
1

|Y2|

∫ T

0

∫
D×Y2

A(y) (∇u +∇yû)∇udxdydt,

from (95), we also have∫ T

0

∫
D×Y2

A(y) (∇u(x, t) +∇yû(x, y, t))∇yû(x, y, t)dxdydt = 0.

Thus,∫ T

0

∫
D

A0∇u · ∇udxdt =
1

|Y2|

∫ T

0

∫
D×Y2

A(y) (∇u +∇yû) (∇u +∇yû) dxdydt.

In a similar way, we have∫ T

0

∫
D

κ0∇θ · ∇θdxdt =
1

|Y2|

∫ T

0

∫
D×Y2

κ(y)
(
∇θ +∇y θ̂

)
·
(
∇θ +∇y θ̂

)
dxdydt.

Considering the stochastic energy associated with the limit problem, i.e. equation
(108) and classical result (Lower semi-continuity), we may see that:∫ T

0

E(u, θ)(t)dt =
1

|Y2|
E1

∫ T

0

∫
D×Y2

(
ρ(y)

∂u

∂t

)2

dxdydt

+
1

|Y2|
E1

∫ T

0

∫
D×Y2

A(y) (∇u +∇yû) (∇u +∇yû) dxdydt

+
1

|Y2|
E1

∫ T

0

∫
D×Y2

(ρ(y)cv(y)θ)
2
dxdydt

+
1

|Y2|
E1

∫ T

0

[∫ t

0

∫
D×Y2

κ(y)
(
∇θ +∇y θ̂

)
·
(
∇θ +∇y θ̂

)
dxdydτ

]
dt

≤ lim
ε→0

inf
1

|Y2|
E1

∫ T

0

∫
D×Y2

(
Tε
(
ρε
∂uε

∂t

))2

dxdydt
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+
1

|Y2|
E1

∫ T

0

∫
D×Y2

A(y)(Tε (∇uε) · Tε (∇uε) dxdydt

+
1

|Y2|
E1

∫ T

0

∫
D×Y2

(Tε (ρεcεvθ
ε))

2
dxdydt

+
1

|Y2|
E1

∫ T

0

[∫ t

0

∫
D×Y2

κ(y)Tε (∇θε) · Tε (∇θε) dxdydτ
]
dt.

From (36), we write∫ T

0

E(u, θ)(t)dt ≤ lim
ε→0

inf
1

|Y2|

∫ T

0

Ê(uε, θε)(t)dt, (136)

where

Ê(uε, θε)(t) = E1

∫
D̂ε

(
ρε
∂uε

∂t

)2

dx+ E1

∫
D̂ε
Aεeuε)e(uε)dx

+ E1

∫
D̂ε

(ρεAεθε)
2
dx+ E1

∫ t

0

∫
D̂ε
κε∇θε∇θεdxdt.

From (136) and Theorem 7.1, we have∫ T

0

E(u, θ)(t)dt ≤ lim
ε→0

inf
1

|Y2|

∫ T

0

Ê(uε, θε)(t)dt

≤ lim
ε→0

sup
1

|Y2|

∫ T

0

Ê(uε, θε)(t)dt

≤ lim
ε→0

sup
1

|Y2|

∫ T

0

E(uε, θε)(t)dt =

∫ T

0

E(u, θ)(t)dt,

which implies that

lim
ε→0

∫ T

0

Ê(uε, θε)(t)dt = lim
ε→0

∫ T

0

E(uε, θε)(t)dt = |Y2|
∫ T

0

E(u, θ)(t)dt.

From this and (36), we get

E1

∫
Λ̂ε

(
ρε
∂uε

∂t

)2

dx→ 0, E1

∫
Λ̂ε
Aεeuε)e(uε)dx→ 0

E1

∫
Λ̂ε

(ρεcεvθ
ε)

2
dx→ 0, E1

∫ t

0

∫
Λ̂ε
κε∇θε · ∇θεdxdt→ 0.

This gives the proof of (131). In order to prove (132)-(135), we first note that:

lim
ε→0

1

|Y2|
E1

[∫ T

0

∫
D×Y2

(
Tε
(
ρε
∂uε

∂t

))2

dxdydt

+

∫ T

0

∫
D×Y2

A(y)Tε (∇uε)Tε (∇uε) dxdydt

+

∫ T

0

∫
D×Y2

(Tε (ρεcεvθ
ε))

2
dxdydt

+

∫ T

0

[∫ t

0

∫
D×Y2

κ(y)Tε (∇θε) · Tε (∇θε) dxdydτ
]
dt

]
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=

∫ T

0

E(u, θ)(t)dt. (137)

It is easy to see that:

1

|Y2|
E1

[∫ T

0

∫
D×Y2

(
Tε
(
ρε
∂uε

∂t

)
− ρ(y)

∂u

∂t

)2

dxdydt

+

∫ T

0

∫
D×Y2

A(y)[Tε (∇uε)−∇u−∇yû]

· [Tε (∇uε)−∇u−∇yû]dxdydt

+

∫ T

0

∫
D×Y2

(Tε (ρεcεvθ
ε)− ρ(y)cv(y)θ)

2
dxdydt

+

∫ T

0

[ ∫ t

0

∫
D×Y2

κ(y)[Tε (∇θε)−∇θ −∇y θ̂]

· [Tε (∇θε)−∇θ −∇y θ̂]dxdydt

]
= I1 − I2 − I3 + I4, (138)

where

I1 =
1

|Y2|
E1

[∫ T

0

∫
D×Y2

(
Tε
(
ρε
∂uε

∂t

))2

dxdydt

+

∫ T

0

∫
D×Y2

A(y)Tε (∇uε)Tε (∇uε) dxdydt

+

∫ T

0

∫
D×Y2

(Tε (ρεcεvθ
ε))

2
dxdydt

+

∫ T

0

[∫ t

0

∫
D×Y2

κ(y)Tε (∇θε) · Tε (∇θε) dxdydτ
]
dt

]
. (139)

I2 =
1

|Y2|
E1

[∫ T

0

∫
D×Y2

Tε
(
ρε
∂uε

∂t

)(
ρ(y)

∂u

∂t

)
dxdydt

+

∫ T

0

∫
D×Y2

A(y)Tε (∇uε) (∇u +∇yû) dxdydt

+

∫ T

0

∫
D×Y2

Tε (ρεcεvθ
ε) (ρ(y)cv(y)θ)dxdydt

+ κ

∫ T

0

[∫ t

0

∫
D×Y2

κ(y)Tε (∇θε) ·
(
∇θ +∇y θ̂

)
dxdydτ

]
dt

]
. (140)

I3 =
1

|Y2|
E1

[∫ T

0

∫
D×Y2

(
ρ(y)

∂u

∂t

)
Tε
(
ρε
∂uε

∂t

)
dxdydt

+

∫ T

0

∫
D×Y2

A(y) (∇u +∇yû) (Tε (∇uε) dxdydt
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+

∫ T

0

∫
D×Y2

Tε (ρεcεvθ
ε) (ρ(y)cv(y)θ)dxdydt

+

∫ T

0

[∫ t

0

∫
D×Y2

κ(y)
(
∇θ +∇y θ̂

)
· Tε (∇θε) dxdydτ

]
dt

]
. (141)

I4 =
1

|Y2|
E1

[∫ T

0

∫
D×Y2

(
ρ(y)

∂u

∂t

)2

dxdydt

+

∫ T

0

∫
D×Y2

A(y) (∇u +∇yû) (∇u +∇yû) dxdydt

+

∫ T

0

∫
D×Y2

(ρ(y)cv(y)θ)2dxdydt

+

∫ T

0

[∫ t

0

∫
D×Y2

κ
(
∇θ +∇y θ̂

)
·
(
∇θ +∇y θ̂

)
dxdydτ

]
dt

]
. (142)

We can observe from the limits obtained in Theorem 6.1 that:

lim
ε→0

I1 − I2 − I3 + I4

=

∫ T

0

E(u, θ)(t)dt−
∫ T

0

E(u, θ)(t)dt

−
∫ T

0

E(u, θ)(t)dt+

∫ T

0

E(u, θ)(t)dt = 0. (143)

This implies (132)-(135) and completes the proof.

8. Conclusion. In this study, we have developed a linear model that describes the
interaction between deformation and temperature fields in a thermoelastic com-
posite material with a highly heterogeneous, anisotropic, and ε−periodic structure.
The material is subject to external heat sources and body forces, and its behavior is
influenced by natural randomness arising from thermal interactions with the envi-
ronment. The model in question is governed by a system of coupled linear stochastic
equations: a wave equation of motion and a heat equation. Both equations contain
highly oscillatory coefficients that reflect the composite material’s properties, and
the material domain is assumed to be perforated. We used the periodic unfolding
approach to study the asymptotic behavior of the model’s solution when the char-
acteristic length scale ε tends to zero. We developed an effective model described by
stochastic linear thermoelastic waves with constant effective coefficients in a fixed
domain. These coefficients represent the material’s homogenized properties, aver-
aged over its microstructure. We established cell problems (54)-(56) that capture
the material’s local behavior at small scales and are crucial for computing homog-
enized material properties. We have shown that the energy of the original model
converges to the energy of the homogenized material, providing a solid basis for
the validity of the effective model. Furthermore, we proved strong convergence re-
sults, including corrector terms, which refine the approximation of the macroscopic
material response at different scales.

For future work, we plan to extend this framework to nonlinear models and de-
velop numerical methods for implementation and validation. Specifically, we aim
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to explore nonlinear heat conduction and nonlinear interactions between mechan-
ical and thermal fields, including phenomena such as thermally induced buckling,
dynamic instability, nonlinear damping, or external random forces. We will also
develop numerical algorithms to solve the homogenized equations and compare the
results with experimental data for real composite materials.

In conclusion, these results contribute to a deeper understanding of the interplay
between deformation, temperature, and randomness in composite thermoelastic ma-
terials, offering valuable insights into their homogenization and effective properties
for practical applications.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their insightful comments that help to improve the paper.
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