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ABSTRACT. The aim of this research is to explore new homogenization results
for a stochastic linear coupled thermoelastic model. We focus on a stochastic
equation of motion coupled with a stochastic heat equation, representing the
linear thermoelastic behavior of composite anisotropic materials with a periodic
heterogeneous structure. These materials are subjected to random external
forces and heat sources. By employing the periodic unfolding method and
leveraging probabilistic compactness results from Prokhorov and Skorokhod,
we obtain homogenization, convergence of the associated stochastic energies,
and corrector results.

1. Introduction. Thermoelasticity, the study of the interplay between heat con-
duction and mechanical deformation, has captivated physicists, engineers, and ap-
plied mathematicians due to its broad spectrum of applications across various scien-
tific and industrial domains. This theory examines the interdependence of temper-
ature and strain fields, as evidenced by numerous physical experiments (see [24, 32]
and references therein). The foundational mathematical model of thermoelasticity,
introduced by Biot [4] and now known as the classical coupled theory of thermoelas-
ticity, consists of two coupled partial differential equations: a hyperbolic equation
governing motion and a parabolic equation describing energy transfer.

When applied to composite or perforated materials, the classical model exhibits
an oscillatory behavior on a small scale, denoted by €, with highly varying coef-
ficients. These oscillations, often arising from periodic structures or perforations,
necessitate the use of homogenization techniques to derive simplified “effective”
models suitable for analytical or numerical analysis. Homogenization enables the
replacement of equations with rapidly varying coefficients by ones with effective
properties in a fixed domain.
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The first significant contributions to the homogenization of thermoelasticity were
made by G. A. Francfort [13] in 1983, employing a semigroup approach. Since
then, numerous advances have been made. For instance, W. J. Parnell [26] in 2006
used asymptotic expansions to homogenize a fully coupled one-dimensional linear
thermoelastic model. V. L. Savatorova et al. [31] extended this work in 2013 through
multi-scale modeling, examining the behavior of composite materials with periodic
structures under thermal and mechanical stress. More recently, S. Nafiri [25] in
2023 applied two-scale convergence methods to homogenize a linear thermoelastic
wave model.

While these studies focused on deterministic systems, incorporating stochastic
effects into thermoelastic models is critical for addressing natural randomness in
thermal processes and material behavior. In this work, we investigate a coupled
hyperbolic-parabolic system describing the interaction between deformation and
temperature fields in a composite material under heat sources and body forces,
where stochasticity arises from environmental thermal interactions.

Our main goal is to establish homogenization results for this stochastic model. To
achieve this, we employ the periodic unfolding method, a powerful tool in homoge-
nization theory (see [7, 8, 9, 10]), along with probabilistic compactness techniques
[3]. Although significant progress has been made in the deterministic homogeniza-
tion of hyperbolic systems (see [11, 12, 15, 16]), the stochastic setting remains less
explored. Pioneering work by M. Mohammed and M. Sango [20, 21, 22, 23] laid
the foundation for the homogenization of stochastic systems. However, the homog-
enization of stochastic partial differential equations in perforated domains is still
a developing field (see [29, 30, 17, 18, 14]), particularly for practical applications
[2, 19).

To the best of our knowledge, this is the first work to analyze the asymptotic
behavior of solutions for a coupled stochastic hyperbolic-parabolic system in a per-
forated domain.

This paper is organized as follows. Section 2 introduces the model, the functional
framework, and the assumptions necessary for the analysis. In Section 3, we derive
key a priori estimates essential for subsequent arguments. Section 4 presents the
periodic unfolding operator, which forms the core of our homogenization frame-
work. Section 5 addresses the tightness of probability measures associated with the
solution sequence, enabling the application of Skorokhod’s and Prokhorov’s theo-
rems to construct a limiting process that solves the homogenized system. Section 6
derives the homogenization results using the periodic unfolding method and proba-
bilistic compactness tools. Finally, Section 7 establishes energy convergence results
and corrector estimates. We conclude the paper with a summary of the research
objectives, the main findings, and their implications.

2. The model and functional setting. Let us go over some of the notations and
functional spaces that are frequently utilized in this paper, see [11, 5] for detailed
definitions:

e D is an open bounded subset of R”, n = 1,2 or 3.

e [0,T], T > 0 is the time interval.

e Y =(0,1) x (0,1) x --- x (0,1) C R™ is the reference cell.

e Y, C Y such that Y, N9Y = () and 9Y; is smooth enough. Furthermore,
Ys = Y\Y; such that ¢ = I3 = 3],

e {e} is a sequence of positive integers such that e goes to zero.
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o D§ =Upezn {e <Y1 + 300 k‘jej> : (Y1 + 300 kjej) C D} is the pore skele-
ton.

e D¢ = D\D§ is the pore volume.

e ID§ = Upezn {e <6Y1 + 22‘;1 kjej) : (8Y1 + Z?zl kjej) C D} is the skele-
ton surface.

o I'“=0D5UoD.

e D¢ is the interior of D¢ and A¢ = D\D*.

e For any open subset O of R, LP(0) and W1P(O) (1 < p < o) (resp.) are
the well known Lebesgue’s and Sobolev’s spaces (resp.). For p = 2, they are
also known to be Hilbert’s spaces.

e LP(0,T;L(0)) and LP(0,T; Wh4(0)), (1 < p,q < o0) (resp.) are the time-
space version of Lebesgue’s and Soboleve’s spaces (resp.).

o L2(Q; LP(0,T;LY(0))) and , L*(Q; LP (0, T; WH4(0))), (1 < p,q < o) (resp.)
are the probabilistic time-space version of Lebesgue’s and Sobolev’s spaces
(resp.).

o We define the following Hilbert’s spaces

V(D) = {v° = (v})1<k<n|Vv € WH(D)]*;v¢ =00n 0D},
and
S(D) = {¢°|y € WH(D);4* =0 on 9D},
Equipped with the norms

V(120 = /D Vv Pda and 4¢3 e, = /D vy Pda.

We denote by V' (D¢) and 8 (D¢) the dual space of V(D¢) and S(D*) respec-
tively, and (-, ~>V(D€),V/(Dﬁ) and (-, '>S(D‘),S'(D‘») are the usual duality pairings.
e Mo(f) = ﬁfo f(x)dx for any function f € L'(O) where O is open and
bounded subset of R”.
In what follows, we introduce our model, which describes stochastic linear ther-
moelastic waves in anisotropic composite materials with highly heterogeneous coef-
ficients.

pd <8§) — [div (A°Vu®) — V (56%)]dt

= fidt + £5dW; in Q x D¢ x (0,7,

ou®

ot

= gidt 4+ g5dWs in Q x D x (0,T), (1)
u“=0= 6°on Qx9Dx(0,T),

AVu®-v=0= k°VEI° -vonQx9IDjx(0,T),
(AVu® — B9 -v=00n Q x 9D§ x (0,T),

dt

plcsdb® — [div (k°VO°) — pediv

a €
u'(2,0) = hi(2), S-(,0) = h5(x), 6°(x,0) = hj(a) in D;
where (x,t) € Dr = D x (0,T), T > 0, D¢ is the perforated domain. Here D
and D€ are bounded subset of R™. The vector u® = (ug,us, - ,us),n =1,2 or 3

represents the displacement, ¢ stands for the increment in temperature, p¢ = p (%)

is the material density, ¢, = ¢, (%) is heat capacity A€ = (aijkl (f))Kij e 1<n is
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the stiffness (4-order) tensor, 8¢ = (8, ; (%))1973‘91
such that 3; ; = a;;ki1br; Where by is the component of the thermal expansion , £ =
(nij (f))1<i’j<n is the thermal conductivity tensor. f; = (fij (f,t))1<j<n, i =
1,2 and n = 1,2 or 3 and f{dt + f5dW; represents the body forces and g§dt + g5dWy
represents the heat source, while W; and W5 are one-dimensional Brownian motions
defined on a complete probability space (Q,P, F) with a filtration F, t € (0,7) and
expectation E. v represents the unit outward normal vector to Dg.

is an nonzero (2-order) tensor,

Assumptions.

Al pf(z) = p(y) and () = ¢, (y) are both Y —periodic and for some a > 0 we
have, 0 < p(y),cy(y) < a for ally €Y.

A.2. The stiffness tensor A(y) = (aijui (Y))1<; j pi<n 18 Y —periodic and symmetric
for all i,j,k and l. Furthermore A(y) is bounded in L°(Y) and for some
constants oy, as € R such that 0 < oy < ap, we have

arln|® < Ann < aslnf?, (2)

1
for all symmetric tensorn=(ni;), -, i<n € R"XR", where |n| = (szzl m-gj) .
A.3. The thermal conductivity tensor £(y) = (kij (¥))1<; j<, 18 Y —periodic, and is
bounded in L= (Y"). Furthermore there exist as,as € R such that 0 < ag < ay

and

asl€® < wEE < aul€l?, (3)

for all vector & = (&)1 <;<,, € R™.

A.4. The functions f(x,t) = fi(x/e,t) and f5(x,t) = fo(z/e,t) both in the space
L2(0,T; [L2(D9)]™) and g§(x,t) = gi(z/e,t) and g5(z,t) = ga(z/€,t) both in
the space L*(0,T; L2(D¢)).

A Bi(x) = hy(efo) = (b (/) Ki(a/e), - 13 (e/0)) € VD), Bila) = ha(z/
= (hy(z/€), hi(x/€), - hi(x/e)) € [L2(D)]" and hy(w) = hs(z/€) € L*(D*).

A6. f(x) a non-zero symmetric tensor, where B;; € WZ}E%(YQ) for all i,j =
1,2,---,n and

|Bn| < as|n| for positive constant a5 and n € R". (4)

As is customary in elasticity, we write the strain and stress tensors as:

1
e(uf) = 3 (Vu® + (Vu)") and o = A%e(u®) — g°0°, (5)
where (A%e(u®)), ; = aiju g’; By the symmetry of the tensor e(u¢), one sees that
azle(u)]? < Ace(u)e(u) < anfe(u)|*. (6)

From [11, Proposition 10.5 ], we have for some constants c1,cg > 0

[ et )de < el and e < ca [ letw)Pdn ()
Furthermore, [,. |e(u)[?dz defines an equivalent norm to that of V(D¢), lets
denote it by H|e(u€)|||$,(D5).

Theorem 2.1. For fized ¢ and under the assumptions (A1) — (A6), there erists a
unique strong probabilistic solution ( uc, 687; ,06) such that:



HOMOGENIZATION FOR STOCHASTIC THERMOELASTIC MODEL 2353

ut € O([0, T|; V(D)) N L(; L*(0, T5 V(DF))),
ous

5 € CUOTLLA(D))") 0 L (Q; L0, T3 [L*(D))")),

and
0° € C(10, T): S(D%)) N LA(Q: L2(0, T3 S(D))).
° ( uc, aa“t ,96) -Fi-measurable.
e Forallt €[0,T] and (v,) € V(D) x S(D*), we have that (u, 88—15, 6°) admit
the following weak formulation

¢ ous ¢
/ (ped( ) ,’u) +/ (A%(u),e(v))L2(peydr
0 ot 2(pey  Jo

t t
—/ (ﬁgﬂe,Vv)LZ(Df)dT: / (_ﬁ,v)LZ(De)dT
0 0

+ / (F5.9) 2 () W (), (8)
0

and

t t
/ (p°c,db, ) 12 (pey + / (kVO, V) p2(peydT
0 0

! Eaue E
- [ o wotr + [ O )i

t t
:/ (QT,Z/J)LZ(Df)dTJr/ (95, ¥) L2 (DeydWo(T). 9)
0 0

Sketch of the Proof. We give a sketch of the proof in the following steps.

Proof. 1. The first step is to construct finite-dimensional approximating sub-
spaces V, = Span{v§,v§,---,ve} and S, = Span{ef, @5, -, ¢S}, where
v, € V(D) and ¢ € S(D°) for all k = 1,2,---,n and (v§)1<k<n and
(¢%)1<k<n are orthonormal basis of [L?(D€)]" and L?(D°¢), respectively.
2. Using the above constructed spaces, one introduces the following finite dimen-
sional approximating problem: Find ug, 9 and 0;, such that

ot
- ous, " Oy
= T(t)vy = —L(t) d 65, by (t
n kz::lgk( )Vk7 ot ; ot ( Vk an Z

where £} (t) = (ug, v§,) and b} (t) = (65, p6ey) such that
ous,
d <P 9 > + (A%e(ug)e(vVe)) p2(peydt — (805, VVi) 12 pey dt
£ 2o

= (£1, Vi) L2 (pey dt + (£5dW1 (1), Vi) 2 (e » (10)

and

d(pecfﬁfw (pk)LQ(De) =+ (/<;€V9§L, v@k)LQ(De)dt — <ﬂ6 n VQD]C) dt
L2(D<)

€ (Vﬁ6 du

» Pk dt = (91, ¥x) L2 (D)dT + (95dWa(1), ¥x) L2 (D),
0t ") rape)
(11)
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with appropriate initial conditions that converge to the initial conditions of
the original problem. This system is interpreted as a system of stochastic
differential equations which has a unique solution by a classical result.

3. In this step, we prove some estimates on uy,, 8515‘ and 6, similar to the ones
obtained in Theorem 3.1 below.

4. Using the previous uniform estimates, we pass to the limit on the weak for-
mulations (10) and (11). Furthermore, we establish that the limits satisfy the
same previous estimates.

5. Finally, we show a pathwise uniqueness, then together with the Yamada-

Watanabe theorem we complete the proof of the theorem.
O

3. A priori bounds and estimates. Here, we prove key results for passing to
the limits in the system above.

Theorem 3.1. Under the assumptions A.1.— A.6. the following estimates hold true

ouc ||? .
e| 5 B oy < (12)
L (0.THL2(D)")
E(16°)1 7 0,7 12(pe)) + EION 720, 7:5(pey) < O (13)
Ellle(w)N 0,00y < C- (14)

for some C > 0.

Proof. We apply It6’s lemma to the function ®(, 6t () = [l pe 2B (¢ )||L2 pey in the
first equation of the system (1) and to the function ¥(t,0¢(t)) = ||pecf)9€( )HLQ(DF)
in the second equation of the system (1), we get:

d‘psa‘f ’ =2 (div(A€Vu€) 8“6) - (V(ﬁeoe) 8“6) dt
Ot ll2(pe) Ot L2 Ot Laoe
+2 (fi ot ) FIE 122 peydt + 2 (fgdwl, du’ ) . (15)
ot L2(D¢) ot L2(D¢)
and

dllp e 072 pey = 2

(—KVO, V) 12 (pe) — (ﬁfdiv (‘9“ ) ,96) dt
ot 12(D°)
+2(g1,0°) L2(De) + 195]172(peydt + 2(g5dWa, 09) L2 (o). (16)

Using integration by parts, the symmetry assumption of the stiffness tensor, and
the fact that ﬂedlv( ) =div (ﬂe ) — eVﬁE , we have

cou’ 2
d{ P o

+ (A%(u), e(u) 2o }

<B‘V0‘, du > —e (aevm@) dt
Ot J 12(pe) 0t J 12(pe)

ou® ou®
12 (f;,i ) 1Bl ey di + 2 (f;dwl,—“ ) . (17)
0t ) 12(pey 0t ) 12(pey

L2(D¢)

and
d||p5c§,96||2Lz(De) + (HGVHE, VQG)L2(D5)
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ou¢
€ v € E dt
[ (/B >L2(D‘) < o ot’ )LQ(DE)]

+2(91,0) L2 (Do) + 1951172 (peydt + 2(g5dW2,6%) 2(pe).  (18)
Adding together (17) and (18), we obtain

2

6116 € € e € € € €
dH i It e + (A€, 0Ny | + (T80 12000
L2(De)
ou® .
=2 ﬁ, P +2(gl,9 )Lz(De)dt
t ) 12(pe

Ju®
#1950 + 1o +2 (0w, 5 )
L2(D<)

+2(95dW3, 0%) 12(pe). (19)
Using the assumptions A.1.-A.4.; the relation in (7) and integrate from 0 to ¢
where t € [0,T], we have

ouc ||

ot

t
+ a0 32 pe) + c2er [0ty pey + a4/0 V61 ey ds

L2(De)
t € t
SC-‘FQ/ <f§,6u) d8+2/ (gl,GE)L’z(De)dS
0 ot L2(D¢) 0
t du© ¢
v [ (Baowien.50) e [ a0 (20)
0 L2(D) 0

Taking the sup over 0 <t < T, followed by the expectation, we have
2

a’E sup
t

R

+a'E sup 16|72 (pey + 042‘31E51tlp (O pey ey

T €
(%)

ACECE I

L2(D¢)

T
+a4E/ V0% (1) 12 et < C+2E/ ds
0

0

T
—|—2E/ |(91,GE)L2(D€) ds + 2E sup
0 t

t
285w | [ (65W2(),0) 0.
0

(21)

Cauchy’s and Young’s inequalities imply the following

2

’ 2
L2(De) +C(6> (/O Hﬁ(t)HLz(DE)) , (22)

where ¢ is sufficiently small. Similarly

T
E/O ‘(957 9€)L2(De)

< dEsup H u (t)
¢ | O

ds
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2
T
< OEsup [9°(1)] 2 ey + C0) ( / ||gi<t>iQ<De>> e

Following that, we can deduce from the Burkholder-Gundy-Davis inequality, fol-
lowed by the Cauchy-Schwarz and Young inequalities, that

¢ ou
[ (mw. %)
0 12(De)
T e\ 2 3
< CE / (fg,au) dt
0 ot £2(De)
T 2 3
gcz&(/ 165122, dt)
0 L2(D<)
€ T
(/ |f§%z<Ds)dt>
r2(pe) \Jo

ou
< o
_Esng 5 ()
2 T
e / 1851122 ey, (24)

where ¢ is sufficiently small. In a similar way we show that

t
/ (g;dWQ(s), GS)LQ(De)
0

E sup
t

ou
ot

1
2

€

< (CEsup H o
¢ 0

L2(De¢

E sup
t

T
< B Oy +C0) [ ailrcoyits (25

where p is sufficiently small. Substituting (22), (23), (24) and (25) into (21), and
using Gronwall’s inequality, we obtain (12) and (13). The proof of (14) is an easy
consequences of (7). O

Theorem 3.2. Assume that the assumptions (A.1.-A.5.) are satisfied, with the
additional assumptions f5 € L2(0,T; [L*(D)]") and g5 € L?(0,T; L*(D)). Then,

T—s € € 2
E/) O 4oy — P dt < Cs, (26)
0 ot ot V(D)
and
T—s
E/1 16°(t +5) — 0 (OI13 eyt < Cs, (27)
0
where C, is a positive constant independent of €.
Proof. Let us proof (26), we have
ou¢ ou¢ 1 [t
t — t)=— divA* dr — — ‘p°
-0 =+ [ avarvamar - [ e ar

/m m+/m DAL (R (28)

From this and the assumptlons on the data, we have

E /T ou® ou®
0

o (9= 50 dt

V'(D9)
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T—s
SCE/
0

T—s
+ CE/
0

T—s
+c/
0

T—s
+ C’E/
0

Let us estimate the terms on the right hand side of (29), we let » € V(D) such
that |[¢[|y(pey = 1, then we have

2

dt

t+s
/ divA*Vu®(r)dr
t V' (D<)

2

dt
V'(De)

t+s
/ VB (r)dr
t
dt

t+s 2
[ i
t V' (De)

[ s

2

dt. (29)
V/(De)

2

t+s
/ divA*Vu®(r)dr
t V'(De)

t+s 2
< sup </ divA€Vu€(7')dT,w>
P t V' (D<), V(D<)

2
< <Sl1¢1,p/e/tt+ diVAEVuE($,’T)’l/J(£L')del'> . (30)

We use Fubini’s lemma, integration by parts, and (2) we get

2 t+s )
V' (D) = <Slllpp/t (/ 5 Vuf(w,T)Vw(x)dx) d7->

2

t+s
<(/ HVfﬁmeqM)-
t

From this and Cauchy-Schwartz’s inequality, we have

T—s
E/
0

t+s
/ divA*Vu®(r)dr
¢

2

dt

t+s
/ divA*Vu®(r)dr
t V' (D<)

2

T—s t+s

E/ (/ VUE(T)|L2(De)dT> dt
0 t
T—s t+s t+s

E/O (/t 12d7'> (/t VuE(T)%z(De)dT> dt

T
< SE/ IV(7) 22 et < Cs (31)
0

IN

IA

For the second term, we use (4), to get

2
V' (De)

< | sup
P

t+s
/ V36 (r)dr
t

>2

t+s
</ Vﬁeeé(T)dT,¢>
t V' (D), V(D)
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t+s 2
< as (Sup/ / Qe(x,T)Vz/J(x)dex>
P €Jt
t+s 2
< as (sup/ He(x,T)V¢(x)dxdT>
P Ji De

t+s 2
< as (/ ||9E(T)||L2(Ds)dr>
t

From this and Cauchy-Schwartz’s inequality, we have

—s
/
0

t+s 2

V36°(r)dr dt

t V' (Do)

2

T—s t+s

S Q5E/ </ ||9€(T)||L2(Df)d7—) dt
0 t
T—s t+s t+s

S OésE/ </ 12d7') </ |96(T)||%2(D5)d7') dt
0 t t

T
< sa5]E/ HOG(T)H%z(DE)dt < Cs. (32)
0

Similarly, for the third term, we have

T—s t+s 2 t+s 2
/ fi(7)dr dt < < |L2(De)d7> dt
0 t V' (D¢) t
t+s
( 1 dT) (/ |fi(7’)%2(De)dT> dt
t
<sAHﬁUhmyﬁ<% (33)

Lastly, since L2(D¢) is continuously embedded in V'(D¢), we use Itd’s isometry
and Fubini’s Lemma to obtain

E/Ts /t+5f€( VAW (T) o
<E/TS/HS () ey dT)
EK;‘3([””1ah)%(l+”u@@ﬂﬁquqﬂ70é
%(Aﬁ@wm;wqﬂﬂ)

Cs2.

2

IN

Nl

IN
»

Nl

IN

(34)

Using estimates (31),(32), (33) and (34) into (29), we obtain (26). In a similar
manner we can prove (27). O
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4. Unfolding operator. In this part, we will quickly discuss the key definitions
and properties associated with unfolding operators. The periodic unfolding mecha-
nism was first presented in [6] (see also [8] for a complete description and thorough-
depth proofs). It was broadened to perforated domains in [7, 9], and then further
refined in [15] to address time-dependent problems (see also [12, 33, 18]). Let us

decompose any x € R™ as z = ¢ ([f]y + {%}Y) where [%]Y represents the unique

integer part for £ and {Z}, the non-integer part of Z.

Definition 4.1. For a Lebesgue measurable vector v : (z,t) € D x (0,T) —
v(z,t) € R*, n=1,2 or 3. We define
v (6 [f]y + eyﬂf) a.e.(z,y,t) € De x Yy x (0,7,
T(v)(x,y,t) =
0 a.e.(xz,y,t) € A x Ya x (0,T).

The next lemma states the main features of the unfolding operator within do-
mains with periodic perforations.

Lemma 4.2. [12, 33, 18]. The above constructed operator satisfies the following:
1. T€: LP(0,T;[LY(D)]™) — LP(0,T; [LY(D x Y2)]"), 1 < p,g < oo, n=1,2 or
3 is continuous and linear.
2. For all vectors v, uw € LP(0,T;[LY(D)]™), we have T¢(v- u) = T¢(v) - T¢(u).
3. For all vectors v € LP(0,T;[LY(D)]"), we have

T¢(v) — v strongly in LP(0,T; [LY(D)]"™). (35)
4. For all vectors v e LP(0,T;[LY(D®)]"), we have

/ v(z, t)dxdt
Dex(0,T)

= / v(z, t)dxdt — / v(x, t)dxdt
Dex(0,T) A<x(0,T)
_ L
|Y| DxY2x(0,T)
5. If v¢ € LP(0,T; [LY(D)]"™) where
V¢ — v strongly in LP(0,T;[LY(D)]").

T (v)(z, y, t)dzdydt. (36)

Then
T(v") — v strongly in LP(0,T; [LY(D x Y5)]").

6. Let ve L¥(0,T;L%(Y2)) be a Y —periodic vector with v(x,t) = v(%,t), then
Te(v)(z,y,t) = v(y,t) a.e. in D x Yy x (0,T).

5. Compactness and convergences in probability. Before we obtain some
probabilistic compactness that leads to probabilistic convergences, we should note
that we are working on a varying domain, which necessitates extra caution when
passing to the limit; for this, we employ the concept of macro-micro operators. For
all v.e LP(0,T;[LY(D)]"), n = 1,2 or 3 and 1 < p,q < oo, we define the macro
operator

Qv € LP(0,T; [LY(D)]") — Q°(v) € LP(0,T5 [WH(D)]"),
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as:

Q(v)(e€,t) = v(e(§+y),t)dy,

2| Jy,
where the remainder R¢(v) = v — Q¢(v) almost everywhere in {EE N ﬁey] x (0,T),
for more details on the set ﬁey , we refer to [12]. For simplicity, we write

Q°(v) =vand R¢(v) = v.

With the above setting, the oscillations resulting from perforations are shifted
into a second variable y, which is related to a fixed domain Y5, while the original
variable z is in the domain D. Now, one uses the estimates in Theorem 3.1 and
follow along the lines of [12, Proposition 2.15] to obtain the following result.

Theorem 5.1. Assume that (u u” 6°) is the solution of system (1) and the

) 8t )
assumptions A.1.-A.5. hold, then
ou ||
E + Efjuf|?
Ot Nl 20, 722(B9)1m) LO.TVD)
FEIN. 0.0y + B0 rusipyy <€ (37)
€12 €2
E|u ||Lz(o,T;[L2(ﬁem§gf)]n) +E|6 HLZ(O,T;L2(5€ﬂ52’)) <G, (38)
and
€12 €12
ENwllzz 0, 00penpyy) + ENENL2 0, 10:8(pnpyy) < C- (39)

Another bounds on the macro operator is needed before obtaining probabilistic
compactness. This is the object of the following theorem.

Theorem 5.2. Let the assumptions of theorem 3.2 hold, then
2

e ||2 €
ou < C" ou (40)
Ot lliz(sL2 (0,70 (B?)) Ot lli2(o;L2(0, 10 (D))
and
ne €12
H6 ||12(Q;L2(0,T;V'(f)2’)) <Cllo HlQ(Q;L2(07T;V/(DE)) (41)
Proof. Let us first note that
) T |2 T 9 e 2
4 —E / ) dt (42)
ot 12(Q;L2(0,T;V' (DY) 0 ot V' (DY)
Now, for all ¢ € V(DY) with quHV(By) =1, we have
ou |* ‘ <au ¢>‘ du
= sup , = sup ,
ot V' (DY) ® ¢ |JDYy ot
1 ou‘
<su + d dx|,
p|Y2|/133[ o (€& +y), )’ y}ﬂé

ou
ot

sup

fo Lo

1
A (x,t)‘ dm] ¢pdx| .
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Using Fubini’s theorem, we have
2

H ou < sup (€ +Y2) / ou (x,t)‘ bz
ot V' (DY) é 6”|Y2‘ DY ot
Ju‘® ouc ||?
< —_— = .
< ngp/De g (:1)0(x,1)| dz CH -

From this and (42), we obtain (40). Similarly we obtain the proof of (41). O

The results of Theorems 5.2 and 3.2 lead to the following finite difference estimate
for the macro operators in the fixed domain DY.
2

=2 ou du’
E / (t+s) - 2% dt < Cs, (43)
0 375 815 V’(ﬁ?)
and
T—s B B
IE/O 162+ ) — 0°(0) 2 gyt < O, (44)

The extension by zero of (ﬂe, 88—“;6,(96) from 132’ to D and of (ge, 68—1{, 9f‘> from

DN DY to D satisfies the estimates (37), (38), (39), (43) and (44). We now define
the set K¥ = K; x Ky x K3, where

av

K, = {v :v € 12(Q; L*(0,T; V(D)) and o0

€ 1?(; L2(0,T; [L%D)]”))} ;

Ko :{w :w € L2(Q; L*(0,T; [L*(D)]™))

1 T—s )
and Esup — sup </0 lw(t+s)— w(t)||V/(D)dt> < oo},

n Qn |s|<b,

and

Kq —{90 € L2 L*(0,T: I*(D))) N L*(©: L*(0, T: S(D))

1 T—s

and Esup — sup / Hcp(t—i—s)—go(t)”?g,w)dt < oo}7
n Gn |s|<b, \J0

where the sequences {a,} and {b,} satisfy a,,b, > 0 for all n € N and a,,,b,, — 0

when n — oo. It is clear that the extension (with the same notation) by zero

of (ﬁe, 86—‘?,§E> belongs to the set K¥. Also, the set K; is compactly embedded
in the space L?(Q; L%(0,T; L*(D))). In [20] it was proved that Ky is compactly
embedded in L2(Q; L2(0,T;V'(D))) for scalar functions, also in [1] it was shown
that K3 is compact in L?(Q2; L?(0,T; L?>(D))). Let us denote to the probability law

of (ﬁi aa—‘f, 6c, Wy, Wg) by II¢, then one can follow along the lines of [20, Lemma 7

] to show that II¢ is tight in X¥ = K“ x C([0,T];R) x C([0,T];R). This tightness
leads to relative compactness (and hence weak convergence) by Prokhorov’s theorem
i.e. there exists a subsequence I1°" of II¢ and a probability low II where II¢ — II
weakly in X“. Now, we are able to apply Skorokhod’s representation theorem, by
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which we construct a new probability space (£21,P1, F1) together with the sequence

of random variables (uz", 8‘5? L0 Wi W2€"> and (ﬁ, %—‘;‘, 6, Wy, Wg) such that

_ ut o - . .
<u€n, ;t ,96",Wf”,W§"> = (a,g,e,wl,%) in BX“)P; — a.s., (45)
as n — oo and €, — 0, where B(X“) is the Borel set of X¥. The system (8)-(9) is

63;" ,QE",Wf”,Wg”), as we claim in the following lemma. As a

satisfied by (uE",
result, we show that the sequence of solutions has better properties—that is, strong
probabilistic convergence. For the proof, we adhere to the logic in [28, P.352-356].

Lemma 5.3. Take the o—algebra generated by {uzn,%%,GE"',W?,WQE"}KSQ

(denoted by Fii) as a filtration on the Skorokhod’s probability space (21,Pq, F1).
Then

(1) (Wl,WQ> are correlated one-dimensional Wiener processes.

(2) (Uf", 815? 0 Wi, W;“) admits with Py —almost surely the following:

e, Ou b e e
/(P ndi@t 7¢)L2(Dfn)d7+/(f4 "e(u™), e(¥))r2(pen)dT
0 0
t
—/ (BT, Vip) p2(pen)dT
0

t t
- / (5 ) 12 (e + / (5 ) 12 (e AW (7), (46)
0 0
and

+ t
/ (p€n c;n docn , ¢)L2(D57")d7- -+ / (,‘@envesn’ V¢)L2(D€n)d7’
0 0

— [)t(ﬂﬁn

t t
Z/ (gi”’7¢)L2(D6n)dT+/ (95", 0) L2(DenydWa(T), (47)
0 0

oun

n t
,v¢)L2(Den,)dT+€n/ (Vﬂen o
0

uE

0
ot

) ¢)L2(Dfn )dT

for all (¢, ¢) € S(D) x V(D). With the initial conditions u‘(x,0) =
hi" (z), %(w, 0) = h5*(z) and 6 (x,0) = h5"(x).

6. Homogenization results. For the sake of brevity, we will remove the index n
from €, in this section. We have the following theorem

Theorem 6.1. Suppose that the assumptions of Theorem 3.2 hold and ||h||y(pey <
C such that

(E[ﬁ;) 9 (hu, he) weakly in [L3(D)]" x [L2(D)]",
(£i.52) = 9 (fiofo) weakly in L2(0,T: [L3(D)]") x L*(0,T: [L*(D)]"),

(95,95, ) = ¥ (91..92) weakly in L2075 L(D)) x L*(0,T5 L*(D)),

48
49

(48)
(49)
(50)
(51)

iL\g — Yhz weakly in L*(D). 51
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Furthermore, let (ue, 88—15, 0, Wy, Wﬁ) be the solution of system (46)-(47). Then
there exists a set of random variables { u, at ,0, 9 Wl, Wg} defined on the proba-
bility space (Qq,P1,F1) such that
1. T¢(u) — uw weakly in L*(Q, L0, T; [L>(D; WH2(Ya))|™)), Py — a.s..

T (uS) — u strongly in L*(Q, L0, T; [L*(D; WH2(Y2))]™)), P1 — a.s..

T¢(Vus) — Vyu+ Vyu weakly in LQ(Q LQ(O T; [L*(D x Y2)]"™)), P1—a.s..
T¢ (95 ) — 2% weakly in L?(Q, L*(0,T; [L*(D x Y2)|")), P1 — a.s..

Te(0°) — 6 weakly in L2(Q, L0, T; [L2(D; WY2(Ya))]™)), Py — a.s..

T¢(6€) — 0 strongly in L?(£, L(O, T; [L2(D, WLH2(Y2)™), Py — a.s..

7. T¢(VO) — V.0 + V,0 weakly in L*(Q, L?(0,T; [L*(D x Y3)|")), P1 — a.s.,
where

S Tu s o

we L2 120, T V(D). ¢ € 12(0: 120, T3 [I(D))"),

0 € L*(Q; L*(0,T; V(D)) N L*(Q; L*(0, T; L*(D))),
we LP(Q L2(0,T; [L2(D; W2 (Ya)™)), 6 € L*(Q; L*(0,T; L*(D; W37 (Y2)),

per

with My, () = My, (0) = 0 is a unique probabilistic solution to the system:

altre(o) [ a (%) pao

+ / A(y)(Vou+ Vi) - (Vg + V@) drdydt
DxYs

+ [Ya| My, (8) / Vopdrdt = |Ya| / frodudt
D D

+|Y2|/ FopdW, (52)
D
and
ValMya(pc,) | dos
+/ (k) Vb + V,0) - (Vo + V, ) dadydt
DXxY>
+|Y2|My2(6)/ dw<8 >wdxdt |Y2|/ gripdxdt
+ |Y2|/ g21pdWs, (53)
D
where
wt, x,y) = ®(y)Vou(z,t) + V(y)o(z,t),
and

0t .9) = ¥(0) - Vbl 1) + V) (),

such that ® = (Prim)i<ktm<n, V = ((Vk)i<k<n) and ¥ = ((Ug)i1<k<n) solve
uniquely the following cell problems
div (A(Y)Vy(®Prim + Ym)) =0 in Ya,
AWV y(Prim + Ym) - v =0 on dY7, (54)
My, (Ppim) =0 D1 18 Y —periodic,
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divy (A(y)(VyV(y)) = B(y)) =0 in Y2,
A [(VyV(y) = By)]-v=0  ond¥, (55)
My, (V) =0 V is Y —periodic,

and
Bio (s(5)V, (W + ) =0 in Vs
K(Y)Vy (T +yi)-v=0 on OY7, (56)
My, (Tr) =0 Uy is Y —periodic.

Moreover, ( u, g’t‘, 9) a unique solution to the strong formulation:

My, (p)d (2%) (z,t) — AoAu(z, t)dt + Bo VO (z, t)dt
= fi(z,t))dt + fo(z,t)dW1(t), in Qx D x (0,T),

My, (pe,)df(z,t) — koAO(z, t)dt + Bodiv (S4) (z,t)dt
= g1(2,1))dt + go(, t)dWa(t), in Q x D x (0,T

u(z,t) =0=20(z,t) on Q x 9dD x (0,T),
u(z,0) = hy(z), 2%(z,0) = hy(z) and 0(z,0) = hs(z) in D,

where the constant tensor , Ag = (a?jkl)(lgi’j’kﬁlgn) is symmetric for all i,j,k and l
and elliptic where

1 0Pim
ajp = vl v <aijkl(y) + @ijmn(y) By (y)) dy, (58)
0# Bo = (BY))(1<i.j<n) such that
1 OV

5=zt [ (3500~ @) 52 0) ) (59)

and Ko = (H?j)(1§i7j§n) is elliptic such that

1 o .

= [ (R )+ Ra(y) 5 )d. 60
J Ys| v ( J(y) k() e (y) ) dy (60)

Proof. By considering the a priori bounds found in Theorem 3.1 and arguing as in
[12, Lemmas 2.16 and 2.17], we establish that the solution of system (1) fulfills the
following convergences (up to subsequence) Py —a.s.

T¢(u®) — u weakly in L*(Q, L*(0, T; [L*(D; W 2(Y2))]™)), P1 — a.s.,
T(Vu®) — V,u weakly in L*(Q, L?(0,T; [L*(D x Y5)]™*")), Py — a.s.,
1

—T¢(u) — @ weakly in L*(Q, L*(0, T; [L*(D; W2(Y2))]"™)

€
T¢(Vu®) — Vi weakly in L*(Q, L*(0, T; [L*(D; W2 (Y3))]"*™)) Py — a.s.,

) (61)
) (62)
), P1—a.s., (63)
) (64)
T(u) — 0 strongly in L*(Q, L*(0, T; [L*(D; W"2(Y2))]")), P1 — a.s., (65)

" (aall ) — T weakly in L2(0, 12(0, T3 [1(D x V2)]™*"), B1 — aus., (66)

T¢(6°) — 0 weakly in L*(Q, L*(0,T; L*(D; W'3(Y2)))), Py —a.s.,  (67)
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T¢(VH°) — V.0 weakly in L?(Q, L?(0,T; [L*(D x Y2)I")), P1 —a.s.,  (68)
%’]TS(Q‘) — § weakly in L2(Q, L*(0,T; L*(D; W'2(Y3)))), P; —a.s.,  (69)
T¢(VO°) — V0 weakly in L2(Q, L0, T; [L*(D; WH2(Y2))]™)) Py — a.s.,  (70)
) (71)

T¢(0°) — 0 strongly in L*(Q, L*(0,T; L*(D; W2(Y3)))), P1 —a.s., (71
where
we L2 20, 7:V(D), 2% € 12(0: 12(0, T3 (D))

0 € L*(Q; L*(0,T; V(D)) N L*(Q; L*(0,T; L*(D))),
@€ L2(Q; L2(0, T; [LA(D; WA (Y2))]™)), 0 € L2(Q; L(0, T; L*(D; W2 (Y2))),

per

with My, (1) = My, (f) = 0. Apart from the aforementioned convergences, the
strong convergence (45) that is derived from Skorokhod’s representation theorem
and Lemma 4.2 (5) gives us the following:

T¢(u) — u strongly in [H(D x Y3)]", Py — a.s., (72)
T¢(6€) — @ strongly in H(D x Y)2), P; — a.s. (73)

Convergences (61)-(73), gives the desired convergences (1)-(7). Let’s now test
equations (46) and (47) by v(z)w(t), where (v,w) € C§°(D) x C§°([0,T]) and
in each of its terms, we pass to the limit using the above convergences and the
properties of the unfolding operator. We have

i [ ca (PN (ps O\ dzdt
lim / / () e
. T cfO0ut, . L dw

W) [ [ 2y B o (74)

For the second term and third term, we have

lim /T/eAEVuE(x,t)Vv(a:)w(t)dxdt

e—0 0

T

~ limy / /D T AT (V) T (Ve

/ / ) (Vu(z,t) + Vya(z,y,t)) Vo(z)w(t)dedydt. (75)
DxYsy

Similarly, we have

T
lim V (80°) v(x)w(t)dzdt

e—0 0 D

T
=-— hm/ /Dsz B(y)Te (0°) T¢ (Vo) w(t)dxdt

e—0

/ / 0(z, t)Vo(z)w(t)dzdydt. (76)
DXxYsy
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For the first term on the right hand side of (46), we easily use the weak limit

(49) to get
T ~
lim/ /ﬁ(x,t)v(:c)w(t)dxdt
e—0 /o D

— vy /0 /D £, (2, )0 (z)w(t)dzdt. (77)

As for the stochastic integral, we write

T o~
tim [ [ Bl ol@o(tdedwi (o)
T ~ ~
— lim / /D £ (2, t)o(2)w()dad[WE () — T (1)

e—0 0

T ~ ~
+hm/ /ng(x,t)v(x)w(t)dxdwl(t). (78)

e—0 0

For the second term on the right hand side of (78), we use the weak convergence
(49) and stochastic convergence theorem by Rozovskii [27, Theorem 4, pg 63] to get

li_rf(l)/o /ng(:r,t)v(x)w(t)dxdwl(t)
T
= |Y2|/0 /Df2($,t)v(x)w(t)dxdW1(t).

For the first term on the right hand side of (78), we define a regularization
function to the intensity f; (denoted by f55), where f€ 5s is differentiable in time,

1£551122(0,7;22(Dy) < Cllf3lL2(0,7:22(D)) and
f5, — f5 strongly in L(0,T; L*(D)) as 6 — 0. (79)

With this setting, we rewrite the first term on the right hand side of (78) as

lim / / £ (2, t)o(2)w(t)dad[WE () — W (1)

e—0

Am//@mt £ (o, )o@ () ded[WE () — W3 (1)

e—0
ﬂ%ALﬁNﬁMWWMWW—MW- (30)

Because of the strong convergence (79) and Burkholder-Davis-Gundy’s inequal-
ity, the first term on the right-hand side of (80) approaches to zero with probability
almost surly. We use the integration by parts (because the regularization is differ-
entiable in ¢) and the strong convergence (45) for the second term. As a result, the
second term also attends to zero. Thus

T ~
lim /O /D & (2, t)o(2)w(t) dadWE (L)
:|Y2|/0 /Dfz(x7t)v(x)w(t)dxdW1(t). (81)
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The following is obtained by combining convergences (74), (75), (76), (77) and

(s1)
el o) [ ' /K (6“) (2, oot dadt

/ /D y ) (Vu(z,t) + Vya(z,y,t)) - Vo(z)w(t)dedydt

/ /nyz (1) Vol )uw(t)drdydt

|Y2|/ /f1 x, tv(z)w(t)dedt
+ 1 / |t ti@utdedii @), (s2)

In a similar way we pass to the limit into the heat equation, we have

lii%/ / ¢ 0 (, ) (x)w(t) dz
= —|Ya| My, (pcy / / x,t)v ( )dxdt, (83)

T
lim/ / KO (x,t)Vo(x)w(t)dzdt
e—0 0 e

= /OT /DXY K(y) (Ve(x,t) + Vyé(x,y,t)) Vo(z)w(t)dedydt, — (84)

ehgg]/OT/ F)
/ /D . (2, )V () (£) dadydt. (85)

For the following term we note that €T (V) = T¢ (V,3°) = V,8(y) and from
the assumption A.6. and [11, Proposition 3.49], we have My, (V,5) = 0. Then

T
lim /0 /D V() (o o () deds

- lim/ / €T (V)T ( )
e—0 DxYs
= i T (VB°) T¢ T¢ (v) w(t)dzdt
Eg%/ /D><Y2 ‘ VB ( ot ) !
du
— 1’ ’]I‘C 6 E
61HII%/ \/DXYQ y/B ( 8t >

— Yol My, (7, 6) / [ @ u@ult)dadt =0, (36)

(x,t)Vo(x)w(t)dzdt

T (v) w(t)dzdt

T (v) w(t)dxdt
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As in (77) and (81), we obtain the corresponding limits and thus we have:
T

My, per) [ [ dbtatiotayutia
0

/ / N(Vab(z,t) + V,0(z,y, 1)) - Vo(x)w(t)dedydt
D><Y2

/ /D><Y2 (z, t)Vo(z)w(t)dedydt

_a / | ol uteyultdnar

+ Y| /0 /D g, )0 () w(t)dzd s, (87)

The aim now is to identify the functions @ and . To do this, ev(a)y(z)w(t) is
substituted for the test function v(x)w(t), where 1) € W2 (Y2). It is clear that
T¢(evy)€) — 0 strongly in L*(D x Y3), (88)
and
T (V (evy)®)) = €(T(Vv)) + T¢(vV b)) — vV,1 strongly in L*(D x Ya).  (89)

The following convergences hold:

lime /0 ' / 6 fd(%‘f) (, )v(2) P (2)w(t)dedt

. € €(./€ ow _
_ _35%6/ /Dm (at )T( I () S dardydt = 0. (90)

In similar way and in view of (89), we have

T
lim 6/ / ) AU (z,t)V (v(x)y (x)) w(t)dxdt

e—0

/ [ A (Vut V,0) 0@ Vo edsdy, o1
DxYs>

e—0

— lim 6/ V (8°0°) (z, t)v(x)yc (z)w(t)dzdt
o Jpe

T
= lim BO (x, )V (ev(z)Y(x)) w(t)dxdt

e—0

De
/ / Jo) Vo (). (92)
DXxY>
and
T ~
6lgr(l)e/o /chl(x,t)v(x)w (x)w(t)dzdt = 0. (93)

The stochastic integral treated using Burkhlder-Davis-Gundy’s inequality as fol-
lows

lim €E; sup
e—0

T ~
/ / (2, o) ()w(t)dzd W (t)
0 D




HOMOGENIZATION FOR STOCHASTIC THERMOELASTIC MODEL 2369

<Clime (/OTw(t) (/D %(m,t)v(x)qb%x)dx)th); —0. (94)

Convergences (90)-(94) and the weak formulation (46) lead to

/ /D N ) (Vu+ Vya(z,y,t) — B(y)0] vV (y)wdedydt = 0. (95)

This gives,
divy [A(y) (Vu+ Vyua(z,y,t)) = B(y)0] = 0, (96)

Following [31] and because u and 6 are independent of y and My, (d) = 0, we
may express the solution of (96) as:

where ® = (®ripm)1<k.l,m<n 1S a 3-dimensional tensor and V = (V,;,)1<m<n solve
uniquely the following cell problems

divy, (A(Y)Vy(Prim + ym)) =0 in Ya,

A(y>vy(q)k:lm + ym> cv=20 on 8Y1,

My, (Pgim) =0 B is Y —periodic,
and

divy (A(y)(VyVin(y)) = B(y)) =0 in Yz,

Ay) [(VyV(y)) = By)] - v=0 on Y1,

My, (V)=0 V is Y —periodic,

Following the same process as above, we get

/ / [ v9+v (@, y, )) Bly )%J VY, (y)wdzdydt =0, (98)
DXxY>
from which we have

div, {/ﬁ(y) (ve +V,0(x,y, t)) - 5(y)?:] —0, (99)

Similar to the above we write

0t 2.9) = () - Vbl 1) + V() 2

where V' = (Vi;,)1<m<n is defined as above and ¥ = (¥})1<k<y solve uniquely the
following problem:

divy (k(y)Vy (Y +yk)) =0 in Y3,
K(y)Vy(¥r+yg) - v=0 on 9Y7,
My, (V) =0 Uy, is Y —periodic,
Using (97) into (82) and (100) into (87), we get
My, (p)d <881;> (x,t) — AgAu(z, t)dt + BoVO(x,t)dt

= fy(x,t))dt + o (x, t)dW, (1), (101)

(z,1), (100)

and

My, (pcy)df(x,t) — koAO(x,t)dt + Bodiv (f;ltl) (x,t)dt
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= g1(z,1))dt + go(, t)dWo(t), (102)

where Ay and kg are constant elliptic matrices given by (58) and (60) respectively.
Now, let’s show that the initial conditions are satisfied. We choose as a test function
v(x)w( ) where (v,w) € C§°(D) x C*°(]0,T]) and w(0) = 1 and w(T) = 0. We have

/ /6 < > z, t)v(z )Czit()dxdt*/spehi(x)v(x)dx

+ / AVul(z, t)Vo(z)w(t)dzdt

/ V(59°) (@ (@) drdt

/ / £ (@ o) (t)dedt + /OT /€f§(x,t)v(a:)w(t)dxde(t).

Making passage to the limit in the above equation we get
— Y2 My, (p / / z,t dt M ) dxdt
~ Yl My (o) / ho()o()d
/ / ) (Vu+ Vi) (z,t) Vo(z)w(t)dedydt
DXY2

+|Y2|./\/ly2([3)/ / Vo(x, t)v(z)w(t)dxdt

|Y2|/ /f1 (2, )o()w (t)dadt

+|Y2|/ /f1 z, t)o(z)w(t)ded Wi (t). (103)

Integration by parts in the first term in (103) gives

v [ [ 4 (6“<x7t>> o) B2 ()

+ |Ya|[ My, (p / / z)dzdt — |Yao| My, (p )/DhQ(x)U(x)dm
/ /ny2 ) (Vu+ V) (z,t) Vu(x)w(t)dedydt

T Yo My, (8) / / VO(e, tyo () (t)dudt

f|Y2|/ / f1(x, t)v(x)w(t)dzdt

+|Y2|/ | @@z

From this and the limit problem (82), we have 2%(z,0) = hy(z). With the same

test function one can easily show that 6(z,0) = hz(x). If we choose w(t) such
that w(0) = w(T) = L(T) = 0 and %2(0) = 1, we show that u(z,0) = hy ().
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As a result, we were able to formulate the limit problem in both the weak and

strong formulations. However, the convergences were limited to sub-sequences; in

. € .
order for the entire sequence (uf, %, 0, Wy, Wf) to converge, it was necessary to

demonstrate that the limit (u, u, %, 0, é, Wl, Wg) was uniquely determined. We
have the following theorem for this. 0

Theorem 6.2. The system (52) and (53) has at most one solution.

Proof. We first state that by standard argument, see for example [11] the functions
u(t,z,y) and 0(t, z,y) are unique solutions to (95) and (98) respectively.

Assume that (ul, %,91, Wi, WQ) and (ug, %,92, Wi, V%) are two solutions
to the system (101) and (102) and write U = uy — up, & = 851; - 8(%22 and
V =60, — 0. Applying Ito’s formula to the functions ¢ (t, %—?(t)) = | %—?(t)“ and
Y (t, V) = ||[V()|?, we get after integration by parts

2
d{MYQ () ‘%Itj + (Aoe(U),e(U))] =5 <VV, %Ij) dt (104)
and
2 2 2 ou
dMy, (p=e)|IVII* + (ko VV, VV)dt = By <8t,VV) dt. (105)

Adding together (104) and (105), we obtain

au|?
| M) | 52|+ (Aae(0),e0) + Mo, (DY)
+ (ko VV,VV)dt = 0. (106)
Using the ellipticity of the matrices Ay and kg, the assumptions on the data and
integration over (0,t), we complete the proof. O

7. Convergence of associated energies and corrector results. In this section,
we study the asymptotic behaviour of the energy associated to the problem (1) to
the energy associated to the limit problem (57). Let us define the associated energies
for the problems (1) and (57). We have

2
€
Ou

€° (05,60 (t) = E1 || p"— - (1) + B [|p°cs0°(D) 172 pey
L2(D¢)
+E; Ae(u)(t)e(u)(t)dx
DE
t
+ 2E1/ / kYO (1) - VO (T)dxdr, (107)
0 €
and
2 du’ ’ 2 2 2
£ (u,0) (1) = My, ()1 | Do)+ My (PEL 100 )
L2(D)

—|—E1/DAOe(u)(t)e(u)(t)dx

+E /O /D KoV O(r)VO(7)dzdr. (108)
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As before, we apply Itd’s lemma to the function ®(¢, 88‘; (t) = llp°%

e Ou®

(01220
in the first equation of system (1) and to the function W(t, 6¢(t)) = ||p° CEGE( )H%Q(De)

in the second equation of system (1). Next, we add up the resulting equations, take
the expectation and integrate from 0 to t < T, we obtain

£ (07 () = DS ey + 1SR gy + [ Al
D(
t aue t
v [ (60.500) e [ G000 dr
0 L2(D¢) 0

t t
+ / 16522 e + / lg5(r)I122 ey (109)
0 0

Following the same process, we obtain

€ (,0) (t) = My, (p°) [ 2|72 (p) + My, (063) Ihs] 2 )

+ [ Auelt)etho)ds +28, | t (8.5 ))m) dr

t t
2[R, / (91(7), 0(7)) o 1y d7 + / 1627 22y
t
+ / l92() 22 - (110)

As usual when proving convergence of energies, some stronger assumptions on
the data are needed, see for example [12, 17]. So, we have the following assumptions:

lhs —ha|l(z2(peyn — 0 as e — 0, (111)

|h§ — hallL2(pey — 0 as € = 0, (112)

£ — f1ll 20,1322 (De)) — 0 as € = 0, (113)

1£5 — f2llL2(0,7;[L2(D<))n) — 0 as € = 0, (114)

95 — g2llz20,13[22(De)n) — 0 as € = 0, (115)

where (ha,h3) € [L*(D)]" x L*(D), (f1,£2) € L*(0,T;[L*(D)]™) x L*(0,T;[L*(D)]")

and (g1, g2) € L*(0,T; [L?(D)]™) x L*(0,T; [L?(D¢)]™). As for the function hj, we
assume that it satisfies the following problem:

—div (A%e(h})) = L. (Ape(h;)) in D¢

Ae(h})-v=0 on 0D§,

hi =0 on 0D,

such that h; is given by (48) and the operator £, (Ape(hy)) : V(D) — R is defined
as:

L. (Age(hy)) (v) = . Age(hy) ()| pedz, for all v € V(DF),

where, 7 is the extension by zero to the macro operator of the function v. With
this assumptions, see [12, Proposition 4.2.], it is easy to see that, |[hi||ype)y < C
for some constant independent of €, (48) hold true, and:

A¢e(h{)e(h])dz — |Y2|/ Ape(hy)e(hy)dx. (116)
De D
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We now state and prove the convergence result for the energy associated with
the micro-model to the one associated with the macro-model.

Theorem 7.1. Let (uf, % 0“ ,0°,WE, W5) be the solution of system (46)-(47) and
assume that (111)-(116) hold then

E(uf, 0% (t) — |Y2l€ (u,0) (t) strongly in C([0,T]). (117)

Proof. We use the assumptions (111)-(115) together with [12, Proposition 2.12.] to
obtain

T¢(hS) — hy strongly in [L*(D x Y3)]", (118)

T¢(hS) — hs strongly in L*(D x Y), (119)

T(f5) — f; strongly in L*(0,T;[L*(D x Y3)]"), (120)
T(f5) — f5 strongly in L?(0,T; [L*(D x Y3)]"), (121)
T¢(g5) — ga strongly in L*(0,T; L*(D x Y)). (122)

Also, the integral on A€ for the square of the functions h§, h§, fi, £5, g5, and ¢§
converges to zero. We now pass to the limit on (109), from convergences (118) and
(119) and the definition of p¢ and A€ we have the following two limits:

. €1.€\2 T €/ €\rTE (T €\\2
i | (ph3)" dz = lim ey, (T(p)T(h3))" dady
lim P*(y) (T(h3)) dady = |Ya| My, (0) b2 72 p) (123)
e—0 DxYs
and
lim S hs)? do = lim T¢(p°cS )T (hS))? dady
lim Dﬁ(p 5) lim Dm( (p°ci)T(h3))
lin P(y)A(y) (T(hS))* dady = [Ya| My, (02¢2) [1hsllFapy - (124)

e—0 DxY,

From the weak convergence (66) and the strong convergence (120), we have

lim ]El/ / dxdT = hm El/ / T(£5)T <6u )da:dydT
=0 0 e DxYs

From the weak convergence (50) and the strong convergence (6), we have

¢
lim El/ / g50°dxdr = hm ]El/ / “(g7)T€ (0°) dedydr
=0 Jo Jpe DxY,

o Jp
From convergences (121) and (122), we have
t
lim ]El/ ff5dedr = hm El/ / (£5) dedydr
=0 0 JDe DxY,

:|Y2\E1/ / |fo|?dxdr, (127)
0 JD
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and

t t
lim E, / / g595dxdr = lim E4 / / T¢(g5)Te (¢5) dedydr
e—0 0 e e—0 0 DxYs

t
= |Ya|Eq / / |g2|*dzdr. (128)
0o JD
Combining convergences (123)-(128) together with (116), we see that
lir% EC(us, 0% (t) = |Y3|€ (u,0) (t) for all t € [0,T].
€E—>
So far, we have proved the point wise convergence of £€ (u€,6) to & (u,0), we
must now demonstrate that the sequence £€ (u€, 6€) belongs to a compact subset of
C([0,T]) by demonstrating that £¢ (u€, #°) is uniformly bounded and equicontinuous
on [0,T], and so Arzela-Ascoli’s theorem will entail the proof. A direct application

of Theorem 3.1 in the definition (107) on easily see that |E€ (u€,0°) (t)| < C for all
t € [0, T]. For the equicontinuity, we see that

€ (%, 0°) (t+ ) — €° (u, 0) (V)]

s ou‘
SQIE/ / f$(r)—(7
S e

t+s
+ 28, / / 16 (r), 6(7)| dcdir
t €
s t+s

dxdr

t+
[ I ot + [ 15 i
t t
2

t+s % t+s , %
< 28, / ) dr ( / ||ﬁ(T)||[L2(DEWdT>
! (L2(D))" t
t4s , 3 t+s , 1
+ 28, (/t 162 (e dT) (/t 195 (P12 2 ey dT)
! 1
t+s ) 35 t+s . 1
+</t 16”) (/t IIfS(T)IILz(DE)dT>
t+s % t+s . %
+</t 12‘”) </t IIQS(T)IILQ(De)dT)
1
t+s ) i
AL —
[L2(De)]n t

1
s . t+s . 2
+ 252, sgp”@ Ol p2(pey (/ |91(T)||2L?(D‘)d7-)
t

. t+s A 3
e ( / ||f;<7>||L2(De>dr)

L t+s 4 %
s ( [ 150l o df) | (129)
t

From the estimates obtained in Theorem 3.1 and the assumptions on f5 and ¢S,
we have

£ (0, 0°) (t + 5) — £ (u,6) (t)| < Cs?, for all t € [0,T — s, (130)

ou
at

< ZS%El sup
t

ou®
5o
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which implies that £€ (u€, 6¢) is equicontinuous and therefore the proof is complete.
O

We are now in the position to prove the following corrector results

Theorem 7.2. Assume that the assumptions in Theorems 3.1, 3.2, and 7.1 are
correct. Then the following strong convergences apply

o0u’ Vu
4 Ot | 2 (@20, i(L2 (a)m)) I Vile@rormmoro
A0 L2 (2 0.7:22(ac))) » I Vee||L2(Q;L2(0,T;L2(A€)))) — 0, (131)

T <p5 8(;: > — My, (p)%l; strongly in L*(S; L*(0,T; [L*(D x Yo]™)),  (132)

T(VuS) — Vu+ V@ strongly in L*(Q; L(0, T; [L*(D x Y3|™*™)),  (133)
T¢ (A°°) — My, ()0 strongly in L*(S2; L2(0,T; [L*(D x Y3]™)),  (134)
TE(VO) — VO + V0 strongly in L*(S%; L*(0, T;[L*(D x Y2]")).  (135)

Proof. Let us first notice that from (58), we have

/ / AoVuVudzdt = / / ) (Vu + V,0) Vudzdydt,
|Y2| DXxYs

from (95), we also have

/ / ) (Vu(z,t) + Vya(z,y,t)) Vya(z, y, t)dedydt = 0.
DXYQ

Thus,

/ / ApVu - Vudzdt = / / ) (Vu+V,ya) (Vu+ Vyua) dedydt.
|Y2| DxYs

In a similar way, we have

/ / ko0 - VOdrdt = / / va+v ) : (ve+vyé) dwdydt.
|YQ| D><Y2

Considering the stochastic energy associated with the limit problem, i.e. equation
(108) and classical result (Lower semi-continuity), we may see that:

E(u,0)(t)dt = —E / / ( > dxdydt
/ |Y2 ' DxYs ot Y
E1 / / ) (Vu+V,a) (Vu+ V) dedydt
|Y2 DXxY>
—FE / / 0)” dxdydt
|Y2 ! DXxY> ) )
va+v (VO +V,0) dedydr | dt
|YQ / |:/ /D><Y2 ) ( Y ) v :|
NN
< lim inf —Elf / ( ( u )> dxdydt
e—0 DxYs ot
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El/ / )(T€ (Vu) - T (Vu®) dedydt
|Y2 DXYs>

|Y2 El/ /D y (T (p°c50°))? dadydt
X Yo

|y2| / [/ /nyz y)T€ (Voe) - T (VO°) dadydr | dt.

From (36), we write

/ E(u dt<hrn1nf |/ Eu 0)(

e 2
(p6 du ) dz + Eq Afeuc)e(u)dx
e ot De

t
/ (P A dx 4+ Ey / /  KEVOVO drdt.
De 0 €

From (136) and Theorem 7.1, we have

where

E(us,09(t) =,
+ E;

T
/E(u,é’)( )dt<hm1nf |/ E(u,6°)(
0

<hmsup‘Y|/ Eu ,09)(
2

e—0

which implies that

T
lim E(u 0°)(t)dt = lim E(us, 0%( |Y2|/ E(u

e—0 0 e—0 0

From this and (36), we get

e 2
E, / (pfaé;) dr — 0, E; ; Afeu)e(u)dx — 0

t
E, / (p°c0°)° da — 0, El/ / KEVO© - VO dadt — 0.

< lim sup 2|/0 E(ue,ee)(t)dt:/o E(u,0)(t)dt

(136)

This gives the proof of (131). In order to prove (132)-(135), we first note that:

//DXYZ( ( 81;6>>2dxdydt

/ / y)T¢ (Vu) T¢ (Vu®) dedydt
DXYQ

+ / / (T (p°c50°))° dadydt
0 DXxY>

+ /O ' [ /0 t /D )T (v T (Vﬁe)dxdydT} dt]




HOMOGENIZATION FOR STOCHASTIC THERMOELASTIC MODEL

= /Té’(uﬁ)(t)dt
0

It is easy to see that:

/ /D><Y2< (p 8t) (y)(:;ltl)2dxdydt

L A e ey
D XY
[T (Vu®) — Vu - V,a]dzdydt

+/ /DXYZ (’]I‘e (pfczge) _ p(y)cv(y)9)2 dl'dydt

/ {/ /ny T (V6°) = VG—Vyé]

[T (Vo) = Vo — Vyé]dxdydt]

E
|Y21

=10 —I)— I3+ 14,

where
2
dxdydt
= |Y2 //DxYQ( ( t)) ray
/ / y)T¢ (Vu®) T¢ (Vu®) dedydt
D XY
+ / / (T (p°c56°))* dadydt
0 JDxY;
T t
+/ U/ ”(yme(vaﬁ)'TE(VGE)dxdydT] dt].
0 0 JDxYs
T
[ Ouf ou
el /D (Y (2

/ / y) T (Vu) (Vu + V) dedydt
DxYs

+ /0 /ny2 T* (Pecfﬁe) (p(y)cl)(y)e)dl‘dydt

+r /0 ! [ /0 t /D L, AT (V60) (ve + vyé) dxdydr} dt] .
[ /m (e ) v () ot

/ / ) (Vu+ Vya) (T¢ (Vu) dedydt
DXxY>

1
I3 =——FE
AR
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(137)

(138)

(139)

(140)
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+ / /ny2 T (pc50°) (p(y)cy (y)0)dzdydt

/ { / /D B (vo+v 0)-’]I‘€(V06)dxdyd7} dt]. (141)
/ /nyz< ?)dedydt

/ / ) (Vu+V,a) (Vu+ V) dedydt
DxYsy

/ /ny2 y)ew(y)0)? dadydt
+ /0 UO /Dm 5 (VO+,0) - (V0 +V,0) dxdydT} dt} )

We can observe from the limits obtained in Theorem 6.1 that:

4 | }/2

limIly —Io— I3+ 1y
e—0
T T
— / £(u, 0)(t)dt — / £(u, 0)(t)dt
0 0

—/Tg(u,e)(t)dt+/Tg(u,e)(t)dt:o. (143)
0 0

This implies (132)-(135) and completes the proof. O

8. Conclusion. In this study, we have developed a linear model that describes the
interaction between deformation and temperature fields in a thermoelastic com-
posite material with a highly heterogeneous, anisotropic, and e—periodic structure.
The material is subject to external heat sources and body forces, and its behavior is
influenced by natural randomness arising from thermal interactions with the envi-
ronment. The model in question is governed by a system of coupled linear stochastic
equations: a wave equation of motion and a heat equation. Both equations contain
highly oscillatory coefficients that reflect the composite material’s properties, and
the material domain is assumed to be perforated. We used the periodic unfolding
approach to study the asymptotic behavior of the model’s solution when the char-
acteristic length scale € tends to zero. We developed an effective model described by
stochastic linear thermoelastic waves with constant effective coefficients in a fixed
domain. These coefficients represent the material’s homogenized properties, aver-
aged over its microstructure. We established cell problems (54)-(56) that capture
the material’s local behavior at small scales and are crucial for computing homog-
enized material properties. We have shown that the energy of the original model
converges to the energy of the homogenized material, providing a solid basis for
the validity of the effective model. Furthermore, we proved strong convergence re-
sults, including corrector terms, which refine the approximation of the macroscopic
material response at different scales.

For future work, we plan to extend this framework to nonlinear models and de-
velop numerical methods for implementation and validation. Specifically, we aim
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to explore nonlinear heat conduction and nonlinear interactions between mechan-
ical and thermal fields, including phenomena such as thermally induced buckling,
dynamic instability, nonlinear damping, or external random forces. We will also
develop numerical algorithms to solve the homogenized equations and compare the
results with experimental data for real composite materials.

In conclusion, these results contribute to a deeper understanding of the interplay
between deformation, temperature, and randomness in composite thermoelastic ma-
terials, offering valuable insights into their homogenization and effective properties
for practical applications.
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