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Abstract—Recent studies have demonstrated significant success
in detecting attacks on the Controller Area Network (CAN)
bus network using machine learning and deep learning models,
including convolutional neural networks and transformer-based
architectures. Building on this foundation, our work investigates
the use of large language models (LLMs) not only for intrusion
detection but also for providing interpretable explanations of
their decisions. We fine-tuned three LLMs, i.e., SecureBERT,
LLaMA-2, and LLaMA-3, for intrusion detection on CAN bus
data. Among them, LLaMA-3 delivered the best results, achieving
SOTA performance on the Car-Hacking dataset. Beyond attack
classification, we evaluated LLaMA-3’s ability to generate rea-
soning for its decisions through zero-shot prompting. The model
successfully articulated its rationale, particularly for Denial-of-
Service (DoS) attacks, demonstrating strong potential for explain-
ability in intrusion detection systems. These findings highlight
the potential of LLMs to serve as a highly accurate intrusion
detection system while simultaneously providing interpretable
explanations, thereby enhancing the investigative capabilities of
cybersecurity professionals.

Index Terms—CAN Bus Network, Intrusion Detection System,
Large Language Models

I. INTRODUCTION

The Controller Area Network (CAN) bus enables fast and
efficient communication between Electronic Control Units
(ECUs) within a vehicle’s internal network and has remained
an industry standard since its introduction [4]. Its widespread
adoption is driven by simplicity, low cost, and the ability
to support real-time communication among multiple ECUs,
which are the key requirements for modern automotive sys-
tems. While newer protocols like CAN-FD and automotive
Ethernet offer improved security and higher bandwidth, CAN
remains the dominant choice for in-vehicle communication
due to its lightweight design and cost efficiency. However, the
protocol was designed with performance rather than security in
mind and lacks essential features such as authentication and
encryption. This vulnerability leaves CAN networks highly
susceptible to a wide range of cyberattacks. Consequently,

extensive research has focused on enhancing CAN security,
with Intrusion Detection Systems (IDS) emerging as one of
the most practical solutions. IDS approaches provide robust
protection while maintaining CAN’s real-time performance
by passively monitoring network traffic without disrupting its
broadcast-based architecture.

With the rapid advancement of artificial intelligence (Al),
recent studies have increasingly explored the integration of
deep learning techniques into IDS to enhance the security
of CAN bus networks. Unlike traditional IDS approaches,
which often rely on pre-defined rules or signatures, deep
learning models offer the ability to identify complex patterns
and potentially detect zero-day attacks or previously unseen
malicious activity. Among these techniques, large language
models (LLMs) have emerged as a promising solution due
to their capacity to process vast amounts of data efficiently
and leverage extensive pre-training on diverse datasets. This
enables LLMs to capture nuanced relationships and anomalies,
making them well-suited for identifying sophisticated attack
vectors within automotive communication systems.

LLMs have been extensively studied for their ability to
detect attacks within CAN bus networks, achieving notable
success in distinguishing benign messages from malicious
ones and accurately classifying attacks into specific types [1].
Building on this foundation, our work investigates the use of
LLMs not only for message and attack-type classification but
also for their capability to perform zero-shot reasoning. Specif-
ically, we explore how LLMs can articulate the underlying
patterns and rationale behind their classifications in response
to user prompts, thereby enhancing explainability in intrusion
detection. In our work, we used large language models to not
only classify messages as being malicious or benign, but also
began exploring the use of these large language models as
tools that can assist professionals by providing explanations
behind their classifications.
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II. RELATED WORKS

We review prior research on deep learning-based CAN bus
intrusion detection, summarize key approaches, and discuss
the distinctions of our PA-JJAMA method.

Fu et al. introduced a BERT based model that leveraged
a semantic extractor to train the model to be able to recognize
the semantics of multiple different protocols, allowing it to
detect attacks in multiple types of networks, such as IoT and
the CAN bu [2]. The Car Hacking dataset was modified to
include only the ID and payload data of the CAN messages.
They sampled 10,000 messages from the normal messages
and each type of attack message from the dataset. The model
performed extremely well, with over 99.9 percent in every
evaluation metric.

In a more CAN bus focused work, Nwafor et al. propose
the CANBERT model[3]. They pre-trained the BERT model
on the OTIDS [8] dataset to teach the model how to recognize
CAN bus semantics. Once pre-trained, the model was then
fine-tuned for CAN bus message classification. The dataset
was divided three ways, 64% for training, 20% for validation,
and 16% for testing. The model was said to have performed
with near perfect detection but further specifics were not given.

In the work produced by Rai et al. they compare the
performance of four deep learning models in their ability to
detect attack in an in-vehicle network. The four models used
were Long Short-Term Memory (LTSM), Gated Recurrent
Unit (GRU), Bi-directional LSTM, and the pre-trained VGG-
16 model. The work used the Car Hacking Dataset, OTIDS,
and Survival Analysis datasets individually and also created a
merged dataset of the three that consisted of over 6,000,000
total messages with over 1,000,000 attack messages. The
dataset was split 80% for training with 20% for testing. The
models were evaluated using accuracy, precision, recall, and
F1-score. On the Car Hacking dataset VGG-16 performed the
best, maintaining over 90 percent points in every evaluation
metric. It performed worse in every evaluation metric than the
language model based models discussed however.

Touvron et al. released Llama-2, an open-source models
featuring different versions with parameter sizes of 7 billion,
12 billion, and 70 biliio [10]. The model waS trained on 2
trillion tokens on factual sources to attempt to increase the
model’s knowledge and reduce its hallucinations. We use this
model as one of the benchmarks for LLM perfomance in
intrusion detection. LLaMA-2 would be succeeded with the
introduction of Llama-3 in 2024 by Dubey et al. LLaMA-3
would be even larger than Llama 2, featuring models with
parameter sizes of 8 billion, 70 billion, and 405 billion [11].
The model was trained on 15.6 trillion tokens. This model
is used as another benchmark for the evaluation of LLMs in
CAN bus IDS architecture.

Agahei et al. introduced secureBERT in [7]. The model
is based on the BERT architecture, and has been pretrained
on cybersecurity related text and articles to teach it domain
specific vernacular, with this corpora totaling over 2.2 million
documents [12]. This model provides an encoder-based foil to
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benchmark language model performance in intrusion detection
systems as a opposed to the two decoder-leveraging models
of LLaMA-2 and LLaMA-3.

Although these works demonstrate the effectiveness of
deep learning and language models for the detection of CAN
bus attacks, their focus has mainly been on classification. None
have explored the use of LLMs for explanatory reasoning, an
essential capability to improve transparency and aid cyberse-
curity professionals in forensic analysis. Our work addresses
this gap by incorporating zero-shot reasoning to explain model
decisions in addition to achieving high classification perfor-
mance.

III. BACKGROUND
A. CAN Bus Architecture

The CAN bus is a message-based serial communication pro-
tocol designed to enable high-speed data exchange within
a vehicle’s internal network. In a CAN bus architecture,
ECUs, also referred to as nodes, communicate by broadcasting
messages to the shared bus whenever it is available [5]. As a
result, every ECU on the network can receive all transmitted
messages. The bus is typically divided into two segments: a
high-priority network and a low-priority network. The high-
priority network handles critical communications such as
steering assistance and acceleration control, whereas the low-
priority network manages non-essential functions like window
or sunroof operations. Message arbitration within the CAN
bus is governed by a priority system, where the ECU with the
lowest identifier is granted transmission priority.

Because the CAN bus protocol lacks authentication and
encryption mechanisms, it is highly vulnerable to attackers
with knowledge of its operation. Exploits can vary signif-
icantly in severity, from triggering minor actions such as
opening or closing windows to executing critical commands
like manipulating steering control while the vehicle is in
motion [6].

B. SecureBERT

Transformer-based models form the foundation of most mod-
ern models for natural language processing (NLP). These ar-
chitectures leverage encoders, decoders, and, most importantly,
the self-attention mechanism combined with feed-forward neu-
ral networks to capture contextual relationships and generate
coherent, human-readable text.

SecureBERT is a domain-specific language model tai-
lored for cybersecurity applications and built on the RoOBERTa
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TABLE I: Car Hacking Dataset Statistics

Attack Type | Total Messages | Normal Messages | Injected Messages
DoS Attack 3,665,771 3,078,250 587,521
Fuzzy Attack 3,838,860 3,347,013 491,847
Gear Spoof 4,443,142 3,845,890 597,252
RPM Spoof 4,621,702 3,966,805 654,897

TABLE II: Balanced

Car-Hacking Dataset Statistics

Attack Type | Total Messages | Normal Messages | Injected Messages
DoS Attack 1,175,042 587,521 587,521
Fuzzy Attack 983,694 491,847 491,847
Gear Spoof 1,194,504 597,252 597,252
RPM Spoof 1,309,794 654,897 654,897
Total 4,663,304 2,331,517 2,331,517

architecture [12]. It is pretrained on over 98,000 cybersecurity-
related corpora and optimized for downstream tasks within
this domain. The RoBERTa framework employs bidirectional
encoding, enabling the model to process text in both directions
across layers. [13] This bidirectional training strategy allows
the model to develop a deeper contextual understanding of
input sequences and effectively learn intricate patterns in the
data. In our approach, CAN message data was tokenized into
11 tokens, with the final token representing the label that
indicates whether the message is benign or malicious.

C. LLaMA Models

The LLaMA family of models consists of decoder-only models
trained on vast amounts of publicly available open-source data.
One of the key advantages of LLMs is their extensive pre-
training, which enables strong generalization without requiring
full retraining for most tasks. In this study, we fine-tuned
LLaMA-2 and LLaMA-3 for two primary objectives: intrusion
detection and explanatory response generation. To adapt these
models for CAN bus intrusion detection, we transformed each
CAN message into a prompt-answer format, where the prompt
followed the structure “Here is a CAN Bus Message:... Is this
message malicious? If no answer "No - Benign” otherwise
”Yes - Attack Type”” and the corresponding answer was either
”No - Benign” or ”Yes - Attack Type” where the attack type
was replaced with the predicted attack type classified. The
fine-tuned models were then evaluated based on their ability
to produce correct responses, which were used to compute
standard evaluation metrics. Additionally, we employed zero-
shot prompting techniques to encourage the models to provide
reasoning for their classifications, enabling insights into the
patterns they recognized during decision-making.

IV. DATA PRE-PROCESSING
A. Dataset

The Car Hacking Dataset developed by Song et al. [9] was
utilized to fine-tune the three selected models for CAN bus
intrution detection. This dataset contains over 12 million mes-
sages, including four injected attack types: Denial of Service,
Fuzzy Attack, Gear Spoofing, and RPM Spoofing. To ensure
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format consistency, records with payload lengths shorter than
eight bytes were padded with “00” in the data fields. Each
attack-specific subset was individually evaluated using the
three models. Subsequently, we constructed a balanced dataset
by sampling all attack messages from each subset and an equal
number of normal messages. An 80/20 split was applied for
training and testing across all datasets. Additional details about
the attack types are provided in Table I.

1) DoS Attack: Messages were injected with ”0000” as
the ID every 0.3 milliseconds.

2) Fuzzy Attacks: Messages with completely random ID
and Data values were injected every 0.5 milliseconds.

3) Gear & RPM Spoofing: Messages with ID values
related to RPM and gear activity were injected every 1
millisecond. [9]

B. SecureBERT Data Pre-processing

For SecureBERT preprocessing, each CAN message was
divided into the following fields: Timestamp, ID, Length,
Data[0O]-Data[7], and Status. The ID and Data fields were
converted from hexadecimal to numeric values to enable tensor
representation. In single-attack datasets, the Status field was
mapped such that “R” (regular) was converted to 0 and “T”
(attack) to 1, representing normal and malicious messages,
respectively. For the combined dataset, each attack type was
assigned a unique integer label as detailed in Table III.

C. LLaMA Model Data Pre-processing

For the LLaMA models, the Car Hacking Dataset was format-
ted such that each CAN bus message was embedded within
a prompt asking whether the message was malicious. The
corresponding answer began with “yes” or “no,” followed by
a brief clarification indicating either the specific attack type or
a benign status, as appropriate. For the Multi-Attack dataset,
the four LLaMA preprocessed subsets were merged into a
single dataset. Additionally, an alternative version was created
by modifying the prompts to explicitly encourage zero-shot
reasoning, enabling the model to provide explanations for its
classifications.
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TABLE III: SecureBERT Message Labels

Attack Type | Label
Benign 0
DoS Attack 1
Fuzzy Attack 2
Gear Spoof 3
RPM Spoof 4
V. METHOD

A. SecureBERT Fine-tuning

For the single-attack-type datasets, the SecureBERT fine-
tuning process involved training the top layer for a binary
classification task, using malicious and benign as the labels.
In contrast, for the combined dataset, the model was fine-
tuned for multi-class classification, enabling it to both detect
an attack and identify the specific attack type.

B. Llama Model Fine-tuning

The models are initially fine-tuned in text-classification mode
to classify each message as malicious or benign and, when
applicable, identify the specific attack type. This process was
applied to both single-attack and combined-attack datasets.
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Subsequently, LLaMA-3 was further trained using prompts
designed to encourage zero-shot reasoning based on patterns
learned during fine-tuning. To accommodate hardware con-
straints and improve efficiency, we applied 4-bit quantization
to reduce model precision and employed LoRA [14] to mini-
mize the number of trainable parameters. These optimizations
significantly reduced training time while maintaining model
performance.

The PA-JJAMA architecture is based on Llama 3 and is
trained in causal mode. CAN messages are input as a part of
a prompt the promotes zero-shot reasoning. The model is only
given the classification of the message and its attack type if
malicious, no reasoning for the classification is given at any
point during training.

VI. RESULTS
A. Model Result Comparison

All three models demonstrated outstanding performance in
distinguishing between benign and malicious CAN messages
across both the individual attack-type datasets and the com-
bined dataset.

Although SecureBERT achieved the lowest performance
among the three models, its results remain impressive given its
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TABLE IV: Model Performance on Individual Attack Datasets

Attack Type SecureBERT LLaMA 2 LLaMA 3
Accuracy | Precision Recall Accuracy | Precision Recall Accuracy | Precision Recall
DoS 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000
Fuzzy 0.999996 | 1.000000 | 0.999970 | 0.999999 | 1.000000 | 0.999999 | 1.000000 | 1.000000 | 1.000000
Gear Spoof 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
RPM Spoof 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000
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Fig. 4: Multi-Attack Dataset Performance

significantly smaller size, 110 million parameters compared to
LLaMA-2’s 7 billion and LLaMA-3’s 8 billion. Across both
single-attack and multi-attack datasets, SecureBERT misclas-
sified only three messages. Its bidirectional encoding archi-
tecture clearly contributed to its ability to capture context and
learn message patterns, resulting in strong overall performance

in attack detection.

LLaMA-2 achieved strong results, misclassifying only
two messages across all individual attack-type datasets.
LLaMA-3 delivered even better performance, correctly label-
ing every message in the single-attack datasets and misclas-
sifying just two messages in the combined dataset. Given

686

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on December 02,2025 at 15:10:51 UTC from IEEE Xplore. Restrictions apply.



the difference in parameter sizes, this slight improvement by
LLaMA-3 over LLaMA-2 aligns with expectations. While
LLaMA-2 performed marginally worse on the multi-attack
dataset, it still achieved near-perfect accuracy with only two
errors. This performance gap may be attributed to LLaMA-
3’s larger parameter count, which likely enhanced its ability
to capture subtle patterns within the data. Our proposed
model, PA-JJAMA, performed comparably to LLaMA-2 but
misclassified only two messages. Overall, all three mod-
els demonstrated exceptional accuracy, and the self-attention
mechanisms of the LLaMA models appear to have played
a critical role in learning complex token relationships and
identifying patterns associated with malicious payloads.

B. Zero-Shot Reasoning with PA-JJAMA

Building on its strong performance in attack detection and
classification, LLaMA-3 was further fine-tuned to develop
PA-JJAMA. This model was designed not only to identify
malicious messages and classify their attack types but also
to provide reasoning for its decisions. To achieve this, we
employed a zero-shot methodology, training the model with
prompts that emphasized explanatory responses. However,
during training, the model’s outputs consisted primarily of a
binary answer (“yes” or “no”) followed by the classification
label: Benign, DoS Attack, Fuzzy Attack, Gear Attack, or
RPM Attack. To address this, we introduced an inference-
time prompt that explicitly encouraged reasoning in addition
to classification. The resulting causal version of the model
maintained high accuracy, misclassifying only two messages
in the multi-attack dataset.

Although the response incorrectly identified the DLC
field as part of the data payload, its ability to provide a
coherent explanation and accurately highlight the key features
that informed its decision is highly promising, as shown in
Figure 3.

VII. CONCLUSION

In this work, we evaluate the application of LLMs for intrusion
detection and introduce PA-JJAMA, a model capable of not
only identifying attacks but also providing reasoning for its
classifications when prompted. While PA-JJAMA does not
consistently use correct field names in its explanations, it
successfully identifies key features within the data that indicate
malicious activity. Further refinement of training prompts is
needed to improve the accuracy and specificity of these ex-
planations. Despite these limitations, PA-JJAMA demonstrates
the potential of LLMs to extend beyond task automation
and serve as valuable tools for cybersecurity professionals by
offering both detection and interpretability.
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