Cybersecurity Education with Generative Al:
Creating Interactive Labs from Microelectronic
Fundamentals to IoT Security Exploitation

1%t Kushal Badal

Department of Computer science

2" Xiaohong Yuan
Department of Computer science

North Carolina Agricultural and Technical State University — North Carolina Agricultural and Technical State University

Greensboro, USA.
kbadal@aggies.ncat.edu

3™ Huirong Fu
Computer Science and Engineering Department
Oakland University
Rochester, MI, USA.
fu@oakland.edu

Greensboro, USA.
xhyuan@ncat.edu

4™ Darrin Hanna
Electrical and Computer Engineering Department
Oakland University
Rochester, MI, USA.
dmhanna@oakland.edu

5% Jason Gorski
MicroNova LLC
2505 Pontiac Lake Rd
Waterford, MI 48328 USA.
jason@micro-nova.com

Abstract—Creating engaging cybersecurity education materi-
als typically requires months of development time and specialized
expertise. This paper describes how we used generative Al to
address this challenge. We utilized Claude AI to generate a
complete interactive platform that teaches students basic micro-
electronics through IoT hacking. Through iterative prompting,
we generated more than 15,000 lines of functional code, including
interactive visualizations, Python security tools, and gamified
quizzes with real-time leaderboards. The curriculum guides
students through the evolution of computing—from vacuum tubes
to modern IoT devices—then helps them apply this foundation
to discover real vulnerabilities. We implemented this platform at
a GenCyber summer camp with 40 participants, where students
identified actual security issues in AmpliPi audio systems—open-
source network audio devices designed for multi-room audio
distribution—including password weaknesses and denial of ser-
vice flaws. The entire development process took only three
weeks instead of the typical several months. The AI produced
quality educational content, although we reviewed everything for
technical accuracy and ethical considerations. During the camp,
students remained engaged through competitive elements and
hands-on labs, learning both theoretical concepts and practical
skills. The students used Al-generated tools, including working
implementations of SlowLoris and dictionary attacks, to test real
systems. Our experience demonstrates that generative AI can
efficiently create effective cybersecurity education materials that
remain technically current. All materials are publicly available on
GitHub for educational use. This approach could help educators
stay on track with the rapidly evolving technology despite
traditional curriculum development constraints.

Index Terms—Generative Al, Cybersecurity Education, In-

teractive Learning, IoT Security, Hands-On Labs, Curriculum
Development

I. INTRODUCTION

Cybersecurity education faces a fundamental challenge: the
rapid evolution of threats and technologies outpaces tradi-
tional curriculum development cycles. Educators must prepare
students for attacks that did not exist when courses were
designed, using defensive techniques that constantly evolve.
This temporal disconnect becomes particularly acute when
teaching hardware security and IoT vulnerabilities, where new
devices enter the market faster than educational materials can
be developed [1].

Traditional approaches to creating cybersecurity laboratories
require substantial time investment. Developing a compre-
hensive hands-on module typically requires 3-4 months of
faculty effort, including content creation, testing infrastructure
setup, and safety validation [2]. By safety validation, we mean
ensuring: (i) network isolation to prevent attacks from escaping
the lab environment, (ii) system protection to safeguard insti-
tutional infrastructure, and (iii) ethical boundaries to prevent
misuse of attack techniques. By the time the materials reach
students, the specific vulnerabilities and tools may already be
outdated. This development bottleneck limits educators’ ability
to provide current, relevant experiences that reflect real-world
security challenges.

The emergence of IoT devices in educational environments
presents both opportunity and risk. These devices offer tangi-



ble targets for security education, but require careful isolation
and monitoring to prevent unintended consequences [3]. For
our work, we selected the AmpliPro device [4], a network
audio system that runs the open source AmpliPi multichannel
audio application [5]. The AmpliPro serves as an ideal edu-
cational target because it represents a real-world IoT device
with genuine security considerations, while being designed for
multiroom audio distribution in residential and commercial
settings. Importantly, the open-source nature of the AmpliPi
software allows students to examine both the attack surface
and the underlying code, providing a comprehensive learning
experience. Creating safe but realistic testing environments for
such devices requires experience in networking, virtualization,
and security controls. By “safe,” we mean network safety to
prevent attacks from escaping the lab environment, system
safety to protect institutional infrastructure, and student safety
to prevent accidental self-harm through misuse of tools. These
technical skills are particularly lacking at the K-12 level, where
cybersecurity education starts to increase [6].

Recent advances in generative artificial intelligence offer a
potential solution to these challenges. Large language mod-
els can produce functional code, educational content, and
interactive visualizations from natural language specifications.
However, their application to cybersecurity education raises
critical questions about accuracy, safety, and pedagogical ef-
fectiveness [7]. Previous work has shown that gamification
can significantly improve the mastery of network security
concepts [8], and interactive visualization tools have proven to
be effective in teaching complex security vulnerabilities [9].

This paper addresses these challenges through the devel-
opment and deployment of an Al-generated cybersecurity
curriculum focused on teaching microelectronics fundamentals
through practical IoT security testing. We used generative Al
to create a comprehensive educational platform that includes
12 interactive HTMLS presentations that cover the evolu-
tion from vacuum tubes to modern IoT security, functional
penetration testing demonstrations, and gamified assessment
components. Building on successful gamification approaches
in cybersecurity education [10], [11], our platform incorporates
competitive elements and interactive visualizations to maintain
student engagement. The development process required only
three weeks instead of the typical 3-4 months, demonstrating
significant efficiency gains.

Our contributions include:

« A complete methodology for using generative Al to create
cybersecurity educational materials, including prompt en-
gineering strategies and implementation of safety control
(rate limiting and target validation).

o Functional penetration testing demonstrations with ed-
ucational scaffolding that balance realism with safety
constraints (network isolation and restricted attack scope).

e The results of a deployment of a GenCyber summer
camp with 40 K-12 participants, demonstrating successful
vulnerability identification in real IoT devices.

o Open-source release of all materials, enabling reproduc-
tion and adaptation by other educators.

The remainder of this paper is organized as follows. Section
II reviews related work on cybersecurity education and Al-
assisted content generation. Section III details our Al-driven
development methodology. Section IV describes the technical
implementation of the platform. Section V presents the de-
ployment results and the student results. Section VI concludes
the paper and discusses future work.

II. RELATED WORK

This section provides a comprehensive review of existing
approaches to cybersecurity education, examining traditional
laboratory development methods, the role of gamification and
interactive learning, applications of artificial intelligence in
computing education, IoT security platforms, and recent ad-
vances in Al-enhanced security education. We identify critical
gaps in current methodologies that our Al-assisted approach
addresses.

A. Hands-on Security Laboratory Development

Cybersecurity education has evolved from theoretical in-
struction to hands-on experiential learning in the past decade.
The NICE Cybersecurity Workforce Framework established
standardized knowledge units and competencies for cyberse-
curity education [12]. However, translating these frameworks
into engaging educational experiences remains a challenge. Du
and Wang [13] developed the SEED labs, providing hands-on
exercises for security education, but noted the substantial time
investment required for content development, often exceeding
100 hours per comprehensive lab module.

The GenCyber program, funded by the NSA and NSF
since 2014, has been instrumental in bringing cybersecurity
education to K-12 students [14]. However, creating effective
security laboratories for such programs presents significant
challenges. Virtual laboratories reduce infrastructure costs
but introduce new complexities. KYPO CRP [15] provides
cloud-based cybersecurity training environments but requires
substantial technical expertise to deploy and customize. Justice
and Vyas [16] developed RunLabs to quickly create virtualized
laboratories, but the configuration and maintenance burden
remains significant.

Commercial platforms like TryHackMe [17] and HackThe-
Box [18] leverage gamification principles but are designed
for self-directed learning rather than structured classroom
instruction. PentesterLab [19] provides guided exercises that
focus primarily on Web and network security rather than
hardware vulnerabilities.

The Open Web Application Security Project (OWASP)
maintains WebGoat [20], an intentionally vulnerable web
application for security training. Although valuable, WebGoat
focuses solely on web vulnerabilities and lacks hardware
security components. Similarly, IoTGoat [21] provides an
intentionally vulnerable IoT platform, but requires physical
hardware that many institutions cannot afford. Our selection
of the AmpliPi system [5] addresses this limitation by using a
real-world network audio device commonly used in residential
and commercial settings. The open source nature of AmpliPi



software allows students to examine both the attack surface
and the underlying code, providing realistic IoT vulnerabilities
while remaining accessible to educational institutions.

B. Gamification and Interactive Learning in Cybersecurity

Game-based learning has been shown to be effective in
cybersecurity education. PicoCTF [22], designed for high
school students, demonstrates that complex security concepts
can be made accessible by appropriate scaffolding. Schreuders
et al. [23] developed Hackerbot, which provides randomized
security challenges, although creating new scenarios requires
significant expertise.

CyberCIEGE [24] uses video game mechanics to teach
security concepts through scenario-based learning [25], but
development costs exceeded a million dollars, highlighting
the resource constraints facing educators who want to create
engaging security education materials. The effectiveness of the
game has been documented in multiple studies [26].

Recent research further demonstrates the effectiveness of
gamification in cybersecurity education. Hilliard et al. [§]
showed that gamification significantly enhances the mastery of
network security concepts, and students demonstrate improved
retention when competitive elements are incorporated. Xu
et al. [10] developed a game-based approach to teach ARP
spoofing attacks, finding that students who learned through
games showed a better understanding of attack mechanics
compared to traditional instruction.

Interactive visualization has proven particularly effective
for complex security concepts. Zhang et al. [9] developed
interactive web-based tools to teach buffer overflow concepts,
demonstrating that visual representations help students under-
stand vulnerabilities in memory corruption. Similarly, Wean-
quoi et al. [11] created gamified lessons for access control
concepts, showing improved engagement and comprehension
among undergraduate students.

Our work builds on these foundations by combining Al-
generated content with proven gamification techniques.

C. Al Applications in Computing and Security Education

The integration of artificial intelligence into computing
education predates current generative models. Crow et al.
[27] surveyed intelligent tutoring systems for programming
education, finding mixed results for student learning outcomes.
More recently, CodeX [28] and GitHub Copilot [29] demon-
strated that Al can generate functional code from descriptions
in natural language, fundamentally changing how students
approach programming assignments.

Kazemitabaar et al. [30] demonstrated that when properly
integrated into the curriculum, Al tools can enhance rather than
replace learning. However, concerns about academic integrity
persist, as students may complete assignments with minimal
understanding of the underlying concepts.

Recent work has begun to explore the application of arti-
ficial intelligence in cybersecurity education. Agrawal et al.
[31] developed CyberQ to generate questions and answers
using an LLM augmented with knowledge graphs. Yamin et

al. [32] explored the use of LLMs to generate cybersecurity
exercise scenarios, although their focus remained on scenario
generation rather than the development of complete educa-
tional platforms.

Mukherjee et al. [33] proposed an Al-enhanced intelligent
tutoring system for graduate cybersecurity programs, demon-
strating improved learning outcomes. Wei-Kocsis et al. [34]
advocated for proactive and collaborative learning paradigms
in the age of artificial intelligence. However, these works
primarily focus on content generation or tutoring support
rather than creating functional security testing tools.

D. IoT Security Education Platforms

Teaching IoT security presents unique challenges due to de-
vice diversity and rapid evolution. Siboni et al. [35] identified
more than 140 distinct IoT protocols, making comprehensive
coverage impossible in traditional courses. Pearson et al. [36]
developed a low-cost IoT security laboratory, demonstrating
that hands-on experiences can be provided with limited re-
sources, although setup complexity remains a barrier.

Rao et al. [37], [38] created IoT security laboratories that
emphasize the development of practical skills. Their work
highlights the importance of real hardware in security ed-
ucation, but acknowledges the substantial preparation time
required for each laboratory exercise.

E. Gap Analysis

The existing literature reveals several persistent challenges
in cybersecurity education:

o Time Investment: Traditional content development re-

quires 3-6 months for comprehensive modules.

o Technical Expertise: Creating realistic but safe environ-

ments requires specialized knowledge. Note that while
Al assistance reduces this burden, technical expertise is
still required to validate Al-generated content and ensure
safety controls.

« Rapid Obsolescence: Materials become outdated before

reaching students.

o Resource Constraints: Hardware and infrastructure costs

limit accessibility.

+ Engagement: Static materials fail to maintain student

interest compared to gamified approaches.

Our work addresses these gaps by demonstrating that gen-
erative Al can create comprehensive educational materials in
weeks rather than months, incorporating proven gamification
techniques [8] and interactive visualizations [9] while using
AmpliPi hardware [5] as an accessible real-world target.
Unlike previous applications of Al in education, we generate
complete functional tools with built-in safety controls, mak-
ing cybersecurity education accessible by allowing educators
without deep technical expertise to provide authentic hands-on
experiences, although technical validation remains essential.

III. METHODOLOGY: AI-ASSISTED DEVELOPMENT
PROCESS

This section describes our systematic approach to using gen-
erative Al to create educational materials on cybersecurity. We



detail the development process, interactive content generation
methods, security tool implementation, iterative refinement
procedures, safety control mechanisms, and validation testing.
Our methodology demonstrates how Al can accelerate curricu-
lum development from months to weeks while maintaining
educational quality and security standards.

A. Development Process

We used the Claude AI (Anthropic) Opus 4 model to
generate a comprehensive cybersecurity education platform
over three weeks in June 2025. Our approach treated Al as a
collaborative partner rather than a simple code generator, using
iterative prompt refinement to produce technically accurate
educational materials. Figure 1 illustrates our development
pipeline.

The process began with high-level specifications: develop-
ing interactive content to teach microelectronics fundamentals,
demonstrating IoT vulnerabilities, and providing hands-on
penetration testing tools. We decomposed these requirements
into modular components that allowed focused development
and testing of each element.

B. Interactive Content Generation

We generated 12 HTMLS presentations covering the evolu-
tion of computing from vacuum tubes to IoT devices. Each
slide was individually developed through specific prompts
that requested interactive, simulation-based presentations. For
example, our initial prompt for the welcome slide requested:
”I need proper slide or ppt but using js, html, css, with
proper simulation animation, visualization everything which
is playable. Create a page for each slide, and you can make it
scrollable so that text or buttons do not overlap. Make one page
at a time so that we can test it properly and later on we can
merge all slides pages.” This approach ensured that each slide
received focused development attention before integration.

Figure 2 shows our actual prompt interface for creating the
first slide of the GenCyber presentation.

Through iterative refinement, we improved the engagement
with interactive elements. Listing 1 shows the navigation
implementation that connects all 12 slides:

1 function loadSlide (slideNumber) {
2 currentSlide = slideNumber;
const slideFrame =
4 document .getElementById ('’ slideFrame’) ;
5 slideFrame.src = slideUrls[slideNumber];
6 updateNavigationButtons () ;
updateProgressIndicator () ;

Listing 1. Slide navigation implementation (Al-generated)

This navigation framework, referenced in Listing 1, enables
seamless progression through all educational content. The
function manages three components: slide loading based on
iframes (lines 2-4), navigation button state management (line
5), and progress indication (line 6). Each slide features unique
interactive elements: for example, slide2.html includes an ani-
mated vacuum tube simulation where students can click to see

electrons flowing from cathode to anode, demonstrating how
early computing components functioned before transistors.
Each technical concept was validated. When the Al incor-
rectly stated Moore’s law as annual doubling, we provided
correct biennial data, ensuring accuracy in slided.html.

C. Security Tools Development

We developed two penetration testing tools as Flask web
applications, enabling supervised security testing on AmpliPi
systems. AmpliPi is an open-source multi-room audio system
that provides web-based control for audio zones, sources,
and streaming services [5]. The AmpliPro hardware runs this
software on a Raspberry Pi platform, making it representative
of real-world IoT devices for educational use. We selected
Flask as our web framework because it offers lightweight de-
ployment suitable for classroom environments and transparent
request handling that students can understand.

We created two primary attack demonstrations: (1) a
SlowLoris denial-of-service tool demonstrating resource ex-
haustion and (2) a dictionary-based password cracker showing
authentication vulnerabilities.

1) SlowLoris Implementation: To better help students un-
derstand how SlowLoris causes denial of service, we de-
veloped a restaurant metaphor through iterative prompting:
network connections as tables, partial HTTP requests as cus-
tomers “holding” tables without ordering. This required four
prompt iterations to achieve appropriate complexity:

def start_attack():

"""Restaurant: Customers holding tables"""
attack_state[’active’] = True
4 for i in

< range (attack_state[’max_connections’]):
5 sock = socket.socket (socket.AF_INET,
6 socket .SOCK_STREAM)
sock.connect ( (target_ip, target_port))
8 attack_state[’connections’ ] .append (sock)

Listing 2. SlowLoris with educational metaphor (Al-generated)

Listing 2 demonstrates the educational approach. The func-
tion creates TCP connections (lines 5-6), connects them to
the AmpliPi target (line 7), and maintains a list of active
connections for management (line 8). The restaurant metaphor
(line 2) was generated by Al after we requested educational
scaffolding to help teenage learners understand the concepts
of resource exhaustion.

2) Password Security Analyzer: The password cracker re-
quired a balance between realism and safety. Initial generations
were oversimplified—they only attempted single password
formats. Real authentication systems like AmpliPi accept
parameter names such as username and password. We refined
our prompts to handle AmpliPi authentication:

def test_login(self, ip, username, password) :

login_attempts = [
{"username": username, "password":

~— password},
{"user": username, "password": password},
{"email": username, "password": password}

6 ]
# Rat limiting between attempts
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Fig. 1. Al-assisted development workflow showing iterative refinement cycles

8 time.sleep (0.1)

Listing 3. Multi-format authentication testing (Al-generated)

Listing 3 shows the multi-format approach needed for
realistic testing against AmpliPi’s authentication system.

D. Iterative Refinement and Testing

Each component was tested against AmpliPi hardware
(Model: AmpliPro). Table I summarizes the iterations of
development.

TABLE I
COMPONENT DEVELOPMENT ITERATIONS
Component Iterations Key Issues
Navigation Framework 2 Mobile responsiveness
Interactive Animations 4 Browser compatibility
SlowLoris Tool 6 Socket management
Password Cracker 5 Login detection

The navigation framework required two iterations to fix
mobile viewport scaling. The interactive animations needed
four iterations to resolve CSS compatibility issues in Chrome
and Firefox. The SlowLoris tool took six iterations primarily to
handle socket connection cleanup and prevent memory leaks.
The password cracker required five iterations because AmpliPi
returned HTTP 302 redirects instead of expected 200 status
codes, requiring us to modify the success detection logic as
shown in Listing 4. We resolved this by providing actual
network traces to the Al:

I success_indicators = [
response.status_code == 302,

3 ’zones’ in response.text.lower (),

4 len (response.cookies) > 0

5]

Listing 4. Corrected authentication detection

E. Safety Controls

Educational hacking tools require robust safeguards. By
“safety”, we mean preventing attacks from escaping the lab
environment, protecting institutional infrastructure, and ensur-
ing students cannot harm external systems. We implemented
the following:

« Rate limiting: 10 connections (SlowLoris), 3 workers

(password cracking)

« Session management: Automatic cleanup on disconnec-

tion

o Prominent warnings: Educational-use notices on all

interfaces

F. Development Metrics

The complete development process yielded the following.

o Timeline: 21 days total, 60 active development hours.
The “21 days (60 active hours)” indicates that the project
spanned 21 calendar days with 60 hours of active devel-
opment, approximately 3 hours daily

o Code generated: 15,247 lines (HTML/JS: 12,156,
Python: 3,091)



Interactive Presentation Slide Design v

PASTED PASTED

° | need proper slide or ppt but using js , html, css, with proper simulation
animation , visualization everything which is playable. Make page for each slide
and you can make it scrollable so that text or button donot overlap. make one
page at a time so that we can test it properly and latter on we can merge all

sides pages.

Engineered interactive, simulation-based presentation for cybersecurity workshop.

T'll create a highly interactive first page for your GenCyber Summer Camp
presentation with advanced simulations and animations. This will be a
standalone, scrollable page with rich visualizations.

GenCyber Summer Camp - Page 1: Welcome & Introduction

Interactive artifact N

Claude Opus 4

<!DOCTYPE html>

"UTF-8">

viewport" content="width=device-width, initial-scale=1.8">

>6enCyber Summer Camp - Welcome to the Digital Frontier</ >

: border-box;

: 'Arial', sans-serif;
: #0aBala;
o HFFE,
: hidden;
: smooth;

.page-container {

: 1086vh;
: relative;

Fig. 2. Actual prompt used for generating interactive presentation slides

« Prompt iterations: 20 major, ~30 refinements
o Manual modifications: 15% of generated code

G. Validation

Before deployment, we conducted validation testing with
three computer science students and two faculty members.
Testing revealed two issues that required remediation: interface
latency in the SlowLoris visualization (resolved through CSS
optimization) and connection timeouts in the password cracker.
Following these optimizations, the platform successfully sup-
ported 20 concurrent users during the GenCyber high school
student summer camp.

IV. PLATFORM IMPLEMENTATION

This section describes the technical implementation of
our cybersecurity education platform. We detail the system
architecture, the interactive presentation platform, security
testing tools, safety mechanisms, and integration with AmpliPi
devices. The implementation demonstrates how Al-generated
code was deployed in a real educational environment with
appropriate security controls.

A. System Architecture

The platform employs a hybrid deployment architecture that
separates educational content from attack tools for security
isolation. Interactive presentations are publicly hosted on
GitHub Pages (https://microelectronics2025.github.io/), while
penetration testing tools are run on an instructor-controlled
machine within an isolated local network. Figure 3 illustrates
the main interface, which presents three learning modules: (1)
Microelectronics Evolution covering the journey from vacuum
tubes to modern semiconductors, (2) AmpliPi Architecture
explaining the multizone audio system’s components and API

structure, and (3) Security Testing providing hands-on tools
for network scanning and vulnerability discovery.

4
Microelectronics
Evolution

y Testing

Fig. 3. Interactive presentations portal hosted on GitHub Pages, showing the
12-module curriculum with visual navigation

This separation ensures that attack tools remain inaccessible
from the public Internet while allowing students to access
educational materials from any device. The local network
configuration consisted of 20 lab computers, one instructor
laptop running Flask applications, and two AmpliPi devices
[4] designated as authorized targets. The architecture of the
AmpliPi system [4], shown in Figure 4, demonstrates the
REST API endpoints that our attack tools target.

As illustrated in Figure 4, the AmpliPi system exposes
multiple API endpoints (GET/PATCH/POST/DELETE oper-
ations) for controlling audio zones, sources, groups, and
streams. These endpoints became our primary attack vectors
for demonstrating authentication weaknesses and denial-of-
service vulnerabilities. The Raspberry Pi host runs the open-
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Fig. 4. AmpliPi REST API architecture showing various client types accessing
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source AmpliPi software, making it representative of real-
world IoT deployments.

B. Interactive Presentation Platform

1) GitHub Pages Deployment: The presentation system
consists of twelve interconnected HTMLS slides accessible
at microelectronics2025.github.io. Each slide is
self-contained with embedded JavaScript and CSS, eliminating
external dependencies and ensuring consistent performance
across different network conditions. The navigation system
provides seamless progression through the curriculum, from
vacuum tube fundamentals to modern IoT security concepts.

2) Interactive Visualizations: Each slide incorporates en-
gagement features beyond static content. For example, the net-
work scanning simulation provides visual feedback as devices
are discovered, as shown in Listing 5:

function startNetworkScan() {

2 const devices = [

{x: 50, y: 30, ip: ’7192.168.1.101",
| name: ’'AmpliPi’, type: ’"audio’},
5 {x: 30, y: 60, ip: 7192.168.1.105",
6 name: ’iPhone’, type: ’'mobile’}

17

8 devices.forEach((device, index) => ({
9 setTimeout (() => {

10 createScanDot (device);
11 showDeviceInfo (device) ;
12 playDiscoverySound() ;

13 }, index = 1000);

14 }) i

15 }

Listing 5. Network scan visualization with progressive revelation

Listing 5 demonstrates the progressive revelation technique
used in our network scanning visualization. Each device

appears one second apart (line 13), creating visual dots on
the scan display (line 10), showing the device information
(line 11), and playing an audio cue (line 12). This sequential
discovery helps students understand how network scanning
tools identify devices rather than showing all results instantly.
Figure 5 shows the resulting visualization.

C. Security Testing Tools

1) Local Flask Deployment: The Flask application
(cyber—-edu-app.py) hosts attack tools on the instructor’s
machine, accessible only within the laboratory network. Stu-
dents access tools via the instructor’s LAN IP address, pre-
venting external access while enabling supervised classroom
use.

2) SlowLoris Implementation: The SlowLoris module
demonstrates the concepts of denial of service through the
restaurant metaphor discussed in Section III. The implemen-
tation includes both technical functionality and educational
visualization, as shown in Listing 6:

attack_state = {

"active’: False,
"connections’: [],

4 "connections’: 50,

5 "target_ip’: 7192.168.1.143",

6 "restaurant_tables’: [] # Vi

o def start_attack():
10 """Initiates SlowLoris with restaurant
— visualization"""
1 if not
< is_amplipi_target (attack_state[’target_ip’]
12 return Jjsonify ({’error’: ’"Invalid
“~ target’})
14 attack_state[’active’] = True
15 for i in
< range (attack_state[’max_connections’]):
16 sock = create_slow_connection ()
17 attack_state[’connections’ ] .append (sock)

18 # U e re aurant v allzation

— attack_state[’ restaurant_tables’].append ({
bo "table_number’: i,
ol "status’: ’'occupied_not_ordering’

})

Listing 6. SlowLoris with safety controls and educational mapping

Listing 6 implements the SlowLoris attack with built-in
safety controls. The code restricts targets to AmpliPi devices
only (line 5). The restaurant metaphor maps each connection
to a table (line 6), and when the attack runs, it creates slow
connections (line 16) while updating the visual representation
showing tables as “occupied but not ordering” (lines 19-22).
Figure 6 shows the user interface with the visualization of the
metaphor of the restaurant.

3) Password Security Analyzer: The password module
demonstrates dictionary attacks while teaching password secu-
rity principles. The tool adapts to AmpliPi’s specific authen-
tication behavior:

def test_login(self, ip, username, password) :
"""Tests authentication against AmpliPi’s
< open-source login"""
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self.login_url = f"http://{ip}/auth/login"
response = self.session.post (

5 self.login_url,

6 data={"username":
— password},

7 timeout=5

username, "password":

“— 1N« 20U
) if response.status_code ==
12 if ’zones’ in
< response.headers.get (’Location’, '’):
return {"success": True, "password":
~— password}
14 return {"success":

302:

False}

ALLOWED_TARGETS = [’192.168.1.143",
» 7192.168.1.144"]

def verify amplipi_signature (ip) :
"""Confirms target is genuine AmpliPi
> device"""
5 try:
6 response =
< requests.get (f"http://{ip}/api/",
7 timeout=2)

8 # Check for AmpliPi APIT ignature
9 return 'amplipi’ in

» response.json () .get (' name’,
10 except:

1 return False

"7y .lower ()

Listing 7. AmpliPi-specific authentication handling

This AmpliPi-specific configuration was necessary because
the open-source implementation [5] uses non-standard HTTP
responses. The tool includes a strength analyzer that provides
real-time feedback on password complexity, as shown in
Figure 7.

D. Safety Mechanisms

1) Network Isolation: The laboratory network operates on a
dedicated VLAN (192.168.1.0/24) with strict access controls:

« No internet routing during attack exercises

« Instructor machine as sole host for attack tools

2) Application-Level Controls: Target validation ensures
that tools can only interact with designated AmpliPi systems:

Listing 8. Target validation with AmpliPi verification

E. Integration with AmpliPi

The tools specifically focus on AmpliPi’s authentication
endpoints. Initial testing showed that AmpliPi’s login system
returns HTTP 302 redirects on success rather than 200 OK re-
sponses. We adjusted the detection logic accordingly as shown
in Listing 4. This platform-specific setup ensured an accurate
demonstration of vulnerability while keeping the educational
value intact. Students successfully identified weak default
passwords and demonstrated denial-of-service vulnerabilities
during supervised exercises.
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V. RESULTS AND DISCUSSION

A. Deployment Context and Participant Demographics

The platform was deployed during a two-week GenCyber
summer camp with 40 K-12 students, divided into two cohorts
of 20 students per week. The students had a variety of
technical backgrounds. The camp used a controlled laboratory
environment with isolated network infrastructure as described
in Section IV.

B. Learning Outcomes Assessment

1) Knowledge Acquisition: We implemented a real-time
quiz system on our website (microelectronics2025.github.io)
integrated with Google Sheets for immediate data collection.
The assessment consisted of questions covering the microelec-
tronics fundamentals. Figure 8 shows the quiz interface and
Figure 9 shows the scores of different students on Google
sheets.

The students demonstrated the strongest comprehension in
areas where interactive visualizations were used.

2) Practical Skills Demonstration: During hands-on ses-
sions, students successfully identified vulnerabilities in the
AmpliPi system:

o Authentication Weaknesses: All students successfully
used the dictionary attack tool to discover weak default
passwords on testing AmpliPi devices. Figure 10 shows
the user interface of the dictionary attack tool, where
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metrics, attempted passwords list, and educational feedback about password
vulnerabilities
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Fig. 8. User Interface of Quiz

a password was found successfully and the attack was
completed successfully.

o DoS Vulnerabilities: All students successfully executed
SlowLoris attacks, observing service degradation. Fig-
ure 11 shows the user interface of the SlowLoris attack
in progress.

C. Educational Effectiveness

1) Conceptual Understanding: The metaphor of a restau-
rant for SlowLoris attacks proved particularly effective. Post-
session discussions revealed that students could accurately
explain denial-of-service concepts using metaphor, with one
participant noting: “It is like someone sitting at all tables
but never ordering food.” This conceptual mapping facilitated
understanding of resource exhaustion attacks without requiring
deep networking knowledge.

2) Engagement Sustainability: Unlike traditional lecture-
based security education, the platform maintained consistent
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engagement. The competitive quiz element, where the results
were displayed in real time through Google Sheets projection,
created positive peer competition and motivation.

D. Technical Performance

1) Platform Stability: GitHub Pages hosting provided reli-
able access to educational content, while the local Flask server
managed attack tools without performance degradation. One
notable issue occurred when multiple students simultaneously
launched SlowLoris attacks, causing brief network congestion
that required instructor intervention.

2) Al-Generated Code Quality: The generative Al pro-
duced functional code that required minimal post-generation
modification. However, several issues appeared during the
deployment.

« Initial password detection logic failed with AmpliPi’s 302
redirect responses

o CSS animations displayed inconsistently across different
browsers

These issues were resolved through iterative testing and
manual correction, highlighting the need for human oversight
in Al-generated educational tools.

E. Security and Ethical Considerations

1) Controlled Environment: Network isolation was success-
ful in preventing any attacks from affecting external systems.
All dictionary attack attempts targeted only the designated
AmpliPi devices (192.168.1.143-144), confirming the effec-
tiveness of built-in target validation.

2) Student Behavior: Despite having functional attack
tools, the students demonstrated responsible use. No attempts
were made to bypass safety controls or target unauthorized
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Fig. 11. User interface of the SlowLoris attack tool

systems. This suggests that the educational framework and eth-
ical discussions successfully conveyed the appropriate bound-
aries.

F. Limitations

Several limitations became apparent during deployment:

1) Scalability: The Flask server configuration limited con-
current users to 20, requiring session rotation for larger
groups

2) Hardware Dependency: The curriculum assumes avail-
ability of AmpliPi devices, limiting reproducibility.
However, other IoT devices can be used instead of
AmpliPi devices. The modular design of the platform
allows for adaptation to alternative targets such as smart
home hubs, IP cameras, or other network-connected
audio systems that expose web interfaces. Instructors
would need to modify the target validation code and
adjust attack parameters to match their chosen device’s
authentication mechanisms.

3) Network Configuration: Setting up isolated VLANs
required significant instructor experience. Specifically,
instructors need knowledge of: (a) VLAN configuration
on managed switches to create network isolation, (b)
firewall rules to prevent attacks from escaping the lab
environment, (c) DHCP server setup to assign appro-
priate IP ranges to student machines, (d) routing table
configuration to ensure traffic remains within the isolated
network, and (e) monitoring tools to observe network
traffic during exercises. In addition, instructors must
understand how to disable the internet during attack
exercises while maintaining local network functionality.
These technical requirements may pose challenges for
educators without networking backgrounds, particularly
institutions lacking dedicated IT support for educational
laboratories.

G. Comparison with Traditional Approaches

Although direct comparison with traditional teaching meth-
ods was outside our scope, informal feedback from instructors
familiar with previous GenCyber camps suggested improved
engagement and retention. The ability to immediately apply



learned concepts through functional tools appeared to re-
inforce understanding more effectively than simulation-only
approaches.

H. Generative Al as Educational Tool Developer

The use of generative Al reduced the development time
from an estimated 3-4 months to 3 weeks. However, this effi-
ciency came with trade-offs. The Al struggled with maintain-
ing consistency across multi-file projects and occasionally pro-
duced pedagogically inappropriate explanations that required
human intervention. The iterative refinement process, while
faster than traditional development, still required significant
technical expertise to evaluate and correct generated content.

L. Implications for Cybersecurity Education

This deployment demonstrates that Al-assisted development
can produce effective cybersecurity educational materials.
The combination of theoretical foundation (microelectronics
evolution) with practical application (vulnerability testing)
created a comprehensive learning experience. However, the
requirement for technical review and ethical oversight suggests
that generative Al serves best as an accelerator rather than
a replacement for human expertise in educational content
creation.

VI. CONCLUSION AND FUTURE WORK

This work demonstrates that generative Al can substantially
accelerate cybersecurity curriculum development while main-
taining educational effectiveness. Using Claude AI [39], we
reduced the development time from typical 3-4 months to 3
weeks while producing functional educational materials that
successfully taught 40 K-12 students during GenCyber sum-
mer camps. The platform combined theoretical foundations
in microelectronics with practical security testing, enabling
students to identify real vulnerabilities in AmpliPi IoT devices
through guided exercises. While these results are promising,
the 40-participant sample represents an early-stage case study;
future work with larger cohorts and longitudinal assessment
would strengthen generalizability claims.

The deployment revealed both the potential and limita-
tions of Al-assisted educational content generation. While
Claude produced structurally sound code requiring minimal
modification, domain-specific edge cases such as AmpliPi’s
non-standard HTTP response codes required human inter-
vention. Artificial intelligence demonstrated unexpected ped-
agogical creativity through metaphors such as representing
network connections as restaurant tables, which proved to
be more effective than traditional technical explanations for
teenage learners. This restaurant metaphor was autonomously
generated by Claude when prompted to create educational
scaffolding for denial-of-service concepts, demonstrating that
generative Al can contribute novel pedagogical approaches be-
yond code generation. Safety considerations were successfully
addressed through Claude’s constitutional Al training [40],
which consistently refused to generate unbounded attack code
while still producing functional demonstrations.

In the future, several areas warrant investigation. Longitu-
dinal studies should examine whether Al-generated materi-
als produce knowledge retention comparable to traditionally
developed curricula over 6-12 month periods. The current
platform provides uniform content regardless of student back-
ground, suggesting opportunities for adaptive difficulty scaling
based on individual performance metrics. Although we used
Claude exclusively, systematic comparison with other models
such as GPT-4 [41] or Gemini [42] could identify model-
specific strengths for different educational objectives.

The methodology’s success with AmpliPi systems suggests
potential expansion to additional IoT platforms, although
maintaining safety while diversifying targets presents chal-
lenges when considering devices like personal smart speak-
ers that raise privacy concerns. Rather than using artificial
intelligence for initial generation followed by human review,
future iterations should explore true collaborative develop-
ment, where educators provide pedagogical frameworks, while
Al generates technical implementations in real time. This
approach could combine human expertise in learning theory
with AD’s capacity for rapid content generation.
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