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Abstract—Distributed Quantum Computing (DQC) provides
a means for scaling available quantum computation by inter-
connecting multiple quantum processor units (QPUs). A key
challenge in this domain is efficiently allocating logical qubits
from quantum circuits to the physical qubits within QPUs, a
task known to be NP-hard. Traditional approaches, primarily
focused on graph partitioning strategies, have sought to reduce
the number of required Bell pairs for executing non-local CNOT
operations, a form of gate teleportation. However, these methods
have limitations in terms of efficiency and scalability. Addressing
this, our work jointly considers gate and qubit teleportations
introducing a novel meta-heuristic algorithm to minimise the net-
work cost of executing a quantum circuit. By allowing dynamic
reallocation of qubits along with gate teleportations during circuit
execution, our method significantly enhances the overall efficacy
and potential scalability of DQC frameworks. In our numerical
analysis, we demonstrate that integrating qubit teleportations
into our genetic algorithm for optimising circuit blocking re-
duces the required resources, specifically the number of EPR
pairs, compared to traditional graph partitioning methods. Our
results, derived from both benchmark and randomly generated
circuits, show that as circuit complexity increases—demanding
more qubit teleportations—our approach effectively optimises
these teleportations throughout the execution, thereby enhancing
performance through strategic circuit partitioning. This is a step
forward in the pursuit of a global quantum compiler which will
ultimately enable the efficient use of a ’quantum data center’ in
the future.

I. INTRODUCTION

Quantum computers can, in principle, perform tasks that

have previously been impossible or highly inefficient on clas-

sical computers [1], such as factoring large numbers using

Shor’s algorithm [2], [3], or simulating quantum systems [4],

[5]. However, the scaling of monolithic quantum processors

towards doing useful, error free computations is difficult to

achieve [6]. Therefore, companies such as IBM are looking

towards inter-connected distributed quantum processor units

(QPUs) and thus, quantum networking is required to execute

useful circuits, at scale.

Quantum circuits are a visual way to represent the temporal

order of single or multi-qubit gates, to perform a designed

algorithm. Quantum gates are unitary operations that operate

on a logical qubit state |ψ⟩ = α |0⟩+ β |1⟩ [7]. In Distributed

Quantum Computing (DQC) there are three important types of

operations, single-qubit gates (e.g., Pauli rotation, Hadamard),

local CNOT (cx) (control and target qubits within the same

processor), and non-local CNOT (also called telegate). In the

latter, a CNOT operation should be executed between qubits

(a) (b)

Figure 1: Circuits that implement (a) a teleportation operation of a
state |ψ⟩ from QPU 1 to QPU 2, and (b) a teleportation of a CNOT
operation between a control qubit and target qubit that are stored in
different QPUs. Both operations require a Bell state |Φ+⟩ as well as
the transmission of classical bits that correspond to the outcome of
qubit measurements.

that are stored in different QPUs. The Hadamard gate, Pauli

gates, and CNOT operations form a universal set for quantum

computation [8], meaning that any arbitrary unitary transfor-

mation of a quantum state can be expressed by only these three

gates [9], henceforth we will assume that all circuits have been

decomposed into this universal set of operations. The CNOT

gate is a two qubit operator which requires the control of one

qubit by another and is given by the following matrix:

CNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









.

To execute a distributed algorithm, the logical qubits must

be mapped to physical qubits in the QPUs and a means

for performing operations between non-local qubits must be

established. Two types of non-local operations can occur, qubit

or gate teleportation. Qubit teleportation is the process of

transferring a logical qubit state from one QPU to another

via the use of a Bell state (EPR pair) [10] and some classical

communication. Gate teleportation, on the other hand, does

not move the qubit state but allows one qubit to control the

operation on another, distant qubit. The circuits required to

perform both qubit teleportaions and a teleported controlled

operation between two distant logical qubits [11] are shown in

Figure 1. Both operations make use of Bell states which need

to be distributed by the network (one half to each QPU). This

is a costly procedure and hence there is a need for minimising
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the teleportations in order to reduce the load on the network

and to maximise the likelihood of successfully executing a

quantum circuit before qubits decohere.

When executing a quantum circuit on a single QPU, it’s

crucial for the compiler to dynamically map logical qubits

to neighboring physical positions. This mapping allows gate

operations by enabling direct interactions. Numerous studies

have addressed the challenges and solutions related to quantum

circuit compilation (e.g., [12]–[14]) in the case of a single

QPU. Our work, however, assumes a fully connected archi-

tecture for QPUs, where each qubit can directly interact with

any other. A similar assumption would be the existence of an

efficient compiler that handles the qubit mapping inside each

QPU separately. Such assumptions allow us to abstract away

the constraints of the compilation problem, focusing instead on

optimising the network operations necessary for the distributed

quantum computation. Assuming only gate teleportations as

a means towards DQC, previous works have used various

heuristic methods to minimise solely the number of non-local

(controlled) operations within a circuit [15]–[19].

Although previous works have primarily considered the

minimisation of gate teleporations, this work sets out to jointly

consider gate and qubit teleportations as an enablement of

DQC. Thus, the network cost is associated with the Bell

pairs requested from both teleportation operations. Recently

the authors in [20] introduced a graph partitioning framework

that incorporates qubit teleportations into network cost calcula-

tions. While their work also recognizes the importance of qubit

teleportations in DQC, it differs from ours in its constraint

of equalizing operation counts across QPUs. Our study, in

contrast, views the generation of Bell pairs for network oper-

ations as the primary limiting factor, thereby allowing for more

flexible QPU operation allocations. Recently, [21] employs

Quadratic Unconstrained Binary Optimisation to minimise the

network cost assuming only qubit teleportations. In the latter

work, the authors divide a quantum circuit into predetermined

slices such that each such slice can be run without the need

of gate teleportations. Finally, in [22], the authors employ a

window based partitioning of a quantum circuit considering

also qubit teleportations. Nevertheless, the optimisation over

the latter is realized through a tuning parameter that determines

how ”hard” should be for a qubit to migrate to a different QPU.

In contrast, in our work we optimise over the slicing of the

circuit by allowing gate teleportations within each slice and

qubit teleportations across slices to facilitate the distributed

quantum computation.

Specifically, this paper addresses the problem of modeling

and minimising the network cost of executing a quantum

circuit into a DQC framework. Allowing both gate and qubit

teleportations, we dynamically allocate the logical qubits to

physical qubits into the quantum processors to execute a

quantum algorithm distributedly. Since both teleportation oper-

ations require a Bell pair our goal is to minimise the number

of teleportations needed to complete the execution. For this

purpose, we propose a novel meta-heuristic called Optimised

Distributed Quantum Circuit Execution via Meta-Heuristic

Approach (ODQC-MHA) that uses a genetic algorithm. Our

method significantly enhances the overall efficacy and po-

tential scalability of the DQC framework by dynamically

allocating the qubits across distributed QPUs.

The rest of the paper is organised as follows, in Section II

we introduce the logical qubit allocation problem for static

assignment within a monolithic QPU as well as a straight

forward partitioning heuristic. Section III introduces qubit

teleportations to the qubit mapping problem and we describe

our meta-heuristic for solving this problem approximately.

Section IV shows the results of the performance of our meta-

heuristic against benchmark circuits and randomly generated

circuits. Finally Section V concludes the paper.

II. QUBIT ALLOCATION TO MINIMISE GATE

TELEPORTATIONS

Focusing only on gate teleportations as the means towards

DQC, one way to decrease the network cost is to leverage

graph partitioning algorithms [23]–[25] in an appropriately

generated graph. In this section, we describe such process for

the case of two and multiple QPUs (Section II-B and II-C

respectively).

In this study, we operate under the assumption that there

is complete connectivity both between and within the QPUs.

This means we overlook any compilation within a QPU and

presume that the compiler handles the required swaps in a

non-fully connected QPU to ensure adjacent qubits. Research

has been done on simulating circuits on realistic, constrained

processor architectures by minimising the number of swaps

required to execute controlled operations [26]. In practice

constraints on the connectivity within a processor are likely to

exist, however, one would need a global compiler to be able

to maximise the ability to execute a circuit on NISQ devices.

A. Minimising Gate Teleportation: Model & Problem Descrip-

tion

In the graph representation of a circuit denoted as G =
(V,E), V represents a set of n qubits and E defines connec-

tions between qubits. The edge-weight function

c : V × V → N0,

where N0 denotes the set of natural numbers including zero

represents the frequency of controlled operations between

qubits u and v. Therefore, c(u, v) = 0 indicates the absence

of an edge and thus of a CNOT gate between u and v. The

cost of a partition cost(V1, V2) is defined as the sum of all

weights c(u, v) where u ∈ V1 and v ∈ V2 belong to different

partitions. The aim is to find k partitions of the graph each of at

most size v = n
k

such that the capacity of the edges between

partitions is minimised, thus reducing the number non-local

controlled operations, and the number of Bell pairs required.

The constraint of almost equal partitions is to minimise the

maximum number of physical qubits needed from a QPU.

Minimising the number of non-local operations is crucial

because entanglement is a costly resource and distributing it

into a network of QPUs requires extra time steps and is error-

prone [27].
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Figure 2: Example of initial qubit allocation process via graph
partitioning to minimise non-local operations between 3 processors
of sizes: (6,8,12). The edge weight is signified by the line colour,
darker lines represent higher number of non-local operations

B. K-L Algorithm for 2 QPUs

One commonly used heuristic method for bi-partitioning a

weighted graph is the Kernighan-Lin algorithm [23]. The K-L

algorithm works by taking the weighted graph G = (V,E) and

c as the edge-weight function. By swapping pairs of vertices

ui ∈ V1 and vi ∈ V2 with maximum cost improvement, the

swapped pair are locked in place and the same process is

done with another pair until all vertices are locked. The best

configuration is chosen and the algorithm is run again until a

close to optimal configuration is found. The downside of the

K-L algorithm is that it can only be used for bi-partitioning

of a graph. In the next section we propose a similarly simple

heuristic for partitioning a graph, into any size partitions k.

Such extension enables the division of a quantum circuit’s

logical qubits across multiple QPUs, beyond just two, when

available.

C. Greedy Partitioning Algorithm in the case of multiple

QPUs

In this section we describe Greedy Partitioning Algorithm

in the case of multiple QPUs (GPA), a straightforward and

practical heuristic approach for distributing qubits in circuits

with varying numbers of qubits and depth, across any quantity

Algorithm 1 Greedy Partitioning Algorithm (GPA)

1: procedure ASSIGNQUBITSTOQPUS(G,QPUList)

2: Filled← {} ▷ Set to track filled QPUs

3: Allocation← {} ▷ Map of qubits to QPUs

4: QPUOrder ← sort QPUList by capacity, descend-

ing

5: for QPU in QPUOrder do

6: Supernode← {}
7: while Supernode size < QPU capacity and G

has unallocated nodes do

8: TargetNode ← select node in G with max

weighted edge to Supernode, not in Filled

9: Merge TargetNode into Supernode

10: Update Allocation to include TargetNode→
QPU

11: end while

12: Add Supernode to Filled

13: end for

14: return Allocation

15: end procedure

and scale of QPUs. The heuristic works by always contracting

the largest weighted edge to build supernodes - respresenting

QPUs - one by one. Once a supernode (QPU) has been filled

to capacity, none of the nodes within can be swapped later in

the algorithm. The largest weighted edge that is adjacent to the

supernode is always contracted at each step of the heuristic,

with no look-ahead. This method is computationally inexpen-

sive and so can be used as a quick heuristic for qubit allocation

within our proposed meta-heuristic (proposed in Section III).

The pseudo-code for GPA is shown in Algorithm 1. This

heuristic is performed once to produce a good allocation of

qubits to processors where the number of interactions between

each processor is reduced. The algorithm is implemented

in python and utilises the NetworkX framework to do the

edge contractions. Here, an edge contraction is the process of

producing a graph in which two node v1 and v2 are replaced

with a single node, v, such that v is adjacent to the union of

the nodes to which v1 and v2 were originally adjacent, also

called ’vertex identification’.

III. MINIMISING REMOTE OPERATIONS: MODEL &

PROBLEM DESCRIPTION

Thus far, our efforts have concentrated on reducing the

quantity of non-local controlled operations, aiming ultimately

to decrease the necessary number of Bell pairs throughout the

execution of a distributed quantum circuit. However, if instead

we aim to minimise the overall number of Bell pairs, we can

allow for the reallocation of qubits within one application via

qubit teleportation operations. In this section we introduce the

proposed framework, Optimised Distributed Quantum Circuit

Execution via Meta-Heuristic Approach (ODQC-MHA), with

the goal of optimising the partition of a quantum circuit to

distributed QPUs. In this section, we introduce ODQC-MHA

by describing its high level design, introducing the genetic

algorithm being used in the framework and finally analyzing
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in detail every component that it comprises (Sections III-A,

III-B, III-C respectively).

A. Optimised Distributed Quantum Circuit Execution via

Meta-Heuristic Approach (ODQC-MHA) - High Level Design

In this section we introduce the ODQC-MHA framework

by describing its high level design. ODQC-MHA allows the

circuit to be analysed in blocks of varying size, using any

algorithm for k partitioning a graph within each block. For

each block we attempt to minimise the number of gate tele-

portations while allowing qubit teleportations between blocks

to re-allocate the logical qubits when needed. Finding the

optimal blocking is challenging because of the many possible

combinations, however, this problem is to be solved by our

heuristic. Note that each allocation has no information about

the previous block’s allocation and so a meta-heuristic is

required to minimise the gate and qubit teleportations together.

The high level description of the proposed framework is

illustrated in Figure 3. Note that to enhance circuit exe-

cution efficiency, qubit teleportations are allowed between

blocks. Given the vast search space comprising various circuit

partitions and qubit placements, the approach combines any

partitioning algorithm for intra-block qubit placements (this

can be K-L, GPA or any other procedure) with a genetic

algorithm to jointly consider the qubit teleportations. The

proposed genetic algorithm evaluates its utility given a circuit

partition based on the placements suggested by the particular

partitioning algorithm used, focusing on achieving the opti-

misation objective of minimising the network cost. Note that

this is not a joint optimisation but a meta-heuristic that uses

the output of some heuristic (K-L, Greedy algorithm etc.) to

explore the solution space more thoroughly. The problem of

graph partitioning is NP-HARD per block hence the blocking

model proposed in this paper is hard to solve without a novel

heuristic.

In the next sections, a genetic algorithm is proposed to

approximate an optimal ’blocking’ of the circuit to minimise

the total number of Bell pairs required for qubit and gate

teleportations.

B. Optimised Distributed Quantum Circuit Execution via

Meta-Heuristic Approach (ODQC-MHA) - Genetic Algorithm

Genetic algorithms mimic natural evolution by evolving

solutions to problems through a process of selection, mutation,

and crossover [28]. They start with a diverse population of

individuals, where each individual’s ”genotype” encodes a

potential solution, and its ”phenotype” — its performance or

fitness — reflects the solution’s effectiveness. Over successive

generations, individuals with higher fitness are more likely to

pass their genes to the next generation, allowing the algorithm

to ”naturally select” increasingly effective solutions.

In our approach, we utilize a genetic algorithm to optimise

the distribution of computational tasks in a quantum com-

puting network, specifically aiming to minimise the requisite

number of Bell pairs for efficient quantum communication.

The core of our algorithm is defined by a population of

candidate solutions, denoted as P = {p1, p2, ..., pN}, where

Figure 3: A high level overview diagram of the proposed framework
(ODQC-MHA) for blocking/partitioning quantum circuits. The circuit
is broken into blocks of arbitrary size (number of layers). Within each
block, logical qubit allocation is performed using graph partitioning
methods in order to reduce the number of Bell pairs required for non-
local operations. After this, between each block, qubit teleportations
are performed to reallocate the logical qubits according to each blocks
allocation.

each candidate solution pi represents a potential configuration

of dividing the target quantum circuit into distinct blocks.

Each candidate solution p ∈ P is characterized by its

genotype, Gp, which in our model is a sequence of integers

Gp = {g1, g2, ..., gK}, where g1, . . . , gk ∈ N and K represents

a predefined maximum number of blocks for the quantum

circuit. Here, gi signifies the depth (i.e., the number of

layers) of the circuit within block i of the network. Note that

large value for K increases the search space exponentially

allowing for more combinations of circuit blockings to be

checked by the algorithm. Intuitively, the configuration of

these blocks is subject to a constraint where the sum of

all gi values must equal the total number of layers in the

quantum circuit. Notably, it is permissible for any gi to be

zero, indicating blocks that are empty and thus not contributing

to the overall division of the circuit. For instance, a genotype

Gp = [12, 42, 64, 38, 203, 0, 34] represents a circuit partitioned

into blocks with respective depths of 12, 42, 64, 38, 203, 34.

Although in this specific example we allow up to 7 blocks for

the circuit, this specific genotype, Gp, utilizes only 6 of them.

The phenotype, Xp, associated with an individual p ∈ P

with genotype Gp, quantifies the total number of Bell pairs

required for the candidate solution’s block configuration. This

total encapsulates both gate teleportations within individual

blocks and qubit teleportations across the network. The phe-

notype thus serves as a measure of the solution’s effective-

ness in optimising quantum communication. To evaluate the

phenotype and thus the viability of each candidate solution,

we introduce a fitness function, evaluateF itness : P → N,

that maps the individual to a natural number. In our case,

this function is counting the total number of Bell pairs and

hence teleportations are needed under the configuration under
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consideration.

Through the iterative processes of selection, crossover, and

mutation, our genetic algorithm seeks to evolve the population

towards configurations that minimise Bell pair usage, thereby

enhancing the efficiency and feasibility of DQC tasks. By

continuously refining the genotypes within the population

based on their fitness scores, the algorithm drives towards an

optimal or near-optimal distribution of computational loads

and quantum communication requirements across the network.

This framework not only provides a method for optimising

quantum network configurations but also offers insights into

the trade-offs between computational depth and quantum

communication resources, laying the groundwork for further

innovations in DQC architectures.

C. Optimised Distributed Quantum Circuit Execution via

Meta-Heuristic Approach (ODQC-MHA) - A Detailed De-

scription

The Optimised Distributed Quantum Circuit Execution via

Meta-Heuristic Approach (ODQC-MHA) makes use of a

genetic algorithm formalism to find a minimum number of

total Bell pairs required for a distributed execution of a

given quantum circuit by finding an arrangement of block

lengths that minimises the total cost. This section provides a

detailed description of the ODQC-MHA components that were

abstracted away in Figure 3, complementing also the overview

provided in Figure 4.

1) Efficient Qubit Teleportation Decisions: For each in-

dividual in the genetic algorithm, the quantum circuit is

segmented into blocks based on the number of layers specified

by the individual’s genotype. To optimise the allocation of

qubits across multiple quantum processors (QPUs), a method

such as graph partitioning (e.g., GPA) is employed. This

step aims to find an approximately optimal distribution of

qubits over the available processors for each block. Given the

allocation for each block, the challenge arises in transitioning

qubits from their configuration in one block to the next. This

transition is not straightforward due to the flexibility in QPU

assignments: any given allocation might correspond to any

QPU. This leads to a complex problem, especially as the

number of QPUs increases, where finding the most efficient

mapping between allocations in consecutive blocks becomes

computationally intensive. To address this, we construct a

bipartite graph G = (I, J, L), where nodes in disjoint set I

represent the processor allocations in block i, and nodes in set

J represent the allocations in block i+1 (Figure 5). The edges

in this graph, L, denote the potential mappings between allo-

cations, with weights reflecting the minimum number of qubit

differences (and thus qubit teleportations) required for each

mapping. By negating these weights and applying a maximum

weighted matching algorithm [29], we identify the mapping

that minimizes the number of qubit teleportations needed

for reallocation between blocks. This approach significantly

reduces the complexity of finding optimal qubit transitions

between blocks.

2) Components of the Genetic Algorithm:

Initialisation (generateIndividuals) - firstly the initial

population is generated. Towards that goal we generate ho-

mogeneous lists of a given length, which corresponds to

the maximum number of blocks available in the solution.

Then applying the mutate function (described later) to each

individual 100, 000 times we generate diverse genotypes for

the initial population. It is important that these individuals are

highly varied due to the size and complexity of the solution

space.

Evaluation of Fitness (evaluateFitness) - the fitness func-

tion evaluates the efficiency of a given qubit allocation and

teleportation scheme. It does so by summing the total number

of gate teleportations within each block (determined by the

initial qubit allocations) and the qubit teleportations between

blocks (as optimised by the bipartite graph matching). The

objective of the genetic algorithm is to minimize this sum,

thereby reducing the overall quantum communication and

computation overhead in the DQC framework. The evalua-

tion process effectively quantifies the ”cost” of a particular

configuration of qubit allocations and transitions, guiding the

genetic algorithm toward solutions that optimise the use of

quantum resources. By focusing on minimizing the combined

total of gate and qubit teleportations, the algorithm seeks

configurations that offer the best balance between computa-

tional efficiency and the practical constraints of DQC. This

structured approach allows for a clear understanding of how

qubit teleportation and allocation decisions impact the overall

efficiency of quantum computing operations, providing a solid

basis for optimising DQC architectures.

Crossover Function - the crossover function is the process

of generating offspring from the selected parent genes. These

offspring are generated such that they share some elements

from either parent. The crossover function used is a simple

two-point crossover which chooses a subset of random size

from each pair of parents and swap them. Since the genotype’s

values must sum up to the total number of layers in the

quantum circuit, we employ a rebalancing routine to enforce

that constraint after the crossover.

Mutation Function - The mutation function involves ran-

domly choosing 2 indices i and j, i ̸= j in the individual,

with a predefined probabilty of occurance. Defining a mutation

constant, c, a fair coin is flipped and the mutation constant

is either added to gi and subtracted from gj or vice versa.

Also each mutation has a probability p of introducing a zero

element to the individual, by subtracting a randomly chosen

indices value from itself and spreading the value among the

remaining indices.

Selection Process - The selection process entirely replaces

the parental population, requiring that the selection procedure

is stochastic and allows the same individual to be selected

more than once. We used the selTournament() function as part

of the DEAP framework, which was found to be a suitable

mutation function for searching the solution space thoroughly.

3) Overview: The genetic algorithm adjusts the size of each

block - between which qubit teleportations are done to get

from one allocation to the next - to try and minimise the

total number of Bell pairs required. The size of a block is

allowed to go to zero and if so it is ignored by the calculation

of teleportations. In other words, the optimal ’blocking’ of

the circuit may contain fewer blocks than the initial candidate
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generateIndividuals()

[12,42,64,38,203,0,34
]
[45,80,60,55,70,35,48
]

xN

[12,42,64,38,203,0,34]

evaluateFitness(individual) mutate()

selection()

Terminated?

[94,0,62,46,0,78,113]
HoF Winner

Hall of Fame

crossover()

Next 
Generation

Fitness = Telegates +
                                                                                                      

Qubit Teleportations

Start 

Figure 4: Structure of genetic algorithm. generateIndividuals(): create N lists, of a given size, representing the number of layers per block
of a circuit. selection(): ’Hall of Fame’ selection process ensures that the best individual to ever exist is chosen as the optimal. crossover():
randomly chooses two individuals from the mating pool to create each new generation of superior individuals. mutate: individuals are
randomly chosen to mutate, mutate 1 occurs every mutation and mutate 2 occurs with probability 1/10 for each mutation. HoF Winner: the
best individual that has existed throughout the generations is selected as the optimal ’blocking’ solution.

solution. Note that this meta-heuristic can use any algorithm

for the allocation of qubits inside a given block to calculate the

Bell pairs needed for the gate teleportations. For example, if

there are just two QPUs one could implement K-L algorithm

and in a multi-QPU framework the proposed GPA is more

suitable.

In the next section, we implement ODQC-MHA using the

DEAP python framework [30] to execute the genetic algorithm

with these definitions, to converge on a close to optimal

blocking of the circuit that required the minimum number of

gate and qubit teleportations combined for a given quantum

circuit. Hereafter, the term ODQC-MHA(K-L) refers to the

meta-heuristic that applies the K-L algorithm to each block.

Conversely, ODQC-MHA(GPA) denotes the variant where the

GPA is employed for graph partitioning in each block.

IV. PERFORMANCE EVALUATION

As we have discussed, the objective of our heuristic is to

minimise the total number of bell pairs required for distributed

execution, which we believe is the bottleneck in a quantum

network. To evaluate the performance we compare the number
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Figure 5: Bipartite graph representing the re allocation between
multiple QPUs, it is clear to see that there are multiple ways to
map a given allocation to QPU.

of bell pairs required for various circuits using ODQC-MHA

against an existing method of qubit allocation, namely K-L.
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A. Pre-processing

In this section we describe the steps taken to analyse

benchmark circuits in order to evaluate the performance of

ODQC-MHA. Each circuit that is analysed is represented in

a QASM (QUantum ASeMbley) [31] file that contains all of

the logical instruction information in order. The QASM file

is parsed and the circuit is then represented as a directed

acyclic graph (DAG) which shows the dependencies of each

gate and allows us to determine which operations can occur

simultaneously (in the same layer). Given that we have a

circuit in layers, we can split the circuit, by layer, into the

blocks given by an individual’s genotype Gp, as explained

previously. For each block, an interaction matrix is constructed

using the QASM instructions, this matrix is then used to build

a networkx [32] graph object for which the standard graph

partitioning algorithms can be used. ODQC-MHA can be

applied to any circuit of any size, although the execution time

scales with the number of qubits and the maximum number of

blocks. Note that the bottleneck here is the number of qubits

in the circuits as this determines the size of the graph to be

partitioned.

ID Circuit
name

Qubits Depth
(CX only)

Unary
gates

CX gates

1 adder n118 118 4 1107 845
2 sym9 146 12 91 180 148
3 cycle10 2 110 12 3386 3402 2648
4 inc 237 16 3463 5983 4636
5 cm85a 209 14 3818 6428 4986
6 rd84 253 12 4466 7698 5960
7 root 255 13 5354 9666 7493
8 mlp4 245 16 6190 10620 8232
9 clip 206 14 10734 19055 14772
10 dist 223 13 11911 21422 16624

Table I: Benchmark quantum circuits for Section IV-B.

B. Non-random Quantum Circuits (2 QPUs)

Initially, we ran ODQC-MHA(K-L) on quantum circuits

from QASMBench [33]. Information about the benchmark cir-

cuits used is shown in Table I. The results of this analysis are

shown in Figure 6, showing the percentage improvement over

using K-L for the entire circuit i.e. no qubit teleportations. We

compare three configurations of ODQC-MHA(K-L), allowing

for a maximum allowed number of blocks (MAB) of; 10, 50

and 100. While the amount of improvement varies across the

circuits, we see a clear trend. For increasing depth there is a

region for which 100 MAB shows the smallest improvement

while 10 MAB shows the most, in the middle region we see

that 50 MAB shows the most improvement, and for the higher

end of circuit depth, 100 MAB. We identify a likely reason

for this trend, that for smaller circuits it is possible to ’over-

block’, that is, it becomes hard to converge on a solution - on

average - due to the starting size of an individual genotype.

We believe that this analysis on small benchmark circuits is

arbitrary because the performance of the heuristic depends

strongly on the distribution of CNOT gates, in the next section,

we discuss the performance of the algorithm on average, using

large randomly generated circuits.
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Figure 6: Comparison percentage improvement for ODQC-MHA(K-
L) on benchmark circuits for varying maximum allowed number of
blocks (MAB) (10,50,100), across 2 QPUs. The benchmark circuits
are ordered by increasing circuit depth. Each data point is the mean
of 100 executions of ODQC-MHA(K-L). Circuit ID I

The fact that the performance between different config-

urations is inconsistent across different circuits suggests a

limitation with the design of ODQC-MHA. Future work might

include an optimisation of the allowed size of an individual,

the population size and number of generations, dependant

on the circuit at hand. This should allow the algorithm to

search the given solution space more efficiently and prevent

converging on local minima.
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Figure 7: Comparison of ODQC-MHA(K-L) for varying maximum
allowed number of blocks (10,50,100), to ODQC-MHA(K-L) for 1
block on randomly generated circuits, distributed over 2 processors.
Each data point is the mean value of multiple runs of ODQC-
MHA(K-L) on different randomly generated, 16 qubit, circuits. The
percentage difference is plotted.

C. Random Quantum Circuits (2 QPUs)

To demonstrate the effectiveness of ODQC-MHA on aver-

age, we ran qubit allocation on randomly generated circuits
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Figure 8: Comparison of ODQC-MHA(K-L) to K-L on randomly
generated circuits of varying number of qubits (8,16,32) on randomly
generated circuits, across 2 QPUs.

containing only CNOT gates, which are the only universal

gates that are considered in the algorithm. This demonstrates

the average behaviour on large circuits where the distribution

of CNOT gates tends towards homogeneity. In principal, any

bias in the distribution of CNOTs should be exploited by a

good heuristic method.

Firstly, we generated random, 16 qubit circuits of varying

number of CNOT gates, in the same range as the benchmark

circuits used. We ran ODQC-MHA(K-L) to allocate across 2

QPUs for each circuit, this analysis was done 100 times and

the average performance is plotted in Figure 7. This was done

for different initial configurations of ODQC-MHA(K-L) al-

lowing for a maximum number of blocks (length of genotpye)

of 10,50 and 100. It is clear that the genetic algorithm was

able to - on average - converge on a solution with fewer bell

pairs required across all the randomly generated circuits, with

a general trend towards smaller improvement for increasing

number of gates. However, we again observe the same trend as

explained before, a region where each configuration performs

best. This effect is shown dramatically in the first points

(left). This indicates that ODQC-MHA(K-L) requires further

optimisation to select an optimal number of blocks. Due to

resource limitations, we were not able to analyse the limit that

an improvement is shown by increasing the allowed maximum

number of blocks.

Next, we generated random circuits of; 8, 16, and 32 qubits

with up to 100,000 CX gates, in order to test the performance

of ODQC-MHA(K-L) on larger circuits.The results are plotted

in Figure 8. We see a similar improvement trend across differ-

ent number of gates. Interestingly, the reduction in the number

of bell pairs increases for greater number of qubits. This could

be because for the same number of CNOT gates across more

qubits, the interactions are more sparsely distributed and will

likely have shorter depth.
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Figure 9: Comparison of ODQC-MHA(GPA) to GPA on randomly
generated 16 qubit circuits, for different maximum allowed number
of blocks (10,50,100)

D. Random Quantum Circuits (3 QPUs)

Finally, to demonstrate the performance of ODQC-MHA

using a different heuristic for graph partitioning within each

block, we performed the same analysis but distributing each

circuit across 3 QPUs using ODQC-MHA(GPA) 1 within each

block. Here we observe a similar trend as across 2 QPUs,

however, the first point for maximum allowed blocks of 100

shows anomalously high improvement. We can attribute this

to the smallest circuits having larger variance in distribution

of CX gates and so the genetic algorithm may get ’lucky’ on

certain circuit configurations.

E. Discussion

In the limit that the number of gates is large, we would

expect that the performance of the K-L algorithm at allo-

cating the qubits across two processors would tend to the

performance of randomly allocating the qubits across two

processor. This would mean that half of the CNOT gates are

executed remotely. However, for any finite circuit depth, the

optimal solution will always be better than half of the CNOT

gates. This also applies to our meta heuristic, because the

genetic algorithm can always find a block length where the

performance of K-L is better than half and so - if allowed to

execute properly - will be able to exploit sections of the circuit

where K-L performs well at allocating the qubits.

V. CONCLUSIONS

Compiling circuits for DQC will be paramount to the future

and scaling of quantum computers, within a ’quantum data

center’. In this letter we addressed the problem of qubit

allocation within a compilation, using a meta-heuristic which

optimises for the minimum number of qubit and gate teleporta-

tions. The results when comparing our method to the standard

method of graph partitioning using the K-L algorithm shows

a significant improvement.
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