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Abstract. As CERN approaches the launch of the High Luminosity Large
Hadron Collider (HL-LHC) by the decade’s end, the computational demands of
traditional simulations have become untenably high. Projections show millions
of CPU-years required to create simulated datasets - with a substantial fraction
of CPU time devoted to calorimetric simulations. This presents unique oppor-
tunities for breakthroughs in computational physics. We show how Quantum-
assisted Generative AI can be used for the purpose of creating synthetic, re-
alistically scaled calorimetry dataset. The model is constructed by combining
D-Wave’s Quantum Annealer processor with a Deep Learning architecture, in-
creasing the timing performance with respect to first principles simulations and
Deep Learning models alone, while maintaining current state-of-the-art data
quality

1 Introduction

A key objective of the High-Luminosity LHC (HL-LHC) is precision Higgs boson studies.
The vast dataset will allow Higgs couplings to fermions and gauge bosons to be measured
with unprecedented precision. Rare decay modes such as H → µ+µ− will be accessible, and
double Higgs production could be probed to extract the Higgs self-coupling.

The HL-LHC will also significantly enhance sensitivity to physics beyond the Standard
Model and enable new precision tests of the Standard Model.

This tremendous opportunity brings also a huge technological and experimental chal-
lenge. Among other aspects the computational load is expected to increase to millions of
CPU-core years annually [1]. This demand is in large portion driven by the need to create
vast simulated datasets, needed to conduct statistical analysis of the experimental data. One
of the major simulation tasks is simulation of calorimeter with first-principles simulation -
GEANT4 [2]. The Machine Learning LHC community recognized this challenge and is ap-
plying a variety of Deep Generative Models to the problem in the hope of creating a surrogate
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model that would produce high quality synthetic data rapidly. Various approaches have been
tried ranging from Generative Adversarial Networks (GAN) [3], Diffusion Models [4], Nor-
malizing Flow-based models [5] and others. For a recent overview we invite reader to consult
a recent benchmarking paper [6]. Notably the ATLAS experiment has deployed a GAN-based
model in their fast simulation framework already [7].

In general the Deep Generative Models work by sampling from a relatively simple fixed
distribution - or ’latent space’ - for example a multi-dimensional Gaussian distribution, and
then transforming that random number in a long sequence of steps to produce a sample rep-
resentative of the target distribution - in our case a section of a calorimeter where a shower is
deposited.

Our group has taken an alternative approach where we aim to generate a random number
from a complex, expressive distribution that can be trained to represent the target distribution
optimally. That random number is then processed by a relatively uncomplicated neural net-
work that outputs data in the desired format quickly. Classically generating random numbers
from arbitrary distributions is computationally intensive. However we aim to use a quantum
annealer to accelerate this process - that is to employ the quantum processor (QPU) for the
task which it is well suited for - sampling of random numbers from arbitrary, learnable dis-
tributions. We thus arrive at a quantum-assisted generative model. Previous efforts by this
group include the application of a discrete variational encoder to this problem [8], followed
by the development of an initial quantum-assisted model on a simplified dataset [9], culminat-
ing in a conditioned quantum assisted model with advancements related to technical aspects
of quantum machine learning [10]. In this work we report on results with updated quantum
annealing architecture with advancements on the corrected backpropagation of the gradient
with respect to the latent space parameters.

In the subsequent sections we describe the dataset used, the philosophy behind the design
of the model, followed by preliminary qualitative and quantitative analysis of the generated
data and comparisons of selected deep generative models to our model, in terms of quality of
the data generated and energy consumptions before concluding.

2 Dataset
For this project we use one of the CaloChallenge 2022 [11] datasets namely the Dataset 2
containing a sample of electrons simulated with GEANT4 simulation. Electrons, impinging
perpendicularly on the calorimeter have a log-normal distributed energy spectrum between
1 GeV and 1 TeV. A shower development in simulated in a cylindrical volume of the detector
voxelized in a cylindrical geometry with the axis centered on the direction of the impinging
particle. For the purpose of the discussion here we assign the z axis in the direction of the
incident electron and the x and y in the plane transverse the direction of the electron using the
right-handed convention. The detector is a 45-layer tungsten-silicon sandwich. The cylinder
is divided in 9 voxels radially - with each voxel radial dimension corresponding approxi-
mately to 0.5 Molière radius. The cylindrical volume is divided 16-fold in the azimuthal
direction.

The dataset is divided into training, validation and testing subsets with a 80%, 10% 10%
split.

Before feeding the shower and incident energy data to the model, we apply on-the-fly
transformations. Given a shower u and incident energy e, we first normalize energies in
each voxel i as Ei = vi/e, ensuring Ei ∈ [0, 1] range. To avoid strict bounds, we define
ui = δ + (1 − 2δ)Ei with δ = 10−7 and apply the logit transformation:

xi = ln
ui

1 − ui
− ln

δ

1 − δ
(1)



which preserves zero values. The incident energy, used for conditioning, is log-transformed
and scaled to [0, 1]. Unlike previous approaches [4, 12, 13], we omit standardization to
maintain zero values in xi.

3 Model Design Philosophy and architecture

In this work we aim to give the reader an intuitive understanding of the philosophy of the
model and the architecture. The reader is referred to our prior work [10] (and references
within) for the details of the model architecture and the mathematical foundations. In addition
we outline the corrected strategy for calculation of the gradient of the loss with respect to the
parameters of the latent space - a component of our model updated with respect to prior work.

Our model, the Calo4pQVAE uses an architecture similar to a variational auto-encoder
(VAE). The first stage of processing uses an encoder incorporating a three dimensional con-
volution structure. The encoder is also referred to as the approximating posterior qϕ(z|x, e),
where z is the latent variable, x is the input data - namely transformed voxel energies, and
e is the encoding of the incident particle energy. The encoder is implemented as a neural
network with parameters ϕ. The encoder compresses the data into latent representation ap-
propriate for processing by the model comprising the latent space, also known as the prior
pθ(z). The feature differentiating our model from the traditional variational encoder is that
the latent space is modeled by a Restricted Boltzmann Machine (RBM), a generative model
capable of synthesizing arbitrary binary distributions. The decoder, represented by pθ(x|z, e),
also incorporates a three dimensional convolution structure with parameters θ, processes the
data z from the latent space and generates synthetic data x in the format identical to the input
data. During training, the latent space model learns the probability distribution of the data in
the latent representation provided by the encoder, and the decoder learns to re-generate the
input data. The loss used to train the model encompasses the fidelity of the data reconstruc-
tion and a regularizing term encapsulating the ability of the latent space model to re-generate
the distribution provided by the encoder. During synthetic data generation the encoder is not
used. Instead new samples are generated from the prior and processed by the decoder. The
RBM can be sampled from using a D-Wave QPU - and therefore it must match the structure
of the target QPU in terms of nodes (mapped to qubits on a QPU) and inter-node connections
(mapped to couplers on a QPU). Sampling is possible using classical methods - however these
are very computationally intensive. While mapped to QPU we demonstrate that samples of
same quality can be obtained rapidly. This is, in fact, the defining feature of the model - an
expressive latent space that is learnable and can innately model a complex probability distri-
bution. Quantum sampling allows the model to keep the expressiveness of the prior, while
accelerating the sampling.

The encoder has a hierarchical structure where each level of the hierarchy produces one
partition of the latent space data. That partition of the latent space is then concatenated with
the input data and passed on to the subsequent level of the hierarchy as shown in Fig. 1. This
hierarchical structure is meant to reflect conditional dependencies in the input data. The con-
volution layers in the encoder incorporate a padding strategy. Cylindrical structure of the data
is first unrolled into a cuboid structure and then the voxels corresponding to the ’cut’ bound-
ary of the cylinder are replicated on the other side of the cuboid to account for the boundary
conditions in the angular direction. Voxels lying in the center of the cylindrical volume are
also replicated and permuted such that neighbor relationship of voxels is preserved.

The prior is modeled by an RBM. The usual structure of an RBM is bipartite, however
as in our prior work [10], the RBM structure implemented is 4-partite. In contrast to [10]
which was implemented using the connectivity structure of a Pegasus architecture D-Wave
processor [14] this work uses the connectivity structure of the new Zephyr [15] architecture



Figure 1. Hierarchical, autoregressive architecture of the encoder. The’#’ symbol indicates concatena-
tion.

processor, incorporating a higher degree of connectivity between nodes. In an RBM the nodes
are binary valued and connections exist between partitions but not within partitions. This
partitioned structure enables sampling from the RBM using so called block Gibbs sampling.
The probability to sample a state is proportional to the negative exponent of the energy of the
state - that is states are Boltzmann distributed. The energy of the state is expressed by the
Eq 2:

E(v,h, s, t) = −aivi − bihi − cisi − diti − viW
(0,1)
i j h j − viW

(0,2)
i j s j

−viW
(0,3)
i j t j − hiW

(1,2)
i j s j − hiW

(1,3)
i j t j − siW

(2,3)
i j t j , (2)

where v, h, s, t denote vectors of nodes in the four partitions and vectors a, b, c, d and
matrices W (p,q) are node biases and weight matrices connecting the partitions, respectively.

The binary nature of the nodes and the stochastic nature of the RBM necessitate special
treatment to enable the propagation of the gradient and training of the full model through
gradient descent. For this purpose we used the Gumbel trick [16] where smoothed versions
of binary-valued RBM nodes are used and ’perturbed’ with random noise. The smoothness is
controlled by an inverse temperature parameter. We linearly anneal the Gumbel trick smooth-
ness during training reaching very close approximation to the binary-valued variable.

We train the RBM using the enhanced gradient method, which has been shown to be
invariant to bit flips and more robust during training [17, 18]. For this purpose, we hard-coded
the RBM gradient while all other gradients were computed using automatic differentiation. In
addition, we freeze the RBM parameters to the effect of automatic differentiation, to prevent
updating the RBM parameters twice per batch.

The decoder incorporates a three dimensional convolutional architecture. Due to sparsity
of the data - that is presence of multiple voxels not having any energy deposit in any given
event, we introduced a binary valued mask in addition to the real valued output of the decoder.
The mask and the real valued output are multiplied element-wise. The mask is trained using
Binary Cross Entropy loss and the real valued output using the Mean Squared Error loss. The
Gumbel trick is used again for the mask during training to enable gradient backpropagation.

All components of the model are ’conditioned’ on the incident energy of the particle -
that is their behavior is made dependent on the particle energy. The encoder and decoder are
conditioned by concatenating the energy to the inputs of these networks. The latent space is
conditioned by dedicating one partition to a binary encoding of the incident energy and fixing
that partition during either classical or quantum sampling. Fixing the designated partition in
the quantum implementation is accomplished (as developed in [10]) through setting of so
called flux bias - effectively generating biases on qubits within the conditioning partition
which are much larger than the sum of coupling terms connecting the conditioning qubits to
qubits in other partitions.



D-Wave quantum annealers implement an ’initial’ Hamiltonian H0 and a ’problem’
Hamiltonian H with annealing coefficients A and B respectively. The two Hamiltonians do
not commute. The initial Hamiltonian is the transverse field while the problem Hamiltonian
is an Ising model Hamiltonian - therefore a linear mapping exists between RBM Energy func-
tion and the problem Hamiltonian. The quantum annealing procedure encompasses putting
the QPU in the ground state of H0 and then annealing the coefficient A to zero while increas-
ing the coefficient B. At the end of the anneal the generated state is a state of the problem
Hamiltonian. By repeating this process, one obtains a set of states each with an energy that is
Boltzmann distributed. However, the inverse temperature β∗ is not known a priori and needs
to be estimated. For optimization application the users rely on the fact that the ground state
or a state close to ground state is achieved often enough for a practical application, while in
our problem we want to achieve the same state distribution as in classical sampling of the
RBM. To this effect we must employ an iterative procedure (fully described in [10]), where
the weights and biases of the quantum Hamiltonian are successively scaled in such a way
as to equate mean energy of the classical and quantum implementation of the RBM. In the
previous Pegasus work we obtain the energy expectation of the quantum Hamiltonian by set-
ting the Hamiltonian and flux bias once and obtaining a batch of samples in a given iteration.
During the generation of synthetic data we found it is then necessary to introduce a wait time
between successive sample generation. In this work we build a batch by setting the Hamilto-
nian parameters and flux bias once per sample. We then perform one iteration of the scaling
procedure using a compiled batch of samples. The success of this procedure is illustrated
in Fig. 2, where the Energy function of the RBM is evaluated on the encoded test data, data
obtained from RBM by classical sampling and from sampling the QPU.

1950 1900 1850 1800 1750
RBM Energy

10 4

10 3

10 2

Pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

Geant4
MCMC Samples
QPU

Figure 2. Comparison of energy function evaluation on the test data, data sampled classically and
sampled using D-Wave QPU - indicating good performance of effective temperature scaling procedure.



4 Model performance

In this section we discuss preliminary results concentrating on the quality of the synthetic data
generation as well as speed of sampling and energy cost with a comparison against selected
deep generative models.

Figure 3 shows comparisons of total energy observed in the cylindrical calorimeter vol-
ume and the sparsity index computed over the whole volume. The sparsity index is defined
as the ratio of voxels with zero observed energy to the total number of voxels in the volume.
The histograms show the test data, test data reconstructed by our auto-encoding model, and
synthetic data generated using classical and quantum sampling. Similarly in figures 4 and 5,
the energy sum and the calculation of sparsity index is performed in ranges of layers of the
calorimeter volume. All figures show good qualitative agreement mutually between recon-
structed data, test data and synthetic data, with minor discrepancies observed in the tails of
the distributions.
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(a) Total energy observed in the calorimeter cylindri-
cal volume.
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(b) Sparsity index calculated over the entire calorime-
ter cylindrical volume

Figure 3. Energy sum over calorimeter cells and sparsity index

We also qualitatively study the performance of model conditioning. Figure 6 shows the
distribution of sum of voxel energies in the entire cylindrical calorimeter volume where the
incident electron energy has been restricted to a narrow window. Overlaid are distributions
of the same data reconstructed by the auto-encoding model and distributions generated by
classical and quantum sampling under conditioning corresponding to the test data in selected
incident electron energy ranges. In the lower incident energy bins there is evident low bias,
especially in the QPU samples, while in the higher energy bins qualitatively the distributions
are well matched. We hypothesize that the observed bias may be due to the underlying
logarithmic distribution of the training data. This remains to be confirmed in a future study -
however the confirmation is not possible with the dataset used here.

More quantitative analysis is performed by computing Kernel Physics Distance and
Fréchet Physics Distance [19]. These metrics are computed on high level quantities char-
acterizing shower development in the calorimeter and are sensitive to mismodeling of indi-
vidual features, correlations between features as well as so called mode collapse - where the
generative model generates only a limited variety of samples instead of full target distribu-
tion. Table 1 shows the performance of our model contrasted to selected deep generative
models based on metrics computed in [6]. Models selected for comparison include best on
these metrics as well as ones performing similarly to our model in terms of energy cost.



0 20 40
100

101

102

103

104
Layers 0 to 4

Geant4
Calo4pQVAE (Recon)
Calo4pQVAE
Calo4pQVAE QPU

0 50 100 150 200

Layers 5 to 9

0 100 200 300

Layers 10 to 14

0 100 200
100

101

102

103

104
Layers 15 to 19

0 50 100 150 200

Layers 20 to 24

0 50 100 150

Layers 25 to 29

0 20 40 60
100

101

102

103

104
Layers 30 to 34

0 10 20

Layers 35 to 39

0 2 4 6 8

Layers 40 to 44

Energy per event (GeV)

Pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

Figure 4. Observed energy sums in succesive layers of the cylindrical calorimeter volume.

Model FPD x 103 KPD x 103

Calo4pQVAE (QPU) 328±3 0.49±0.16
CaloDream [20] 24±1 0.02±0.04
CaloDiffusion [4] 146±1 0.17±0.04
Convolutional L2LFlows [5] 157±1 0.27±0.09
CaloScore (single-shot) [13] 546±2 0.93±0.07

Table 1. Comparison of different models based on FPD and KPD metrics. All values except for our
model summarized from [6]

We present preliminary results on energy consumption of our model as compared to deep
generative models. The results here were obtained under a number of assumptions and do
not encompass any embedded carbon costs. We converted per sample timing quoted in [6]
for the deep generative models shown using the maximum power consumption of the GPU
the models were evaluated on (A100-SXM-4 40 GB) with the maximal batch size that was
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Figure 5. Sparsity in succesive layers of the cylindrical calorimeter volume.

possible and attempted in [6] - as this utilizes the GPU most efficiently. Further optimization
of energy consumption of these deep generative models may be possible by fine-tuning the
batch size. Our model timing was converted to energy consumption using the 16kW average
power consumption of the dilution refrigerator [21]. Energy consumption of the QPU itself
is negligible. We do not take into account the time spend re-programming the QPU for each
sample, network latencies or similar engineering challenges - though naturally these will have
to be addressed in the near future if the methodology described here is to be used at one of the
HL-LHC experiments. We note that for our model the dominant time and energy cost is QPU
readout, which could be an area of future optimization. The time taken to generate a single
shower using the first principles GEANT4 [2] simulation varies vastly depending on the type
and energy of the incident particle and the geometry of the detector being simulated. Differ-
ent references [3], [13], give values ranging from 1s to 100s per shower for CPU generation.
Here we take 1s per shower as a first approximation and multiply by average per core power
consumption from a TRIUMF Tier 1 rack used for such simulations. In contrast, the timing
and energy consumption of deep generative models, as well as our quantum-assisted genera-
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Figure 6. Energy observed in full cylindrical calorimeter volume, while selecting events or conditioning
the model according to the incident energy spectrum in the test set in successive incident electron energy
ranges. 6(a): 5-10 GeV, 6(b): 40-50 GeV, 6(c): 80-100 GeV, 6(d): 150-200 GeV,

tive model ought to be independent of the conditioning variables. The results are summarized
in Tab. 2

5 Discussion

We have outlined our quantum assisted model for generating synthetic calorimeter shower
samples incorporating D-Wave Zephyr architecture. These preliminary results indicate that
our model displays qualitatively good results and desired conditioning behavior (though im-
provement is still needed). According to the KPD and FPD metrics it is competitive with
models consuming similar amount of energy per sample. Better models exist - however these
may outstrip energy consumption of first principles simulation.

The work shown here motivates further studies of the quantum annealing based, quan-
tum assisted generative models, and suggests the model has sufficient expressivity to tackle
such datasets. Both present day model quality and energy consumption suggest that, on the
timescales of the HL-LHC, models derived from this work may reach performance practica-
ble for deployment.



Model Time / sample Energy / sample [J]
GEANT4 1 s 8
Calo4pQVAE (QPU)

Annealing 20 µs 0.3
Readout 87 µs 2.2
Wait 20 µs 0.3
GPU postprocess 54 µs <0.1
Total 181 µs 2.0

CaloDream [20] 74.3 ms 30
CaloDiffusion [4] 99.5 ms 40
conv. L2LFlows [5] 1.6 ms 0.6
CaloScore (single-shot) [13] 2.5 ms 1

Table 2. Comparison of models based on time and energy per sample. Timing values for the deep
generative models summarized from [6]
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Changes with respect to the slides presented at the conference Attentive reader may ob-
serve small differences with respect to the results shown in these proceedings and the ones
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shown during the conference. The improvement in the results is attributed to training the
model on a Zephyr architecture processor as opposed to the Pegasus architecture processor
that was shown in the slides. At the time of the conference, the Zephyr results were not
ready - however they became available soon after and the research team decided to let the
updated results become the standing record. The conclusions discussed at the conference
remain unchanged.
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