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Abstract—The detection of Referral-Warranted Retinopathy of
Prematurity (RW-ROP) is crucial for preventing severe visual im-
pairment in premature infants. Recent studies have demonstrated
that deep learning models, particularly CNNs, are effective in
classifying ROP. However, the comprehensive extraction and
integration of ROP-relevant features from retinal images for
accurate classification remains challenging. In this paper, we
propose a hybrid model based on Very Deep Convolutional
Networks (VGG) and Swin Transformer (VGG-ST) for identi-
fying RW-ROP using retinal images. The VGG-ST model first
employs the VGG19 architecture to extract detailed local image
features and the Swin Transformer V2 architecture to capture
comprehensive global contextual information. It then introduces
a novel feature enhancement module that combines these local
and global features through an adaptive integration strategy,
optimizing the feature representation for more accurate RW-
ROP detection. Finally, the integrated features are processed
through a classification module to predict the probability of RW-
ROP, distinguishing between normal and RW-ROP cases. We
also present customized data preprocessing techniques to address
class imbalance and retinal image blur issues inherent in the e-
ROP dataset. Experimental results demonstrate that the VGG-
ST model offers improved classification sensitivity compared to
existing methods, making it a promising tool for automated ROP
screening in clinical settings. The source code is available at
https://github.com/hawk-sudo/VGG-ST.

Index Terms—Retinopathy of prematurity, retinal image, deep
learning, CNN, transformer

I. INTRODUCTION

Retinopathy of Prematurity (ROP) [1] is a serious vaso-
proliferative disease that affects the retinas of premature
infants, with the potential to cause visual impairment or
blindness. Timely diagnosis is critical, as severe ROP often
requires retinal ablative surgery within a narrow diagnostic
window for effective treatment. To identify premature infants
with ROP who need further intervention, Ells et al. introduced
the concept of the Referral-Warranted ROP (RW-ROP) [2].
RW-ROP is defined by the presence of high-risk character-
istics in the eyes, such as plus disease, ROP in zone I, or

stage 3 ROP or greater. Eyes classified as RW-ROP require
thorough evaluation by an ophthalmologist, and a significant
proportion of these cases necessitate treatment. The standard
method for detecting RW-ROP involves a series of costly
diagnostic examinations performed by ophthalmologists on at-
risk infants. In the United States, ROP screening guidelines
mandate that all infants with a birth weight of 1500 grams or
less, or a gestational age of 30 weeks or less, undergo these
examinations [3]. However, this approach leads to numerous
unnecessary examinations, as fewer than 10% of screened
infants ultimately require treatment for ROP [4].

Recent advancements in imaging technology have enabled
the use of retinal images for RW-ROP detection, optimizing
resource allocation and reducing unnecessary clinical interven-
tions [5]. Wide-angle digital retinal imaging systems, such as
RetCam [6], are widely used to examine premature infants for
RW-ROP. Despite these technological advances, the interpre-
tation of retinal images remains a manual process that is time-
consuming and prone to variability. The shortage of pediatric
ophthalmologists and retinal specialists further exacerbates the
inefficiency of RW-ROP screenings [7]. As a result, many
infants in need of timely treatment may experience delays,
leading to potential vision loss. Therefore, there is an urgent
need for an automated tool capable of identifying RW-ROP
with retinal images, which would streamline the screening
process and improve early detection outcomes.

In recent years, deep learning, a subset of Artificial In-
telligence (AI), has demonstrated exceptional performance in
medical imaging tasks, particularly in diagnosing ROP using
retinal images. Convolutional Neural Networks (CNNs) [8]
have been widely employed in this domain. For instance, Tan
et al. [9] utilized Inception-V3 to classify ROP plus disease,
while Huang et al. [10] and Chen et al. [11] employed VGG19
and ResNet152 to determine the stage and severity of ROP,
respectively. For an extensive review of the literature preceding
2022, please refer to [12]. More recently, Ebrahimi et al.
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Fig. 1. The architecture of the proposed VGG-ST model. The VGG module (top) performs convolutional operations to extract local features from the input
retinal images, while the Swin Transformer module (bottom) partitions the image into patches and applies shifted window-based self-attention mechanisms
to capture global features. These local and global features are then fused in the feature enhancement module, where they are integrated into a comprehensive
feature vector. The classification module uses this vector to predict the probability of the eye being normal or affected by RW-ROP. Additionally, the lower
part of the figure provides a comparison between the convolutional operation and the shifted window-based self-attention operation for clarity.

[13] leveraged EfficientNet-V2 to identify ROP stages, and
Wagner et al. [14] employed DenseNet201 for the diagnosis of
ROP plus disease. Despite their success, CNNs are inherently
limited by their constrained receptive fields, which restrict
their ability to capture global contextual information and
long-range dependencies within images [15]. This limitation
poses significant challenges in diagnosing ROP disease, as
retinal images of premature infants often exhibit blurriness
and lack distinct local features. To address these challenges,
recent studies have increasingly incorporated deep learning
models based on transformer architectures to better capture
global features within images. Zhao et al. [16] developed
a dual-branch model that combines ResNet50 with MaxViT
for ROP stage classification. Similarly, Sankari et al. [17]
proposed a comprehensive evaluation system that integrates
multiple CNNs with a Swin Transformer for ROP diagnosis.
However, these approaches primarily focus on combining
features or classification results from different models, without
fully exploring how to effectively integrate these outputs to
enhance model performance for ROP diagnosis.

In this paper, we propose a novel hybrid deep learning
model called VGG-Swin Transformer (VGG-ST) for enhanc-
ing the detection of RW-ROP using retinal images of prema-
ture infants. The VGG-ST model synergistically combines the
strengths of VGG19 and Swin Transformer V2 architectures to
capture both detailed local features and comprehensive global
contextual information. A novel feature enhancement module
is introduced, employing an adaptive integration strategy to
merge these local and global features into a unified represen-
tation. This optimized feature set is then fed into a classifi-

cation module that accurately differentiates between normal
and RW-ROP cases. Furthermore, we developed tailored data
preprocessing techniques to address challenges such as class
imbalance and image blur in the e-ROP dataset. The VGG-ST
model not only exploits diverse feature extraction methods for
a thorough analysis but also ensures effective integration for
precise RW-ROP identification. The key contributions of this
study are as follows:

Novel Hybrid Deep Learning Model. We introduce the
VGG-ST, a dual-branch model specifically designed for RW-
ROP detection using retinal images. The VGG-ST model
synergistically combines convolutional operations with a self-
attention mechanism to capture both detailed local features
and comprehensive global contextual information, providing a
robust foundation for RW-ROP classification.

Adaptive Feature Integration Strategy. We propose an adap-
tive feature integration strategy that effectively merges local
and global features, treating them as complementary sources
of critical information. This approach significantly enhances
model performance, and our comprehensive hyperparameter
analysis explores the impact of varying the local-to-global
feature ratio on RW-ROP classification accuracy.

Customized Data Preprocessing Techniques. We develop a
set of customized data preprocessing techniques tailored to
the specific challenges of the e-ROP dataset, such as image
blur and class imbalance. Our ablation studies demonstrate
that these preprocessing methods significantly improve the
accuracy of RW-ROP classification, underscoring their critical
role in model training.
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II. METHODS

Fig. 1 illustrates the proposed VGG-ST architecture for de-
tecting RW-ROP using retinal images. The model is composed
of four modules. First, the VGG module extracts local features
through convolutional operations, while the Swin Transformer
module captures global features using self-attention mech-
anisms. These local and global features are then merged
into a unified feature vector by the feature enhancement
module, following an adaptive integration strategy. Finally,
the classification module uses this feature vector to estimate
the probability of RW-ROP. In the following, we provide a
detailed description of each module and explain how the VGG-
ST model effectively combines and leverages both local and
global features of retinal images to identify RW-ROP.

A. VGG Module

The VGG module utilizes the VGG19 architecture to extract
the local features from the retinal image. The VGG19 com-
prises a series of 3× 3 convolutional blocks and max pooling
layers. Each convolutional block includes convolutional layers
with 3 × 3 kernels, batch normalization layers, and Rectified
Linear Unit (ReLU) activation layers. Mathematically, the
output of a 3× 3 convolutional block can be expressed as:

hconv = ReLU
(
γ · W ∗ x+ b− µ√

σ2 + ϵ
+ β

)
, (1)

where x represents the input feature map, and W and b denote
the learnable weights and biases of the convolutional layer,
respectively. The parameters γ, µ, σ, and β are the learnable
parameters within the batch normalization layers, and ϵ is a
small constant added for numerical stability.

The primary advantage of the convolution operation lies in
its ability to efficiently capture local image features, such as
edges and textures, by convolving the kernel with the feature
map. Additionally, the batch normalization layer normalizes
each mini-batch feature map to have zero mean and unit
variance, which helps stabilize training. The ReLU activation
layer introduces non-linearity, enabling the model to learn
complex representations. Finally, the Max pooling layer re-
duces the spatial dimensions of feature maps by selecting the
maximum value within each pooling window, preserving the
most prominent features while discarding less significant ones.

B. Swin Transformer Module

The Swin Transformer module leverages the Swin Trans-
former V2 model to learn the global features from retinal
image patches. Given an input image I ∈ RH×W×C , where
H , W , and C denote the height, width, and the channel size of
the image, respectively, the module first partitions the image I
into patches P = {pi ∈ RP×P×C , i = 1, 2, . . . , H×W

P×P }, with
each patch having a size of P ×P (P = 4 in our study). Here,
pi represents the i-th patch. Next, the patches P are projected
into dense vectors (i.e., embeddings) E ∈ R

H×W
P×P ×D using

a linear layer, where D denotes the embedding dimension.
Finally, these patch embeddings E are processed through a

series of Swin Transformer blocks and Patch Merging blocks
to extract the global features of the image I.

In the Swin Transformer block, the input patch embeddings
are divided into non-overlapping windows, each consisting of
M ×M patches. Let the j-th window be denoted as Wj , and
the patch embeddings within this window are represented as
EWj

= {eji, i = 1, 2, . . . ,M×M}. To capture the contextual
information of EWj , the Swin Transformer block employs a
scaled cosine attention mechanism. The scaled cosine attention
for EWj

is formulated as:

Att(EWj ) = Softmax

(
cos
(
QWj

,K⊤
Wj

)
τ

+BWj

)
VWj

, (2)

where τ is a learnable scalar, BWj is the relative position devi-
ation generated by a Multilayer Perceptron (MLP) component.
QWj

, KWj
, and VWj

matrices are computed as:

QWj
= EWj

Wq
Wj

,KWj
= EWj

Wk
Wj

,VWj
= EWj

Wv
j ,
(3)

where Wq
Wj

, Wk
Wj

, and Wv
Wj

are learnable linear trans-
formation matrices. Specifically, the Swin Transformer block
contains two key sub-modules: window multi-head self-
attention (W-MSA), followed by shifted window multi-head
self-attention (SW-MSA) [18]. The SW-MSA operation per-
forms a window shift before learning the representations of
each window. This shift ensures that patches at the borders of
the previous windows are repositioned to the center of the new
windows, allowing for interactions between patch embeddings
from different regions of the image. This process enhances
the module’s ability to capture global features. To further
improve global feature representation, the Swin Transformer
module introduces a Patch Merging block, which merges patch
embeddings to expand the receptive field of the module.

C. Feature Enhancement Module
The Feature Enhancement (FE) module integrates the fea-

tures extracted from the VGG and Swin Transformer modules
into a unified representation for subsequent RW-ROP classifi-
cation. To maximize the effectiveness of these fused features,
we introduce an adaptive integration strategy that seamlessly
combines local and global features. This strategy enables
the FE module to emphasize key RW-ROP-related features,
thereby enhancing the complementarity between local and
global information for more accurate RW-ROP classification.

Let hvgg and hst represent the feature embeddings output
by the VGG module and the Swin Transformer module,
respectively. The enhanced feature embeddings, denoted as
hvgg

fe ∈ Rlvgg and hst
fe ∈ Rlst , are derived as follows:

hvgg
fe = MLPvgg (MaxPool (hvgg)) ,

hst
fe = MLPst (hst) .

(4)

It is important to note that the MLP further reduces the size
of the feature vector to a predetermined dimension while
retaining the features relevant to the RW-ROP classification
task. The output of the FE module can be expressed as:

hfe = Concat
(
hvgg

fe ,hst
fe

)
, (5)
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where Concat (·, ·) represents the embedding concatenation
operation. The adaptive feature integration strategy sets the
ratio R = lst : lvgg, where lst and lvgg denote the dimensions of
hst

fe and hvgg
fe , respectively. Here, R is a hyperparameter that

controls the balance between global and local features, ensur-
ing they complement each other effectively in the subsequent
RW-ROP classification.

D. Classification Module

Finally, a classification module is employed to identify RW-
ROP. The probability of the input image being classified as i-th
class label is calculated by the Softmax function as follows:

p(ŷ = i|hfe) =
exp(Wihfe)∑K

k=1 exp(Wkhfe)
, (6)

where Wk is the weight of the k-th class. It should be noted
that in our study, K = 2 because we only have RW-ROP and
normal cases.

E. Overall Loss Function

To train our proposed binary classification network, we
employ a weighted cross-entropy (WCE) loss function to
address the class imbalance between positive and negative
samples [19]. The overall loss function is defined as:

Lfinal = ωvggLvgg + ωstLst + ωclsLcls, (7)

where Lvgg, Lst and Lcls correspond to the loss functions of
the VGG module, the Swin Transformer (ST) module, and the
classification module, respectively. The coefficients ωvgg, ωst
and ωcls are hyperparameters that balance the contributions of
each individual loss function. Each loss function is computed
using a weighted cross-entropy loss, which is defined as:

LWCE = − 1

N

N∑
i=1

[αyi log(pi) + (1− α)(1− yi) log(1− pi)] .

(8)
Here, N is the total number of input images, yi denotes the
ground truth label for the i-th retinal image, and pi represents
the predicted probability that the i-th image is classified
as RW-ROP. The parameter α is a weight assigned to the
RW-ROP class to handle class imbalance. During training,
the combined loss from the VGG module, ST module, and
classification module serves as the overall supervision signal,
guiding the network to optimize both local and global feature
extraction for RW-ROP classification.

III. EXPERIMENTS AND RESULTS

A. Experimental Setting

Dataset. The dataset used in this study was sourced from
the Telemedicine Methods for Evaluating Acute Retinopathy
of Prematurity (e-ROP) study [20]. It comprises retinal im-
ages collected from 1,257 infants with birth weights under
1,251 grams, who were admitted to neonatal intensive care
units at 13 North American centers. The retinal images were
captured using a wide-angle fundus camera during scheduled
diagnostic examinations conducted by ophthalmologists. Each

Original dataset (n=7905)

Cleaning

Labeled images (n=7741)

Training images (n=6193) Test images (n=1548)

5-fold cross-validation

Test setValidation setTraining set

ROSE & Data augmentation

25%75%
Random selection

Fig. 2. The data preprocessing workflow for training and evaluation of the
RW-ROP classification model.

retinal image was labeled as either RW-ROP or normal by
an experienced ophthalmologist. In total, we utilized 7,905
center-view retinal images, including 814 RW-ROP images
and 7,091 normal images.

Data Preprocessing. The overall data preprocessing work-
flow is illustrated in Fig. 2. The process began with meticulous
dataset cleaning, which included removing damaged retinal
images and verifying each image’s label against its corre-
sponding clinical examination. Subsequently, all retinal images
were resized to 224 × 224 pixels. To enhance image details,
Contrast Limited Adaptive Histogram Equalization (CLAHE)
[21] was applied to the green channel of each retinal image.
For model evaluation, we performed 5-fold cross-validation
[22], dividing the labeled images into a training set (80% of the
data) and a testing set (20% of the data). The training set was
further split into training and validation subsets in a 3: 1 ratio,
while preserving the original class distribution. To address the
significant class imbalance in the training set, we employed the
Random Over Sampling Examples (ROSE) [23] technique to
equalize the number of images in each class. Additionally, data
augmentation techniques, such as image flipping, cropping,
and scaling were applied to the training set to improve the
model’s generalization capability.

Baselines. We carefully selected 15 deep learning models as
baseline comparisons, including Densenet201 [14], Inception-
BN [24], Inception-V3 [9], Inception-V4 [25], Xception [26],
ResNet50 [27], ResNet101 [17], ResNet152 [11], EfficientNet-
V2 [13], VGG16 [28], VGG19 [10], ViT [29], MaxViT [30],
Swin Transformer (Swin-T) [17], and ResNet50-MaxViT [16].
These models encompass both CNN-based architectures, such
as Inception, ResNet, EfficientNet-V2, and VGG, as well as
Transformer-based models like ViT, MaxViT, and Swin-T. All
of these models have been employed in ROP-related research,
demonstrating strong performance in detecting the disease. By
including a diverse set of models with different architectural
foundations, we aim to provide a comprehensive evaluation of
the effectiveness of our proposed method against state-of-the-
art approaches in the field.

Implementation Details. We implemented and evaluated
the VGG-ST model, along with other baseline models, using
the PyTorch framework. All models were pre-trained on the
ImageNet dataset [31], and trained and tested on an NVIDIA
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TABLE I
COMPARISON OF RW-ROP DISEASE CLASSIFICATION PERFORMANCE

(MEAN ± STD). THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Models AUC Sensitivity Specificity
Densenet201 [14] 87.9±1.9 68.7±3.9 87.3±2.3
Inception-BN [24] 81.6±1.1 71.8±3.3 79.6±2.4
Inception-V3 [9] 88.6±2.1 51.7±5.3 95.6±0.7

Inception-V4 [25] 88.1±5.8 69.7±5.2 90.2±2.8
Xception [26] 87.4±1.2 68.2±4.2 89.8±2.4
ResNet50 [27] 87.8±1.3 76.7±2.1 84.8±1.4
ResNet101 [17] 88.2±1.5 75.5±2.3 84.7±3.8
ResNet152 [11] 83.2±2.3 68.9±2.7 83.3±1.8

EfficientNet-V2 [13] 87.2±2.7 61.3±4.9 94.5±0.8
VGG16 [28] 85.8±1.6 77.7±1.6 78.2±5.4
VGG19 [10] 86.3±2.1 78.9±2.3 78.5±6.6

ViT [29] 83.1±1.9 65.2±5.2 82.4±2.2
MaxViT [30] 84.8±1.1 67.8±1.7 85.6±2.4
Swin-T [17] 84.9±0.7 70.1±4.8 85.7±4.4

ResNet50-MaxViT [16] 87.5±1.2 79.6±2.7 82.8±2.9
VGG-ST (ours) 90.3±1.4 84.7±3.1 83.7±1.6

RTX A5000 GPU. The model’s learnable parameters were
optimized using the Adam optimizer [32]. To fine-tune the
VGG-ST model, we conducted a grid search to optimize
several hyperparameters, including the learning rate, batch
size, number of training epochs, feature integration ratio R, the
coefficients ωvgg, ωst and ωcls in the final loss function, and the
class weight α. For all models, the learning rate was explored
within the range of 0.00001 to 0.01, with batch sizes of 4, 8,
16, 32, and 64 tested, and a maximum of 100 epochs evaluated.
Training was stopped early if there was no improvement in
validation set performance within 10 epochs. Specifically for
the VGG-ST model, the feature integration ratio R was varied
between 0.5 and 3 in increments of 0.5, while the coefficients
ωvgg, ωst and ωcls were varied from 0 to 1 with a step size of
0.5. The class weight α was adjusted from 0 to 1 in increments
of 0.1 to achieve optimal performance.

Evaluation Metrics. We evaluate the model’s performance
using three widely adopted metrics in medical imaging analy-
sis: Area Under the Curve (AUC), sensitivity, and specificity.
Sensitivity, or true positive rate, measures the model’s ability
to correctly identify patients with the disease, ensuring that
affected individuals are detected. Specificity, or true negative
rate, assesses the model’s accuracy in correctly excluding
patients without the disease, minimizing false positives. The
AUC score integrates both sensitivity and specificity into a sin-
gle metric, reflecting the overall diagnostic performance of the
model. A higher AUC score indicates superior discrimination
between patients with and without the disease. Together, these
metrics provide a comprehensive evaluation of the model’s
effectiveness in diagnosing RW-ROP.

B. Disease Classification Performance

Table I presents the experimental results comparing the
RW-ROP disease classification performance of various deep
learning models. Among the models tested, our proposed
VGG-ST model outperforms all baselines across key metrics.
Specifically, VGG-ST achieves the highest AUC of 90.3±1.4,

indicating its superior overall performance in distinguishing
between disease and normal classes. Additionally, it exhibits
the best sensitivity (84.7±3.1), demonstrating its ability to
correctly identify true positives, which is critical in medical
diagnosis to ensure that cases of RW-ROP are not missed.
Although the specificity (83.7±1.6) of VGG-ST is slightly
lower than that of some other models, such as Inception-V3
(95.6±0.7) and EfficientNet-V2 (94.5±0.8), it remains highly
competitive. Importantly, while these models achieve higher
specificity, their sensitivity is much lower, with Inception-
V3 at 51.7±5.3 and EfficientNet-V2 at 61.3±4.9, which
could lead to missed diagnoses. These findings underscore
the effectiveness of our model in capturing both local and
global features through its hybrid architecture, resulting in a
robust and reliable tool for RW-ROP classification. VGG-ST
maintains a crucial balance between minimizing false positives
and preserving high sensitivity, a vital consideration in medical
diagnostics where both false positives and false negatives can
have significant consequences. The superior performance of
VGG-ST across these critical metrics highlights its potential
to improve clinical outcomes in the diagnosis of RW-ROP.

C. Model Interpretability and Feature Visualization

Figs. 3 and 4 demonstrate the effectiveness of feature ex-
traction and attention mechanisms in the VGG-ST model com-
pared to the other two baseline models with higher sensitivity,
VGG19 and ResNet50-MaxViT. In Fig. 3, the t-distributed
Stochastic Neighbor Embedding (t-SNE) [33] visualizations
reveal that while the original retinal images show minimal
differences between normal and RW-ROP cases, the feature
vectors extracted by VGG-ST display much clearer and more
distinct clustering of RW-ROP samples. This enhanced feature
separation strongly suggests that VGG-ST is particularly ef-
fective at capturing the discriminative features necessary for
accurate classification.

Fig. 4 presents the attention maps generated from the
feature maps of VGG19, ResNet50-MaxViT, and VGG-ST
for both normal and RW-ROP retinal images. These atten-
tion maps, created using Gradient-weighted Class Activation
Mapping (Grad-CAM) [34], highlight the regions that each
model prioritizes during classification. The results show that
VGG19 tends to focus on a small, localized area, potentially
overlooking other critical regions, while ResNet50-MaxViT
exhibits a more scattered focus across the image. In contrast,
VGG-ST more precisely targets relevant regions, such as blood
vessel branches, which are crucial for distinguishing between
normal and RW-ROP eyes. These findings highlight VGG-
ST’s ability not only to extract meaningful features but also
to focus attention on the most diagnostically significant areas,
resulting in improved RW-ROP classification performance.

D. Ablation Studies

We conducted two sets of ablation studies to evaluate
the effectiveness of key components in our VGG-ST model
and the impact of our data preprocessing methods. The first
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RAW VGG19 Resnet50-MaxViT VGG-ST

Fig. 3. The t-SNE visualization of raw retinal images and feature embeddings extracted by VGG19, ResNet50-MaxViT, and VGG-ST.

Normal

RW-ROP

RAW VGG19 Resnet50-MaxViT VGG-ST

Fig. 4. The attention maps of VGG19, ResNet50-MaxViT, and VGG-ST for normal and RW-ROP retinal images.

TABLE II
ABLATION STUDY RESULTS FOR KEY COMPONENTS (MEAN ± STD). THE

BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Model Configurations AUC Sensitivity Specificity
w/o VGG 84.9±0.7 70.1±4.8 85.7±4.4
w/o ST 86.3±2.1 78.9±2.3 78.5±6.6
w/o FE 88.2±1.2 79.9±4.0 85.9±2.1

Full VGG-ST 90.3±1.4 84.7±3.1 83.7±1.6

ablation study assesses the contribution of each major com-
ponent in the VGG-ST model, including the VGG module,
Swin Transformer (ST) module, and Feature Enhancement
(FE) module. Table II presents the results of different model
configurations: “w/o VGG” denotes the model without the
VGG module, “w/o ST” denotes the model without the ST
module, and “w/o FE” denotes the model without the FE
module. The results show that each component plays a crucial
role in the overall performance of the model. Specifically, re-
moving the VGG module led to a significant drop in capturing
local features, while excluding the ST module weakened the
model’s ability to gather global contextual information. The
absence of the FE module, which integrates these features,
resulted in poorer performance, demonstrating the necessity
of effective feature fusion. The full VGG-ST model, which
includes all components, shows the best results, underscoring
the importance of integrating both local and global feature
extraction as well as the feature enhancement step. This study
highlights that each module’s contribution is essential for

TABLE III
ABLATION STUDY RESULTS FOR DATA PREPROCESSING METHODS (MEAN

± STD). THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Data Preprocessing AUC Sensitivity Specificity
Raw 48.6±3.5 0.0±0.0 1.0±0.0
Aug 88.7±1.9 75.4±2.6 86.6±2.1

ROSE 88.6±1.5 73.9±6.5 88.7±2.8
Aug & ROSE 89.6±1.3 80.8±4.0 85.0±4.6

CLAHE & Aug 89.0±1.2 79.0±2.3 85.2±2.9
CLAHE & ROSE 87.7±0.9 72.7±3.7 87.7±2.3

CLAHE & Aug & ROSE 90.3±1.4 84.7±3.1 83.7±1.6

achieving optimal RW-ROP classification performance.
The second ablation study evaluates the impact of our data

preprocessing methods on the VGG-ST model’s performance.
Table III presents the effects of various image preprocess-
ing techniques on VGG-ST, where “Aug” denotes the data
augmentation techniques used to increase the sample size of
each class while achieving class balance. Training the model
on the original dataset yielded sub-optimal results due to
the dataset’s limited size and significant class imbalance. In
contrast, the model trained with all preprocessing techniques
exhibited superior performance, as indicated in the bottom
row of Table III. Among these techniques, ROSE and data
augmentation effectively addressed the challenges of class
imbalance and the limited number of images in the e-ROP
dataset, while CLAHE enhanced the RW-ROP-related features
in the retinal images. The ablation study demonstrates the
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Fig. 5. Visualization of hyperparameter sensitivity analysis for R in the
adaptive integration strategy.

TABLE IV
HYPERPARAMTER ANALYSIS OF THE COEFFICIENTS IN THE FINAL LOSS

(MEAN ± STD). THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

ωvgg ωst ωcls AUC Sensitivity Specificity
0 0 1 89.8±1.3 82.3±4.3 83.1±4.6

0.5 0 1 88.1±1.2 82.7±2.1 81.7±2.7
1 0 1 86.8±1.8 85.9±1.3 77.4±2.2

0 0.5 1 89.1±1.4 81.0±2.3 83.3±2.8
0 1 1 89.3±1.5 80.4±3.2 85.3±3.4
1 1 1 89.5±1.6 78.6±2.6 85.4±2.4

1 1 0.5 88.9±1.7 80.9±6.1 82.4±6.1
1 0.5 1 88.6±1.2 80.5±5.3 81.9±3.6
0.5 1 1 90.3±1.4 84.7±3.1 83.7±1.6

necessity of these preprocessing steps. These findings suggest
that training the VGG-ST on a larger and more balanced retinal
image dataset would likely maximize its potential and further
improve diagnostic performance.

E. Hyperparameter Analysis

In this section, we analyze the impact of key hyperparam-
eters on the VGG-ST model performance. Fig. 5 presents the
results of our investigation into the adaptive feature integration
strategy, focusing on how the ratio of global features to local
features, denoted as R, influences model performance. As R
varies from 0.5 to 3, the model’s AUC, sensitivity, and speci-
ficity show distinct patterns. Notably, the model achieves its
highest sensitivity (84.7±3.1%) when R is set to 2, indicating
that a higher proportion of global features is beneficial for RW-
ROP classification. This result suggests that in the context of
retinal images from premature infants, which often suffer from
blurriness and lack distinct local features, emphasizing global
features helps the model better capture the overall context
necessary for accurate classification. These findings highlight
the importance of carefully tuning the feature integration ratio
to optimize performance for specific medical tasks.

In addition, we examined the effect of the class weight
α in the weighted cross-entropy loss function, which mod-
ulates the penalty for misclassifying different classes. Fig. 6
shows how varying α from 0.5 to 0.75 impacts the model’s
AUC sensitivity, and specificity. As α increases, the model’s
specificity improves, reflecting a higher accuracy in correctly

Fig. 6. Visualization of hyperparameter sensitivity analysis for the class
weight α in the loss function LWCE.

identifying normal retinal images. However, this improvement
comes with a decrease in sensitivity, indicating a reduced
ability to detect RW-ROP cases. The analysis reveals that
setting α to 0.6 achieves the best balance, resulting in the
highest AUC and a relatively balanced trade-off between
sensitivity and specificity. This balance is crucial in medical
diagnostics, where both false positives and false negatives can
have significant consequences. By adjusting α, users can fine-
tune the model’s performance to meet the specific needs of the
clinical application, ensuring the most appropriate trade-off for
the given medical context.

Furthermore, we investigated the contributions of each com-
ponent in the overall loss function by controlling the hyper-
parameters ωvgg, ωst and ωcls. Table IV presents the results
of this hyperparameter analysis, where different combinations
of these coefficients were evaluated for their impact on the
model’s AUC, sensitivity, and specificity. The results show
that the combination ωvgg = 0.5, ωst = 1, and ωcls = 1 yields
the highest AUC (90.3±1.4), suggesting that balancing the
contributions of the VGG and Swin Transformer components
with a strong emphasis on the classification component op-
timizes the model’s overall performance. Interestingly, when
ωvgg = 1, ωst = 0, and ωcls = 1, the model achieves
the highest sensitivity (85.9±1.3), indicating that a stronger
focus on the VGG component improves the model’s ability
to detect RW-ROP cases. However, this comes at the cost
of specificity, which decreases, as seen with a specificity of
77.4±2.2. The results highlight the importance of carefully
tuning these coefficients to balance sensitivity and specificity
according to the specific demands of the clinical application.

IV. CONCLUSION

In this study, we introduced the VGG-ST model, a hybrid
deep learning architecture that combines the strengths of VGG
and the Swin Transformer to automatically detect RW-ROP
from center-view retinal images. The VGG-ST model excels
at capturing both local and global features, achieving high
AUC and sensitivity while maintaining competitive specificity,
underscoring its effectiveness as a reliable ROP screening tool.
Given the growing burden of ROP on healthcare systems,
integrating the VGG-ST model could significantly enhance
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decision-making in patient management and contribute to the
development of primary care-based ROP screening programs
for broader populations. This work adds to the ongoing efforts
toward the clinical application of AI-driven ROP detection,
offering the potential to alleviate the strain on specialized
healthcare resources and improve early intervention outcomes.
In future research, we plan to incorporate additional data
modalities, such as demographic information and longitudinal
data, into the model to further enhance its diagnostic perfor-
mance and adaptability across diverse patient populations.

ACKNOWLEDGMENT

This study was in part supported by the National Insti-
tutes of Health (R21EY025686 and R21EY034179), National
Science Foundation (MRI-2215789, IIS-2319451), and Lehigh
University (Accelerator-S00010293 and CORE-001250).

REFERENCES

[1] C. Gilbert, “Retinopathy of prematurity: a global perspective of the
epidemics, population of babies at risk and implications for control,”
Early human development, vol. 84, no. 2, pp. 77–82, 2008.

[2] A. L. Ells, J. M. Holmes, W. F. Astle, G. Williams, D. A. Leske,
M. Fielden, B. Uphill, P. Jennett, and M. Hebert, “Telemedicine ap-
proach to screening for severe retinopathy of prematurity: a pilot study,”
Ophthalmology, vol. 110, no. 11, pp. 2113–2117, 2003.

[3] W. M. Fierson, M. F. Chiang, W. Good, D. Phelps, J. Reynolds,
S. L. Robbins, D. J. Karr, G. E. Bradford, K. Nischal, J. Roarty
et al., “Screening examination of premature infants for retinopathy of
prematurity,” Pediatrics, vol. 142, no. 6, 2018.

[4] R. Hardy, W. Good, V. Dobson, E. Palmer, B. Tung, and D. Phelps,
“Early treatment for retinopathy of prematurity cooperative grouprevised
indications for the treatment of retinopathy of prematurity. results of the
early treatment for retinopathy of prematurity randomized trial,” Arch
Ophthalmol, vol. 121, pp. 1684–94, 2003.

[5] G. E. Q. on behalf of the e ROP Cooperative Group, “Telemedicine
approaches to evaluating acute-phase retinopathy of prematurity: study
design,” Ophthalmic epidemiology, vol. 21, no. 4, pp. 256–267, 2014.

[6] C. Wu, R. A. Petersen, and D. K. VanderVeen, “Retcam imaging for
retinopathy of prematurity screening,” Journal of American Association
for Pediatric Ophthalmology and Strabismus, vol. 10, no. 2, pp. 107–
111, 2006.

[7] K. Altersitz and M. Piechocki, “Survey: Physicians being driven away
from rop treatment,” Ocular Surgery News, 2006.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[9] Z. Tan, S. Simkin, C. Lai, and S. Dai, “Deep learning algorithm
for automated diagnosis of retinopathy of prematurity plus disease,”
Translational vision science & technology, vol. 8, no. 6, pp. 1–11, 2019.

[10] Y.-P. Huang, S. Vadloori, H.-C. Chu, E. Y.-C. Kang, W.-C. Wu,
S. Kusaka, and Y. Fukushima, “Deep learning models for automated
diagnosis of retinopathy of prematurity in preterm infants,” Electronics,
vol. 9, no. 9, p. 1444, 2020.

[11] J. S. Chen, A. S. Coyner, S. Ostmo, K. Sonmez, S. Bajimaya, E. Pradhan,
N. Valikodath, E. D. Cole, T. Al-Khaled, R. P. Chan et al., “Deep learn-
ing for the diagnosis of stage in retinopathy of prematurity: accuracy
and generalizability across populations and cameras,” Ophthalmology
Retina, vol. 5, no. 10, pp. 1027–1035, 2021.

[12] A. Bai, C. Carty, and S. Dai, “Performance of deep-learning artificial
intelligence algorithms in detecting retinopathy of prematurity: A sys-
tematic review,” Saudi Journal of Ophthalmology, vol. 36, no. 3, pp.
296–307, 2022.

[13] B. Ebrahimi, D. Le, M. Abtahi, A. K. Dadzie, A. Rossi, M. Rahimi,
T. Son, S. Ostmo, J. P. Campbell, R. Paul Chan et al., “Assessing spectral
effectiveness in color fundus photography for deep learning classification
of retinopathy of prematurity,” Journal of Biomedical Optics, vol. 29,
no. 7, pp. 076 001–076 001, 2024.

[14] S. K. Wagner, B. Liefers, M. Radia, G. Zhang, R. Struyven, L. Faes,
J. Than, S. Balal, C. Hennings, C. Kilduff et al., “Development and in-
ternational validation of custom-engineered and code-free deep-learning
models for detection of plus disease in retinopathy of prematurity: a
retrospective study,” The Lancet Digital Health, vol. 5, no. 6, pp. e340–
e349, 2023.

[15] K. He and J. Sun, “Convolutional neural networks at constrained time
cost,” in CVPR. IEEE, 2015, pp. 5353–5360.

[16] J. Zhao, H. Lei, H. Xie, P. Li, Y. Liu, G. Zhang, and B. Lei, “Dual-branch
attention network and swin spatial pyramid pooling for retinopathy of
prematurity classification,” in ISBI, 2023, pp. 1–4.

[17] V. R. Sankari, U. Snekhalatha, S. Alasmari, and S. M. Aslam, “Auto-
mated detection of retinopathy of prematurity using quantum machine
learning and deep learning techniques,” IEEE Access, 2023.

[18] A. G. Alharthi and S. M. Alzahrani, “Do it the transformer way:
a comprehensive review of brain and vision transformers for autism
spectrum disorder diagnosis and classification,” Computers in Biology
and Medicine, p. 107667, 2023.

[19] Y. Ho and S. Wookey, “The real-world-weight cross-entropy loss func-
tion: Modeling the costs of mislabeling,” IEEE access, vol. 8, pp. 4806–
4813, 2019.

[20] G. E. Quinn, G.-s. Ying, E. Daniel, P. L. Hildebrand, A. Ells, A. Baum-
ritter, A. R. Kemper, E. B. Schron, K. Wade, e ROP Cooperative Group
et al., “Validity of a telemedicine system for the evaluation of acute-
phase retinopathy of prematurity,” JAMA ophthalmology, vol. 132,
no. 10, pp. 1178–1184, 2014.

[21] S. M. Pizer, “Contrast-limited adaptive histogram equalization: Speed
and effectiveness stephen m. pizer, r. eugene johnston, james p. ericksen,
bonnie c. yankaskas, keith e. muller medical image display research
group,” in Proceedings of the first conference on visualization in
biomedical computing, vol. 337, 1990, p. 2.

[22] J. M. Gorriz, F. Segovia, J. Ramirez, A. Ortiz, and J. Suckling, “Is k-fold
cross validation the best model selection method for machine learning?”
arXiv preprint arXiv:2401.16407, 2024.

[23] M. Hayaty, S. Muthmainah, and S. M. Ghufran, “Random and synthetic
over-sampling approach to resolve data imbalance in classification,”
International Journal of Artificial Intelligence Research, vol. 4, no. 2,
pp. 86–94, 2020.

[24] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in CVPR. IEEE, 2015, pp. 1–9.

[25] G. Chen, J. Zhao, R. Zhang, T. Wang, G. Zhang, and B. Lei, “Automated
stage analysis of retinopathy of prematurity using joint segmentation and
multi-instance learning,” in MICCAI-OMIA. Springer, 2019, pp. 173–
181.

[26] O. Attallah, “Diarop: automated deep learning-based diagnostic tool for
retinopathy of prematurity,” Diagnostics, vol. 11, no. 11, p. 2034, 2021.

[27] E. Ndunge Mutua, B. Shibwabo Kasamani, and C. Reich, “Retinopathy
of prematurity disease diagnosis using deep learning,” International
Journal of Computing and Digital Systems, vol. 16, no. 1, pp. 1097–
1110, 2024.

[28] Y. Zhang, L. Wang, Z. Wu, J. Zeng, Y. Chen, R. Tian, J. Zhao,
and G. Zhang, “Development of an automated screening system for
retinopathy of prematurity using a deep neural network for wide-angle
retinal images,” IEEE access, vol. 7, pp. 10 232–10 241, 2018.

[29] H. Lei, J. Zhao, H. Xie, Y. Liu, G. Zhang, and B. Lei, “Dual-
branch feature interaction network with structure information learning
for retinopathy of prematurity classification,” in BIBM, 2023, pp. 1230–
1235.

[30] Y. Liu, H. Xie, X. Zhao, J. Tang, Z. Yu, Z. Wu, R. Tian, Y. Chen,
M. Chen, D. P. Ntentakis et al., “Automated detection of nine infantile
fundus diseases and conditions in retinal images using a deep learning
system,” EPMA Journal, vol. 15, no. 1, pp. 39–51, 2024.

[31] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR. IEEE, 2009, pp.
248–255.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[33] G. Hinton and L. Van Der Maaten, “Visualizing data using t-sne journal
of machine learning research,” Journal of Machine Learning Research,
vol. 9, pp. 2579–2605, 2008.

[34] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in ICCV, 2017, pp. 618–626.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on December 04,2025 at 17:24:21 UTC from IEEE Xplore.  Restrictions apply. 


