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SUMMARY

Bioengineering efforts to increase oil in non-storage vegetative tissues, which constitute the
majority of plant biomass, are promising sustainable sources of renewable fuels and feedstocks.
While plants typically do not accumulate significant amounts of triacylglycerol (TAG) in
vegetative tissues, we report here that the expression of a plastid-localized phospholipase Al
protein, DEFECTIVE IN ANTHER DEHISCENCEI1 (DAD1), led to a substantial increase in
leaf TAG in Arabidopsis. Using an inducible system to control DADI expression circumvented
growth penalties associated with overexpressing DADI and resulted in a rapid burst of TAG
within several hours. The increase of TAG was accompanied by the formation of oil bodies in
the leaves, petioles, and stems, but not in the roots. Lipid analysis indicated that the increase in
TAG was negatively correlated with plastidial galactolipid concentration. The fatty acid (FA)
composition of TAG predominantly consisted of 18:3. Expression of DAD1 in the fad3fad7fad$
mutant, devoid of 18:3, resulted in comparable TAG accumulation with 18:2 as the major FA
constituent, reflecting the flexible in vivo substrate use of DAD1. The transient expression of
either Arabidopsis DAD1 or Nicotiana benthamiana DAD1 (NbDADI) in N. benthamiana
leaves stimulated the accumulation of TAG. Similarly, transgenic soybeans expressing
Arabidopsis DADI exhibited an accumulation of TAG in the leaves, showcasing the
biotechnological potential of this technology. In summary, inducible expression of a plastidial
lipase resulted in enhanced oil production in vegetative tissues, extending our understanding of

lipid remodeling mediated by DAD1 and offering a valuable tool for metabolic engineering.

Keywords: leaf oil, biofuels, storage lipid, phospholipase, PLA1, DADI, triacylglycerol

INTRODUCTION
Escalating concerns about environmental sustainability and the depletion of fossil fuels have
resulted in a renewed interest in vegetable oil-based alternatives to petroleum fuel (Ortiz et al.,

2020; Singh et al., 2021; Vanhercke et al., 2019). One approach is to bolster oil production in
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vegetative tissues of plants; however, oils are not typically found at high levels in leaves and
stems (Durrett et al., 2008; Vanhercke et al., 2014; Xu and Shanklin, 2016). In addition to
increasing the potential for overall higher oil production, the use of vegetative tissues to store oil
can diversify the range of plant species functioning as bioenergy crops, alleviating concerns
about competition for resources dedicated to food production (Dyer et al., 2008). The increased
energy density and improved quality, including a healthier fatty acid (FA) profile, in vegetative
tissues that are desirable for fodder and silage crops can directly impact both animal health and

the quality of meat and dairy products (Knothe, 2010; Winichayakul et al., 2013).

To achieve this goal, plant metabolic engineering efforts have focused on manipulating genes
involved in the carbon partitioning and production of lipids. Examples include manipulating
single genes or combinations of multiple genes encoding transcription factors (Baud et al., 2007;
Kim et al., 2013; Sanjaya et al., 2011; Zhai et al., 2017), enzymes that partition carbon to
pyruvate for FAs (Morley et al., 2023), proteins catalyzing the committed steps for FA
biosynthesis (Liu et al., 2019; Salie et al., 2016; Wang et al., 2022; Ye et al., 2020), proteins
involved in triacylglycerol (TAG) assembly (Cao et al., 2023; Fan et al., 2013b; Luo et al., 2022;
Singer et al., 2016; Vanhercke et al., 2014; Yurchenko et al., 2018), packaging into lipid droplets
(LDs) (Cai et al., 2015; Cai et al., 2017; Gidda et al., 2013; Ischebeck et al., 2020; Pyc et al.,
2021), as reviewed elsewhere (Metzger and Bornscheuer, 2006; Ortiz et al., 2020; Singh et al.,
2021; Vanhercke et al., 2019; Xu and Shanklin, 2016). Additionally, carbon from starch was
redirected to oil biosynthesis or TAG lipases or peroxisomal enzymes were targeted to block
lipid turnover, to further enhance oil accumulation in vegetative tissues (Azeez et al., 2022;
Aznar-Moreno et al., 2022; Eastmond, 2006; Kelly et al., 2013; Sanjaya et al., 2011; Slocombe et
al., 2009; Xu et al., 2019).

Despite the success thus far, the capacity for much greater levels of storage oil may be possible
as evidenced by changes in TAG concentration during stresses, such as elevated temperature,
freezing, nitrogen deprivation, drought, exposure to ozone, wounding, or pathogen infection
(Coulon et al., 2024; El Hafid et al., 1998; Lewandowska et al., 2023; Lippold et al., 2012;
Moellering et al., 2010; Mueller et al., 2015; Narayanan et al., 2016; Pant et al., 2015; Sakaki et
al., 1990; Schieferle et al., 2021; Shimada and Hara-Nishimura, 2015; Vu et al., 2015; Yang and
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Benning, 2018; Yurchenko et al., 2018). Additionally, senescence can promote TAG
accumulation (Coulon et al., 2024; Kaup et al., 2002; Lu et al., 2020; Troncoso-Ponce et al.,
2013; Watanabe et al., 2013), highlighting the plasticity of lipid production in vegetative cells.
However, these effects are transient, as TAG molecules can be quickly removed by B-oxidation
or converted into other metabolites (James et al., 2010; Koo et al., 2005; Theodoulou and
Eastmond, 2012; Tjellstrom et al., 2015). Further, vegetative tissues with significant storage oil
accumulation can exhibit reduced plant growth (Kelly et al., 2013; Kim et al., 2013; Sanjaya et
al., 2011; Xu et al., 2005; Zhai et al., 2021), suggesting the oil production may be a costly
process. In some instances, particularly in tobacco, the plants are comparable or only slightly
smaller in size (Chu et al., 2022; Vanhercke et al., 2017; Zhou et al., 2020); thus, the underlying
physiology that results in altered plant size when lipid levels increase remains enigmatic. Perhaps
there is selection pressure against storing high-energy nutrients in vegetative tissues, considering
the heightened vulnerability to insect pests in plants with elevated oil content (Sanjaya et al.,
2013; Yurchenko et al., 2018). Alternatively, the costs associated with intensive lipid production

compared to other forms of biomass may be significant enough to hinder plant growth.

The fatty acyl building blocks used for TAG assembly in non-storage organs during stress
responses are likely derived from membrane lipids hydrolyzed by lipases (Higashi et al., 2018;
Lippold et al., 2012; Pant et al., 2015; Sakaki et al., 1990; Shimada and Hara-Nishimura, 2015;
Troncoso-Ponce et al., 2013; Vu et al., 2015; Wang et al., 2018; Yu et al., 2021) or through
reverse reactions of acyltransferases (Tjellstrom et al., 2015). Phospholipases, a major class of
lipid hydrolases, can cleave fatty acyl groups from various glycerol lipid substrates that
constitute most cell membranes. Several class A phospholipases (PLAs) have been implicated in
membrane remodeling under various stress conditions (reviewed in (Ali et al., 2022; Chen et al.,
2013; Kelly and Feussner, 2016; Laxalt and Munnik, 2002; Wang et al., 2012; Yu et al., 2021),
and some have been shown to be involved in TAG accumulation (Wang et al., 2017). PLASTID
LIPASEI1 (PLIP1) in Arabidopsis hydrolyzes fatty acyl group from phosphatidylglycerol (PG)
from chloroplast thylakoids and contributes to oil accumulation during seed development
(Aulakh and Durrett, 2019; Wang et al., 2017) and galactolipases (e.g., PGD1) can release fatty
acyl groups from monogalactosyldiacylglycerol (MGDG) for TAG synthesis as noted for
nitrogen starved green algae (Li et al., 2012). A portion of FAs hydrolyzed from membrane
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lipids is converted to oxylipins including jasmonates (Kallenbach et al., 2010; Kimberlin et al.,
2022), which are an important class of phytohormones that protect plants against diverse abiotic
and biotic stresses (Howe et al., 2018; Koo, 2018). In Arabidopsis, seven PLA1s with predicted
plastid transit peptides have been identified: DEFECTIVE IN ANTHER DEHISCENCE1
(AtDADI1; At2g44810), DONGLE (DGL; At1g05800), PLA1-I02 (At2g31690), PLA1-Ip2
(At4g16820), PLA1-Iy1 (At1g06800), PLA1-Iy2 (At2g30550), and PLA1-Iy3 (Atlg51440)
(Rudus et al., 2014; Ryu, 2004). Several of these plastidial PLA1s including AtDAD1, contribute
redundantly to oxylipin biosynthesis in Arabidopsis (Ellinger et al., 2010; Hyun et al., 2008;
Ishiguro et al., 2001; Morin et al., 2023). Additionally, two abscisic acid (ABA)-responsive
paralogs of the above-mentioned PLIP1 have been reported to contribute to oxylipin biosynthesis
(Wang et al., 2018). The HEAT INDUCIBLE LIPASE1 when knocked out reduced heat-induced
TAG accumulation in Arabidopsis leaves at the expense of MGDG (Higashi et al., 2018). Both
PLIP1 and HILT1 are distinct from the seven DAD1-like plastidial PLA1s. While involvement of
lipid hydrolysis in TAG biosynthesis in leaves is evident, there have been no concerted efforts to

alter leaf oil by manipulating plastidial PLA1s.

In this study, we report oil accumulation in vegetative tissues by expression of a plastidial PLA1
(Figure 1a). A chemical-inducible expression system was employed to overcome the growth
inhibitory complications associated with constitutively expressing PLA1s (Ishiguro et al., 2001;
Kimberlin et al., 2022; Wang et al., 2017). The resulting plants exhibited conditional
accumulation of a substantial amount of TAG in the vegetative tissues in response to the
exogenous application of a chemical inducer. The TAG predominantly consisted of 18:3,
accompanied by a concomitant decrease in MGDG and digalactosyldiacylglycerol (DGDG).
Heterologous expression in Nicotiana benthamiana and Glycine max resulted in similar increases
in leaf TAGs. We discuss how this unique approach can be leveraged and integrated with

existing strategies to advance efforts in developing biofuel crops.

RESULTS

Transient expression of AtDADI1 under an inducible promoter leads to TAG accumulation in

leaves
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We previously reported on the generation of transgenic lines (Pdex:AtDAD1-Myc) carrying a
dexamethasone (dex)-inducible construct expressing AtDAD1-Myc and characterization of
jasmonic acid (JA) metabolism (Holtsclaw et al., 2024; Kimberlin et al., 2022). Based on those
studies, we hypothesized that the ectopic expression of AtDAD1 would hydrolyze membrane
glycerolipids within plastids, liberating free fatty acids (FAs) like a-LA, which would then be
metabolized via pathways beyond the JA biosynthetic route to produce TAG (Figure 1a).

Consistent with previous findings, AtDAD1-Myc did not express in Pdex:AtDAD1-Myc
plants in the absence of exogenously applied dex, a compound not biosynthesized in planta. This
was confirmed through mRNA transcript analysis and protein immunoblot using commercial
Myc antibodies to detect recombinant AtDADI1-Myc (Figure Sla and b). Upon an application of
dex, there was distinct induction of both AtDADI-Myc transcripts and proteins within 12 h
(Figure Sla and b). Earlier induction of both transcripts and proteins was reported within 4 h
(Kimberlin et al., 2022). Lipid analysis was conducted on leaf samples collected from
Pdex:AtDADI-Myc plants at 0, 4, 8 and 12 h after dex treatment, and those were compared with
lipids extracted from control WT plants similarly treated with dex for 12 h. TLC plate separation
of the total lipid extract, utilizing a hexane/diethyl ether/acetic acid (80/20/1, v/v/v) solvent
system, revealed time-dependent appearance of TAG bands in the dex-treated Pdex:AtDAD1-
Myc samples (Figure S1c). No clear TAG band could be detected from the Pdex:AtDAD1-Myc
samples prior to the dex treatment (0 h) similar to the WT control.

Quantitative analysis by GC-FID of leaf TAGs ranged from 300 pg/gFW at 4 h to 400-500
ng/gFW at 8 h and 12 h post dex treatment (Figure 1b). No statistically significant changes were
observed in total leaf lipid contents (converted to FA methyl ester (FAME)) of dex-induced
Pdex:AtDADI-Myc compared to WT over time (Figure 1c¢), indicating no net gain or loss in
overall acyl lipid quantity. In order to verify that the TAG increase in the leaves of
Pdex:AtDAD1-Myc was dependent on the activity of AtDADI, a transgenic line expressing a
mutated variant of AtDADI1 was examined (Pdex.:AtDADI1™"'-Myc) (Figure 1d and €). The
mutant construct housed in this line had the AtDADI1 with highly conserved GXSXG motif that
included catalytic Ser?® residue replaced with five alanine residues controlled by the same dex-
inducible expression system (Kimberlin et al., 2022). Lipid analysis of Pdex:AtDADI1™"-Myc

exhibited no noticeable increase in TAG following dex treatment (Figure 1d and e). This
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indicated that the rise of TAG within the Pdex:AtDADI-Myc lines is contingent upon the
catalytic activity of the functional AtDADI1 enzyme.

Lipid droplets form in the leaves and stems of dex-induced Pdex:AtDADI1-Myc

Where does the accumulated TAGs localize within the cellular context? Previous studies have
shown the leaf tissue's potential to amass lipid droplets (LD) (Bouchnak et al., 2023; Pyc et al.,
2017a), typically found in oil-rich tissues such as seeds. When stained with BODIPY and
examined using a laser scanning confocal microscope, punctate structures that are typical for
LDs (green in the image), much smaller than chloroplasts (red), emerged in dex-treated (8 h)
Pdex:AtDADI-Myc leaves (Figure 2a). A secondary oil staining approach with Nile Red further
confirmed the oil-filled nature of these organelles (Figure 2a). Notably, LDs were absent in
mock-treated (0.01% Triton X-100 in water) Pdex:AtDAD1-Myc lines or dex-treated WT leaves
(Figure 2a). As time progressed (12 h post dex treatment) the presence of LDs intensified in the
Pdex:AtDADI-Myc lines (Figure 2a). To investigate LD formation in tissues other than leaves,
lipid staining was carried out in petiole, stem, and root tissues. Similar to the leaf tissue, LDs
formed in dex-treated (12 h) petiole and stem tissues of Pdex:AtDADI-Myc, in contrast to WT,
which did not display any perceivable LD stain (Figure 2b). Interestingly, LDs failed to form in
the roots (Figure 2b), even though the control root tissues that had been fed with exogenous .-
LA, displayed lipid stains (Figure 2b), consistent with the root’s capacity to accumulate LDs
(Kelly et al., 2013; Pyc et al., 2017a; Pyc et al., 2017b). These findings align with previously
reported transgenic lines with increased oil content showing LD formation in vegetative tissues
(Caietal., 2017; Chu et al., 2022; Gidda et al., 2016; Winichayakul et al., 2013). The reasons for
the limited accumulation of TAG in the roots of Pdex:AtDADI-Myc are unclear, but it could
likely be due to the lack of extensive internal membrane system (thylakoids) in root plastids

(Xue et al., 1997).

Pdex:AtDADI1-Myc plants can be induced to accumulate leaf TAGs at various developmental
stages

Undesirable agronomic traits like stunted growth, diminished yield, or heightened insect
herbivory (Sanjaya et al., 2011; Yurchenko et al., 2018; Zhai et al., 2021), may be avoided if oil

accumulation can be transiently induced at specific, desired times. The dex-inducible system is
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under tight regulation, resulting in minimal, if any, leakage of transgene expression (Figure S1)
(Koo et al., 2009). Consequently, Pdex:AtDADI-Myc plants prior to dex induction exhibited
normal growth, similar to WT plants (Figure 3a and b). Meanwhile, both A¢tDAD1-Myc
transcripts and proteins were induced to comparable levels by dex at various developmental
stages (Figure 3¢ and d). These observations underscore the effective functionality of the
inducible vector system across most developmental stages of rosette leaves. Qualitative
assessment of oil accumulation in these samples revealed that, except for 8-d-old plants, TAG
was detectable at similar levels in samples from the five remaining developmental stages (11-26
d) (Figure 3e). Although the sample from 8-d-old plant in the TLC image (Figure 3¢) appears to
be slightly underloaded, the absence of the TAG band was evident. Given that this sample
exhibited equivalent levels of 4¢DADI-Myc transcripts and proteins as other plant age samples
(Figures 3¢ and d), the lack of TAG was surprising. However, this observation aligns with a
previous report where the induced AtDAD1 proteins were also unable to trigger JA accumulation

early in development (< 10-d-old) (Kimberlin et al., 2022).

Leaf TAG formation primarily occurs at the expense of MGDG and DGDG

Although classified as a phospholipase, some PLA1s exhibit additional substrate specificity for
galactolipids (Hyun et al., 2008; Ishiguro et al., 2001; Kallenbach et al., 2010). Considering
AtDAD1’s localization in the plastids (Ishiguro et al., 2001; Padham et al., 2007) and the
prevalence of MGDG and DGDG (constituting > 60% of leaf lipids and > 75% of plastid lipids)
(Browse and Somerville, 1994; Welti et al., 2002), these galactolipids are expected to be the
primary substrates for AtDAD1. In line with this prediction, a noticeable reduction in MGDG
and DGDG levels was observed upon dex treatment in Pdex:AtDAD1-Myc leaves (Figure 4a).
The decline in MGDG was particularly pronounced 12 h post dex-induction, as indicated by GC
analysis (Figure 4b). However, the reduction in individual MGDG lipid species was more
evident even at earlier time points (4 h and 8 h), in a separate set of samples analyzed by
lipidomics (Figure 4d). Statistically significant decreases (P < 0.05) in DGDG were also
observed at 4 and 8 h post dex treatment (Figure 4e). The combined levels of MGDG and DGDG
were reduced by 200-250 ug/gFW compared to either WT or untreated Pdex:AtDADI-Myc
plants.
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Among the MGDG species, three major variants—MGDG (34:6), MGDG (36:6), and
MGDG (34:5)—exhibited substantial decreases in their levels over time following dex treatment
(Figure 4d) (Table S1). These lipid species all contained 18:3 FA (although MGDG (34:5) likely
contained some 18:2-16:3)). Similarly, levels of all major species of DGDG lipids—DGDG
(36:6), DGDG (34:3), and DGDG (34:6)—with 18:3 fatty acyl groups were reduced following
dex treatment. In contrast, changes in phospholipids such as PC, PG, PE, PS, PI, and PA were
more subtle, with no overt shifts detected in overall levels (Figure S2). Nonetheless, individual
PC species exhibited more complex patterns: some species (PC (36:6), PC (34:3), PC (34:4))
increased, while others (PC (36:4), PC (36:3), PC (36:2), PC (34:2), PC (34:1)) decreased, and
certain species remained unchanged (PC (36:5)) (Figure S3a). Additionally, there was an
increase in LysoPC containing 18:3 and 18:2 FAs (Figure S3b). The fluctuations in PC could
reflect the transition of FAs that have been released from the plastid through PC intermediates as
part of the PC-acyl editing cycle (Allen, 2016; Bates, 2016; Tjellstrom et al., 2012) on their paths
to being incorporated into TAG (Figure 1a). Notably, a reduction in one PG species (34:4) was
also observed (Figure S3c). The change in PG suggests that the action of AtDADI may not be
solely limited to MGDG and DGDG.

Leaf TAG in Pdex:AtDAD1-Myc mainly consists of unsaturated 18-carbon FAs

Next, we analyzed the FA composition of leaf TAG in Pdex:AtDADI-Myc. WT and uninduced
Pdex:AtDAD1-Myc plants accumulated less than 10 pg/gFW TAG (Figure 5a), and the small
amount they did accumulate primarily consisted of saturated 16 and 18-carbon FAs. However,
50-60% of TAGs from dex-induced Pdex:AtDAD1-Myc consisted of 18:3 (Figure 5a and b). The
remaining 50% contained 18:2, 16:0, 18:0, 16:3, and 18:1 in decreasing order of relative
abundance. This FA profile remained consistent over time, except for 16:3 and 18:1, which
showed opposite trends of decreasing and increasing, with their relative abundance ultimately
reversing by 12 h post-dex treatment (Figure 5a). These FA profiles stand in stark contrast to
Arabidopsis seed oil, which mainly consists of 18:2 (30%), followed by 20:1 and 18:3, each
accounting for about 20% (Browse and Somerville, 1994; Li et al., 2006). The predominance of
18:3 in Pdex:AtDADI-Myc TAG reflects that in MGDG and DGDG (Figure 5b). The main
difference between TAG and galactolipid FA profile lies in the relatively high 18:2 content (20-
25%) in TAG, compared to larger 16:3 content (25-30%) in MGDG (Figure 5b). The exclusion
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of 16:3 in leaf TAG is likely due to the predominant occurrence of 16:3 in the sn-2 position of
MGDG (Miquel and Browse, 1992) and AtDAD1 being a PLA1 enzyme.

Lipidomic analysis of Pdex:AtDADI-Myc leaf tissues revealed acyl species in TAG (Figure
5¢) (Table S1). Consistent with prior results, very little TAG was present in WT or uninduced (0
h) Pdex:AtDAD-Myc plants; however, leaf samples collected after 4 h and 8 h of dex treatment
contained several TAG species (Figure 5c¢). The two most abundant species were TAG (54:8)
and TAG (54:9), consisting of TAG (18:2 18:3 18:3) and TAG (18:3 18:3 18:3), respectively.
The next four most abundant TAG species all contained 18:3. The unsaturation index also
increased in TAG and the extraplastidial phospholipids PC and PI (and PA), while it decreased in
the plastidial glycerolipids MGDG, DGDG and PG (Figure S4). These FA profiles in TAGs and
double bond contents in lipids reflect the expected outcomes of plastidial PLA1 hydrolyzing
glycerolipids, particularly, MGDG and DGDG, releasing unsaturated 18-carbon FAs, ultimately

culminating in highly unsaturated TAG molecules within the leaves.

Pdex:AtDADI1-Myc can promote TAG accumulation in fad3fad7fad8 mutant

The sterility phenotype of dadl mutant plants, attributed to the absence of the plant hormone JA,
is caused by the defect in the release of 18:3, serving as the precursor for JA biosynthesis
(Ishiguro et al., 2001). This coupled with the FA composition analysis results, showing the
predominance of 18:3 in the leaf TAG of Pdex:AtDAD1-Myc (Figure 5), suggest that the main
substrate of AtDADI enzyme is 18:3-containing galactolipids. To further probe the in vivo
specificity of the AtDAD1 enzyme for 18:3-containing lipids, we introduced Pdex:AtDADI-Myc
into the FA desaturase triple mutant, fad3fad7fad8, which lacks 18:3 (McConn and Browse,
1996).

Similar to the results observed in the WT background, dex-treated Pdex:AtDAD1-Myc in
fad3fad7fad8 background exhibited TAG accumulation in leaves (Figure S5). Notably, there was
no significant difference in the total leaf TAG levels between these two genetic backgrounds
(Figure S5a). However, lipidomic analysis revealed a major shift in acyl compositions within
TAGs. TAGs containing 18:3 were almost completely absent, while TAGs containing 18:2, such
as TAG (18:2 _18:2 18:2) and TAG (18:2_18:2 18:1), accumulated in Pdex:AtDADI1-Myc /
fad3fad7fad8 (Figure S5b). Additionally, there was a higher abundance of TAGs containing 18:1
and 18:0 in the fad3fad7fad8 background compared to the WT background (Figure S5b). These

10
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findings indicate that even in the absence of 18:3, the AtDADI enzyme retains an ability to

hydrolyze 18 carbon FA with varying levels of saturation from glycerolipids in leaves.

Wounding enhances TAG accumulation in Pdex:AtDADI1-Myc

Our previous research on the role of AtDADI in JA biosynthesis revealed that co-treatment with
wounding and dex significantly enhances JA production in Pdex:AtDAD1-Myc plants compared
to either of the single treatments. The evidence suggests the activation of AtDAD] activity
through a post-transcriptional mechanism triggered by wounding, resulting in increased JA
production (Holtsclaw et al., 2024; Kimberlin et al., 2022). Given that AtDADI generates
precursors for both JA and TAG, we hypothesized that wounding might also enhance TAG
accumulation in dex-induced Pdex:AtDADI-Myc plants.

Leaves that had been pretreated with dex for 8 h were subsequently wounded for 8 h.
Wounding alone did not cause a significant increase in TAG compared to the no-wounding
control (Figure S6) under our condition, somewhat different from earlier reports that found
increases (Lewandowska et al., 2023; Vu et al., 2014). Treatments with dex increased TAG to
about 500 ng/gFW (Figure S6) in Pdex:AtDAD1-Myc as observed earlier (Figure 1). However,
co-treatment with both dex and wounding increased TAG levels to a higher level (750 pg/gFW).
This is consistent with observations made for JA biosynthesis (Kimberlin et al., 2022), although
the magnitude of TAG increase by the ‘dex+wound’ co-treatment was smaller than that was

observed for JA.

Transient expression of AtDADI and NbDADI promoted TAG accumulation in N.
benthamiana leaves

With the long-term goal of developing crops with high biomass oil content, we conducted
experiments to assess whether Pdex:AtDADI-Myc can induce TAG accumulation in other plant
species. We selected N. benthamiana as a suitable laboratory system for quick testing and
evaluation of the effects of transient gene expression. Previous successes in producing oil in
tobacco leaves have been reported (Cai et al., 2017; Chu et al., 2022; Gidda et al., 2016;
Vanhercke et al., 2017; Vanhercke et al., 2014; Zhou et al., 2020). In addition to the 4tDAD1
gene from Arabidopsis, we also tested a homolog to AtDAD1 found in N. benthamiana. A
BLAST query of Sol Genomics Network (genome release, v1.0.1) using the full-length
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Arabidopsis AtDAD1 amino acid sequence identified four sequences with sequence identities
above 60% (Niben101Scf04104g03001.1, Niben101Scf05795g00005.1,
Niben101Scf02400g02012.1, Niben101Scf02386g01005.1) (Holtsclaw et al., 2024). From these,
Niben101Scf02386g01005.1 was selected, which was predicted to be localized in the plastids by
TargetP2.0 (Almagro Armenteros et al., 2019), and designated it as NbDADI.

The full-length NbDAD1 gene was cloned into the dex-inducible vector system
(Pdex:NbDADI), and Agrobacteria carrying Pdex:NbDADI were syringe-infiltrated into 4-
week-old N. benthamiana leaves. Agrobacteria carrying an empty vector or the Pdex:AtDADI-
Myc construct were also infiltrated. After 2 days, the infiltrated leaves were sprayed with a 30
uM dex solution and incubated for another 6 h before collecting tissue samples for RNA and oil
analyses. The reverse transcriptase (RT)-PCR analysis showed clear induction of NbDAD1 and
AtDADI transcripts in leaves infiltrated with either constructs, compared to EV infiltrated leaves
(Figure 6a). AtDADI primers cross-reacted with NbDADI in Pdex:NbDADI infiltrated samples.
This is presumably due to the high expression level of NbDADI in those samples because the
non-specific amplification was not observed in the EV control (Figure 6a).

The TLC stain of the oil samples revealed a clear induction of TAG bands in leaves
infiltrated with either Pdex:AtDAD1-Myc or Pdex:NbDAD1, compared to EV control (Figure
6b). These results were reproducible in four biological repetitions of each construct. The leaf
TAG amounts of 200-450 ug/gFW (Figure 6¢) in the leaves expressing either constructs were
comparable to those observed in Arabidopsis Pdex:DAD1-Myc leaves (Figure 1b). Similar to
Arabidopsis (Figure 4), a visible reduction of galactolipids (especially DGDG) was observed in
N. benthamiana leaves expressing Pdex:AtDAD 1-Myc compared with EV-infiltrated leaves
(Figure S7).

Development of transgenic soybeans with increased biomass oil

After obtaining positive results supporting the potential to use inducible PLA1s for engineering
biomass oil lines in Arabidopsis and N. benthamiana, we transformed soybean (Glycine max).
Fourteen independent transgenic events introducing the Pdex:AtDAD1-Myc construct were
identified, showing both basta resistance and PCR-amplification of the transgene (Figure S8a). In
the absence of exogenous dex treatment, the oil extracts from leaves of all fourteen lines

contained low background level of TAG similar to that in WT (Figure S8b upper panel);
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however, upon dex treatment (12 h), several lines exhibited notable TAG accumulation (Figure
S8b lower panel). Among the eight lines (indicated by arrows in the figure) that displayed visibly
increased TAG compared to WT controls, one line (L7) was selected for quantitative analyses in
the subsequent T2 generation. RT-qPCR showed 30-fold increase of AtDADI-Myc transcript in
dex-induced 3-wk-old L7 leaves compared to WT (Figure 7a). Increases in the transcript
expression correlated with increased leaf TAG (~500 pg/gFW, equivalent to ~4 mg/g dry weight
or 0.4% of leaf dry weight) (Figure 7b). The induction of TAG was also observable in older
plants (6-wk-old) (Figure S9a) at the expense of galactolipids (Figure S9b), similar to
Arabidopsis (Figures 3 and 4). Collectively, these results provide proof-of-concept for the
biotechnological potential of using DAD1 and DAD1-like genes to engineer crops to produce oil

in leaves.

DISCUSSION

Conditional activation of plastid-localized DADI resulted in accumulation of TAG in leaves.
Unlike seed TAG, the leaf TAG in the dex-induced Pdex:AtDADI-Myc leaves featured a FA
profile resembling that of leaf membrane lipids (Figure 5). A pathway model was drawn based
on our observations and currently known metabolic pathways for TAG biosynthesis (Figure 1a).
Galactolipids, especially the MGDG, are expected to be the major source providing FA building
blocks for TAG assembly in the Pdex:AtDADI-Myc leaves. This is because although AtDADI is
classified as a phospholipase, galactolipids such as MGDG are likely its main substrate. This is
conclusion is based on the predominance of galactolipids in the chloroplasts where AtDADI is
localized, as well as reported substrate preferences for AtDAD1 (Ishiguro et al., 2001) and other
plastidial PLA1s (Hyun et al., 2008; Kallenbach et al., 2010). Supporting this prediction, the
increase in TAG was accompanied by concomitant decreases in MGDG and DGDG (Figure 4)
while displaying no clear changes to most of phospholipid levels (Figure S2). A similar
preference for MGDG was reported for an ABA-responsive plastidial lipase PLIP2 and a heat-
inducible lipase (Higashi et al., 2018; Wang et al., 2018). In addition, MGDG is also the most
abundant reservoir for 18:3 FAs which were found to be the most abundant FA component
comprising the TAGs in the Pdex:AtDAD1-Myc leaves (Figure 5). However, with reference to

the substrate preferences among different saturation levels of 18-carbon FAs, the results from
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401  Pdex:AtDADI1-Myc / fad3fad7fad8 plants (Figure S5b) (McConn and Browse, 1996; Miquel and
402  Browse, 1992) suggested that AtDAD1 can accept 18-carbon FA in the sn/ position other than
403  18:3. Lack of 18:3 in Pdex:AtDADI-Myc / fad3fad7fad8 did not reduce overall TAG levels but
404  instead caused compensatory increases of TAG species with 18:2, 18:0 and 18:1 (Figure S5),
405  indicating that changes in saturation levels did not decrease AtDAD1 activity for lipid substrates
406  containing these FAs. AtDADI1's broad substrate specificity for lipid substrates with varying

407  saturation levels could be beneficial in engineering efforts aimed at tailoring FA composition for
408  different functionalities.

409

410  Upon hydrolysis from MGDG, 18:3 is expected to be exported from the chloroplast likely

411  through a similar mechanism as the FAs synthesized de novo involving FATTY ACID EXPORT
412  (FAX) proteins (Figure 1a) (Koo et al., 2004; Li et al., 2015). Subsequently, upon activation by
413  acyl activation enzymes (Koo et al., 2005; Zhao et al., 2019), the 18:3 will be added to the acyl-
414  CoA pool. These acyl-CoAs can then enter the TAG assembly pipeline either via the Kennedy
415  Pathway, where they sequentially combine with glycerol-3-phosphate molecules, or through the
416  Lands Cycle, where acyl-CoAs are joined to PC before incorporation into TAG (Bates et al.,

417  2007; Haslam et al., 2016). Nascent 18:1 leaving the plastid is first channeled into PC by the

418  lysophosphatidylcholine (LPC) acyltransferase (LPCAT) enzymes for acyl editing (Bates et al.,
419  2012; Karki et al., 2019). The 18:2 and 18 :3-CoA produced through acyl editing are then

420  utilized for glycerolipid assembly including PC which ultimately provides the DAG backbone
421  for TAG. Although there were no net changes in the overall PC levels (Figure S2), fluctuations
422  in several PC species with different acyl compositions have been observed in Pdex:AtDAD1-
423  Mpyc, indicative of an active acyl editing through PC (Figure S3). Next, two key enzymes,

424  DIACYLGLYCEROL ACYLTRANSFERASE1 (DGATTI) and

425  PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASEI1 (PDAT1), were shown to
426  play major roles in the final steps of TAG assembly in leaves (Fan et al., 2013a; Tjellstrom et al.,
427  2015; Yurchenko et al., 2017). The relative contribution of the two pathways in incorporating the
428  AtDADI-derived 18:3-CoA from plastid for TAG synthesis in the leaves of Pdex:AtDAD1-Myc
429  is unknown; however, there is some evidence supporting concerted action of another plastidial
430 lipase, PLIP1 and PDAT1 in Arabidopsis seeds (Aulakh and Durrett, 2019; Wang et al., 2017).
431  Additionally, the FA profile of leaf TAGs in PDAT1-overexpressing plants exhibited some
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resemblance to that of Pdex:AtDADI-Myc, with 18:3, 18:2, and 16:0 being the three dominant
FAs, supportive of the contribution through PDATI (Fan et al., 2013a). In contrast, DGATI-
overexpression resulted in an increase in 18:1 and a reduction in 18:3 in TAG (Andrianov et al.,
2010). Interestingly, transcripts of both DGATI and PDATI increased in Pdex:AtDAD1-Myc
leaves 12 h after dex treatment (Figure S10). This upregulation may reflect positive feedback
regulation of these genes at the transcript level rather than serving as a prerequisite for TAG
synthesis, as TAG accumulation begins earlier at 4 h and 8 h post dex treatment (Figure 1b,
Figure S1c). Meanwhile, this may suggest that the DGAT1 and/or PDAT]I activity might be
limiting and that their co-expression with AtDAD1 in Pdex:AtDADI-Myc could further enhance
TAG accumulation. Ultimately, radiolabel pulse-chasing experiments (Johnson et al., 2024;
Parchuri et al., 2024; Zhou et al., 2020) could provide detailed insights into the metabolic route
of fatty acids from the chloroplast membrane to TAG in the cytosol.

A second metabolic fate of the 18:3 released by AtDADI1 in the plastid is octadecanoid pathway
to synthesize oxylipins (Figure 1a) (Farmer and Ryan, 1992; Koo, 2018; Wasternack and Hause,
2013). This pathway has been shown to be primarily regulated at the level of substrate
availability, namely by the provision of 18:3 (Kimberlin et al., 2022; Koo and Howe, 2009;
Miersch and Wasternack, 2000; Scholz et al., 2015). Consistently, the induction of AtDADI in
Pdex:AtDAD1-Myc by dex treatment led to accumulation of JA, its intermediary precursor 12-
oxophytodienoic acid, and its downstream metabolites (Holtsclaw et al., 2024; Kimberlin et al.,
2022). JA derivatives, particularly, its amino acid conjugate, jasmonoyl-isoleucine, serves as a
hormonal signal for many stress responses and normal plant developmental processes such as
fertility, making its synthesis essential for plant survival (Howe et al., 2018). However, the
production of JA can also lead to plant growth inhibition (Poudel et al., 2016; Staswick et al.,
1992; Zhang and Turner, 2008). AtDAD1 expressed under a JA-responsive promoter resulted in
severe growth retardation (Kimberlin et al., 2022). Similar growth inhibitory effects were
observed by the constitutive expression of AtDADI or PLIP2, another plastid-localized lipase
involved in abscisic acid-induced JA biosynthesis (Ishiguro et al., 2001; Wang et al., 2018).
Apart from the growth retardation through JA signaling, constitutive accumulation of leaf TAG
could itself cause negative effects on growth (Fan et al., 2014; Vanhercke et al., 2019). In

addition, plants with higher leaf TAG content were found to support greater insect growth
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(Sanjaya et al., 2013; Yurchenko et al., 2018), potentially posing problems for the mass
cultivation of high biomass oil lines in the field. However, these problems could possibly be
mitigated by the inducible expression of AtDADI1, as Pdex:AtDADI1-Myc plants can be grown
normally (Figure 3) until a desirable age when TAG accumulation can be induced. The
production of lipid-derived defense signals such as JA by DAD1 may also enhance plant
resistance against insects (Howe et al., 2018; Koo, 2018; Koo and Howe, 2009), although this
remains to be tested. Induction of AtDADI led to largely equivalent TAG accumulation at
various developmental stages except for the very young seedling (< 10-d-old) stage (Figure 3e).
The time of AtDAD1 induction can be determined based on various considerations, including
desirable biomass and flowering time. Harvesting the AtDAD1-induced leaves at the height of
TAG accumulation can further reduce TAG loss through the turnover pathway involving TAG
lipase and peroxisomal -oxidation (Eastmond, 2006; Fan et al., 2014; Vanhercke et al., 2017;
Yurchenko et al., 2017; Zolman et al., 2001). In addition, inducing DADI1 in senescent leaves
(Kaup et al., 2002; Tjellstrom et al., 2015) or at specific time of the day (Gidda et al., 2016) may

further promote TAG accumulation.

Oil accumulation was enhanced by mechanically wounding the Pdex:AtDAD1-Myc tissues that
had been pretreated with dex (Figure S6). Wounding has been reported to induce TAG
accumulation in leaves (Lewandowska et al., 2023; Vu et al., 2015; Vu et al., 2014), although
this was not clearly observable under our current experimental conditions. However, co-
treatment with dex and wounding in Pdex:AtDADI-Myc leaves resulted in a greater increase in
TAG levels than either treatment alone. A similar synergistic increase was observed for an 18:3-
derived hormone, JA, following the same treatments (i.e., dex+wounding) (Kimberlin et al.,
2022). However, JA increase was substantially more dramatic than TAG, with JA-levels
increasing by 6-fold compared to either treatment alone. A post-transcriptional mode of
regulations for the lipases (i.e, AtDAD1 or NbGLA1) by wounding has been postulated
(Holtsclaw et al., 2024; Kimberlin et al., 2022). Why the same treatment does not result in as
high TAG accumulation as JA is unclear, but the disparity might be, in part, due to the
differences in their relative abundances- JA content in leaves is several orders of magnitude
lower than that of lipids. It could also reflect a more streamlined conversion of 18:3 to JA by JA-

metabolic enzymes than their assembly into TAGs, where there may be greater competition for
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18:3 substrates by multiple enzymes, including those that incorporate FAs into membrane lipids.
Regardless, from a biotechnological point of view, tissue damage that inevitably happens during

crop harvest is expected to contribute positively to increasing leaf TAG yield.

Heterologous expression of AtDADI in N. benthamiana and soybean both resulted in similar
increases in leaf TAGs, roughly estimated to be about 0.4% of dry leaf mass. The findings
demonstrate the translational potential of this technology to crop plants. While 0.4% is modest
compared to some of the highest achieving lines, such as transgenic Nicotiana tabacum lines that
accumulated TAG up to 30% of dried leaf weight (Vanhercke et al., 2017), similar modest
increases have been reported in several engineering efforts (Cai et al., 2017; Sanjaya et al., 2013;
Yang et al., 2015; Yurchenko et al., 2017). ThePLA1-based approach presented is likely
compatible with and expected to become more effective when combined with existing lines
developed to enhance vegetative oil content. Although PLA genes have diverged into a large
number in higher plants (Ali et al., 2022; Kelly and Feussner, 2016; Ryu, 2004; Wang, 2001), the
well-conserved nature of lipase domains and the broad substrate specificities make it likely that
the ectopic expression of homologous genes will result in similar effects as AtDAD1. Supporting
this concept, transient expression of NbDADI in N. benthamiana leaves caused largely
equivalent increases of leaf TAG as AtDAD1 (Figures 6 and S7); however, characterization is
needed to determine whether this process follows similar metabolic pathways of converting FAs
originated from the plastidial galactolipids to the TAGs in the cytosol as with AtDAD1 in
Arabidopsis. In addition, further investigation is required to determine whether the presented
increase in leaf TAG by PLAs is limited to PLAs localized in plastids or can be extended to
extra-plastidial PLAs. Given the general observation of TAG accumulation in leaves by diverse
stress conditions that are likely to be attributed to induction of diverse PLAs suggests the latter
possibility, i.e., contribution by extra-plastidial PLAs to stress-induced TAG accumulation
(Higashi et al., 2018; Kelly and Feussner, 2016; Lewandowska et al., 2023; Rajashekar et al.,
2006; Tan et al., 2018; Vanhercke et al., 2019; Welti et al., 2002; Yang et al., 2011).

MATERIALS AND METHODS

Plant materials and chemicals
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Arabidopsis (4rabidopsis thaliana) was cultivated under long-day conditions (16 h light) with a
light intensity of 100-120 pE m s™' in growth chambers maintained at 22 °C. Columbia-0 (Col-
0) was used as the wild-type (WT). Arabidopsis seeds were either directly sown in soil or
initially grown on solid Linsmaier and Skoog (LS) media (Caisson Laboratories, UT, USA)
(0.7% w/v Phytoblend agar, 0.7% w/v sucrose) with or without antibiotics before being
transferred to soil. Nicotiana benthamiana was grown in a chamber kept at 22°C with a 16-h-
light photoperiod with a light intensity of 130-150 uE m™ s™!. Soybean (Glycine max) cultivar
‘Maverick’ was grown in an environmental chamber set at day/night cycle of 25 °C/22 °C with a
16 h-light photoperiod with 120-150 uE m™ s™! intensity light.

Mechanical wounding of Arabidopsis leaves was performed on 3-week-old plants as
previously described (Herde et al., 2013). All tissue samples were flash frozen in liquid nitrogen
upon harvest and stored at -80 °C until use. For oil, protein, and nucleic acid analyses, the frozen
tissues were pulverized to a fine powder in 2 mL screw-capped microcentrifuge tubes containing
metal beads using a tissue homogenizer (TissueLyser II, Qiagen, Hilden, Germany) immediately
before extractions.

Dexamethasone (dex), a-linolenic acid ((9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid) (o-
LA), pentadecanoic acid, heptadecanoic acid, tripentadecanoin, triheptadecanoin, ammonium
glufosinate, Nile Red, and primulin were purchased from MilliporeSigma (Burlington, MA,

USA). BODIPY (493/503) was from Cayman Chemical (Ann Arbor, MI, USA).

Transgenic lines and transient expression
The cloning of dex-inducible vector constructs Pdex:AtDAD1-Myc and its active site-mutated
variant Pdex:AtDADI1™"-Myc, along with the generation of their respective Arabidopsis
transgenic lines, has been described previously (Kimberlin et al., 2022). The Pdex:AtDAD1-Myc
gene construct was also introduced into the fad3fad7fad8$ triple mutant background (McConn and
Browse, 1996) using the Agrobacterium-mediated floral dip method (Clough and Bent, 1998).
Sterile flowers of JA-deficient fad3fad7fad$ plants were thoroughly sprayed with a solution
containing 100 uM methyl-JA (MilliporeSigma) to induce fertility once every day from 3 d
before floral dipping, continuing for another 5 d.

The Pdex:NbDADI construct was generated by PCR-amplifying NbDAD1
(Niben101Scf02386g01005.1) from cDNA prepared from N. benthanmiana leaf tissues using
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Phusion High-Fidelity Polymerase (New England Biolabs, Ipswich, MA) and primers described
in Table S2. The resulting PCR fragment was initially cloned into the pGEM-T Easy vector
system (Promega, Madison, WI). Upon sequence verification, the NbDAD] insert was subcloned
into the glucocorticoid-inducible vector system (Pdex) (Aoyama and Chua, 1997; Koo et al.,
2009), utilizing Xhol as the restriction enzyme site. Transient expression in N. benthamiana
leaves was conducted using C58C1 strain of Agrobacterium tumefaciens carrying Pdex:AtDAD1-
Mpyc, Pdex:NbDADI, or empty vector constructs according to previous described protocol
(Holtsclaw et al., 2024). To induce gene expression, an induction solution containing dex (30
puM in 0.01% Triton X-100 in water) was sprayed to saturation on the adaxial side of the leaf.
For N. benthamiana, 11-mm diameter leaf discs were punched from the surrounding regions of
the syringe-infiltration site after the dex spraying.

Transgenic soybean lines expressing Pdex:AtDAD 1-Myc were generated at the
Transformation Core Facility, University of Missouri. Fourteen transgenic events (designated as

L1-L14) were obtained as described in the Results (Figure S8).

RNA analysis

Total RNA was extracted from samples containing 50-100 mg of pulverized frozen tissue
powders using TRIzol reagent (Thermo Fisher, MA, USA) and the Direct-zol RNA MiniPrep
Plus Kit (Zymo Research, Irvine, CA) following the manufacturer’s instructions. cDNA was
reverse transcribed from 1 pg of total RNA using the iScript Reverse Transcription Supermix
(BioRad, Hercules, CA, USA) and oligo (dT)2 primers. The resulting cDNA served as a
template for either semi-quantitative reverse transcriptase PCR (RT-qPCR) with the iTaq SYBR
Green Supermix (BioRad) in a CFX96 Touch real-time PCR detection system (BioRad), or
regular reverse transcription PCR (RT-PCR) using Bioline BioMix Red (Meridian Bioscience,
London, UK). ACTS (At1g49240), NbEF I o (Niben101Sct08653g00001.1) (Kallenbach et al.,
2010), and GmACT2 (GenBank: AW350943) (M. Libault, 2008) were used as the internal
reference genes for Arabidopsis, N. benthamiana, and G. max, respectively, using primers listed

in Table S2.

Protein extraction and Western blot analysis
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Proteins were extracted from around 100 mg of ground frozen tissues according to a previously
described procedure (Kimberlin et al., 2022). An aliquot of the total protein extract was used to
determine protein concentration using the Bradford Assay (BioRad, Hercules, CA, USA).
Twenty pg of total protein was separated on a 10% SDS-PAGE gel. Before loading, samples
were mixed with sample buffer (6 M urea in 2XLaemmli buffer) and incubated at 37 °C for 30
min. For Western blot analysis, proteins in SDS-PAGE gels were transferred to polyvinylidene
difluoride membranes and probed with polyclonal antibodies against Myc (Abcam, Cambridge,
UK) at a 1:3000 dilution, followed by incubation with a secondary antibody (anti-rabbit
horseradish peroxidase (HRP), MilliporeSigma) at a 1:15,000 dilution. The HRP signal was
detected by X-ray film exposure in the presence of a chemiluminescent substrate (SuperSignal

West Pico Chemiluminescent, Thermo Fisher Scientific, MA, USA).

Lipid extractions, thin layer chromatography, and derivatization

Lipid extraction for thin-layer and gas chromatographic analysis followed a previously described
method (Hara and Radin, 1978) with minor modifications (Koo et al., 2005; Koo et al., 2004).
Tissue samples for oil analyses were taken from leaves of 24-d-old Arabidopsis, 3- or 6-wk-old
soybean, and 4-wk-old N. benthamiana plants, as described in each figure legends.
Approximately 200 mg of frozen tissue, ground to a fine power, was immediately placed in 4 mL
of pre-warmed (90 °C) isopropanol containing internal standards (15:0 FA, 17:0 FA,
tripentadecanoin or triheptadecanoin) with 100 pg of butylated hydroxytoluene (BHT) and
incubated for 15 min at 90 °C. The cooled sample was mixed with hexane (6 mL) and 15%
aqueous sodium sulfate (5 mL). The upper phase was collected and combined with subsequent
extractions using 1.5 mL of hexane followed by another 4 mL of isopropanol/hexane (v/v = 2/7).
The pooled extracts were dried down under streams of nitrogen gas and resuspended in 0.2-1 mL
of hexane (for neutral lipid analysis) or acetone (for total lipid analysis).

For neutral lipid separations, lipid extracts were loaded onto thin layer chromatography
(TLC) Silica Gel 60 plates (MilliporeSigma, Burlington, MA, USA) and developed using
hexane/diethyl ether/acetic acid (v/v/v = 80/20/1) as the mobile phase. For polar lipid separation,
TLC Silica Gel 60 plates were submerged in 0.15 M ammonium sulfate solution and allowed to
dry completely. The dried plates were activated by baking in 120 °C oven for 2 h immediately

prior to use. A solvent mixture consisting of acetone/toluene/water (v/v/v = 91/30/7.5) was used
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as the mobile phase for polar lipid separation. Lipids on TLC plates were visualized by either
briefly placing in a sealed tank containing iodine crystals or spraying with 50% sulfuric acid
followed by charring at 120 °C for 15 min. The TLC plates with lipids for subsequent recovery
and GC analysis was stained with primulin (0.05% in acetone/water (v/v = 8/2)) (White et al.,
1998).

For GC analysis, TLC bands containing lipids were scraped from the plate and extracted by
multiple iterations of sonication (15 min) with hexane and chloroform for TAG and a mixture of
chloroform/methanol/water (v/v/v = 5/5/1) for galactolipids and phospholipids. Resulting lipid
extracts were dried down under stream of nitrogen gas and resuspended in 100 pL toluene.
Derivatization to FAMEs was carried out by incubating at 90 °C for 45 min in 1 mL of
methanolic boron trifluoride solution (MilliporeSigma, Burlington, MA, USA). After samples
were cooled, 1 mL of water was added, and FAMESs were extracted three times with 3 mL
hexane and concentrated.

For lipidomics analysis, lipids were extracted by placing whole leaf tissues (200-300 mg)
into 4 mL of hot isopropanol (75 °C) containing 0.01% BHT and incubating for 15 min. To
cooled samples, 12 mL of chloroform/methanol/water (v/v/v = 30/41.5/3.5) was added and
shaken at 100 rpm for 24 h. Lipid extracts were dried down under nitrogen gas and resuspended

in 1 mL chloroform. Tissue materials were recovered, dried, and weighed.

Lipid analysis by GC-FID and ESI-LC-MS/MS

Transmethylated lipids resulting in FAMEs were analyzed using a Focus GC gas chromatograph
flame ionization detector (GC-FID, Thermo Scientific, MA, USA) with an installed DB-23
capillary column (Agilent Technologies, CA, USA) and XCalibur control software as previously
described (Morley et al., 2023; Koley et al., 2022). Briefly, conditions for the GC-FID were as
follows; sampling volume (nL): 2, split mode flow (mL/min): 20, inlet temperature: 250 °C, FID
temperature: 250 °C, carrier gas constant flow (mL/min): 2. Gradient conditions during a sample
injection included an initial temperature: 170 °C held for 1 min, temperature gradient (°C/min):
10, final temperature: 250 °C held for 2 min. Integration of GC-FID peaks was performed using
XCalibur software. FAMEs with chain lengths of 15:0, 16:0, 17:0, 18:0, 18:1, 18:2, 18:3, 20:0,
20:1, 20:2, and 22:1, were detected with 15:0 or 17:0 serving as an internal standard for

quantitation. Peak detection was performed using the Genesis algorithm, using the nearest
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assigned retention time for each FAME and a signal/noise ratio greater than 3. Retention times
were previously established through analysis of standards. Integration of detected peaks used 1
smoothing point and a signal/noise threshold of 0.5. The integration of all peaks was inspected
and peaks that were small or with poor quality peak shape were manually integrated as
necessary.

Electrospray tandem triple quadrupole mass spectrometry (ESI-MS/MS) analyses were
performed by direct infusion into an Applied Biosystems 4000 QTrap (Sciex, Framingham, MA,
USA) with an electrospray ionization source, and lipid mass spectral parameters are indicated in
Table S3. Polar lipid analysis was similar to that described (Xiao et al., 2010) in their
supplemental data. After calculation of polar lipid values in relation to the internal standards,
phospholipid values were corrected using response factors calculated for the employed internal
standards vs the SPLASH Lipidomix (product 330707, Avanti Polar Lipids, Alabaster, AL,
USA), and galactolipids were corrected using response factors determined by comparing data
from gas chromatographic analysis of FAMEs from MGDG and DGDG with data on intact lipids
analyzed by direct infusion lipidomics as done in this work. TAG analysis was performed as
previously described (Li et al., 2014). However, no response factors were employed, and data are

presented in signal units, in which a unit of 1 is equal to the signal of 1 nmol of internal standard.

Histochemical staining of lipid droplets and confocal microscopy

Lipid droplets (LDs) were stained with BODIPY493/503 (Cayman Chemical, Ann Arbor, MI) or
Nile Red (MilliporeSigma, Burlington, MA, USA). Tissues samples of 16-d-old leaves and roots
or 6-wk-old plants were incubated in 50 mM PIPES (pH 7.0) containing 0.004 mg/mL BODIPY
or 6.5 mg/mL Nile Red for 5-30 min before washing with 50 mM PIPES (pH 7.0). As a control,
tissues samples were pre-incubated in a 100 uM a-LA solution for 1 h prior to lipid staining.
Images were acquired using a Leica TCP SP8 STED confocal microscope featuring a Leica 633
Plan Apochromat oil-immersion objective (40X) or a dry objective (10X), and the Leica
Application Suite X (LAS X) package. BODIPY, Nile Red and chlorophyll autofluorescence
were activated using a 488-nm laser with an adjusted pinhole set to 3. Emission fluorescence
signals were gathered within the ranges of 501-506 nm for BODIPY, 528-650 nm for Nile Red,
and 680-750 nm for chlorophyll.
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FIGURE LEGENDS

Figure 1. AtDADI1-dependent TAG accumulation in Arabidopsis leaves. (a) A model of
plastidial PLA1-induced TAG synthesis in leaves. Induction of PLA1 expression by either
stressors or an inducible-vector system leads to the hydrolysis of membrane lipids to generate

free FAs, primarily 18:3. The free FAs are integrated into the acyl-CoA pool and subsequently
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incorporated into TAG via either the Kennedy Pathway or the Lands Cycle. A portion of the 18:3
is converted to oxylipins. (b-¢) Quantification of TAG (b) and total FAME (c) in fully expanded
rosette leaves of 24-d-old WT and Pdex:AtDADI-Myc treated with dex for the shown durations.
(d-e) TLC image (d) and quantification (e) of TAGs in leaves of 24-d-old WT or transgenic lines
expressing either intact AtDAD1-Myc or its mutant variant with the catalytic site substituted with
Ala (4tDADI™"). Polar lipids at the origin display equal loading (d). Bar graphs represent means
+ SD of three biological replicates. Asterisks indicate statistical significance (Students’ ¢ test,

*P<0.05, **P<0.01) compared to WT.

Figure 2. Lipid droplets (LDs) accumulate in vegetative tissues of Arabidopsis Pdex:AtDADI-
Mpyec. (a) Confocal fluorescence micrographs of leaf mesophyll cells in 16-d-old WT or
Pdex:AtDADI-Myc treated with mock (0.01% Triton X-100 in water) or dex (30 uM in 0.01%
Triton X-100) for 8 or 12 h. Red shows chlorophyll autofluorescence (650-750 nm) whereas LDs
stained with BODIPY (503 nm) or Nile Red (495-550 nm) are shown in green. Scale bars are 20
um. (b) BODIPY staining of lipid droplets in 6-wk-old (petiole and stem) or 16-d-old (root) WT
or Pdex:AtDAD1-Myc treated with dex (30 uM, 12 h). Cross-sectional view of stem is shown.
Petioles and roots were not sectioned. As a control, WT tissues were incubated with a-LA (100
uM) for 1 h. Fluorescent images were overlayed to transmitted light image for stem and root.

Scale bars are 100 um (petiole and stem) or 20 um (root).

Figure 3. TAG-inducibility in the Arabidopsis leaves at multiple developmental stages. (a-b)
Photo (a) and fresh mass (b) gain of the arial part of soil-grown WT and Pdex:AtDAD1-Myc
plants over days (8-35 d) without dex, exhibiting no statistical differences. (c-d) RT-qPCR (c)
and immunoblot (d) detection of A¢tDADI-Myc transcripts and proteins at various plant ages after
8 h treatment with either mock (0.01% Triton X-100 in water) or dex (30 uM in 0.01% Triton X-
100). Graphs represent mean = SD of five (b) or three (¢) biological replicates. Letters above
bars denote statistical significance (pairwise ¢-tests, P < 0.05). ACTS8 was used as a reference and
the relative transcript level values are based on comparisons to the mock (no dex). Two specific
bands detected on the immunoblot using anti-Myc antibody are likely the precursor (P) and the
mature (M) forms of AtDAD1-Myc before and after cleavage of the chloroplast transit peptide

(d) as reported previously (Kimberlin et al., 2022). Coomassie stain of rubisco band shows the
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protein loading. (e) Sulfuric acid charred TLC plate showing relative TAG production

throughout the indicated development time course.

Figure 4. Leaf TAG increases at the expense of galactolipids in Arabidopsis Pdex:AtDADI1-Myc
plants. (a) TLC plate showing decrease of MGDG and DGDG over time with induction of
AtDADI-Myc. Fully expanded rosette leaves of 24-d-old Pdex:AtDAD I-Myc plants were sprayed
with 30 uM dex for indicated times. WT leaves were equally treated and incubated for 12 h.
Total lipids were separated on TLC impregnated with ammonium sulfate using
acetone/toluene/water (91/30/7.5) as the mobile phase. Lipids were visualized by spraying with a
sulfuric acid solution followed by charring the plates at 120 °C. (b-c) Quantification of MGDG
(b) and DGDG (¢) using GC-FID. (d-e) Lipidomics analysis of MGDG (d) and DGDG (e).
Lipidomics analysis was carried out as described in the Methods. Graphs are mean + SD of three
biological replicates. Asterisks denote statistical significance compared to WT control (Student #-

tests, *P < 0.05).

Figure 5. Fatty acid composition of TAG in Arabidopsis Pdex:AtDADI-Myc leaves. (a) FAME
analysis of TAG increases over time in 24-d-old Pdex:AtDAD1-Myc leaves upon induction by
dex. (b) Comparison of FAME compositions in total lipids, MGDG, DGDG and TAG of WT and
Pdex:AtDADI-Myc after 12 h of dex treatment. (c) Lipidomics analysis of TAG species. Total
lipid extracts were subjected to LC-MS analysis as described in the Methods. Data are mean (b)

or mean + SD (a and c) of three biological replicates.

Figure 6. Production of TAG in N. benthamiana leaves by ectopic expression of AtDADI1-Myc
and NbDADI. (a) RT-PCR detection of AtDADI and NbDAD| transcripts. NbEF [ a was used as
a reference. (b-c) TLC separation of neutral lipids (b) and quantification of leaf TAG by GC-FID
(c). Multiple lanes per gene construct indicate biological replicates (a and b). Four-week-old V.
benthamiana leaves were syringe-infiltrated with Agrobacteria strains carrying empty vector
(EV), Pdex:AtDAD1-Myc, or Pdex:NbDADI plasmid constructs for 2 days. Dex (30 uM)
solution was sprayed and tissues were collected after 6 h. Total lipids were separated using a
hexane/diethylether/acetic acid (80/20/1) and subsequently charred after spraying with a sulfuric
acid solution. Graph represents median value with maximum and minimum data values of three
biological replicates, with letters above the bars denoting statistical significance (pairwise #-tests,

P <0.05).
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Figure 7. Development of transgenic soybean (Glycine max) lines with increased leaf TAG
contents. (a) RT-qPCR analysis of transgene (4¢tDAD1) transcripts in soybean line 7 (L7)
transformed with Pdex:AtDAD1-Myc. (b) Quantification of TAG in G. max WT and L7 leaves.
Three-week-old leaves were sprayed with mock (0.01% Triton X-100 in water) or dex (30 uM,
0.01% Triton X-100) for 12 h. GmACT?2 was used as a reference (a) and TAG quantification was
by GC-FID (b). Bar graphs represent mean + SD of three biological replicates, with letters above

the bars denoting statistical significance (pairwise ¢-tests, P < 0.05)
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