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ABSTRACT
Well-studied techniques that enhance diversity in early de-

sign concept generation require effective metrics for evaluating
human-perceived similarity between ideas. Recent work suggests
collecting triplet comparisons between designs directly from hu-
man raters and using those triplets to form an embedding where
similarity is expressed as a Euclidean distance. While effective at
modeling human-perceived similarity judgments, these methods
are expensive and require a large number of triplets to be hand-
labeled. However, what if there were a way to use AI to replicate
the human similarity judgments captured in triplet embedding
methods? In this paper, we explore the potential for pretrained
Large Language Models (LLMs) to be used in this context.

Using a dataset of crowdsourced text descriptions written
about engineering design sketches, we generate LLM embed-
dings and compare them to an embedding created from human-
provided triplets of those same sketches. From these embed-
dings, we can use Euclidean distances to describe areas where
human perception and LLM perception disagree regarding de-
sign similarity. We then implement this same procedure but with
descriptions written from a template that attempts to isolate a
particular modality of a design (i.e., functions, behaviors, struc-
tures). By comparing the templated description embeddings to
both the triplet-generated and pre-template LLM embeddings, we
explore ways of describing designs such that LLM and human
similarity perception might better agree. We use these results to
better understand how humans and LLMs interpret similarity in
engineering designs and assess the implications for how LLMs
should be used for design evaluation in the future.

1. INTRODUCTION
In the field of engineering design, the initial phase of the de-

sign process demands the generation of a diverse set of candidate
concepts. Techniques like Design-by-Analogy (DbA) promote
concept diversity and creativity by having engineers draw inspi-
ration from both closely related and seemingly unrelated fields [1–
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4]. Exposing designers to a variety of inspirational stimuli en-
courages them to make design considerations that they otherwise
would not have, thus widening the scope of the candidate design
space. To be used effectively, DbA techniques require methods
for evaluating the similarity between designs [3]. Having a metric
for describing similarity allows the diversity of a set of designs to
be measured and unique or novel designs to be identified [5? ].
However, similarity is a complex and multi-dimensional quality
that does not easily lend itself to quantification.

Developing a metric for evaluating design similarity has been
a heavily researched subject for decades. Traditional methods in-
volve identifying shared features between concepts and scoring
those features with domain expert knowledge [6]. However, these
methods are non-generalizable because they assume that all rele-
vant features have been identified and lend themselves to metric
quantification. More recent work has proposed crowdsourcing
humans to perform triplet comparison tasks between designs (Is
Design A closer to Design B or Design C?) [7? ]. Unlike tradi-
tional methods, these triplet queries do not require identification
or metric evaluation of shared features. With these labeled triplet
queries serving as constraints on the acceptable placement of
designs, a low-dimensional embedding can be constructed and
similarity can be measured as a Euclidean distance between de-
signs.

Triplet embedding methods have demonstrated success in
grouping designs by similarity as perceived by humans. Un-
fortunately, labeling triplet queries is expensive and the number
of triplets required grows combinatorially with the number of
designs in the embedding [8]. The expensive nature of triplet
collection has motivated exploration into ways of automating this
process. Ultimately, if a model could be developed to generate an
embedding with human-like similarity considerations, it would
render triplet collection methods obsolete.

Presently, there do exist pretrained models which generate
similarity embedding spaces—notably, Large Language Models
(LLMs). LLMs take an input of sentences or paragraphs and
perform word vectorizations to embed that text into a pretrained
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latent space [9–11]. In this latent space, similar text is plotted
closer together than dissimilar text, so the same methods used for
triplet embeddings can be applied here.

While using LLMs to generate a similarity embedding space
for engineering designs is an interesting notion, it is not without
some major complications of its own. Firstly, for this method
to work, the LLM would have to group design similarity like a
human would. Secondly, engineering design concepts contain
both visual and textual information; LLMs would need these
multi-modal design concepts to be translated into a purely textual
description.

In this paper, we are interested in the question of whether
LLM-based embedding methods could be used to approximate
triplet-based embedding methods. Specifically, we want to know
if there is a way to better write a textual description of an en-
gineering design such that the LLM perceives design similarity
like a human would. To tackle these broad questions, this pa-
per proposes the use of crowdsourced triplet comparisons as a
tool for generating a baseline embedding of human-perceived
similarity. With this baseline, we can measure the success of an
LLM-embedding at replicating human-perceived similarity judg-
ments. Then the inputted textual description of the designs can be
changed and the improvement measured. Using this framework,
our paper works to answer the following questions:

1. How do different LLM embeddings differ with each other
with regard to the reported similarity between design de-
scriptions?

2. How do different LLM embeddings differ with those con-
structed by human triplet labeling with regard to the reported
similarity between designs?

3. In what ways should design descriptions provided to the
LLM be modified such that the LLM-generated embeddings
more closely match the triplet-generated embeddings?

4. In what ways does focusing descriptions of Function, Be-
havior, Structure, or Visual elements of a design impact
how similar LLM-generated embeddings become to human
embeddings?

The rest of the paper addresses these questions in §3-5. We
provide empirical results from a variety of crowdsourced triplet-
labeling and description-writing surveys. LLM-generated em-
beddings are compared with triplet-generated embeddings using
a variety of similarity metric considerations. Furthermore, we
analyze the differences in results produced with and without the
use of specific writing templates.

2. RELATED WORK
Related work has been subdivided into the following sec-

tions: (1) work that explains or questions how humans perceive
similarity between items, (2) work that proposes methods for
evaluating similarity, and (3) work that uses AI to characterize or
mimic human similarity judgments.

2.1 Human-Perceived Similarity
Researchers have studied what humans value when evalu-

ating the similarity between items. In the field of psychology,
similarity has been described as a linear combination of shared
and distinct features [6]. Once features are identified, matching
functions can be defined which measure correlations between
similar and unique features [6]. However, defining these features
requires large pools of crowdsourced survey responses and re-
ported features from participants vary widely depending on the
relative context of the items [6, 12]. This makes it difficult to
generalize what features humans value.

In the field of engineering design, attempts to better un-
derstand human similarity judgments have been largely pursued
to enable Design-by-Analogy (DbA) strategies [1–4]. DbA has
proven to be a powerful tool for encouraging novel designs in
concept generation [2]. DbA requires that designs be decom-
posed into defining characteristics so that similarity evaluation
and analogy retrieval can occur. The decomposition is most
commonly done by breaking a design into solution-neutral sub-
functions [1, 2]. Other methods include functional-behavioral-
structural decompositions, which capture a wider net of design
modalities [3, 13, 14]. However, past research suggests that hu-
mans value function-based similarity over behavioral and struc-
tural forms when performing similarity comparisons [3]. It is
noteworthy that comparisons in this existing work have been per-
formed on diverse design datasets. In our paper, we are interested
in the modalities of human similarity judgment on a dataset of de-
signs with the same core function, as well as how those modalities
can be explained in text to improve LLM embedding disagree-
ment.

2.2 Evaluating Similarity
To use design similarity in strategies like DbA, there must

be a system for quantifying similarity. Traditionally, similarity
is measured by defining a set of relevant features and then either
counting shared features [6] or assigning metric values using
domain knowledge [15]. With a strategy for associating metric
values to features, similarity can be measured through vector
distances [15? ], or by distributional divergence measures like
Kullback-Liebler [16].

Each of these methods require identification of relevant fea-
tures and a system for assigning metric values to those features. In
practice, it may be impractical to limit a dataset of multi-faceted
designs to a pool of defining features which may or may not lend
themselves to easy quantification. Recent work has proposed
avoiding feature identification by collecting similarity judgments
in the form of triplet comparisons (Is Design A closer to Design
B or Design C?) [7, 17? ]. In this implementation, similarity
judgments are all relative to two reference designs. With a la-
beled list of triplet queries, a low-dimensional embedding can be
created and similarity can be identified by Euclidean distances
within the embedding [7, 17? ].

Our paper will use the methods triplet collection and embed-
ding to explain and quantify human similarity judgments. We
are interested in what design aspects humans key into when com-
paring similarity without prompting information and how and if
pretrained LLMs can replicate those comparisons through engi-
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neered descriptions. Triplet methods are particularly well-suited
for modeling human-perceived similarity, in that human raters
can order triplet queries without explicitly identifying a list of
scoring criteria.

2.3 Using AI to Replicate Human Similarity
Understanding human perceived-similarity is a powerful tool

for novelty estimation and DbA, however creating a similar-
ity embedding from crowdsourced data is expensive and time-
consuming. Recent advances in AI have motivated work toward
developing automated protocols for understanding and reproduc-
ing human similarity judgments. In work similar to this pa-
per, researchers compared crowdsourced triplet embeddings with
computational similarity scores [18] and with visual 3D image
comparison software [? ]. Researchers highlighted the areas of
disagreement between human and computational or AI similarity
assessment, but no protocols were proposed to replicate human
perception.

In terms of developing models to mimic human similarity
scores, researchers have trained visual ImageNet software on
crowdsourced similarity data [19]. In the field of psychology, re-
searchers have equipped LLMs with algorithms designed to pro-
mote human-like inductive reasoning [20]. Related work has been
done to validate similarity judgments on large documents from
Latent Dirichlet Allocation (LDA) against human-perceived sim-
ilarity [? ]. However, validating similarity scores from text-based
algorithms has not been widely explored in the field of engineer-
ing design. Our paper seeks to better understand wheter LLMs
can be used for the purposes of replicating human-perceived sim-
ilarity as it relates to interpreting engineering designs.

3. METHODS
In order to compare perceived similarity between LLMs and

humans, a baseline embedding must be established that repre-
sents human similarity groupings among designs. This baseline
embedding is constructed by minimizing the violations of human-
provided triplet orderings. With this embedding, disagreement
in similarity assessment can be identified by comparing the Eu-
clidean distances within the human-baseline and LLM-generated
embedding spaces. With a method in place for comparing simi-
larity assessment, modifications can be made to the descriptions
provided to the LLM and the benefit can be observed.

3.1 Milk-Frother Dataset
A dataset of ten hand-drawn designs from an undergraduate

Pennsylvania State University design course was used in this
work [? ]. To form this dataset, students were asked to develop
a device with the goal of frothing a basin of milk. Students were
asked to provide a rough drawing of their device as well as a brief
descriptive title. All ten sketches are provided in Figure 1.

3.2 Triplet Collection
To capture human-perceived similarity, human raters were

tasked with ordering designs in the form of triplet queries (Is
Design A closer to Design B or Design C?). Existing work has
shown that humans can consistently find the closer match between
two candidate pairs of designs [7? ]. This is contrasted with the

FIGURE 1: EXAMPLE OF STUDENT-GENERATED MILK FROTHER
SKETCH
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more difficult task of articulating or quantifying the closeness of
pairwise comparisons—which requires development of domain-
specific scoring criteria [21].

Using the Milk-Frother dataset, a survey conducted by
Ahmed et al. [? ] was created to generate all 360 combinations
of choosing a single reference design and two candidate designs
from the ten available drawings. Raters were asked which of the
two candidate designs was more similar to the reference design,
and a triplet label was formed to express their chosen ordering.
Raters were given no instructions for how they should evaluate
design similarity. After every 18 triplets were labeled, raters were
asked to provide a brief description of the thought process behind
their triplet orderings.

This survey was completed by 15 members of Pennsylvania
State Univesity’s engineering design labs. Members consisted
of 11 undergraduate students, 3 graduate students, and 1 faculty
member. From this pool of 15 ratings per triplet query, a majority-
vote was taken to represent a single consensus ordering for every
triplet. This majority-voted list of all 360 possible triplet combi-
nations was used to develop the human baseline embedding.

3.3 Embedding the Triplet Information
To make use of the human-labeled queries, a low dimensional

embedding was constructed with the triplet orderings appearing
as constraints on the acceptable placement of designs.

This paper used the Generalized Non-Metric Multidimen-
sional Scaling (GNMDS) algorithm to generate an embedding
from the majority-voted triplet pool. GNMDS deconstructs
triplet orderings into two pairwise distances—one for each
reference-candidate pair [? ]. The triplet label indicates which
of these pairwise distances should be larger, and an inequality is
established between the two pairwise distances. GNMDS asso-
ciates a slack variable for each of these inequality constraints. If
the constraint is satisfied, no slack is needed, but if the constraint
is violated, the magnitude of violation is recorded as a Euclidean
distance. The algorithm finds the embedding that best minimizes
the sum of all triplet slack variables.

There are other popular algorithms that can also generate
an embedding from triplet labels, including Stochastic Triplet
Embedding and Crowd Kernel Learning [7, 17]. Both of these
methods employ a probabilistic model for describing how well a
triplet is modeled in the current embedding. While these methods
are valid, GNMDS was chosen due to its intuitive and straightfor-
ward approach for evaluating embedding accuracy. GNMDS not
only aims to reduce triplet violations, but considers the severity of
the violation and encourages large margins of label satisfaction.

Optimally choosing the embedding dimension for an algo-
rithm like GNMDS is non-trivial. When humans perform triplet
rating tasks, the dimension of the feature-space that they use to
perform similiarity comparison is unknown [3, 22]. If the em-
bedding dimension is too small, some triplet orderings may be
impossible to satisfy that would have been possible in a larger
space. If the embedding dimension is too large, the algorithm
gains freedom in design placement at the risk that triplet con-
straints no longer tightly bound the embedding space. This
could lead to pairwise distances that misrepresent the human
ratings, despite low triplet violation counts. For this paper, a

10-dimensional space was chosen following observations from
Keeler and Fuge [8], which displayed larger reconstruction er-
rors for under-approximation of the ‘true’ dimension-space. Ten
dimensions were chosen to encourage a larger dimensional em-
bedding, with the limit being the number of Milk-Frother designs
to be plotted.

3.4 Large-Language Models
After creating the human-perceived similarity space, the next

step was to select pretrained Large Language Models (LLMs)
to generate embeddings based on text descriptions of the Milk-
Frother designs.

For this paper, two LLMs were chosen from the Hugging-
face sentence-transformers library: GloVe and MiniLM-L12-v2
(MiniLM) [23]. GloVe (Global Vectors) is an unsupervised learn-
ing algorithm for obtaining vector representations for words.
GloVe is an older model which is trained on word-word co-
occurrence and develops a probabilistic model for those co-
occurrences [9]. GloVe was chosen as a baseline due to its
widespread use and documentation. MiniLM-L12-v2 is a newer
Siamese Network built on a BERT-like pretrained model [10, 11].
Whereas GloVe only models co-occurrence of whole words,
MiniLM incorporates the context around words and can parse
unrecognized words [11]. MiniLM-L12-v2 was chosen to repre-
sent a more state-of-the-art model.

3.5 Similarity Metrics
To compare the embeddings produced by GNMDS on the

human-labeled triplets and the LLMs on text-descriptions of the
Milk Frother designs, three similarity metrics were considered:
triplet violations, pairwise distances, and centroidal distances.
Each of these metrics is used to describe how well an embedding
agrees with the human-perceived similarity data.

In the first metric, all 360 possible triplet queries were col-
lected and ordered based on the Euclidean distances in the em-
bedding. These triplet orderings were then compared with the
majority-voted orderings from the human raters. The number of
triplets in the embeddding that violate their corresponding order-
ing in the human pool were recorded. This metric is the most
powerful in that it directly measures the embedding’s adherence
to the human-provided responses. An embedding with no viola-
tions should directly reflect human relative similarity judgments.
However, such an embedding is impossible, as the majority-voted
pool has some triplets which violate the transitive property, and
cannot be satisfied at the same time as another triplet with the
same three designs.

The second metric compares the pairwise distances between
the embeddings. Pairwise distances provide the best metric for
quantifying perceived similarity between two designs. However,
unlike the triplet violations, there is no easy way to obtain pair-
wise similarity scores from human raters directly. Instead, the
GNMDS embedding must be used to describe the pairwise dis-
tances perceived by humans. In reality, however, the GNMDS
embedding is not a perfect representation of the human triplet
responses. Even if it were possible to satisfy all triplets, there can
exist multiple embeddings that satisfy the same triplets but exhibit
different pairwise distance matrices. However, it is the objective
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of GNMDS to minimize triplet violations with a large margin of
certainty. For this paper we assume the GNMDS embedding is
reasonably accurate in modeling the pairwise distances perceived
by human raters.

To compare the pairwise distances across different embed-
dings, there must also be some way of normalizing them. GN-
MDS is a 10-dimensional embedding, while GLoVe and MiniLM
are 300- and 384-dimensional embeddings, respectively. In real-
ity, the absolute pairwise distances are irrelevant for describing
perceived similarity. Only the relative similarity—where a pair-
wise distance ranks with respect to all other distances in the em-
bedding—is meaningful for evaluating whether two designs are
similar. For this reason, pairwise distances in each embedding
are sorted and given 0-100 percentile scores for their rank among
other distances in all subsequent uses in this paper. With this
system, pairwise distances from the LLM-generated embeddings
can be compared with the human-motivated GNMDS embed-
ding. If a distance has a percentile of 0 (closest distance) in the
LLM embedding and a percentile of 100 (largest distance) in the
GNMDS embedding, this would indicate large disagreement in
percieved similarity.

The final metric describes the centroidal distances in the
embedding compared to the human baseline. This metric is
motivated by existing work that uses triplet embeddings to rank
design novelty [5? ]. Novel items are identified as designs that
are far from the centroid of the embedding space [? ? ]. This
metric is used to identify how well two embeddings agree on
perceived novelty. As a consequence, this metric can be used to
determine if an LLM embedding technique can be a substitute to
the more expensive job of triplet embedding for the purposes of
novelty estimation.

Like the pairwise distance metric, the centroidal distance
metric assumes that the GNMDS embedding reflects human-
perceived novelty with reasonable accuracy. Also like the pair-
wise distance metric, there must be some system for comparing
the centroidal distances across different embedding mediums.
This could be done by comparing a list of designs ordered by their
novelty—however, sorted lists do not account for the magnitudes
of the centroidal distances. Two embeddings might similarly
identify the same design as the most novel with disagreement in
how much more novel it is. Instead, we describe novelty dis-
agreement by the novelty error metric described in Keeler and
Fuge [8]. This metric normalizes each centroidal distance by the
largest distance in an embedding to create a relative novelty. It
then takes the absolute difference of these normalized centroidal
distances between embeddings and reports the average disagree-
ment between relative novelty.

3.6 Description Crafting
Having developed a strategy for evaluating the similarity

between embeddings, the final step is to develop protocols for
writing text descriptions of the Milk-Frother sketches. Both the
GloVe and MiniLM models work with paragraphs of text as
inputs. To serve as baseline, seven graduate students from Penn-
sylvania State University’s engineering design labs were asked to
write text description paragraphs for all ten Milk-Frother sketches.
Authors were given no additional instructions beyond explaining

the design in sentence form. These text descriptions were given
to the GloVe and MiniLM models to create two LLM-generated
embeddings for every author.

After the instructionless data was collected, the same au-
thors were given two templates for crafting design descriptions.
The first template was motivated by the work in Gero [13] which
categorizes design descriptions into three facets: functional, be-
havioral, and structural. Functions are the high-level goals of
the design and detail what the design and its sub-assemblies are
designed to accomplish. Behaviors are the physics and actions
that describe how the functions are performed. Finally, structures
describe the actual network of components and spatial relation-
ships which work to perform the functions. This breakdown of
design description schemas is widely used to capture the many
facets of engineering designs in text [14, 24].

In the template, authors were asked to develop a bulleted list
of high-level functions found in a particular Milk-Frother sketch.
Authors were told to limit their functions to desired outcomes
only, and to avoid mention of how the functions were accom-
plished. With this bulleted list of functional descriptions, authors
were then asked to create a paired list of behavioral descriptions
that described the actions taken to perform each function. In
this section, authors were encouraged to use technical physics
vocabulary and to avoid mention of the components of the sub-
assemblies. Finally, authors were asked to create another paired
list of structures which described the functional components at
play. Authors were encouraged to include descriptions of spa-
tial relationships but to avoid mention of actions or behaviors.
These steps were taken in an effort to isolate each of the de-
sign description facets. Example results from one of the authors
for the Milk-Frother sketch can be found in Table 1. The exact
instructions for this template can be found in Appendix A.

For the second template, authors were asked to limit their
description to three words or short phrases. This template was
designed to capture the design components that authors immedi-
ately fixate on. Authors were told that two of these words should
describe immediately eye-catching physical components of the
design and that one of these should describe an action that the de-
sign is performing. Descriptive physics jargon was encouraged.
Example results from one of the authors for the Milk-Frother
sketch can be found in Table 1. The exact instructions for this
template can be found in Appendix A.

4. RESULTS
4.1 Pre-Template Model Comparison

Figure 2 displays the similarity diagnostics for the three
embeddings before human authors were given instructions on
crafting their design descriptions. Descriptions provided with-
out a template will be referred to as free-form (FF). The three
monochrome heatmaps represent the Euclidean pairwise dis-
tances found in the respective embedding. The red heatmap
denoted ‘Human10’ corresponds to the baseline 10-dimensional
GNMDS embedding. The color bar on the right of the heatmap
shows the relative percentile rank of each pairwise distance as
described in §3.5. Light colors represent a small pairwise dis-
tance and thus a high-degree of perceived similarity. For ex-
ample, the human raters believe designs one and four are very
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FIGURE 2: PRE-TEMPLATE AVERAGED EMBEDDING RESULTS
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Image Template 1 Template 2
Function Behavior Structure Limited Word
Funnels an intake
of poured milk.
Aerates milk in-
side of the con-
tainer. Mechani-
cally mixes the air-
milk solution. Dis-
penses the frothed
milk product.

Intake milk flow is
gravity-fed and cor-
ralled before flow
stream is redirected.
Air is sucked inside,
introducing turbulence.
Air-milk solution
is stirred through
mechanical rotation.
Outflow is guide by rear
pressure and pushed
through exit.

A conical intake at the top
of the device with a lever-
valve at the base. An
air intake at the rear of
the device that is covered
by mesh-grating with air
vents cut into the sides. A
rotor attached to a belt and
pulley system and an AC
motor. A nozzle-faucet
with an adjustable shut-off
valve.

Turbine, motor,
aeration

TABLE 1: EXAMPLE DESCRIPTIONS FOR EACH TEMPLATE

similar—which from Figure 1 are both human-operated stirring
devices.

Below the red heatmap are the triplet violation and novelty
order metrics for the embedding. As mentioned in §3.5, the
GNMDS baseline cannot satisfy all human-provided triplets and
instead violates 17.78% of the human labels. About 6% of these
unsatisfied triplets can be attributed to transitive violations in the
labeled triplet pool which are impossible to satisfy. Below the
reported triplet disagreement is a sorted list based on increasing
centroidal distance or novelty. According to the GNMDS embed-
ding, human raters perceive design nine as the most novel and
design seven as the least novel.

The monochrome heatmaps to the right of the ‘Human10’
heatmap are for embeddings generated by the MiniLM and GloVe
models, respectively. These embeddings are found from averag-
ing the FF description embeddings for all seven authors. On the
average FF description, the MiniLM model violates 33.06% of
the human-rated triplets and the GloVe model violates 36.39%.
Each LLM model has about double the violations of the GNMDS
model.

Triplet disagreement between the three models manifests
in differences in the novelty ordering. Both the MiniLM and
GNMDS embeddings agree that design nine is the most novel.
From there, the MiniLM model is fairly close to GNMDS in
its reported novelty order. There are some notable points of
contention, however, including the placement of design one. The
MiniLM model believes design one is the second-most novel,
whereas the human-based embedding places it in the bottom
half. Despite only having 3% more violations than the MiniLM
model, the GloVe model has a large amount of disagreement with
the human and MiniLM models.

On the far right are heatmaps which represent the difference
between the ‘Human10’ and LLM heatmaps. Dark colors on
these heatmaps represent pairwise distances with large disagree-
ment between the two models. In the top plot, red squares indicate
a positive percentile difference—meaning the human model be-
lieves the designs are less similar than the LLM model suggests.
For example, the human model believes designs 5 and 8 are much
more dissimilar than the MiniLM model suggests.

By following an individual design in the heatmap, the model
disagreement can be observed as it pertains to a single design. If
a design’s pairwise distant squares are consistently one color, this
indicates a design that is very controversial between the two mod-
els with regard to its relative similarity. For the MiniLM model,
design one consistently presents blue squares—indicating that the
MiniLM model tends to label this design as more dissimilar to
its neighbors than the human model does. This manifests in de-
sign one having a much higher perceived novelty in the MiniLM
model.

The heavy disagreement over design one between the LLMs
and human model is an interesting case which might reveal some
of the rationale behind the LLMs embedding placements. The
humans and MiniLM models agree that design nine is the most
novel item. From Figure 1 we see that design nine has milk
containers affixed to the spokes of a bicycle. The controversial
design one also contains a bicycle, but this bicycle only acts as a
power source to a more commonly exhibited stirring mechanism.
While the humans group design one as being very similar to other
stirring devices, the LLM models believe the design to be unique.
We hypothesize that this is because the LLM is putting heavy
emphasis on the word ‘bicycle’, which is an unusual word among
the designs. Human raters are able to contextualize unusual
structures by their role in the greater design, while LLM models
are more heavily influenced by unique vocabulary.

Using a similar analysis, it can be seen the GloVe model
consistently underrates the novelty of design zero compared to
the human and MiniLM models. Design zero is a counter-top
turbine design with many moving parts in a relatively complex
orientation. However, the components themselves and underlying
physics are not unique among the designs, and thus the descrip-
tion vocabulary is non-unique. The GloVe model is not able to
leverage the context surrounding the commonplace vocabulary
like the MiniLM model, and so it places its embedding solely on
the individual word choices. This is especially problematic for
the placement of design zero which needs many words to fully
describe, diluting the perceived importance of any unique words.
In this converse example to the design one scenario, humans
may perceive a machine of non-unique components as unique,
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whereas LLMs are unable to capture the compositional novelty
as effectively. Because the MiniLM model is better at leveraging
contextual information and produces closer similarity scores to
humans across all metrics, the MiniLM model will be used in all
remaining experiments within the paper.

4.2 Template Effects on Triplet Violations
Figure 3 shows the triplet violation percentages for each

author’s descriptions. There are seven description templates dis-
played: ‘FF’ refers to free-form descriptions where authors were
given no crafting instructions; ‘Func’, ‘Beha’, and ‘Stru’ denote
the functional, behavioral, and structural template descriptions
detailed in §3.6; ‘Lim’ refers to the limited-word template; ‘FBS-
Av’ refers to averaging the functional, behavioral, and structural
descriptions; while ‘FBS-St’ refers to stacking the descriptions
into one large composite description.

The left side of Figure 3 displays the full distribution of
embedding results for each author. In this plot, the template
trends can be observed as they relate to a given author. On the
right side of Figure 3 are boxplots that display the quartile values
of the seven authors’ responses across each template. Boxplot
whiskers are found by adding 1.5 times the interquartile range.

From the boxplots, it can be seen that the median triplet vi-
olation scores for the individual FBS descriptions are about the
same as for the template-free FF descriptions (∼ 38%). How-
ever, the individual FBS descriptions have much larger variances
than the FF description results. The boxplot for the limited-word
template is fairly close the FF template plot, with each quartile
metric presenting a slightly higher violation percentage. From
this data, it does not appear that it is advantageous to limit de-
scriptions to a single design facet. However, it is interesting to
see that the lowest observed triplet violations came from an au-
thor’s structural and limited-word descriptions. While for the
whole distribution, these templates do not present better results
than the ‘FF’ description, it is possible for comparatively brief
descriptions to outshine long multifaceted write-ups.

Both the ‘FBS-Avg’ and ‘FBS-St’ boxplots present lower
median triplet violation percentages than the FF plot. In particu-
lar, the FBS-Avg has the best performing median (≈ 36%). More
importantly, the FBS-Avg presents a much smaller variance than
any other template. While there is not enough data to perform
any significant hypothesis testing, it can also be seen from the
line-plot that every author’s violation score improves or remains
the same from their ‘FF’ to ‘FBS-Avg’ descriptions with the ex-
ception of author two. These results suggest that the FBS-Avg
template is at worst a minor improvement to the average FF de-
scription. A controlled template with a slightly lower median
violation score is preferable to an uncontrolled and unpredictable
free-form prompt.

The violation scores from templates that include multiple de-
sign facets appear lower and less variable than those from single-
facet templates. There could be several reasons for this. The
first would be that humans consider multiple design facets when
performing similarity comparisons. From the survey results,
raters reported factoring in actions, structures, and functions to
justify their triplet orderings [? ]. It would make sense that
if humans considered multiple modalities, that the LLM would

need descriptions in each of these modalities to better replicate
the similarity results. This hypothesis is corroborated by the
fact that the FBS-Avg embedding has a much lower median than
any of the individual FBS descriptions which comprise it. The
FBS descriptions as individual pieces are unlikely to replicate
human similarity groupings, but together they expose the LLM to
multiple design modalities to promote more informed similarity
comparison.

The second reason for the improvements might be explained
by how the LLM models place the designs in an embedding. The
placement is mostly determined by a balancing of word vectors
that exist in the description. If a description contains a unique
word that is not similar to a word in any other description, this
could heavily influence its placement. The single-facet FBS de-
scriptions tend to be shorter in length and are thus more influenced
by unique words than the FBS-Av combination. Therefore, the
decrease in variance could be attributed to longer descriptions
being more robust to violations resulting from an author’s id-
iosyncratic language.

4.3 Template Effects on Novelty Error
Figure 4 shows the full-distribution line plot and boxplot

data but for the novelty error deviation between the MiniLM
and GNMDS models. Like for the triplet violations, the median
novelty error values for the FF and single-facet FBS templates
are about the same. However, in the full-distribution line plot
there are some key differences. One would expect that authors
who had the highest triplet violation scores for a given template
would also have the highest novelty error scores. This is the case
for the most part with some key exceptions. Author two—who
had the worst violation score for the ‘Func’ template—notably
had the median novelty error for this same template.

Although the exact reason for the disagreement between the
similarity metrics is unclear, this phenomenon is possible due to
the varying degree of impact that triplets have on an embedding.
While the triplet violation score is still the most powerful for de-
scribing how often humans and LLMs agree, the triplet violation
score does not factor in the severity of a particular violation. If
the LLM incorrectly orders a triplet containing three very similar
designs, this will not have a large impact on the overall embed-
ding layout. On the other hand, if the LLM incorrectly orders a
triplet with two similar designs and one widely dissimilar design,
this will greatly warp the embedding placements. The proportion
of satisfied triplets should not be used blindly when describing
the embedding’s success at capturing human perception.

Moving on to the multi-faceted templates in Figure 4, there is
more evidence of disagreement between the two similarity met-
rics. For the triplet violations, the ‘FBS-Avg’ template has a
noticeably smaller variance and the lowest median of any tem-
plate. For the novelty error, now the ‘Lim’ template has the
lowest median and variance. While there is not enough evidence
to suggest that the ‘Lim’ template is more suitable for novelty esti-
mation, there is noticeable disagreement between the two metrics
within this template in particular.

The ‘Lim’ template by nature has the shortest descriptions
and thus is the most heavily influenced by idiosyncratic language.
In the Figure 3 triplet violation plot, this can be seen where
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authors two and three have much worse triplet violation scores
compared to the other authors. However, in the corresponding
Figure 4 novelty error plot, these authors are both below the 3rd
quartile error value. These results suggest that while limited
gut-instinct vocabulary may not be effective for replicating all
similarity comparisons, it might still be effective at capturing the
general novelty. This might be because the LLM does not have
enough modalities to correctly order hard-to-label but low-impact
triplets. Instead, limited descriptions boil down designs to their
most unique and defining features, effectively prioritizing distinct
and space-defining triplets.

5. DISCUSSION, LIMITATIONS, AND FUTURE WORK
Overall, the LLM embeddings mostly agreed with the

human-labeled triplet orderings. Before any templates were used,
the averaged description embedded with the MiniLM model dis-
agreed with the human pool 33% of the time—which is much
more palatable after remembering that 6% of these triplets cannot
be satisfied due to transitive violations. The GNMDS embedding
itself still produced a triplet disagreement of 17.78%, and its ob-
jective is to minimize triplet violations. Future work is needed to
better contextualize how effective a 33% violation rate is.

Case studies including the gross overrating of novelty of de-
sign one in Figure 2 suggest that the MiniLM model is heavily
influenced by unique language like the word ‘bicycle’. Human
raters are able to separate unique components of a design from
unique roles in the design. If a unique component is performing a
commonplace role, humans are unlikely to label this component
as unique. The limited ability for LLMs to contextualize atypi-
cal language is a noticeable limitation in their ability to replicate
human similarity judgments. Future work is needed to identify
models which might be better at contextualizing biasing vocabu-
lary.

After using the FBS template architecture, none of the single-
facet FBS descriptions appeared to be more effective than the
template-free descriptions at satisfying triplets. Averaging all
of the FBS descriptions for an individual author, however, pro-
duced a lower median violation and a much smaller variance.
We believe the FBS-Av is showing improvement for two reasons.
First, based off of their survey responses, humans are considering
multiple modalities when performing triplet comparisons. If the
goal is to have the LLM best replicate these similarity compar-
isons, it requires a description which captures any and all relevant
modalities. The second reason involves mitigating the effects of
idiosyncratic language when averaging across multiple descrip-
tions. If an author has a unique way of describing a particular
function, the effects will be less impactful after the structure and
behavior embeddings are factored in.

The post-template responses for the novelty error showed
different trends than the corresponding triplet violation plots.
Although the two metrics are closely related, it is possible for an
embedding with many violations to have a worse novelty error
than an embedding with fewer violations. This is because triplets
comparing dissimilar designs have a greater impact on embed-
ding placement than triplets comparing similar designs. The
limited word template in particular had among the worst boxplots
for the triplet violation percentage but the best and least variable

boxplot for the novelty error. We hypothesize that this is because
the limited word template does not include enough information
to inform hard-to-label triplets which compare similar items. In-
stead, this template heavily prioritizes more impactful triplets
by categorizing designs only by their most defining features. In
the future it would be interesting to see if descriptions could be
crafted which put the most weight on the limited word template
but also contain FBS modal descriptions with less weight on the
LLM placement.

One major limitation of our work is the inability to quan-
tify how much of the disagreement between LLM and GNMDS
similarity assessments can be attributed to humans having access
to visual information that the LLM does not. From the survey
responses on the triplet labeling tasks, some raters cited ‘visual
complexity’ other form-based criteria to justify their similarity
comparisons. These visual identifiers are not easily described in
text to enable LLM judgment on this modality. We are interested
in future work where human raters would perform triplet compar-
isons on the same textual descriptions as the LLM. It is possible
that without visual information humans would have a much closer
agreement with the LLM models.

Only descriptions from seven authors were used for LLM
embedding generation, and so the results of this paper lack strong
statistical confidence. In the future, we would like to crowdsource
additional pre- and post-template descriptions. It would also be
beneficial to have some method of measuring how effectively an
author followed a particular set of template guidelines. While
for the most part our seven authors followed the template instruc-
tions, we noticed for the ‘Functional’ template in particular that
authors had difficult time keeping their functions solution-neutral.
Some authors included behavioral information for how functions
were being accomplished in the design, which was against the
template’s intentions. We believe that writing solution-neutral
functions for the sketches was difficult for authors because all
designs share the same core function: frothing milk. Existing
research by Gill et al. suggests that humans most strongly value
solution-neutral functions when comparing designs, but theses
results were between designs with different core functions [3].
Nonetheless, the ‘Functional’ template might need to be modi-
fied for future experimentation to better facilitate solution-neutral
descriptions.

In our analysis of the provided descriptions, we also noticed
one particular inconsistency that we believe is strongly influenc-
ing the post-template LLM embedding results. When providing
structural descriptions in particular, some responses would purely
contain design elements and some responses would include the
word ‘milk’ when authors described how those structures inter-
acted. To a human reader, inconsistent use of the word ‘milk’
should not be a major factor in similarity judgments, as every
design contains milk to be frothed. However, the LLM is un-
aware that all designs share this commonality, and so when one
description contains the word ‘milk’ and another does not, the
LLM sees this as major evidence of textual dissimilarity. Out of
curiosity, we omitted the word ‘milk’ from all descriptions and
replotted Figures 2-4. The results showed a substantial decrease
in the variability of the ‘Structure’ template—where the word
choice was the most inconsistent. These results were omitted
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from this manuscript, as the broader consequences of editing the
human-provided responses are unknown, however, the findings
do lead us to believe that inconsistent mention of implied or uni-
versal vocabulary may have large consequences in LLM-reported
similarity. For future template guidelines, discouraging language
that applies to every design might be practical.

Problem / Model gan_cnn_2d cgan_cnn_2d diffusion_2d_cond

beams2d green!25 3.40e+08 green!25 3.20e+08
1.82e-01 green!25 1.99e-09

2.16e+08 2.10e+08
green!25 4.84e-01 4.23e-27

2.55e+08 2.55e+08
1.88e-01 3.81e-16

heatconduction2d 2.33e-03 8.67e-05
7.50e-01 6.21e-04

3.14e-03 9.23e-05
8.12e-01 7.15e-04

green!25 6.46e-03 green!25 1.18e-03
1.88e-01 1.18e-03

photonics2d -1.62e+04 -4.87e-01
green!25 6.45e-01 2.07e-37

green!25 -1.09e+04 green!25 -4.53e-01
3.16e-01 8.91e-49

-1.95e+04 -5.46e-01
5.06e-02 green!25 8.46e-01
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Figures/Temp_Compare_Viol.pdf

FIGURE 3: POST-TEMPLATE TRIPLET VIOLATIONS
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Figures/Temp_Compare_Nov.pdf

FIGURE 4: POST-TEMPLATE NOVELTY ERROR
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