This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2025.3631559

« IEEE

=

/(((;(

e css

Fixed-Time Input-to-State Stability for Singularly
Perturbed Systems via Composite Lyapunov
Functions

Michael Tang, Miroslav Krsti¢, Jorge |. Poveda

Abstract— We study singularly perturbed systems that
exhibit input-to-state stability (ISS) with fixed-time prop-
erties in the presence of bounded disturbances. In these
systems, solutions converge to the origin within a time
frame independent of initial conditions when undisturbed,
and to a vicinity of the origin when subjected to bounded
disturbances. First, we extend the traditional composite
Lyapunov method, commonly applied in singular pertur-
bation theory to analyze asymptotic stability, to include
fixed-time ISS. We demonstrate that if both the reduced
system and the boundary layer system exhibit fixed-time
ISS, and if certain interconnection conditions are met, the
entire multi-time scale system retains this fixed-time ISS
characteristic, provided the separation of time scales is
sufficiently pronounced. Next, we illustrate our findings
via analytical and numerical examples, including a novel
application in fixed-time feedback optimization for dynamic
plants with slowly varying cost functions.

[. INTRODUCTION

Many complex dynamical systems can be decomposed into
components operating on different time scales. Such multi-
time-scale systems are common across a diverse array of
engineering applications, including aerospace [1], chemical
processing [2], smart grids [3], and biological and evolutionary
systems [4], among others. Such systems can be studied using
techniques from singular perturbation theory [5]-[7], where
the methods typically focus on decomposing the system into
lower order subsystems and studying the subsystems to draw
conclusions on the behavior of the overall interconnection.

One simple yet powerful technique for analyzing singu-
larly perturbed systems is the composite Lyapunov method,
first introduced by Khalil in [8]. This method is particularly
effective for assessing system stability, as it leverages the
stability of the subsystems to construct a Lyapunov function
for the overall system that is valid under sufficiently large time-
scale separation. As demonstrated in [8], if the reduced and
boundary layer systems admit certain quadratic-type Lyapunov
functions, then under additional interconnection conditions,
the interconnected system can be shown to be asymptoti-
cally stable, provided there is sufficient time-scale separation
between the two subsystems. Moreover, if the Lyapunov
functions satisfy specific quadratic bounds, these results can
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be extended to exponential stability. The composite Lyapunov
method has found profound applications in control synthesis
across various engineering domains, including power systems
[9], biological systems [10], aerospace [11], etc. While the
composite Lyapunov method has been widely used to establish
asymptotic and exponential stability, it has found limited appli-
cations in settings which require stronger notions of stability.
In [12], the authors leverage composite Lyapunov functions to
establish finite-time stability for a special class of singularly
perturbed homogeneous systems. However, to the best of the
authors’ knowledge, there does not exist a framework that
studies fixed-time stability for a general class of singularly
perturbed systems via composite Lyapunov techniques.
Fixed-time stability, which has been popularized through
the introduction of Lyapunov conditions in [13], has garnered
significant attention due to its ability to address challenges in
control [14], optimization [15], and learning [16], [17]. Fixed-
time stability ensures convergence to an equilibrium within
a fixed time, regardless of the system’s initial conditions.
While the Lyapunov conditions simplify the verification of
fixed-time stability in continuous-time dynamical systems,
techniques for analyzing fixed-time stability in interconnected
systems remain limited. Current state-of-the-art methods are
primarily applicable to systems with specific homogeneity
properties [18], restrictive structural requirements [19], or
those satisfying certain small-gain conditions [20]. Moreover,
in many practical applications, the systems of interest are also
influenced by external disturbances or exogenous inputs. In
particular, in this paper we study systems of the form

(1a)
(1b)

&= f(z,z,u)

€z = g(l‘, Z7U),

where € > 0 is a small parameter that induces a time scale
separation between the dynamics of x and the dynamics of z,
and v is an exogenous input. One of the key tools for analyzing
such systems is input-to-state stability (ISS), introduced by
Sontag in [21] and later characterized through an equivalent
Lyapunov framework in [22]. In simple terms, an ISS system
converges asymptotically to a bounded set for any bounded
input signal. A fixed-time counterpart, known as fixed-time
ISS (FxT ISS), was introduced in [23] to address fixed-time
stability in systems subject to disturbances. While standard
ISS properties have been extensively studied in the context
of singularly perturbed systems [24], [25], it remains an open
question whether analogous results can be developed for fixed-
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time stability and whether the composite Lyapunov method
introduced in [8] can be extended to analyze FxT ISS.

In this paper, we address the above questions by extending
the popular composite Lyapunov method [8] to study FxT
ISS in singularly perturbed systems with inputs. Specifically,
under the assumptions that the respective “reduced” and
“boundary-layer” dynamics of (1) are fixed-time stable on
their own, we first derive interconnection conditions under
which (1) renders the origin FxT ISS. These interconnection
conditions parallel those developed in [8] for asymptotic
and exponential stability. However, unlike the results of [8],
absence of Lipschitz continuity at the origin results in a more
complex paradigm for verifying our proposed interconnection
conditions, which involve powers of the fixed-time Lyapunov
functions of the reduced and boundary-layer dynamics. Subse-
quently, we employ our analytical tools to design and analyze
a novel class of algorithms that achieve fixed-time feedback
optimization under strongly convex cost functions and slowly
varying inputs—a class of problems widely studied in the
literature [26]-[28], but which, to the best of our knowledge,
has not previously been addressed using algorithms with fixed-
time stability properties. Finally, we present numerical and
analytical examples to illustrate the key assumptions and the
main stability results of the paper.

Earlier, preliminary results from this work were previously
published in the proceedings of the American Control Confer-
ence [29]. However, the results of [29] focused exclusively on
systems without inputs, addressing only fixed-time stability,
and provided only proof sketches. In contrast, this paper
extends the analysis to singularly perturbed systems with
inputs, advancing the FxT stability results of [29] to encom-
pass fixed-time input-to-state stability (FxT ISS). Furthermore,
in this paper we present a comprehensive stability analysis,
complete proofs, and novel analytical and numerical examples
to illustrate the main findings. This includes an application to
feedback optimization under slowly varying inputs in general
fixed-time stable plants.

The rest of this paper is organized as follows. Section
IT presents the notation and preliminary results. Section III
discusses the problem of interest, the main stability results,
and showcases the applicability of our results in an illustrative
example. Section IV studies fixed-time feedback optimization,
and Section V ends with the conclusions.

Il. PRELIMINARIES
A. Notation

We use R>( to denote the set of nonnegative real numbers.
We let sgn : R — {—1,0,1} denote the sign function, i.e
sgn(z) =1if x > 0, sgn(z) = —1 if < 0 and sgn(0) = 0.
For a continuous function o : R>¢g — R>o, we say o € K
(i.e, o is of class K) if «(0) =0 and « is strictly increasing.
If o € K also satisfies lim;_, o0 a(s) = 00, we say o € Koo
Given a continuous function 3 : R>g X R>¢g — Rx>q, we
say 8 € KL if for each t > 0, 8(-,t) € K and for each
r > 0, B(r,-) is non-increasing and asymptotically goes to
0. Furthermore, 5 € GKL if §(-,0) € K and for each fixed
r > 0, B(r,-) is continuous, non-increasing and there exists

a function T : R>¢g — Rx( such that 5(r,t) = 0 for all
t > T(r). The mapping T is called a settling time function,
which, in general, is not unique. Given a measurable function
u : R>o — RP we denote |u|e = esssup,~g |u(t)|. We use
LP, to denote the set of measurable functions u : R>o —
RP satisfying |u|. < oco. Given a differentiable function f :
R™ — R™, we use J(x) € R™*" to denote the Jacobian of
f evaluated at = € R™. If m = 1, we use Vf(z) = Jp(z)".
If J;(z) is continuous, we say f is C'.

B. Auxiliary Results

We first present some lemmas that will be instrumental for
our results. Due to space limitations, the proofs can be found
in the extended manuscript [30].

Lemma 1: Given x,y > 0 and pi,ps > 0, the following
inequality holds for all ¢ > 0:

|z[Pt[y[P? < c|z[Prtee +C—%|y|p1+pz_
]
Lemma 2: For & € (0,1) and & < 0, the following
inequalities hold for all z,y € R™:

ro_ ¥ E1ly _ o1&

e e | <2 ()

vy _ e 1 -t

we | S KW el (27 g —af7) b
where K := 1 4+ max (17_522—62—1)' 0

C. Fixed-Time Input-to-State Stability

Consider a nonlinear dynamical system of the form
z = f(z,u), x(0)=x, 3)

where x € R" is the state and v € L£Z_ is an input signal.
We assume the vector field f is continuous and satisfies
f£(0,0) = 0. We will state some definitions from [23] that
will be particularly relevant for our work.

Definition 1: System (3) is said to be fixed-time input-to-
state stable (FxT ISS) if for each o € R™ and u € L?_, every
solution z(t) of (3) exists for ¢ > 0 and satisfies

|z(8)] < B(lzol, 1) + o(luloo), )

where 8 € GKL, o € K and there exists a settling time
function 7" of § that is continuous and uniformly bounded,
with T(0) = 0.

Definition 2: A C* function V : R — R is called a FxT
ISS Lyapunov function for (3) if there exists aq,as € Koo
such that

ar(lz]) < V(z) < ax(|z]), (5)
and the following holds
av a o
S @) <~k V@) = RV (@) + pllul), (©)
for some p € Koo, k1,k2 >0, a1 € (0,1) and az > 1.

Remark 1: It can be verified that the “dissipation” formula-
tion we use in (6) implies relation (10) in [23], which implies
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FxT ISS for (3) via [23, Thm 4]. Indeed, if (6) holds and we
fix some 0 < & < min; k;, we have

lz| > x(Jul) = g—‘;f(x,u) < =k VO (x) — kp V2 (2),

where x(-) = X' o p(-), X(-) = Eal'(-) + £as2(-), and k; =
k; — €. By taking £ — 0, it can be observed via [23, Corollary
2] that systems that admit a FxT ISS Lyapunov function that
satisfy (6) also admit a settling time function satisfying the
following bound

1 1
< + ;
kl(]. — al) kQ(CLQ — 1)

for all o € R™.

[1l. MAIN RESULTS

We consider singularly perturbed systems of the form (1),
with states x € R™ and z € R™, input v € RP, dynamics
satisfying f(0,2*,0) = ¢(0,2*,0) = 0 for some z* € R™,
and a small parameter ¢ > 0 that induces a time scale
separation between the dynamics of x and z. Our main
objective is to exploit the stability properties of the so-called
reduced system and boundary-layer system associated with (1),
as defined below, in order to derive Lyapunov-based sufficient
conditions that ensure fixed-time input-to-state stability (FxT
ISS) of (1), provided the time-scale separation is sufficiently
large.

A. Assumptions

To study system (1) in the context of singular perturbations,
we make the following standard assumption on (1b):
Assumption I1: There exists a C! mapping h : R® — R™
such that g(x, z,0) = 0 if and only if z = h(x). O
The map h is usually referred to as the quasi-steady state
mapping [7] for the disturbance-free system (1b). By using
this mapping, we can define the so-called reduced system from
(1a):
z = f(x,h(z),u). (8)

Using the change of coordinates y = z — h(x), we obtain the
following error dynamics:

T = f(x,y+h(a:),u)

§= Lo(y+ (@) w) — 51y + b)),

(9a)
(9b)

System (9b) is studied in the time scale 7 = ¢/ and taking
€ — 0T to obtain the boundary layer system:
dy

E = g(l‘,y + h(.’L‘),’U,),

where z € R" is considered fixed. Since our goal is to study
FxT ISS of (1), we make the following FxT ISS Lyapunov-
based assumptions on the lower order systems (8) and (10):

Assumption 2: There exists a C! function V : R” — Rx
and oy, s, pr € Ko such that

(10)

ar(|z]) < V(z) < as(|z]),

and

oV u u

O, i), u) < —ka V" () — RV (2) + ol
where k1,ky >0, a1 € (0, ].) and ay > 1. O

Assumption 3: There exists a C! function W : R” x R™ —
R>g and &, &, pB € Koo such that

ar(ly) < W(z,y) < az(lyl),

and
oW
aT,g
where K1,k > 0, by € (0,1) and be > 1. O
Assumptions 2 and 3 state, respectively, that the reduced
system (8) and the boundary-layer system (10) admit indi-
vidual FxT ISS Lyapunov functions and are, hence, FxT ISS.
These assumptions mirror the classical Lyapunov-based condi-
tions commonly used in the literature to study the asymptotic
stability of singularly perturbed systems. However, as shown
in [8] and [24], the mere stability or ISS properties of the
individual reduced and boundary-layer systems are usually
insufficient to guarantee that (1) is also stable or ISS, and
additional interconnection conditions need to be examined.

(z,y+h(z),u) < =W (2,y) — ko W2 (2, 9) + pp(|u]),

B. Analysis

To assess the FxT stability of system (1) using a Lyapunov-
based approach, we consider the following Lyapunov function
candidate

Ve(z,y) = V() + (1= OW(z,y), Ce(0,1), (1D

where V' and W are from Assumptions 2 and 3 respectively.
For historical reasons, we refer to (11) as a composite Lya-
punov function [31], [32]. Evaluating the Lie derivative of (11)
along the trajectories of (9) results in

e = ¢ (G ftehte) ) + Ro)

10W
+ -0 (LG atey+ ) + Ty )
e Jy
(12)
where the interconnection terms, I; and I, are given by

,,0) = G (£ + hla),w) = i), w) (130)

oW  OW Oh
Iy(z,y,u) = or oy oz

Ideally, we aim to derive suitable bounds on these terms that
would allow us to conclude that (1) is fixed-time ISS. Before
we do so, we define the following terms:

) flz,y+ h(z),u). (13b)

V(z):=V7(2)+ V7 () (14a)

~ b by
W(z,y) := W= (z,y) + W73 (z,y) (14b)
k:=mink;, k:= mink;, (14¢)

where V, W, a;, b;, k;, k; come from Assumptions 2-3.
With these definitions at hand, we can now state the first
main result of the paper.
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Theorem 1: Consider system (9), and suppose that As-
sumptions 1-3 hold. Furthermore, suppose there -exists
v, Va,wi,wy € R and p1,ps € Ko such that the intercon-
nection terms in (13) satisfy

Li(z,y,u) < v V3x) +wuW(z,y) + p1(|u]) (15a)
Iy(,y,u) < voV*(2) + w2 W(2,9) + p2(|ul)  (15b)
v < %E, or vy <0. (15¢)

Then, there exists £¢* > 0 such that, for each ¢ € (0,¢*), the
system (9) is FxT ISS. O

Proof: Continuing from (12), we can use Assumptions
2 and 3 to obtain:

Ve < —CR(V™ (2) + V2 (2)) + Cpr(Jul) + (T + (1= () ]2

- LS @) + W) + =)
< _%Ef/z(x) — %@WQ(%Z/) +Chi+ (1 =012

+ Conul) + 2= pi (ful),

where, for simplicity, we omit the arguments of [; and I5.
With conditions (15a) and (15b), we have:

Ve < —v(QOV2(2) — we (OW(x,y) + pec(|ul),

where

pec(s) = C (o) + p1(8)) + (1 O) (”B(S) T p2<s>) ,
>

€
and we clearly have p. . € K for ¢ € (0,1) and € > 0.
By (15¢) we can find ¢* € (0,1) such that v* := v({*) > 0,
and then we can find €* > 0 such that w.({*) > v* whenever
¢ € (0,e*). For these € € (0,c*) we obtain:

oo < 0" (V@) + W2(2,9) ) + pec- (Ju)
gfﬁ(v%uo+v@@o+wﬂw@m+4vbuw0
+ pec-(lul)
= (V@) 4 VR @) + (V@) + V@)
+ (WP (@, y) + W (2,9) + (W (2,y) + W(,1)))
+ pe.c (ul).

We pick 71 € [max{ai,b1},1) and 2 € (1, min {ag, ba}]
to obtain

+ pe,c* (Jul)
< - (V@) + W) +272 (V@) + W(a,y)?)
+ pe ¢+ ([ul)
v* -
< - (\1;21 + 2! "’2\1'23) + pe,cx ([ul).
Hence, (9) is FXT ISS for € € (0,*). u

We would like to note that the “or” condition in (15¢) is non-
exclusive, i.e it is acceptable for both conditions to be satisfied.

In this case, any choice of the weight ¢ € (0,1) will result in
a valid composite Lyapunov function candidate.

Remark 2: The functions V(z) and W (z,y) are highly
analogous to the functions 1 (z) and v¥5(y), respectively,
from [7, Chapter 11.5]. For the asymptotic stability (resp.
FxT ISS) result from [7, Theorem 11.3] (resp. Theorem 1
in this paper), the Lie derivatives of V' and W along the
reduced and boundary layer dynamics are assumed to be upper
bounded by negative multiples of %?(z) and 3 (y) (resp.
V2(x) and W2(x,y)), respectively. Hence, we can observe
that the structure of the interconnection conditions in our paper
are actually more forgiving than those from [7, Chapter 11.5]
in the sense that we allow for extra V?2(z) and W2(z,y)
terms. This extra degree of freedom is particularly useful since
it allows us to apply our results to a variety of interesting
systems, such as those presented later in this paper. However,
our conditions are also more restrictive in the sense that we
now require very specific forms for the expressions ¢); and 5.
But this is expected, since Theorem 1 considers fixed-time ISS,
which is a much stronger notion of stability.

We have shown that under suitable assumptions, the inequali-
ties in (15) imply that system (9) is FxT ISS provided there is a
sufficiently large time scale separation. The proof of Theorem
1 provides an efficient methodology for computing a somewhat
conservative estimate of the required timescale separation, i.e
e*, for FxT ISS. It can also be seen from the proof of Theorem
1 that if the fast dynamics have no input, then the derived gain
o in the FxT ISS bound (4) can be made independent of ¢.
This is further detailed in the following Corollary.

Corollary 1: Consider (9) and suppose the conditions of
Theorem 1 are satisfied, but with pp = 0 and the vector field
g is independent of w. Then, there exists 8 € GKL, o € K
and €* > 0 such that the following holds

[s()] < B (Isol 1) + e(|ulso),

for all t > 0, u € LE,
[2(), y (O]

Proof: We follow the same steps from the proof of
Theorem 1, but with p¢(s) = ¢ (pr(s) + p1(s))+(1—¢)p2(s)
instead of p. ¢. This results in an upper bound on \ilg* that
holds uniformly for ¢ € (0,e*). [ |

While the results of Theorem 1 and Corollary 1 hold for
system (9), the question of whether (1) is FxT ISS may also
be of interest. In other words: we ask if the transformation
y = z — h(x) preserves the FxT ISS property. Fortunately, as
long as the quasi steady state map satisfies a mild boundedness
assumption, (9) being FxT ISS implies (1) is FxT ISS. This
is further detailed in the following result.

Theorem 2: Suppose (9) is FxT ISS and |h(z)| < a(|z|)
for some & € IC, then (1) is also fixed time ISS. O

Proof: Since (9) is FxT ISS, there exists 5 € GKL and
0 € K such that
"
Yo

L(t) : %(t»} ’ <s(

where 3(r,t) = 0 for each t > T'(r), and T is a continuous
function that satisfies sup,~q7'(r) < oo and T(0) = 0.

7)

and ¢ € (0,e*), where s(t) :=

J) +o(luls),  (18)
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Without loss of generality, we can assume ((-,t) is non-
decreasing for each ¢ > 0. Note that (18) implies

ool <5 (|[22]] ) + el

2(t)] < B (\ 70]].e) + el + IiGotel. casw
But we also have

(I =2 (L el 9 =7 (15]))
where ((r,t) := B(2r,t) + B(2a(r),t) € GKL. Moreover,
ntete) < adoto) < 6 (|| 2]

where 5(1", t):=a (23 (r, t)) € GKL, and o(-) := a(20(+)) €
K. Combining (19) and (20) yields the result. [ |

(19a)

7t> Fallule), Q0)

C. A Stylized Example

To illustrate our results, we first consider a singularly
perturbed system with scalar reduced and boundary layer
systems. In particular, consider the plant

T=—[z]" =2 +w (21a)
ez=—lz—z—u|" — [z — 2 —u2)” +uguz, (21b)
where [-]7 := |- |%sgn(-), z,z,u1,ue € R, 0 < ¢g <rp <1

and 1 < ro < ¢o. System (21) has the quasi steady state
h(x) = x, with reduced system:

& =—[z]™ = [z]™ 4+ uq, (22)
and boundary layer system
d
d% =-—ly—w|" = [y — u2|® + wrus. (23)

Furthermore, it is easy to see that A satisfies the class IC
bound assumption from Theorem 2. To verify that (22) and
(23) satisfy Assumptions 2 and 3, we will use the Lyapunov
functions V' (x) = 22 and W (y) = 3. For the reduced system
(22) we have:

ov
2
where 7; := 1(r; + 1). Thus, Assumption 2 is satisfied.

Similarly, we can differentiate WW along the trajectories of
(23) to obtain the following:

(@, h(x),u) < =V (z) = V™2 (2) + [uf?, (24

W<~ — 2l () — ol )
¥ |yl > max{ep' (2%[ul*), 2|ul},
where ¢; = 5(g; + 1) and
on(s) = (270 27 frnt e,

This implies that system (23) is FxT ISS uniformly in z,
and hence the assumptions are satisfied. To verify if system
(21) is FxT ISS, it remains to check if the interconnection
terms associated with system (21) satisfy the interconnection

conditions (15). Let V(z) = |z|™ + |z|™ and W(y) =

10

No disturbance

0 2 4 6 8 10
Time (s)
Fig. 1: Trajectories of system (21) with and without the
disturbance u(t), where we use ¢ = 0.01. The theoretically

computed settling time bound of 18.15 obtained using (7) is
conservative compared to the observed trajectories.

|y|9* + |y|%. Then, we can compute I; and apply Lemmas
1-2 to obtain the following estimate:

Io=2x(~fy+a)™ — [y +e]™ 4 2] + [2]7)
< V() +20 W),

for all ¢ € (0,1), where oy > 0 is obtained by applying
Lemma 1 twice and upper bounding appropriately. By taking
¢ > 0 sufficiently small we can satisfy conditions (15a) and
(15c). Thus, it remains to check if Iy also satisfies (15b).
Indeed, by computing /5 we obtain:

L=2y(fy+z]" +[y+z]” —w)
< VP (@) + (2677 434 272)W3(y) + [uf?,

for all ¢ € (0, 1), where o3 > 0 is again obtained from Lemma
1. We conclude that the conditions of Theorem 1 and 2 are
satisfied, and hence there exists £* such that the singularly
perturbed system (21) is FxT ISS for ¢ € (0,&*). We simulate
the system using 11 = 2,70 = &,q1 = 3,4 = 2 and the
disturbances wu; (t) = €5, uy(t) = sin(19log(t 4 1)) — 0.21,
where we clearly have u(t) = [ui(t),u2(t)]" € L£2. The
trajectories of this system with and without the input are shown
in Figure 1, illustrating the FxT ISS property

IV. FIXED-TIME FEEDBACK OPTIMIZATION WITH
TIME-VARYING COSTS

In this section, we leverage the results of Theorems 1-2 to
study a practical problem of interest in the context of singu-
lar perturbations: feedback optimization under slowly-varying
cost functions [26]. In contrast to the existing asymptotic
results [27], [28], [33], [34], we introduce an optimization-
based controller able to achieve FxT stability via non-Lipschitz
feedback. In particular, we consider plants of the form

2 =g(&, 2), (25)

where z € R™ is the state, £ € L7 is a measurable and
bounded control input, and g : R™ xR™ — R™ is a continuous
function satisfying the following condition:
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Assumption 4: There exists a continuously differentiable,
globally Lipschitz mapping A : R™ — R™ such that
g(2,h(2)) = 0 for all # € R™. Moreover, there exists a C!
function W : R™ — R>( and ¢q, c2 > 0 such that

aly? < W(y) < eolyl?, (26a)
VW (y) g(2,y + h(2)) < =k W™ (y) — kW (y), (26b)

for all y € R™, where x1,k2 > 0, by € (0,1) and b2 > 1.
There also exists 77 > 0 such that the function W satisfies

VW (y)| < nlyl, (27)

for all y € R™. (]

Assumption 4 is the “fixed-time” version of standard open-
loop stability assumptions considered in the setting of feed-
back optimization [7], [27]. In particular, by taking y =
z — h(&) to quantify the deviation of z from its steady-state
approximation, the conditions of Assumption 4 simply ask that
such deviation converges to zero by a fixed-time, for each
fixed £ € R™. For a general class of linear and nonlinear
plants, this property can be achieved using different types
of non-smooth controllers that combine super-linear and sub-
linear feedback [35], homogeneity tools [36], or the implicit
Lyapunov technique [37], to name just a few examples.

Our primary goal is to design a control law on the input &
that stabilizes (25) in a fixed time the solution of the following
time-varying optimization problem

min ¢g(Z, 2) (28a)

subject to: z = h(Z). (28b)

where the time variation on the cost functions ¢y : R” xR™ —
R is induced by a dynamic parameter # € RY that evolves
according to the dynamics

0 = ecoll(0), 6 €O, (29)

where g > 0, and € > 0 is a small parameter that captures
the rate of change of 6, and Il : R? — R? and © C RY satisfy
the following mild conditions, which can be used to cover a
broad class of time-varying signals ¢ — 6(t) :

Assumption 5: The function TI(-) is Lipschitz continuous,
and the set © is compact and forward invariant under the
dynamics (29). O

We can observe that, by substituting (28b) into (28a),
we arrive at the unconstrained parameterized optimization
problem:

min ®g(), (30)
where @y(&) := ¢p(&, h()). To guarantee that (30) is a well-
defined optimization problem with a unique solution for each
0 € R, we consider cost functions that satisfy the following
assumptions, which are fairly standard in the time-varying
feedback optimization literature [33], [34]:

Assumption 6: The function & — ®y(&) is L-smooth and
k-strongly convex, uniformly in 6. Moreover, there exists a C!
function ¢ : R? — R™ such that ¢(f) = argmin, ®p(£). O

Note that when g = 0 in (5), the parameter 6 remains
constant for all time, yielding a constant solution () to

(30). In contrast, when €¢ > 0, the function ¢ — ¢(6(¢))
may exhibit fast time variations that are difficult to track
without additional information about the functions II, h, and
¢¢. Therefore, to address the optimization problem (28a) using
real-time gradient feedback, we can regard £¢I1(f) as the
“input” to the system and study FxT ISS with respect to the
tracking error of p(6(-)).

A. Fixed-Time Gradient-Based Feedback

Given & € (0,1) and & < 0, we define the following
function F¢, ¢, : RP — RP:

T T

f£17§2(x) = |x‘§1 + |m‘§27 (31)

which is continuous at z = 0, see [15]. To solve (30) in fixed-
time, we draw inspiration from the asymptotic counterpart [27]
and propose a fixed-time gradient flow on ®y(&) with time
scale separation:

(32)
where
Py(2,2) := H(&) Vg(2,2), H(z)" =[I, Inx)"]
(33)
It can be verified, using the chain rule, that
Py(&, h()) = V®y(2),

and hence, for each 6, when the plant dynamics (25) are
negligible, the dynamics (32) converge to the solution of (30)
in fixed time [15], [16]. Since in our setting the dynamics
(25) cannot be neglected, we can obtain a real-time feedback
controller by replacing ~(Z) in (32) with the measured value
of z to obtain the following closed-loop system:

(34a)
(34b)

2=g(Z,z) )
_5‘7:51752(139(@72:))'

T
We study system (34) under the following mild Lipschitz
assumption, which is standard in the literature [27]:

Assumption 7: For the function pg([L’,Z) defined in (33),
there exists £ > 0 such that

|Po(#,2') — Py(#,2)] < ]2 — 2], (35)

for all £ € R", 2/,z € R™ and 0 € RY. O

To put system (34) into the form (1), let x = & — ¢(0) and
T = €t, which leads to the following dynamics in the 7-time
scale:

dz

d ~

% - _]:51752 (P@(l‘ + 90(0>7 Z)) B J‘P(Q)U(T) (36b)
W ), oco, (36¢)
dr

where u(7) = golI(A(7)) can be thought of as the “input” in
(36b). Note that, since © is compact and forward invariant, and
the trajectories of (36¢) are restricted to evolve in ©, we only
need to consider the stability properties of system (36a)-(36b).
The following result establishes FxT ISS for this system:
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Fig. 2: Trajectories of the FXT time-varying feedback optimization example, with &g = 5,0.2,0 and varying initial conditions.

Theorem 3: Suppose that Assumptions 4-6 hold, and con-
sider the singularly perturbed system (36). Then, for all
& € (0,min(2 — 2b1,1)) and & € (2 — 2bg, 0), there exists
B8 €GKL, o€ K and €* > 0 such that

L(T) - h(xggg)Jr ¢(9(T)))} '

<B ( [20 - h(ngﬁ 90(90))}

for all € € (0,¢*), 7 > 0 and g9 > 0. O

Proof: Consider the 7-time scale system (36a). This
system has a quasi-steady state h(x + ¢(6)), which results
in the following reduced system:

O o Fe (VO + p(0))) — 23, (6)TI(0).

) + offu(r) o),

(37

Let M = supyce|J,(0)|, which is bounded since © is
compact. Moreover, from Assumption 6, we have jTV@g(iJr
2(0)) > LIV + p(0))? and [V4 (i + 0(0))] > rlil.
Then, with the Lyapunov function V(z) = |z|?, we can use
Lemma 1 to obtain

dv 2 o 2 _
A & 2 2—&2
< TV (@ + p(0) P8 — £V oz + 0(6))|
M2
+ claf® + = [eoI(0)*

2-61 2—&2 M2

< — T VI (a) - S VIR (@) 4 —[elI(O),
c

where 0 < ¢ < 1 min{x? % k27¢2}, which shows that
Assumption 2 is satisfied. Next, let y = z — h(x + ¢(0)),
which leads to the following dynamics:

dy

1
i gg(x+ga(9),y+h(x+<p(0))) (38)
dz
~3uta+ol0) (5 + 203, 0110)).
This yields the following boundary layer system:
§ =9+ ¢0(0),y+ h(z+¢0))). (39)

It is easy to verify that Assumption 3 holds with Lyapunov
function W (y) obtained from Assumption 4, so it remains to
check the interconnection conditions (15a)-(15b). Indeed, if

we denote Py(x,y) := Py(z 4+ ¢(0),y + h(z + ©(0))), we
have:

Poey)  Pow,0)

I < 2|x —

il <2 '( o) & [P 0)6
Po(ey)  Pow,0)

|P9(x,y)|52 - ‘P@($,0)|52 )
< 2£1+1€1_£1|$Hy‘1_51

+ 2K |z|ly| (67 [yl 7% + L7 z|7%2)

<c(laPm8 4 [aP75) + (=5 + [y[*7*2)

pa(c)
16-1 B
W2(y),

+cq
pa(c)

for all ¢ > 0, and ellCoo is given by p1(c)
m~! (c_‘” +c7o2 + 0_712) = 1%& and m :
max{(28+H1 (1= )1+or (4 p—E2)lHor (4K 0—€) o),
Picking ¢ < 7 min {k?7% 2752} establishes (15a) and
(15c). To verify (15b), we have

I = VW (y) " In(x + @(0)) Fe, &, (Po(, y))-

Let h* := sup, |J(x)|, which exists and is finite since h is C*
and globally Lipschitz. We can proceed from (40) as follows:

L] < nh*ly| ((Cly| + Llz|)* = + (€ly| + L|z[)* %)
S L(J2P% + 2P0 + |y 4y )
<L (f/? + 2W2) 7

1
361—1
G

V3 (x) +

, with o;

(40)

where L := nh* max{¢'~é L1=¢1 2-&y1-& oG l-t]
By applying Corollary 1 we obtain the result. [ |

To illustrate Theorem 3 via a numerical example, we
simulate system (34) with the plant dynamics given by z =
—F2 _2(2—2%), which has the quasi-steady state h(Z) = 22.
The cost function ¢y takes the quadratic form ¢y(Z, 2)
127 Qgz + by 2, where Qp and by are given by

_ 3rd® 2 (t)] b= {2+f3(t)] _

2 5+ da
The parameters d; are given by di(t) = 0.8sin(2.2e¢¢t),
da(t) = 1.8sin(1.7eept), ds(t) = 0.66sin(1.9¢egt). These
signals can be generated by a system of the form (29) by
setting 0(t) € RS, d;(t) = 02:(t), and I1(9) = RO, where

Qo
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R € RY%6 is a block diagonal matrix with rotation matrices
on the diagonal. Moreover, in accordance with Proposition 3
we set & = %752 = —%. It can be verified that Qp >~ 0
for all ¢ > 0, and the optimizer of ®y is given by ©(f) =
—Q;lbg. We interconnect (34b) with the plant dynamics,
where Py(2,z) = $Qoz + Qo& + 2by. The trajectories of
the system are shown in Figure 2, with ¢ = 0.05 and different
values of y. As observed in the plot, the state z converges
in fixed-time to a neighborhood of the time-varying optimizer,
whose size shrinks as €9 — 07.

V. CONCLUSION

We establish sufficient Lyapunov conditions for the study
of FxT ISS properties in singularly perturbed systems. The
results were applied to two illustrative examples: a particular
nonsmooth second-order interconnection of systems, and a
general fixed-time feedback optimization problem with time-
varying cost functions, which has not been addressed before
using fixed-time stability tools. Our method of verifying the
interconnection conditions establishes an efficient paradigm
for applying our results to other classes of algorithms and
feedback schemes that exhibit multiple time scales. Future
research directions include applying our results to a broader
range of systems, including systems with more than two time
scales. Moreover, it is also of interest to identify a more
general class of systems and quasi-steady state mappings for
which our interconnection conditions hold, including charac-
terizations based on homogeneity.
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