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Fixed-Time Input-to-State Stability for Singularly
Perturbed Systems via Composite Lyapunov

Functions
Michael Tang, Miroslav Krstić, Jorge I. Poveda

Abstract— We study singularly perturbed systems that
exhibit input-to-state stability (ISS) with fixed-time prop-
erties in the presence of bounded disturbances. In these
systems, solutions converge to the origin within a time
frame independent of initial conditions when undisturbed,
and to a vicinity of the origin when subjected to bounded
disturbances. First, we extend the traditional composite
Lyapunov method, commonly applied in singular pertur-
bation theory to analyze asymptotic stability, to include
fixed-time ISS. We demonstrate that if both the reduced
system and the boundary layer system exhibit fixed-time
ISS, and if certain interconnection conditions are met, the
entire multi-time scale system retains this fixed-time ISS
characteristic, provided the separation of time scales is
sufficiently pronounced. Next, we illustrate our findings
via analytical and numerical examples, including a novel
application in fixed-time feedback optimization for dynamic
plants with slowly varying cost functions.

I. INTRODUCTION

Many complex dynamical systems can be decomposed into

components operating on different time scales. Such multi-

time-scale systems are common across a diverse array of

engineering applications, including aerospace [1], chemical

processing [2], smart grids [3], and biological and evolutionary

systems [4], among others. Such systems can be studied using

techniques from singular perturbation theory [5]–[7], where

the methods typically focus on decomposing the system into

lower order subsystems and studying the subsystems to draw

conclusions on the behavior of the overall interconnection.

One simple yet powerful technique for analyzing singu-

larly perturbed systems is the composite Lyapunov method,

first introduced by Khalil in [8]. This method is particularly

effective for assessing system stability, as it leverages the

stability of the subsystems to construct a Lyapunov function

for the overall system that is valid under sufficiently large time-

scale separation. As demonstrated in [8], if the reduced and

boundary layer systems admit certain quadratic-type Lyapunov

functions, then under additional interconnection conditions,

the interconnected system can be shown to be asymptoti-

cally stable, provided there is sufficient time-scale separation

between the two subsystems. Moreover, if the Lyapunov

functions satisfy specific quadratic bounds, these results can
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be extended to exponential stability. The composite Lyapunov

method has found profound applications in control synthesis

across various engineering domains, including power systems

[9], biological systems [10], aerospace [11], etc. While the

composite Lyapunov method has been widely used to establish

asymptotic and exponential stability, it has found limited appli-

cations in settings which require stronger notions of stability.

In [12], the authors leverage composite Lyapunov functions to

establish finite-time stability for a special class of singularly

perturbed homogeneous systems. However, to the best of the

authors’ knowledge, there does not exist a framework that

studies fixed-time stability for a general class of singularly

perturbed systems via composite Lyapunov techniques.

Fixed-time stability, which has been popularized through

the introduction of Lyapunov conditions in [13], has garnered

significant attention due to its ability to address challenges in

control [14], optimization [15], and learning [16], [17]. Fixed-

time stability ensures convergence to an equilibrium within

a fixed time, regardless of the system’s initial conditions.

While the Lyapunov conditions simplify the verification of

fixed-time stability in continuous-time dynamical systems,

techniques for analyzing fixed-time stability in interconnected

systems remain limited. Current state-of-the-art methods are

primarily applicable to systems with specific homogeneity

properties [18], restrictive structural requirements [19], or

those satisfying certain small-gain conditions [20]. Moreover,

in many practical applications, the systems of interest are also

influenced by external disturbances or exogenous inputs. In

particular, in this paper we study systems of the form

ẋ = f(x, z, u) (1a)

εż = g(x, z, u), (1b)

where ε > 0 is a small parameter that induces a time scale

separation between the dynamics of x and the dynamics of z,

and u is an exogenous input. One of the key tools for analyzing

such systems is input-to-state stability (ISS), introduced by

Sontag in [21] and later characterized through an equivalent

Lyapunov framework in [22]. In simple terms, an ISS system

converges asymptotically to a bounded set for any bounded

input signal. A fixed-time counterpart, known as fixed-time

ISS (FxT ISS), was introduced in [23] to address fixed-time

stability in systems subject to disturbances. While standard

ISS properties have been extensively studied in the context

of singularly perturbed systems [24], [25], it remains an open

question whether analogous results can be developed for fixed-
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time stability and whether the composite Lyapunov method

introduced in [8] can be extended to analyze FxT ISS.

In this paper, we address the above questions by extending

the popular composite Lyapunov method [8] to study FxT

ISS in singularly perturbed systems with inputs. Specifically,

under the assumptions that the respective “reduced” and

“boundary-layer” dynamics of (1) are fixed-time stable on

their own, we first derive interconnection conditions under

which (1) renders the origin FxT ISS. These interconnection

conditions parallel those developed in [8] for asymptotic

and exponential stability. However, unlike the results of [8],

absence of Lipschitz continuity at the origin results in a more

complex paradigm for verifying our proposed interconnection

conditions, which involve powers of the fixed-time Lyapunov

functions of the reduced and boundary-layer dynamics. Subse-

quently, we employ our analytical tools to design and analyze

a novel class of algorithms that achieve fixed-time feedback

optimization under strongly convex cost functions and slowly

varying inputs—a class of problems widely studied in the

literature [26]–[28], but which, to the best of our knowledge,

has not previously been addressed using algorithms with fixed-

time stability properties. Finally, we present numerical and

analytical examples to illustrate the key assumptions and the

main stability results of the paper.

Earlier, preliminary results from this work were previously

published in the proceedings of the American Control Confer-

ence [29]. However, the results of [29] focused exclusively on

systems without inputs, addressing only fixed-time stability,

and provided only proof sketches. In contrast, this paper

extends the analysis to singularly perturbed systems with

inputs, advancing the FxT stability results of [29] to encom-

pass fixed-time input-to-state stability (FxT ISS). Furthermore,

in this paper we present a comprehensive stability analysis,

complete proofs, and novel analytical and numerical examples

to illustrate the main findings. This includes an application to

feedback optimization under slowly varying inputs in general

fixed-time stable plants.

The rest of this paper is organized as follows. Section

II presents the notation and preliminary results. Section III

discusses the problem of interest, the main stability results,

and showcases the applicability of our results in an illustrative

example. Section IV studies fixed-time feedback optimization,

and Section V ends with the conclusions.

II. PRELIMINARIES

A. Notation

We use R≥0 to denote the set of nonnegative real numbers.

We let sgn : R → {−1, 0,1} denote the sign function, i.e

sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0 and sgn(0) = 0.

For a continuous function α : R≥0 → R≥0, we say α ∈ K
(i.e, α is of class K) if α(0) = 0 and α is strictly increasing.

If α ∈ K also satisfies lims→∞ α(s) = ∞, we say α ∈ K∞.

Given a continuous function β : R≥0 × R≥0 → R≥0, we

say β ∈ KL if for each t ≥ 0, β(·, t) ∈ K and for each

r ≥ 0, β(r, ·) is non-increasing and asymptotically goes to

0. Furthermore, β ∈ GKL if β(·, 0) ∈ K and for each fixed

r ≥ 0, β(r, ·) is continuous, non-increasing and there exists

a function T : R≥0 → R≥0 such that β(r, t) = 0 for all

t ≥ T (r). The mapping T is called a settling time function,

which, in general, is not unique. Given a measurable function

u : R≥0 → R
p we denote |u|∞ = ess supt≥0 |u(t)|. We use

Lp
∞ to denote the set of measurable functions u : R≥0 →

R
p satisfying |u|∞ < ∞. Given a differentiable function f :

R
n → R

m, we use Jf (x) ∈ R
m×n to denote the Jacobian of

f evaluated at x ∈ R
n. If m = 1, we use ∇f(x) = Jf (x)

⊤.

If Jf (x) is continuous, we say f is C1.

B. Auxiliary Results

We first present some lemmas that will be instrumental for

our results. Due to space limitations, the proofs can be found

in the extended manuscript [30].

Lemma 1: Given x, y ≥ 0 and p1, p2 > 0, the following

inequality holds for all c > 0:

|x|p1 |y|p2 ≤ c|x|p1+p2 + c−
p1
p2 |y|p1+p2 .

□

Lemma 2: For ξ1 ∈ (0, 1) and ξ2 < 0, the following

inequalities hold for all x, y ∈ R
n:

∣

∣

∣

∣

x

|x|ξ1
−

y

|y|ξ1

∣

∣

∣

∣

≤ 2ξ1 |x− y|1−ξ1 (2a)

∣

∣

∣

∣

x

|x|ξ2
−

y

|y|ξ2

∣

∣

∣

∣

≤ K|y − x|
(

|x|−ξ2 + |y − x|−ξ2
)

. (2b)

where K := 1 + max
(

1,−ξ22
−ξ2−1

)

. □

C. Fixed-Time Input-to-State Stability

Consider a nonlinear dynamical system of the form

ẋ = f(x, u), x(0) = x0, (3)

where x ∈ R
n is the state and u ∈ Lp

∞ is an input signal.

We assume the vector field f is continuous and satisfies

f(0, 0) = 0. We will state some definitions from [23] that

will be particularly relevant for our work.

Definition 1: System (3) is said to be fixed-time input-to-

state stable (FxT ISS) if for each x0 ∈ R
n and u ∈ Lp

∞, every

solution x(t) of (3) exists for t ≥ 0 and satisfies

|x(t)| ≤ β(|x0|, t) + ϱ(|u|∞), (4)

where β ∈ GKL, ϱ ∈ K and there exists a settling time

function T of β that is continuous and uniformly bounded,

with T (0) = 0.

Definition 2: A C1 function V : Rn → R≥0 is called a FxT

ISS Lyapunov function for (3) if there exists α1, α2 ∈ K∞

such that

α1(|x|) ≤ V (x) ≤ α2(|x|), (5)

and the following holds

∂V

∂x
f(x, u) ≤ −k1V

a1(x)− k2V
a2(x) + ρ(|u|), (6)

for some ρ ∈ K∞, k1, k2 > 0, a1 ∈ (0, 1) and a2 > 1.

Remark 1: It can be verified that the “dissipation” formula-

tion we use in (6) implies relation (10) in [23], which implies
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FxT ISS for (3) via [23, Thm 4]. Indeed, if (6) holds and we

fix some 0 < ε̃ < mini ki, we have

|x| > χ(|u|) ⇒
∂V

∂x
f(x, u) ≤ −k̃1V

a1(x)− k̃2V
a2(x),

where χ(·) = χ̃−1 ◦ ρ(·), χ̃(·) = ε̃αa1

2 (·) + ε̃αa2

2 (·), and k̃i =
ki− ε̃. By taking ε̃→ 0, it can be observed via [23, Corollary

2] that systems that admit a FxT ISS Lyapunov function that

satisfy (6) also admit a settling time function satisfying the

following bound

T (x0) ≤
1

k1(1− a1)
+

1

k2(a2 − 1)
, (7)

for all x0 ∈ R
n.

III. MAIN RESULTS

We consider singularly perturbed systems of the form (1),

with states x ∈ R
n and z ∈ R

m, input u ∈ R
p, dynamics

satisfying f(0, z∗, 0) = g(0, z∗, 0) = 0 for some z∗ ∈ R
m,

and a small parameter ε > 0 that induces a time scale

separation between the dynamics of x and z. Our main

objective is to exploit the stability properties of the so-called

reduced system and boundary-layer system associated with (1),

as defined below, in order to derive Lyapunov-based sufficient

conditions that ensure fixed-time input-to-state stability (FxT

ISS) of (1), provided the time-scale separation is sufficiently

large.

A. Assumptions

To study system (1) in the context of singular perturbations,

we make the following standard assumption on (1b):

Assumption 1: There exists a C1 mapping h : Rn → R
m

such that g(x, z, 0) = 0 if and only if z = h(x). □

The map h is usually referred to as the quasi-steady state

mapping [7] for the disturbance-free system (1b). By using

this mapping, we can define the so-called reduced system from

(1a):

ẋ = f(x, h(x), u). (8)

Using the change of coordinates y = z − h(x), we obtain the

following error dynamics:

ẋ = f(x, y + h(x), u) (9a)

ẏ =
1

ε
g(x, y + h(x), u)−

∂h

∂x
f(x, y + h(x), u). (9b)

System (9b) is studied in the time scale τ = t/ε and taking

ε→ 0+ to obtain the boundary layer system:

dy

dτ
= g(x, y + h(x), u), (10)

where x ∈ R
n is considered fixed. Since our goal is to study

FxT ISS of (1), we make the following FxT ISS Lyapunov-

based assumptions on the lower order systems (8) and (10):

Assumption 2: There exists a C1 function V : Rn → R≥0

and α1, α2, ρR ∈ K∞ such that

α1(|x|) ≤ V (x) ≤ α2(|x|),

and

∂V

∂x
f(x, h(x), u) ≤ −k1V

a1(x)− k2V
a2(x) + ρR(|u|),

where k1, k2 > 0, a1 ∈ (0, 1) and a2 > 1. □

Assumption 3: There exists a C1 function W : Rn×R
m →

R≥0 and α̃1, α̃2, ρB ∈ K∞ such that

α̃1(|y|) ≤W (x, y) ≤ α̃2(|y|),

and

∂W

∂y
g(x, y+h(x), u) ≤ −κ1W

b1(x, y)−κ2W
b2(x, y)+ ρB(|u|),

where κ1, κ2 > 0, b1 ∈ (0, 1) and b2 > 1. □

Assumptions 2 and 3 state, respectively, that the reduced

system (8) and the boundary-layer system (10) admit indi-

vidual FxT ISS Lyapunov functions and are, hence, FxT ISS.

These assumptions mirror the classical Lyapunov-based condi-

tions commonly used in the literature to study the asymptotic

stability of singularly perturbed systems. However, as shown

in [8] and [24], the mere stability or ISS properties of the

individual reduced and boundary-layer systems are usually

insufficient to guarantee that (1) is also stable or ISS, and

additional interconnection conditions need to be examined.

B. Analysis

To assess the FxT stability of system (1) using a Lyapunov-

based approach, we consider the following Lyapunov function

candidate

Ψζ(x, y) = ζV (x) + (1− ζ)W (x, y), ζ ∈ (0, 1), (11)

where V and W are from Assumptions 2 and 3 respectively.

For historical reasons, we refer to (11) as a composite Lya-

punov function [31], [32]. Evaluating the Lie derivative of (11)

along the trajectories of (9) results in

Ψ̇ζ = ζ

(

∂V

∂x
f(x, h(x), u) + I1(x, y, u)

)

+ (1− ζ)

(

1

ε

∂W

∂y
g(x, y + h(x), u) + I2(x, y, u)

)

,

(12)

where the interconnection terms, I1 and I2, are given by

I1(x, y, u) =
∂V

∂x
(f(x, y + h(x), u)− f(x, h(x), u)) (13a)

I2(x, y, u) =

(

∂W

∂x
−
∂W

∂y

∂h

∂x

)

f(x, y + h(x), u). (13b)

Ideally, we aim to derive suitable bounds on these terms that

would allow us to conclude that (1) is fixed-time ISS. Before

we do so, we define the following terms:

Ṽ (x) := V
a1

2 (x) + V
a2

2 (x) (14a)

W̃ (x, y) :=W
b1
2 (x, y) +W

b2
2 (x, y) (14b)

k := min
i
ki, κ := min

i
κi, (14c)

where V,W, ai, bi, ki, κi come from Assumptions 2-3.

With these definitions at hand, we can now state the first

main result of the paper.
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Theorem 1: Consider system (9), and suppose that As-

sumptions 1-3 hold. Furthermore, suppose there exists

ν1, ν2, ω1, ω2 ∈ R and ρ1, ρ2 ∈ K∞ such that the intercon-

nection terms in (13) satisfy

I1(x, y, u) ≤ ν1Ṽ
2(x) + ω1W̃

2(x, y) + ρ1(|u|) (15a)

I2(x, y, u) ≤ ν2Ṽ
2(x) + ω2W̃

2(x, y) + ρ2(|u|) (15b)

ν1 <
1

2
k, or ν2 < 0. (15c)

Then, there exists ε∗ > 0 such that, for each ε ∈ (0, ε∗), the

system (9) is FxT ISS. □

Proof: Continuing from (12), we can use Assumptions
2 and 3 to obtain:

Ψ̇ζ ≤ −ζk(V a1(x) + V
a2(x)) + ζρR(|u|) + ζI1 + (1− ζ)I2

−
1− ζ

ε
κ(W b1(x, y) +W

b2(x, y)) +
1− ζ

ε
ρB(|u|)

≤ −
ζ

2
kṼ

2(x)−
1− ζ

2ε
κW̃

2(x, y) + ζI1 + (1− ζ)I2

+ ζρR(|u|) +
1− ζ

ε
ρB(|u|),

where, for simplicity, we omit the arguments of I1 and I2.

With conditions (15a) and (15b), we have:

Ψ̇ζ ≤ −ν(ζ)Ṽ 2(x)− ωε(ζ)W̃
2(x, y) + ρε,ζ(|u|),

where

ν(ζ) = ζ

(

1

2
k − ν1

)

− (1− ζ)ν2

ωε(ζ) =
1− ζ

2ε
κ− ζω1 − (1− ζ)ω2

ρε,ζ(s) = ζ (ρR(s) + ρ1(s)) + (1− ζ)

(

ρB(s)

ε
+ ρ2(s)

)

,

and we clearly have ρε,ζ ∈ K∞ for ζ ∈ (0, 1) and ε > 0.
By (15c) we can find ζ∗ ∈ (0, 1) such that ν∗ := ν(ζ∗) > 0,
and then we can find ε∗ > 0 such that ωε(ζ

∗) > ν∗ whenever
ε ∈ (0, ε∗). For these ε ∈ (0, ε∗) we obtain:

Ψ̇ζ∗ ≤ −ν
∗
(

Ṽ
2(x) + W̃

2(x, y)
)

+ ρε,ζ∗(|u|)

≤ −ν
∗
(

V
a1(x) + V

a2(x) +W
b1(x, y) +W

b2(x, y)
)

+ ρε,ζ∗(|u|)

= −
ν∗

2

(

(V a1(x) + V
a2(x)) + (V a1(x) + V

a2(x))

+ (W b1(x, y) +W
b2(x, y)) + (W b1(x, y) +W

b2(x, y))
)

+ ρε,ζ∗(|u|).

We pick γ1 ∈ [max {a1, b1} , 1) and γ2 ∈ (1,min {a2, b2}]
to obtain

Ψ̇ζ∗ ≤ −
ν∗

2

(

V
γ1(x) + V

γ2(x) +W
γ1(x, y) +W

γ2(x, y)
)

+ ρε,ζ∗(|u|)

≤ −
ν∗

2

(

(V (x) +W (x, y))γ1 + 21−γ2(V (x) +W (x, y))γ2
)

+ ρε,ζ∗(|u|)

≤ −
ν∗

2

(

Ψ
γ1
ζ∗

+ 21−γ2Ψ
γ2
ζ∗

)

+ ρε,ζ∗(|u|).

Hence, (9) is FxT ISS for ε ∈ (0, ε∗).

We would like to note that the “or” condition in (15c) is non-

exclusive, i.e it is acceptable for both conditions to be satisfied.

In this case, any choice of the weight ζ ∈ (0, 1) will result in

a valid composite Lyapunov function candidate.

Remark 2: The functions Ṽ (x) and W̃ (x, y) are highly

analogous to the functions ψ1(x) and ψ2(y), respectively,

from [7, Chapter 11.5]. For the asymptotic stability (resp.

FxT ISS) result from [7, Theorem 11.3] (resp. Theorem 1

in this paper), the Lie derivatives of V and W along the

reduced and boundary layer dynamics are assumed to be upper

bounded by negative multiples of ψ2
1(x) and ψ2

2(y) (resp.

Ṽ 2(x) and W̃ 2(x, y)), respectively. Hence, we can observe

that the structure of the interconnection conditions in our paper

are actually more forgiving than those from [7, Chapter 11.5]

in the sense that we allow for extra Ṽ 2(x) and W̃ 2(x, y)
terms. This extra degree of freedom is particularly useful since

it allows us to apply our results to a variety of interesting

systems, such as those presented later in this paper. However,

our conditions are also more restrictive in the sense that we

now require very specific forms for the expressions ψ1 and ψ2.

But this is expected, since Theorem 1 considers fixed-time ISS,

which is a much stronger notion of stability.

We have shown that under suitable assumptions, the inequali-

ties in (15) imply that system (9) is FxT ISS provided there is a

sufficiently large time scale separation. The proof of Theorem

1 provides an efficient methodology for computing a somewhat

conservative estimate of the required timescale separation, i.e

ε∗, for FxT ISS. It can also be seen from the proof of Theorem

1 that if the fast dynamics have no input, then the derived gain

ϱ in the FxT ISS bound (4) can be made independent of ε.
This is further detailed in the following Corollary.

Corollary 1: Consider (9) and suppose the conditions of

Theorem 1 are satisfied, but with ρB ≡ 0 and the vector field

g is independent of u. Then, there exists β ∈ GKL, ϱ ∈ K
and ε∗ > 0 such that the following holds

|s(t)| ≤ β (|s0| , t) + ϱ(|u|∞), (17)

for all t ≥ 0, u ∈ Lp
∞, and ε ∈ (0, ε∗), where s(t) :=

[x(t), y(t)]⊤.

Proof: We follow the same steps from the proof of

Theorem 1, but with ρ̃ζ(s) = ζ (ρR(s) + ρ1(s))+(1−ζ)ρ2(s)
instead of ρε,ζ . This results in an upper bound on Ψ̇ζ∗ that

holds uniformly for ε ∈ (0, ε∗).

While the results of Theorem 1 and Corollary 1 hold for

system (9), the question of whether (1) is FxT ISS may also

be of interest. In other words: we ask if the transformation

y = z − h(x) preserves the FxT ISS property. Fortunately, as

long as the quasi steady state map satisfies a mild boundedness

assumption, (9) being FxT ISS implies (1) is FxT ISS. This

is further detailed in the following result.

Theorem 2: Suppose (9) is FxT ISS and |h(x)| ≤ α̃(|x|)
for some α̃ ∈ K, then (1) is also fixed time ISS. □

Proof: Since (9) is FxT ISS, there exists β ∈ GKL and

ϱ ∈ K such that
∣

∣

∣

∣

[

x(t)
z(t)− h(x(t))

]∣

∣

∣

∣

≤ β

(∣

∣

∣

∣

[

x0
y0

]∣

∣

∣

∣

, t

)

+ ϱ(|u|∞), (18)

where β(r, t) = 0 for each t > T (r), and T is a continuous

function that satisfies supr≥0 T (r) < ∞ and T (0) = 0.
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Without loss of generality, we can assume β(·, t) is non-

decreasing for each t ≥ 0. Note that (18) implies

|x(t)| ≤ β

(
∣

∣

∣

∣

[

x0
y0

]
∣

∣

∣

∣

, t

)

+ ϱ(|u|∞) (19a)

|z(t)| ≤ β

(
∣

∣

∣

∣

[

x0
y0

]
∣

∣

∣

∣

, t

)

+ ϱ(|u|∞) + |h(x(t))|. (19b)

But we also have

β

(∣

∣

∣

∣

[

x0
y0

]∣

∣

∣

∣

, t

)

= β

(∣

∣

∣

∣

[

x0
z0 − h(x0)

]
∣

∣

∣

∣

, t

)

≤ β

(∣

∣

∣

∣

[

x0
z0

]∣

∣

∣

∣

, t

)

,

where β(r, t) := β(2r, t) + β(2α̃(r), t) ∈ GKL. Moreover,

|h(x(t))| ≤ α̃(|x(t)|) ≤ β̃

(
∣

∣

∣

∣

[

x0
z0

]
∣

∣

∣

∣

, t

)

+ ϱ̃(|u|∞), (20)

where β̃(r, t) := α̃
(

2β (r, t)
)

∈ GKL, and ϱ̃(·) := α̃(2ϱ(·)) ∈
K. Combining (19) and (20) yields the result.

C. A Stylized Example

To illustrate our results, we first consider a singularly

perturbed system with scalar reduced and boundary layer

systems. In particular, consider the plant

ẋ = −⌈z⌋r1 − ⌈z⌋r2 + u1 (21a)

εż = −⌈z − x− u1⌋
q1 − ⌈z − x− u2⌋

q2 + u1u2, (21b)

where ⌈·⌋q := | · |qsgn(·), x, z, u1, u2 ∈ R, 0 < q1 ≤ r1 < 1
and 1 < r2 ≤ q2. System (21) has the quasi steady state

h(x) = x, with reduced system:

ẋ = −⌈x⌋r1 − ⌈x⌋r2 + u1, (22)

and boundary layer system

dy

dτ
= −⌈y − u1⌋

q1 − ⌈y − u2⌋
q2 + u1u2. (23)

Furthermore, it is easy to see that h satisfies the class K
bound assumption from Theorem 2. To verify that (22) and

(23) satisfy Assumptions 2 and 3, we will use the Lyapunov

functions V (x) = x2 and W (y) = y2. For the reduced system

(22) we have:

∂V

∂x
f(x, h(x), u) ≤ −V r̃1(x)− V r̃2(x) + |u|2, (24)

where r̃i :=
1

2
(ri + 1). Thus, Assumption 2 is satisfied.

Similarly, we can differentiate W along the trajectories of

(23) to obtain the following:

Ẇ ≤ −(2−q1 − 2−1−q2)W q̃1(y)− 2−1−q2W q̃2(y),

∀ |y| > max{ϱ−1

B (2q2 |u|4), 2|u|},

where q̃i =
1

2
(qi + 1) and

ϱB(s) := (2−q1 − 2−1−q2)|s|q1+1 + 2−1−q2 |s|q2+1.

This implies that system (23) is FxT ISS uniformly in x,

and hence the assumptions are satisfied. To verify if system

(21) is FxT ISS, it remains to check if the interconnection

terms associated with system (21) satisfy the interconnection

conditions (15). Let Ṽ (x) = |x|r̃1 + |x|r̃2 and W̃ (y) =

0 2 4 6 8 10

Time (s)

10
-2

10
0

10
2

10
4

10
6

0 5 10
10

-5

10
0

10
5

No disturbance

Fig. 1: Trajectories of system (21) with and without the

disturbance u(t), where we use ε = 0.01. The theoretically

computed settling time bound of 18.15 obtained using (7) is

conservative compared to the observed trajectories.

|y|q̃1 + |y|q̃2 . Then, we can compute I1 and apply Lemmas

1-2 to obtain the following estimate:

I1 = 2x
(

−⌈y + x⌋r1 − ⌈y + x⌋r2 + ⌈x⌋r1 + ⌈x⌋r2
)

≤ cṼ 2(x) + 2c−σ1W̃ 2(y),

for all c ∈ (0, 1), where σ1 > 0 is obtained by applying

Lemma 1 twice and upper bounding appropriately. By taking

c > 0 sufficiently small we can satisfy conditions (15a) and

(15c). Thus, it remains to check if I2 also satisfies (15b).

Indeed, by computing I2 we obtain:

I2 = 2y (⌈y + x⌋r1 + ⌈y + x⌋r2 − u1)

≤ cṼ 2(x) + (2c−σ2 + 3 + 2r2)W̃ 2(y) + |u|2,

for all c ∈ (0, 1), where σ2 > 0 is again obtained from Lemma

1. We conclude that the conditions of Theorem 1 and 2 are

satisfied, and hence there exists ε∗ such that the singularly

perturbed system (21) is FxT ISS for ε ∈ (0, ε∗). We simulate

the system using r1 = 2

5
, r2 = 6

5
, q1 = 1

3
, q2 = 9

7
and the

disturbances u1(t) = esin t, u2(t) = sin(19 log(t+ 1))− 0.21,

where we clearly have u(t) = [u1(t), u2(t)]
⊤ ∈ L2

∞. The

trajectories of this system with and without the input are shown

in Figure 1, illustrating the FxT ISS property

IV. FIXED-TIME FEEDBACK OPTIMIZATION WITH

TIME-VARYING COSTS

In this section, we leverage the results of Theorems 1-2 to

study a practical problem of interest in the context of singu-

lar perturbations: feedback optimization under slowly-varying

cost functions [26]. In contrast to the existing asymptotic

results [27], [28], [33], [34], we introduce an optimization-

based controller able to achieve FxT stability via non-Lipschitz

feedback. In particular, we consider plants of the form

ż = g(x̂, z), (25)

where z ∈ R
m is the state, x̂ ∈ Ln

∞ is a measurable and

bounded control input, and g : Rn×R
m → R

m is a continuous

function satisfying the following condition:
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Assumption 4: There exists a continuously differentiable,

globally Lipschitz mapping h : R
n → R

m such that

g(x̂, h(x̂)) = 0 for all x̂ ∈ R
n. Moreover, there exists a C1

function W : Rm → R≥0 and c1, c2 > 0 such that

c1|y|
2 ≤W (y) ≤ c2|y|

2, (26a)

∇W (y)⊤g(x̂, y + h(x̂)) ≤ −κ1W
b1(y)− κ2W

b2(y), (26b)

for all y ∈ R
m, where κ1, κ2 > 0, b1 ∈ (0, 1) and b2 > 1.

There also exists η > 0 such that the function W satisfies

|∇W (y)| ≤ η|y|, (27)

for all y ∈ R
m. □

Assumption 4 is the “fixed-time” version of standard open-

loop stability assumptions considered in the setting of feed-

back optimization [7], [27]. In particular, by taking y =
z − h(x̂) to quantify the deviation of z from its steady-state

approximation, the conditions of Assumption 4 simply ask that

such deviation converges to zero by a fixed-time, for each

fixed x̂ ∈ R
n. For a general class of linear and nonlinear

plants, this property can be achieved using different types

of non-smooth controllers that combine super-linear and sub-

linear feedback [35], homogeneity tools [36], or the implicit

Lyapunov technique [37], to name just a few examples.

Our primary goal is to design a control law on the input x̂
that stabilizes (25) in a fixed time the solution of the following

time-varying optimization problem

min
x̂,z

ϕθ(x̂, z) (28a)

subject to: z = h(x̂). (28b)

where the time variation on the cost functions ϕθ : Rn×R
m →

R is induced by a dynamic parameter θ ∈ R
q that evolves

according to the dynamics

θ̇ = εε0Π(θ), θ ∈ Θ, (29)

where ε0 ≥ 0, and ε > 0 is a small parameter that captures

the rate of change of θ, and Π : Rq → R
q and Θ ⊂ R

q satisfy

the following mild conditions, which can be used to cover a

broad class of time-varying signals t 7→ θ(t) :
Assumption 5: The function Π(·) is Lipschitz continuous,

and the set Θ is compact and forward invariant under the

dynamics (29). □

We can observe that, by substituting (28b) into (28a),

we arrive at the unconstrained parameterized optimization

problem:

min
x̂

Φθ(x̂), (30)

where Φθ(x̂) := ϕθ(x̂, h(x̂)). To guarantee that (30) is a well-

defined optimization problem with a unique solution for each

θ ∈ R
q , we consider cost functions that satisfy the following

assumptions, which are fairly standard in the time-varying

feedback optimization literature [33], [34]:

Assumption 6: The function x̂ 7→ Φθ(x̂) is L-smooth and

κ-strongly convex, uniformly in θ. Moreover, there exists a C1

function φ : Rq → R
n such that φ(θ) = argminx̂ Φθ(x̂). □

Note that when ε0 = 0 in (5), the parameter θ remains

constant for all time, yielding a constant solution φ(θ) to

(30). In contrast, when ε0 ≫ 0, the function t 7→ φ(θ(t))
may exhibit fast time variations that are difficult to track

without additional information about the functions Π, h, and

ϕθ. Therefore, to address the optimization problem (28a) using

real-time gradient feedback, we can regard ε0Π(θ) as the

“input” to the system and study FxT ISS with respect to the

tracking error of φ(θ(·)).

A. Fixed-Time Gradient-Based Feedback

Given ξ1 ∈ (0, 1) and ξ2 < 0, we define the following

function Fξ1,ξ2 : Rp → R
p:

Fξ1,ξ2(x) =
x

|x|ξ1
+

x

|x|ξ2
, (31)

which is continuous at x = 0, see [15]. To solve (30) in fixed-

time, we draw inspiration from the asymptotic counterpart [27]

and propose a fixed-time gradient flow on Φθ(x̂) with time

scale separation:

˙̂x = −εFξ1,ξ2(P̂θ(x̂, h(x̂))), (32)

where

P̂θ(x̂, z) := H(x̂)⊤∇ϕθ(x̂, z), H(x)⊤ = [In Jh(x)
⊤].
(33)

It can be verified, using the chain rule, that

P̂θ(x̂, h(x̂)) = ∇Φθ(x̂),

and hence, for each θ, when the plant dynamics (25) are

negligible, the dynamics (32) converge to the solution of (30)

in fixed time [15], [16]. Since in our setting the dynamics

(25) cannot be neglected, we can obtain a real-time feedback

controller by replacing h(x̂) in (32) with the measured value

of z to obtain the following closed-loop system:

ż = g(x̂, z) (34a)

˙̂x = −εFξ1,ξ2(P̂θ(x̂, z)). (34b)

We study system (34) under the following mild Lipschitz

assumption, which is standard in the literature [27]:

Assumption 7: For the function P̂θ(x, z) defined in (33),

there exists ℓ > 0 such that

|P̂θ(x̂, z
′)− P̂θ(x̂, z)| ≤ ℓ|z′ − z|, (35)

for all x̂ ∈ R
n, z′, z ∈ R

m and θ ∈ R
q . □

To put system (34) into the form (1), let x = x̂−φ(θ) and

τ = εt, which leads to the following dynamics in the τ -time

scale:

ε
dz

dτ
= g(x+ φ(θ), z) (36a)

dx

dτ
= −Fξ1,ξ2(P̂θ(x+ φ(θ), z))− Jφ(θ)u(τ) (36b)

dθ

dτ
= ε0Π(θ), θ ∈ Θ, (36c)

where u(τ) = ε0Π(θ(τ)) can be thought of as the “input” in

(36b). Note that, since Θ is compact and forward invariant, and

the trajectories of (36c) are restricted to evolve in Θ, we only

need to consider the stability properties of system (36a)-(36b).

The following result establishes FxT ISS for this system:
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Fig. 2: Trajectories of the FxT time-varying feedback optimization example, with ε0 = 5, 0.2, 0 and varying initial conditions.

Theorem 3: Suppose that Assumptions 4-6 hold, and con-

sider the singularly perturbed system (36). Then, for all

ξ1 ∈ (0,min(2− 2b1, 1)) and ξ2 ∈ (2− 2b2, 0), there exists

β ∈ GKL, ϱ ∈ K and ε∗ > 0 such that

∣

∣

∣

∣

[

x(τ)
z(τ)− h(x(τ) + φ(θ(τ)))

]∣

∣

∣

∣

≤ β

(
∣

∣

∣

∣

[

x0
z0 − h(x0 + φ(θ0))

]
∣

∣

∣

∣

, τ

)

+ ϱ(|u(τ)|∞),

for all ε ∈ (0, ε∗), τ ≥ 0 and ε0 ≥ 0. □

Proof: Consider the τ -time scale system (36a). This

system has a quasi-steady state h(x + φ(θ)), which results

in the following reduced system:

dx

dτ
= −Fξ1,ξ2(∇Φθ(x+ φ(θ)))− ε0Jφ(θ)Π(θ). (37)

Let M = supθ∈Θ |Jφ(θ)|, which is bounded since Θ is

compact. Moreover, from Assumption 6, we have x̂⊤∇Φθ(x̂+
φ(θ)) ≥ 1

L
|∇Φθ(x̂ + φ(θ))|2 and |∇Φθ(x̂ + φ(θ))| ≥ κ|x̂|.

Then, with the Lyapunov function V (x) = |x|2, we can use

Lemma 1 to obtain

dV

dτ
≤ −

2

L
|∇Φθ(x+ φ(θ))|2−ξ1 −

2

L
|∇Φθ(x+ φ(θ))|2−ξ2

+ c|x|2 +
M2

c
|ε0Π(θ)|2

≤ −
κ2−ξ1

L
V 1− 1

2
ξ1(x)−

κ2−ξ2

L
V 1− 1

2
ξ2(x) +

M2

c
|ε0Π(θ)|2,

where 0 < c < 1

L
min

{

κ2−ξ1 , κ2−ξ2
}

, which shows that

Assumption 2 is satisfied. Next, let y = z − h(x + φ(θ)),
which leads to the following dynamics:

dy

dτ
=

1

ε
g(x+ φ(θ), y + h(x+ φ(θ))) (38)

− Jh(x+ φ(θ))

(

dx

dτ
+ ε0Jφ(θ)Π(θ)

)

.

This yields the following boundary layer system:

ẏ = g(x+ φ(θ), y + h(x+ φ(θ))). (39)

It is easy to verify that Assumption 3 holds with Lyapunov

function W (y) obtained from Assumption 4, so it remains to

check the interconnection conditions (15a)-(15b). Indeed, if

we denote Pθ(x, y) := P̂θ(x + φ(θ), y + h(x + φ(θ))), we

have:

|I1| ≤ 2|x|

(
∣

∣

∣

∣

Pθ(x, y)

|Pθ(x, y)|ξ1
−

Pθ(x, 0)

|Pθ(x, 0)|ξ1

∣

∣

∣

∣

+

∣

∣

∣

∣

Pθ(x, y)

|Pθ(x, y)|ξ2
−

Pθ(x, 0)

|Pθ(x, 0)|ξ2

∣

∣

∣

∣

)

≤ 2ξ1+1ℓ1−ξ1 |x||y|1−ξ1

+ 2K|x||y|
(

ℓ−ξ2 |y|−ξ2 + L−ξ2 |x|−ξ2
)

≤ c
(

|x|2−ξ1 + |x|2−ξ2
)

+
1

µ1(c)

(

|y|2−ξ1 + |y|2−ξ2
)

≤ cṼ 2(x) +
c

1

2
ξ1−1

1 + c
1

2
ξ2−1

1

µ1(c)
W̃ 2(y),

for all c > 0, and µ1 ∈ K∞ is given by µ1(c) :=

m−1

(

c−σ1 + c−σ2 + c−
1

σ2

)−1

, with σi = 1

1−ξi
and m :=

max{(2ξ1+1ℓ1−ξ1)1+σ1 , (4Kℓ−ξ2)1+σ2 , (4Kℓ−ξ2)1+
1

σ2 }.

Picking c < 1

L
min

{

κ2−ξ1 , κ2−ξ2
}

establishes (15a) and

(15c). To verify (15b), we have

I2 = ∇W (y)⊤Jh(x+ φ(θ))Fξ1,ξ2(Pθ(x, y)). (40)

Let h∗ := supx |Jh(x)|, which exists and is finite since h is C1

and globally Lipschitz. We can proceed from (40) as follows:

|I2| ≤ ηh∗|y|
(

(ℓ|y|+ L|x|)1−ξ1 + (ℓ|y|+ L|x|)1−ξ2
)

≤ L̃
(

|x|2−ξ1 + |x|2−ξ2 + |y|2−ξ1 + |y|2−ξ2
)

≤ L̃
(

Ṽ 2 + 2W̃ 2
)

,

where L̃ := ηh∗ max{ℓ1−ξ1 , L1−ξ1 , 2−ξ2ℓ1−ξ2 , 2−ξ2L1−ξ2}.

By applying Corollary 1 we obtain the result.

To illustrate Theorem 3 via a numerical example, we

simulate system (34) with the plant dynamics given by ż =
−F 2

5
,− 2

7

(z−2x̂), which has the quasi-steady state h(x̂) = 2x̂.

The cost function ϕθ takes the quadratic form ϕθ(x̂, z) =
1

2
x̂⊤Qθz + b⊤θ z, where Qθ and bθ are given by

Qθ :=

[

3 + d1(t) 2
2 5 + d2(t)

]

, bθ :=

[

2 + d3(t)
1

]

.

The parameters di are given by d1(t) = 0.8 sin(2.2εε0t),
d2(t) = 1.8 sin(1.7εε0t), d3(t) = 0.66 sin(1.9εε0t). These

signals can be generated by a system of the form (29) by

setting θ(t) ∈ R
6, di(t) = θ2i(t), and Π(θ) = Rθ, where
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R ∈ R
6×6 is a block diagonal matrix with rotation matrices

on the diagonal. Moreover, in accordance with Proposition 3

we set ξ1 = 1

3
, ξ2 = − 1

5
. It can be verified that Qθ ≻ 0

for all t ≥ 0, and the optimizer of Φθ is given by φ(θ) =
−Q−1

θ bθ. We interconnect (34b) with the plant dynamics,

where P̂θ(x̂, z) = 1

2
Qθz + Qθx̂ + 2bθ. The trajectories of

the system are shown in Figure 2, with ε = 0.05 and different

values of ε0. As observed in the plot, the state z converges

in fixed-time to a neighborhood of the time-varying optimizer,

whose size shrinks as ε0 → 0+.

V. CONCLUSION

We establish sufficient Lyapunov conditions for the study

of FxT ISS properties in singularly perturbed systems. The

results were applied to two illustrative examples: a particular

nonsmooth second-order interconnection of systems, and a

general fixed-time feedback optimization problem with time-

varying cost functions, which has not been addressed before

using fixed-time stability tools. Our method of verifying the

interconnection conditions establishes an efficient paradigm

for applying our results to other classes of algorithms and

feedback schemes that exhibit multiple time scales. Future

research directions include applying our results to a broader

range of systems, including systems with more than two time

scales. Moreover, it is also of interest to identify a more

general class of systems and quasi-steady state mappings for

which our interconnection conditions hold, including charac-

terizations based on homogeneity.
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[9] I. Subotić, D. Groß, M. Colombino, and F. Dörfler, “A Lyapunov
framework for nested dynamical systems on multiple time scales with
application to converter-based power systems,” IEEE Transactions on

Automatic Control, vol. 66, no. 12, pp. 5909–5924, 2021.
[10] T. W. Grunberg and D. Del Vecchio, “Time-scale separation based design

of biomolecular feedback controllers,” in 2019 IEEE 58th Conference

on Decision and Control (CDC), 2019, pp. 6616–6621.
[11] D. S. Naidu and A. J. Calise, “Singular perturbations and time scales

in guidance and control of aerospace systems: A survey,” Journal of

Guidance, Control, and Dynamics, vol. 24, no. 6, pp. 1057–1078, 2001.
[12] J. Mendoza-Avila, D. Efimov, L. Fridman, and J. A. Moreno, “An anal-

ysis of convergence properties of finite-time homogeneous controllers
through its implementation in a flexible-joint robot,” in 2022 IEEE 61st

Conference on Decision and Control (CDC), 2022, pp. 5789–5794.
[13] A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of

linear control systems,” IEEE Transactions on Automatic and Control,
vol. 57, no. 8, pp. 2106–2110, 2012.

[14] A. Polyakov and M. Krstic, “Finite-and fixed-time nonovershooting sta-
bilizers and safety filters by homogeneous feedback,” IEEE Transactions

on Automatic Control, 2023.
[15] K. Garg and D. Panagou, “Fixed-time stable gradient-flow schemes:

Applications to continuous-time optimization,” IEEE Transactions on

Automatic Control, 2018.
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