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On the Instability of Nesterov’s ODE Under
Non-Conservative Vector Fields

Daniel E. Ochoa™', Member, IEEE, Mahmoud Abdelgalil

Abstract—We study the instability of Nesterov’s ODE
in non-conservative settings, where the driving term is
not necessarily the gradient of a potential function. While
convergence properties under Nesterov’s ODE are well-
characterized for settings with gradient-based driving
terms, we show that the presence of arbitrarily small non-
conservative terms can lead to instability. To resolve the
instability issue, we study a regularization mechanism
based on restarting. For this mechanism, we establish
novel explicit bounds on the resetting period that ensure
the decrease of a suitable Lyapunov function, thereby
guaranteeing stability and “accelerated” convergence rates
under suitable smoothness and monotonicity properties
on the driving term. Numerical simulations support our
results.

Index Terms—Averaging analysis, non-conservative

systems, hybrid dynamical systems.

[. INTRODUCTION

HE NESTEROV Accelerated Gradient method has been
T a cornerstone of optimization since its introduction in [1].
Its continuous-time analog, introduced in [2] and termed
the Nesterov’s Ordinary Differential Equation (ODE), has
emerged as a powerful tool to study optimization algorithms
using a continuous-time dynamical systems point of view [3].
Nesterov’s ODE is defined by the equation

42400 =0, t=n, ()
where x € R", t € [Ty, o0), with Ty > 0, G : R" — R”, and
n € (0,1]. When G(x) = VJ(x) for some convex potential
function J, Nesterov’s ODE achieves accelerated convergence
to the minimum of J with rate O(1/1%) [2].

The remarkable success of Nesterov’s method in
optimization motivates the exploration of its potential
extensions to non-conservative settings, where the vector
field G is not necessarily the gradient of a potential function.
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Such scenarios naturally arise in areas such as game theory
and consensus-based distributed optimization [4]. In game-
theoretic contexts, it is well known that for a class of
games known as potential games, convergence to equilibria
can be achieved via gradient-like dynamics. Similarly, in
multi-agent systems with undirected communication graphs,
consensus dynamics are often interpreted as gradient flows.
These observations raise an important question: can dynamical
systems of the form (1) also provide benefits in settings where
the game is not potential or the communication graph is
directed?

Extending Nesterov’s acceleration to such domains, how-
ever, presents several challenges. First, the lack of a potential
function prevents one from formulating the ODE within
an optimization framework and leveraging the body of
existing stability results developed in that context. Second,
while in optimization problems Nesterov’s ODE achieves
accelerated convergence through dynamic damping of the
form %jc, this same term can have adverse effects in non-
conservative systems. For instance, our previous studies on
accelerated Nash equilibrium seeking [5] and distributed
concurrent learning [6] revealed that this damping mech-
anism fails to mitigate the destabilizing influence of the
non-conservative component of G in (1), often leading to
instability. Although similar behaviors have been observed
numerically even in optimization problems [7], a theoretical
explanation for this instability phenomenon has remained
elusive.

The first contribution of this letter is to provide a theoretical
explanation for the emergence of instability in Nesterov’s
ODE when the term G is non-conservative. Specifically,
by leveraging the Helmholtz decomposition theorem [§]
we decompose G into its conservative and non-conservative
components, and employ the variation-of-constants for-
mula [9, Proposition 9.6] to obtain a representation suitable
for averaging analysis. We then study the average system
using Floquet theory [10, Sec. 19] to identify subclasses of
vector fields G for which Nesterov’s ODE fuails to stabilize
the set A = {x : G(x) 0}. We further show that, in
specific scenarios, this instability persists even when the non-
conservative component of G is arbitrarily small compared to
the conservative component, thus providing new insights into
adversarial perturbations that can destabilize such accelerated
flows in traditional optimization settings. Our instability anal-
ysis focuses on linear non-conservative vector fields whose
conservative components are strongly monotone.
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The second main contribution is the development and
analysis of a hybrid dynamical system that stabilizes A4
by combining two mechanisms: continuous-time flows gov-
erned by Nesterov-like dynamics, and discrete-time resets
triggered whenever T € R reaches the upper bound
of a compact interval. Unlike the instability analysis,
which focuses on linear vector fields, this hybrid frame-
work encompasses a broader class of nonlinear vector
fields satisfying suitable monotonicity and Lipschitz condi-
tions. Extending the results in [5], we derive quasi-optimal
reset conditions and establish improved convergence rate
guarantees.

The rest of this letter is organized as follows. Section II
presents the preliminaries. Section III prepares Nesterov’s
ODE for averaging, and Section IV presents its instability
properties. Section V presents a hybrid mechanism to recover
stability. Section VI presents a numerical example. Section VII
ends with conclusions.

Il. PRELIMINARIES
We use (u,v) = [u",v"]Tto denote the concatenation of
u,v € R*. The Euclidean inner product is denoted by (u, v)
for all u,v € R". We let |z| ;== /(z, z) for each z € R", and
use |z|¢c = mingec |z — s| to refer to the minimum distance
between z and a closed set C. Given a matrix A € R™*", the
induced 2-norm is defined by [|A|| := sup,—; |Ax|. The set of
eigenvalues of a matrix A € R™", counted with multiplicities,
is denoted by spec(A). We use A;; € R for the i-th entry of the
Jj-th column of A € R"™". Given {a;};_; C R", diag{ax};_, €
R™" denotes the matrix whose i-th diagonal entry equals «;
for all i € {1,2,...,n}, and whose off-diagonal entries are
zero. A set-valued map F : R” = R" assigns to each point
xeR"aset Fx) CR". Givenf : X - Y and g: )Y — Z,
we use gof to denote their composition. The flow CI>§ along a
vector field f : R" — R" assigns to each point (s, xg) the value
d>§ (x0) = x(s) € R", where x is the unique solution to x =
f(x) satisfying x (0) = x¢. Given a diffeomorphism ¥ : R" —
R"” and f : R" — R" the pullback of f by W, denoted

WA R — R, s deﬁned by (W) (x) = (L—of oW)(x) for
all x € R”, where 2 (y) denotes the Jacoblan matrix of W1
evaluated at y € R” Given a smooth function J R* - R
we define its gradient by VJ(x) = ( C)J @), ..., 8x J (x)). Given
a function f : R" — R", we define its dlvergence divf(x) =
Yo gf (x), and let the rotation operator rotf : R" — R"™*”"
be given by (rotf(x)); = % — %}g) for each x € R".
Given a matrix-valued function K : R” —> R™" we define
the rotation operator as rotK (x) = Z, 1 dx“ x),..., %’j(x)),
where Kj; : R" — R corresponds to the functlon x = (K(x))y.

To obtain our results, we use the following theorem relating
the flows of two vector fields g,f : R" — R™:

Theorem 1 (Variation-of-Constants Formula [9, Propos-
ition 9.6]): Let g be r-th and f be (r 4+ 1)-th continuously
differentiable time-dependent vector fields. Let xo € R", T >
0, T € [0,T], and define g(r,x) = ((‘b’;)*gf)(x), where
g:(x) == g(x, 1), and (dﬁ)”‘gr denotes the pullback of g, along
the flow of f. Then, for all = € [0, T] where the ﬂows <I>f +g
@L, and ®F exist, it follows that &7 (xg) = (¥ 0 &%) (xp).

Hybrid Dynamical Systems: To formulate mechanisms that
recover the stability of Nesterov’s ODE, we use hybrid
dynamical systems (HDS) with state x € R” and dynamics

2 {xeC i€ F(x)

teGl)’ 2)

where F : R” = R” is the flow map, G : R* == R” is the jump
map, C C R" is the flow set, and D C R” is the jump set. We
use the tuple H = (C, F, D, G) to refer to the data of the HDS.
Solutions to HDS are parameterized by continuous-time ¢ €
R-¢ and discrete-time j € Zx¢ and thus evolve on hybrid time
domains. For a formal definition of solutions to HDS we refer
the reader to [11, Sec. 2]. Standard continuous-time systems
described by the dynamics x = f(x) with f : R” — R”, can be
cast as HDS by setting C = R”, D = &, and F(x) = {f(x)}.

Definition 1 (Stability/Instability Notions): A compact set
A C R” is said to be uniformly globally exponentially stable
(UGES) for the system 7 in (2) if every maximal solution to
‘H is complete, and there exist ¢y, ¢y > 0 such that |x(z,j)|A <
c11x(0, 0)|Ae=2U*+D for all (¢, j) € domx and each solution x
to H. The set A is unstable for H if there exists ¢ > 0 such
that for each § > 0 there exist a solution x, with |x(0, 0)|A < §,
and (7, J) € domux satistying |x(T,J)|A > e.

xeD

[11. NESTEROV’'S ODE:ANALYSIS VIA STANDARD
AVERAGING

In this section, we prepare Nesterov’s ODE for analysis via
averaging. First, we transform (1) to the t-timescale by noting
that every solution (x, t) to (1) satisfies t(r) = nt 4+ Tp, with
Ty > 0, for all + € dom(x, 7). This timescale change generates
the following system with state (x,t) € R” x [Ty, 0o) and
dynamics
d®x  3dx dt 3
ST 4w =0. =1, 3)
where y == n%. To analyze the effect of the vector field G on
the dynamics (3), we use the following generalization of the
Helmholtz decomposition theorem [8, Th. 7.2]:

Lemma 1 (Helmholtz Decomposition): Suppose G is ana-
lytic in R". Then, there exist functions P : R" — R™",
J:R" - R, and K:R" — R" " such that G(x) = VJ(x) +
rotK (x) for all x € R", where J(x) := >, P;i(x) and K(x) =
P(x) — P(x) " satisfy div(rotK(x)) = 0 and r0#(VJ) = 0 for
all x e R™.

To ensure uniqueness of solutions to (3) and guarantee that
the flow along the corresponding vector field is well-defined,
we impose the following conditions on the elements of the
decomposition in Lemma 1.

Assumption 1: (1) Strong Monotonicity: Jx; > 0 such
that (VJ(x1) — VJ(x2), x1 — x2) > kylx1 — x2|? for all
x1,xp € R™ Additionally, we have that (rorK(x1) —
rotK (x3), x; — xp) > 0 for all x1, xp € R".

(ii) Lipschitz continuity: 3€;,£g > 0 such that |VJ(x1) —
VI()| = Lylx1 — x2| and [rotK(x1) — rotK(xp)] <
Lrlx1 — x| VYx1,x0 € R™.

(iii) Scaling relationship: £x = a+/€; with @ € (0, 1].

Assumption 1-(i) ensures that the scalar function J is
strongly convex, which, via [2, Th. 3], guarantees accelerated
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convergence of Nesterov’s ODE to the unique minimizer of J
when the non-conservative term rotK is not present. The next
example presents a class of vector fields that satisfies these
conditions.

Example 1: Given Q € R™" the vector field G(x) =
Ox is analytic and satisfies Assumption 1. The Helmholtz
decomposition in Lemma 1 can be explicitly constructed by
letting J(x) = x"Qux, (K(x); = 3(Qa)ilx|* for all x €
R" and i,j € {1,2,...,n}, where Oy := 2(Q+Q") and Q, =
3(0-0N).

Using Lemma 1 and Assumption 1, by letting s = t/e,
with & := (£,)72, and letting y == (1, y2) = (x, &) € R,
from (3) we obtain that dt/ds = ¢ and

@ — y2 0 R
ds (—Vj(m)) * 8<—€Siroy2 - rOtK(yl))
= h(y) + cu(y, &s), (4)

for all y € R", where J(x) := £J(x) and K@) = LK)
By using the pullback of u.s(y) := u(y, es) via the flow along
h, we obtain a system with state (z,t) € R?" x [Ty, o0) and
dynamics given by

dt

*
% = a((d)ﬁ) u,;s) (2) = ev(z, &s, 5), i e. 5
By Theorem 1, a solution y to system (4) and a solution z to
system (5) with y(0) = z(0), satisfy y(s) = ®"(z(s)) for all
s € domy.

Remark 1: The system in (5) admits a series representation
that expands the pullback in integrals of iterated Lie brackets
between uys and h. While closed forms are generally not
available, simplifications emerge when certain Lie brackets
vanish; an approach used for Euler-Lagrange systems in [12].
Although Nesterov’s ODE has an Euler-Lagrange formulation
that might benefit from similar simplifications, our instability
analysis studies the linear case of Example 1, leaving the
nonlinear case for future work.

IV. INSTABILITY UNDER LINEAR MAPPINGS

In this section, we study the setting where G(x) = Qx for
some Q € R™" and all x € R". In this case, the Helmholtz
decomposition yields J(x) = %xTQXx and rot K(x) = Qux,
where Q; and Q, are the symmetric and skew-symmetric parts
of Q, respectively. Therefore, the ODE in (4) becomes

dy 0 1 0 0 >
- = N +¢ J , 6
ds (—Qs 0>y (—Qa —=l)” ©
—_——— [ —;
=A =:B(es)

with dt/ds = ¢, and where QY = Hg_i\l Qa = angﬁ, with

a € (0, 1]. Similarly, the dynamical system in (5) reduces to

E A5z = s(fASB(r)eAf)z, T _.
ds ds
Before presenting the first main result of this letter, we
introduce a lemma that, under suitable conditions on Qg, shows
that the flow of the vector field y — Ay is periodic.
Lemma 2: Let G(x) = QOx where Q € R™" and suppose
G satisfies Assumption 1. Suppose there exists u € R, u # 0,

such that for each A € spec(Qy) there exists ¢, € Q>ol
satisfying A = (cxu)z. Then, there exists 7 > 0 such that
every solution i to

dy
— =AY, 8
7 v (®)
where A is defined in (6), is periodic with period 7.

Proof: By the definition of A and the determinant formula
for block matrices, det(Al — A) = det(k21 + Qy). Thus,

the eigenvalues of A are +iw;, where a)]2 = A for A; €
spec(Qs). Since J(x) = %xTst is strongly convex, Qs is

positive definite, so all w; € R.. Since Qs is positive definite,
there exists an orthogonal matrix U that diagonalizes Q. In

the coordinates defined by U, the system (8) decouples into
0 —wj

o Ol)xpj. Thus,
each solution ¥ to (8) is a superposition of periodic signals
with frequencies {w; 7:1- By the assumption on Qy, we have
that A; = (cju)? for ¢; € Q, ¢j > 0. Then, writing ¢; = a;/b;
with a;, b; € N, for each j € {1, 2, ..., n} there exists k; €
Z such that w; = kjwy where wo = u/L, with L being the
least common multiple of {b1, ba, ..., b,}. This result ensures
periodicity of each solution v, with period 7 =27 /wy. W

The result of Lemma 2 enables the use of techniques for
averaging of periodic systems with slow-time dependence
(see [13, Sec. 3.3]), and leads to our first main result.

Theorem 2: Let G(x) =0x, Q€ R"™" and assume G sat-
isfies Assumption 1. Suppose that: i) all off-diagonal entries
of Q, are nonzero, ii) Qg satisfies the assumptions in
Lemma 2, and iii) precisely one eigenvalue of Qg has
algebraic multiplicity greater than one. Then, for each n €
(0, 1], the origin is unstable for the x-dynamics in Nesterov’s
ODE (1).

Proof: Step 1 (Definition of the Average System): By
Lemma 2, there exists 7 > 0 such that A(z, s) is periodic in
s with period 7. Indeed, since solutions to (8) are periodic,
the matrix exponential ¢ is periodic in s. Because B(t) is
independent of s, the matrix A(t,s) = e AB(1r)e?’ is also
periodic with period 7. By averaging (7) over s, we obtain
the following slow time-varying” average system:

d¢ _
= —¢lB
ds 8( it

planar rotation blocks of the form ijj =

_ d
Ble, = ©)
T+ Ty ds

where B = %fOTe’ASBkeAsds, for k IS

) 0 0 _ {00
{1,2}, = (—Qa 0) and By:= (0 —I)'
Step 2 (Instability of the Average System): We analyze the term

B in (9) which, as s — oo, dominates the stability properties
of (9). First, since Qj is positive definite, by the spectral
theorem [14, 2.5.6], there exists an orthonormal matrix P such
that PTQ,P = diag{gr};_; = As. gk > 0, where {qi};_, =
spec(@s), and where g; > 0. Let P= I, ® P, where ® denotes

and B

]Q>o denotes the set of positive rational numbers.
2The system is called slow time-varying because the resulting vector field
depends on 7, which evolves slowly since ‘[% =eK 1.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 05,2025 at 23:08:31 UTC from IEEE Xplore. Restrictions apply.



2642

IEEE CONTROL SYSTEMS LETTERS, VOL. 9, 2025

the Kronecker product, and define A := PTAP = < OA é)
- N

Then, we have that

i)Teﬂ:Ari) — AT — (

Cis) £S5 (s)) (10)

FS1(s) C(s)
with C(s) := diag{cos(Ars)}i_;, S1(s) = diag{Ag sin(Aes$)}}_;,
Sa(s) = diag{r, ' sin(es)}7_,, and A = /gx for all k =
{1,2,...,n}. Using these definitions, we analyze the term
PTBiP = %fOTe_ASfA’TBlf’eAsds. From (10), by letting

A

0, = PTQ,P, we have that

—AspT R $2()0uC(s) S2(5)QuS(s)
ASPTB P As _ 2 < 4 )
‘ e (—C@MhC@)—C@KhSﬂﬂ
Then, from the definitions of C(s) and S;(s):

[$:90u00)],
(52906529

= Ai_l sin()\l-s)Qa,,-j cos(kjs)
= A; 2 sin(1;5)Qq sin(2;s)

I:C(S)QQC(S):IU = c08(1i5)Qa.ij COS (Ajs)

[C(S)Qaéb(s)_ = 1" cos(his)Qasin(hys).
Jdij

Since the period 7 can be written as the least common
multiple of {;7, ..., -}, it follows that the terms C(s)QaS2(s)

and C(s)Qasz(s) vanish under the averaging operation.

Therefore, PTB|P = 1 Q(()l) QS >, where (és))zj = —(0n)ij»
a

- 0 ifi=j Vv a#g
L= s . - 11
(Ca); { Qu.ij if qi = gj (1)
where we used the fact that QI = —Qa which implies that

Quii=0forallie{l,2,...,n}.

Given that Oy has exactly one degenerate eigenvalue, there
exists g > 0 such that ¢; = ¢ for all indices i in some subset
Tc{l1,2,...,n}. Also, for all (j,k) e J ={1,2,...,n}\Z,
we have g; # qr # g. Thus, from (11), both Q(ll) and Q(lz)
have zeros in their j row and j”* column for all j € 7. Hence,
given A € C, we have that det(A] — PTBP) = AT det(A21 +
ﬁ@é), where |J| denotes the cardinality of 7, and where
0 7 is obtained from Q. by removing its j row and column
for every j € J. Therefore,

(= i‘/%’f: e spec(QJ)} C spec(B)),
where we used the fact that the spectrum of a matrix is
invariant under similarity transformations.

Now, since Qa is skew-symmetric, Q 7 1is also skew-
symmetric by construction. Additionally, given that Q, ;; # 0
for all i,j € {1,2,...,n} by assumption, it follows that there
exists a set {ay}iL, C R.o, with m = [|J]/2], such that
{£i g}, C spec(Q7). Thus, letting 1 = iwy in (12) yields
L, = fwr/+/2q and L € spec(B)), giving a positive real
eigenvalue for B;. Hence, the origin is unstable under the ¢
dynamics of (9).

Step 3 (Instability of the Original System): Instability of
system (7) follows from Step 2 by applying the Floquet

(12)

Theorem in [10, Sec. 2]. Also, by Theorem 1 we note that
y(©)] = [PL@)] = [€42(s)] = omin(€*)]z(s)| for all s € Rxo,
where omin(A) denotes the minimum singular value of A €
R"™"_ Since omin(e®) > 0 by the same reasoning used in the
proof of Lemma 2, the instability of system (6) is implied by
the instability of system (7). |

Remark 2: Theorem 2 provides a theoretical explanation
for the instability observed numerically in [5] whenever
non-conservative terms appear in the vector field G in (1).
Such terms arise when G is the pseudo-gradient of a non-
potential game, or in consensus-based dynamics when the
communication graph is directed [6]. Note that the instability
emerges regardless of the size of Q,. In this sense, Theorem 2
also provides a procedure for the synthesis of arbitrarily
small (compared to the conservative part of G), adversarial,
state-dependent perturbations able to destabilize (1) under
conservative mappings of the form G = VJ, by adding to VJ
a perturbation of the form rot K.

V. PRECLUDING INSTABILITY VIA RESTARTING

To address the instability of Nesterov’s ODE under non-
conservative mappings, we regularize the dynamics using
resets that restart the momentum. Similar approaches have
been studied in [15] under conservative maps, in [5] for Nash
equilibrium-seeking problems in monotone games, and in [6]
for consensus-based concurrent learning in directed-graphs.
Compared to these works, we establish improved convergence
rates and tighter resetting conditions for a subclass of vector
fields satisfying Assumption 1-(i)(ii), that includes nonlinear
vector fields beyond the linear setting studied in Section IV.

Starting from Nesterov’s ODE in (1), we let g == x, p = X,
and embed the dynamics in the HDS ‘H = (C, f, D, g) with
state x = (g, p, 1) € R" x R" x R0, and data

p q
oo =1-3p-6@|. sx)=10].
n To

C ={(¢p.0): qeR" peR" e[l Tl
D :Z{(CI’I%T)I qERn,pERn"EZT}’

where n € (0, 1] and 0 < Ty < T are tunable parameters. The
HDS periodically resets t to Ty when it reaches T, preventing
the damping term —3p/t from vanishing, and p to O to ensure
the strict decrease of a suitable Lyapunov function across
jumps. For this HDS, we analyze the stability of the compact
set A == {x*} x {0} x [Ty, T], where x* € R" is the unique
point® that satisfies G(x*) = 0.

Theorem 3: Let G satisfy Assumption 1-(i),(ii). Suppose
thatn € (0,1),and T < T < T, where Iz = Tg+47)2/KJ and
T := 2min{3(1—n), kyn}/Lx. Then, the set A is UGES for H.
Moreover, there exists p > 0 such that, for each compact set
Ko C CUD, there exist My, Mg > 0 for which each solution
x = (g, p, 7) with x(0,0) € Ky satisfies

2 ,—pj

M;T?e n M,
T 1G(q(, )] S—rz(t,j)

Y(t,j) € dom x, where J(q) = J(q) — J(x*) Yq € R™.

B T20—Pj
J(q(t.)) < il

3Guaranteed to exist due to the strong monotonicity properties of G.
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Proof: For each x € CUD, consider the Lyapunov function

T * 2 2 *
Voo =alg+2p—x (U@ —I6),
where a = 29b/T2, b == 3 — 1, ¢ = 3“<1b2’7), and § =
nab = 2 . Since v € [Tp,T], and J is strongly convex by

Assumptlon 1, we obtain C|X|A <V(x) < C|X|A where ¢ :=
T2 min{c, ‘SK’} ¢ == max{a+ % al | 3T e’ mT? + ”bT}, and m =
b2 +c= 8/2

Computing Vix) = (VVGO.f(0), and using the
Helmholtz decomposition G(g) = VJ(g) + rot K(g), yields

V(x) = —2ct(3—n)lp|®
2at N N
- = (lg=+VI@) - (V@ - J(M))
—%Tt(q —x*, rotK (q)) — st2(p, rotK(q)) Vyx € C.

By Assumption 1, (VJ(g), g—x*)—(J(q)—J (x*)) > %’Iq—x"lz,
(g — x*, rotK(q)) > 0, and |rotK(q)| < flk|lq — x*| for all
g € R". Using these facts, together with the Cauchy-Schwarz
and Young’s inequalities, we obtain that

. 6Ttlk N
—oa(Ipl +lg = 12) + =5 (Ip +1g — x*12)

T
—Ar(l - ?>lef4 < -uV( Vxec,

where A := min{2c(3 —n), %2} and u = MT — T)Ty/Te.

On the other hand, for x € D, V(g(x)) — V(x) =
—mT?|p|* — 2T (g—x*, p) =8(T* = T5)(J(9) —J (*)). Defining
= ,/(T?- TO)KJ, and applying Cauchy-Schwarz together
with Young’s inequality with parameter & = 7/ I", and using
the strong convexity of J, by letting AV (x) = V(g(x)) —
V(x), we obtain that

ar?>  aT? 2 ar? ar )
AV(x) =- ﬂ—b—rw— T——|q—x|

V(x)

IA

* 12 %
= —vi|pl* — nalg — x> < —EV(X)

LT and v =

for all x € D, where v| == 1 — —, Vv =
min{vy, v2}. Since T > T implies F >2n,v e (O 1)

The quadratic bounds on V, combined with the strict
decrease of V during the flows and jumps of H establish
that A is UGES for H via [16, Th. 1]. To obtain the
convergence bounds for G and j, let Ko C CUD be
compact. For any solution x to H with x(0,0) € Ko,
define ¢; = V(x(sj,j)) where s; = min{t : (¢,j) €
dom yx}. The flow and jump conditions give cj;1 < e “¢;
where p = —In(l — 2) + u(T — Tp) > 0. Thus, ¢; <
e PIV(x(0,0)). From 81%(J(¢) — J(x*)) < V(x), we obtain
J(q(t, /) < V(x(0,0)T2e P j2¢2(1,j) for all (z,j) € dom y.
Using strong convexity and Lipschitz continuity of G gives
1G(q(t. ))I* < (b + Lx)*V(x(0,0)T2ePkyT2(1, j). Letting
My = %maxxeKo V(x) and Mg = WM] completes
the proof. Additional details are presented in the extended
manuscript [17]. [ |

Corollary 1: Under the assumptions of Theorem 3, as
Ty — 0, T € [2T, eT] guarantees convergence of ¢(z,j) to x*
at a rate of order O (e V¥,

Proof: For any solution x = (¢, p, T) to H the state T resets
every (T'—To)/n units of time, giving j < 7 for any (¢, ) €
dom x. Additionally, from Theorem 3 and strong convexity, we
obtain |g(t, j) — x*|> < ky exp(—a(T, To)t) where a(T, Tp) =
—T_LTO In(1 — 2).

As Ty — 0, we have v — min{l, «;}(1 — %) where T —
L. Setting & = % and 8 = M we maximize f(§) =
—&1In(1 — B(1 — &)). The unique critical point satisfies In(1 —
Bl — &%) + % = 0, which can be verified to be a
maximum by checking g(§) = In(1 — (1 —&)) + % is
strictly increasing with g(0) < 0 and limg_, - g(§) > 0. For
B = 1, we obtain £* = ¢!, giving T°P! = eT. For small g,
£* ~ 1/2, giving T°P' ~ 2T. In gentzeral, TP ¢ [2T, eT.

K *

AUT = T, o(T) = 52 BEY
rate O(e~"W¥I'y for ¢ > 0. Additional details are presented
in the extended manuscript [17]. [ |

Remark 3: Theorem 3 yields the semi-acceleration bound
O/(1, /)3 along flow intervals, matching the classical
O(1/1%) rate of Nesterov-type ODEs with damping 3/t for
smooth convex objectives [2] during intervals of flow. In
low-curvature regimes (k; < 1), Corollary 1 improves
upon gradient-like dynamics x = —G(x), which attain
O(e ™" convergence rates under Assumption 1-(i),(ii), and
refines [5, Lemma 5] by removing the factor o = (¢; +
£.)/ky from the exponent in O(e~Wk//9) 1) When G = VJ,
existing acceleration results achieve exponential convergence
with exponent proportional to ,/k; [3, Th. 1]; our result attains
the same qualitative ,/k; scaling without the gradient-structure
assumption.

yielding convergence

VI. NUMERICAL SIMULATIONS

Instability Example: We consider a non-conservative driving
term G(x) = (Qs + Qu)x = £;(Qs + an)x with O =

1 O ~ 0 05

Q=105 0
Wlth these choices, all the conditions of Theorem 2 are satis-
fied. We set t(0) = Tp = 0.1, y(0) = z(0) = (0.1, —0.1, 0, 0)
for systems (6)-(7). We also simulate system (8) from ¥ (0) =
¥(0) and the average system (9) from ¢ (0) = z(0). The trajec-
tories are shown in Figure 1. The left plot shows the periodic
behavior of the linear system (8), where the ¥ -components
exhibit bounded oscillations consistent with the periodic flow
predicted by Lemma 2. The middle plot validates the averaging
analysis by showing how the solution z(7) of the pulled-back
system (7) closely follows the solution ¢(t) of the averaged
system (9) on the timescale O(1/¢). The right plot confirms
the instability predicted by Theorem 2.

Precluding Instability via Restarting: We simulate the
restarting hybrid dynamics H using the same vector field
G(x) = (Qs+ Qq)x, which yields £g =5, £; = 100, and «; =
100. We set n = 1/2, Tp = 0.1, and T = 0.3844, which satisfy
the condition 0.14 =T < T < T = 0.6 from Theorem 3.
Using x (0, 0) = (10*, —10*,10*, —10*,0.1), Figure 2 shows
the evolution of |g(f) — x*| for both Nesterov’s ODE and
the HDS H. The red stars indicate the restarting events. The
simulations confirm both the UGES property of Theorem 3
and the O (e~ V") convergence rate of Corollary 1.

, and £; = 100, leading to ¢ = 0.1.
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Fig. 1. Left: Components of ¥ showing a solution of the periodic system (8). Middle: Components of z and ¢ showing the solutions of the

pulled-back system (7) and the averaged system (9). Right: Components of y showing a solution of Nesterov’'s ODE in (6).
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Fig. 2. Comparison of trajectories of |g(t) — x*| under Nesterov’s ODE
and the restarting HDS H.

VIl. CONCLUSION AND FUTURE DIRECTIONS

In this letter, we prove that for linear vector fields with
nonzero skew-symmetric components, Nesterov’'s ODE can
exhibit instability even under strong monotonicity conditions.
To resolve this instability, we design a hybrid dynamical
system that achieves robust stability while inducing conver-
gence rates of order O(e~v¥/") through periodic restarting
mechanisms. Future work will focus on Lie bracket expansions
of the pullback operator to analyze the instability of Nesterov’s
ODE in the case of nonlinear vector fields.
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