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On the Instability of Nesterov’s ODE Under
Non-Conservative Vector Fields

Daniel E. Ochoa , Member, IEEE , Mahmoud Abdelgalil , and Jorge I. Poveda

Abstract—We study the instability of Nesterov’s ODE
in non-conservative settings, where the driving term is
not necessarily the gradient of a potential function. While
convergence properties under Nesterov’s ODE are well-
characterized for settings with gradient-based driving
terms, we show that the presence of arbitrarily small non-
conservative terms can lead to instability. To resolve the
instability issue, we study a regularization mechanism
based on restarting. For this mechanism, we establish
novel explicit bounds on the resetting period that ensure
the decrease of a suitable Lyapunov function, thereby
guaranteeing stability and “accelerated” convergence rates
under suitable smoothness and monotonicity properties
on the driving term. Numerical simulations support our
results.

Index Terms—Averaging analysis, non-conservative
systems, hybrid dynamical systems.

I. INTRODUCTION

T
HE NESTEROV Accelerated Gradient method has been

a cornerstone of optimization since its introduction in [1].

Its continuous-time analog, introduced in [2] and termed

the Nesterov’s Ordinary Differential Equation (ODE), has

emerged as a powerful tool to study optimization algorithms

using a continuous-time dynamical systems point of view [3].

Nesterov’s ODE is defined by the equation

ẍ + 3

τ
ẋ + G(x) = 0, τ̇ = η, (1)

where x ∈ Rn, τ ∈ [T0,∞), with T0 > 0, G : Rn → Rn, and

η ∈ (0, 1]. When G(x) = ∇J(x) for some convex potential

function J, Nesterov’s ODE achieves accelerated convergence

to the minimum of J with rate O(1/t2) [2].

The remarkable success of Nesterov’s method in

optimization motivates the exploration of its potential

extensions to non-conservative settings, where the vector

field G is not necessarily the gradient of a potential function.
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Such scenarios naturally arise in areas such as game theory

and consensus-based distributed optimization [4]. In game-

theoretic contexts, it is well known that for a class of

games known as potential games, convergence to equilibria

can be achieved via gradient-like dynamics. Similarly, in

multi-agent systems with undirected communication graphs,

consensus dynamics are often interpreted as gradient flows.

These observations raise an important question: can dynamical
systems of the form (1) also provide benefits in settings where

the game is not potential or the communication graph is

directed?
Extending Nesterov’s acceleration to such domains, how-

ever, presents several challenges. First, the lack of a potential
function prevents one from formulating the ODE within

an optimization framework and leveraging the body of

existing stability results developed in that context. Second,
while in optimization problems Nesterov’s ODE achieves

accelerated convergence through dynamic damping of the

form 3
t
ẋ, this same term can have adverse effects in non-

conservative systems. For instance, our previous studies on
accelerated Nash equilibrium seeking [5] and distributed

concurrent learning [6] revealed that this damping mech-

anism fails to mitigate the destabilizing influence of the

non-conservative component of G in (1), often leading to
instability. Although similar behaviors have been observed
numerically even in optimization problems [7], a theoretical

explanation for this instability phenomenon has remained

elusive.
The first contribution of this letter is to provide a theoretical

explanation for the emergence of instability in Nesterov’s

ODE when the term G is non-conservative. Specifically,
by leveraging the Helmholtz decomposition theorem [8]
we decompose G into its conservative and non-conservative

components, and employ the variation-of-constants for-

mula [9, Proposition 9.6] to obtain a representation suitable

for averaging analysis. We then study the average system

using Floquet theory [10, Sec. 19] to identify subclasses of

vector fields G for which Nesterov’s ODE fails to stabilize

the set A := {x : G(x) = 0}. We further show that, in

specific scenarios, this instability persists even when the non-

conservative component of G is arbitrarily small compared to

the conservative component, thus providing new insights into

adversarial perturbations that can destabilize such accelerated

flows in traditional optimization settings. Our instability anal-

ysis focuses on linear non-conservative vector fields whose

conservative components are strongly monotone.
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The second main contribution is the development and

analysis of a hybrid dynamical system that stabilizes A

by combining two mechanisms: continuous-time flows gov-

erned by Nesterov-like dynamics, and discrete-time resets

triggered whenever τ ∈ R≥0 reaches the upper bound

of a compact interval. Unlike the instability analysis,

which focuses on linear vector fields, this hybrid frame-

work encompasses a broader class of nonlinear vector

fields satisfying suitable monotonicity and Lipschitz condi-

tions. Extending the results in [5], we derive quasi-optimal

reset conditions and establish improved convergence rate

guarantees.

The rest of this letter is organized as follows. Section II

presents the preliminaries. Section III prepares Nesterov’s

ODE for averaging, and Section IV presents its instability

properties. Section V presents a hybrid mechanism to recover

stability. Section VI presents a numerical example. Section VII

ends with conclusions.

II. PRELIMINARIES

We use (u, v) = [u�, v�]�to denote the concatenation of

u, v ∈ Rn. The Euclidean inner product is denoted by 〈u, v〉
for all u, v ∈ Rn. We let |z| :=

√
〈z, z〉 for each z ∈ Rn, and

use |z|C := mins∈C |z − s| to refer to the minimum distance

between z and a closed set C. Given a matrix A ∈ Rm×n, the

induced 2-norm is defined by ‖A‖ := sup|x|=1 |Ax|. The set of

eigenvalues of a matrix A ∈ Rn×n, counted with multiplicities,

is denoted by spec(A). We use Aij ∈ R for the i-th entry of the

j-th column of A ∈ Rn×n. Given {ak}n
k=1 ⊂ Rn, diag{ak}n

k=1 ∈
Rn×n denotes the matrix whose i-th diagonal entry equals ai

for all i ∈ {1, 2, . . . , n}, and whose off-diagonal entries are

zero. A set-valued map F : Rn
⇒ Rn assigns to each point

x ∈ Rn a set F(x) ⊂ Rn. Given f : X → Y and g : Y → Z ,

we use g◦ f to denote their composition. The flow �
f
s along a

vector field f : Rn → Rn assigns to each point (s, x0) the value

�
f
s(x0) = χ(s) ∈ Rn, where χ is the unique solution to ẋ =

f (x) satisfying χ(0) = x0. Given a diffeomorphism � : Rn →
Rn and f : Rn → Rn, the pullback of f by �, denoted

�∗f : Rn → Rn, is defined by (�∗f )(x) = ( ∂�−1

∂x
◦f ◦�)(x) for

all x ∈ Rn, where ∂�−1

∂x
(y) denotes the Jacobian matrix of �−1

evaluated at y ∈ Rn. Given a smooth function J : Rn → R

we define its gradient by ∇J(x) = ( ∂J
∂x1

(x), . . . , ∂J
∂xn

(x)). Given

a function f : Rn → Rn, we define its divergence div f (x) :=
∑n

i=1
∂fi
∂xi

(x), and let the rotation operator rot f : Rn → Rn×n

be given by (rot f (x))ij := ∂fi(x)
∂xj

− ∂fj(x)

∂xi
for each x ∈ Rn.

Given a matrix-valued function K : Rn → Rn×n, we define

the rotation operator as rotK(x) =
∑n

j=1(
∂K1j

∂x1
(x), . . . ,

∂Knj

∂xn
(x)),

where Kij : Rn → R corresponds to the function x �→ (K(x))ij.

To obtain our results, we use the following theorem relating

the flows of two vector fields g, f : Rn → Rn:

Theorem 1 (Variation-of-Constants Formula [9, Propos-

ition 9.6]): Let g be r-th and f be (r + 1)-th continuously

differentiable time-dependent vector fields. Let x0 ∈ Rn, T >

0, τ ∈ [0, T], and define g̃(τ, x) = ((�
f
τ )

∗gτ )(x), where

gτ (x) := g(x, τ ), and (�
f
τ )

∗gτ denotes the pullback of gτ along

the flow of f . Then, for all τ ∈ [0, T] where the flows �
f +g
τ ,

�
f
τ , and �

g̃
τ exist, it follows that �

f +g
τ (x0) = (�

f
τ ◦ �

g̃
τ )(x0).

Hybrid Dynamical Systems: To formulate mechanisms that

recover the stability of Nesterov’s ODE, we use hybrid

dynamical systems (HDS) with state x ∈ Rn and dynamics

H:

{

x ∈ C ẋ ∈ F(x)

x ∈ D x+ ∈ G(x)
, (2)

where F : Rn
⇒ Rn is the flow map, G : Rn

⇒ Rn is the jump

map, C ⊂ Rn is the flow set, and D ⊂ Rn is the jump set. We

use the tuple H = (C, F, D, G) to refer to the data of the HDS.

Solutions to HDS are parameterized by continuous-time t ∈
R≥0 and discrete-time j ∈ Z≥0 and thus evolve on hybrid time

domains. For a formal definition of solutions to HDS we refer

the reader to [11, Sec. 2]. Standard continuous-time systems

described by the dynamics ẋ = f (x) with f : Rn → Rn, can be

cast as HDS by setting C = Rn, D = ∅, and F(x) = {f (x)}.
Definition 1 (Stability/Instability Notions): A compact set

A ⊂ Rn is said to be uniformly globally exponentially stable

(UGES) for the system H in (2) if every maximal solution to

H is complete, and there exist c1, c2 > 0 such that |x(t, j)|A ≤
c1|x(0, 0)|Ae−c2(t+j) for all (t, j) ∈ dom x and each solution x

to H. The set A is unstable for H if there exists ε > 0 such

that for each δ > 0 there exist a solution x, with |x(0, 0)|A < δ,

and (T, J) ∈ dom x satisfying |x(T, J)|A > ε.

III. NESTEROV’S ODE:ANALYSIS VIA STANDARD

AVERAGING

In this section, we prepare Nesterov’s ODE for analysis via

averaging. First, we transform (1) to the τ -timescale by noting

that every solution (x, τ ) to (1) satisfies τ(t) = ηt + T0, with

T0 > 0, for all t ∈ dom(x, τ ). This timescale change generates

the following system with state (x, τ ) ∈ Rn × [T0,∞) and

dynamics

d2x

dτ 2
+ 3

τ

dx

dτ
+ γG(x) = 0,

dτ

dτ
= 1, (3)

where γ := η2. To analyze the effect of the vector field G on

the dynamics (3), we use the following generalization of the

Helmholtz decomposition theorem [8, Th. 7.2]:

Lemma 1 (Helmholtz Decomposition): Suppose G is ana-

lytic in Rn. Then, there exist functions P : Rn → Rn×n,

J : Rn → R, and K:Rn → Rn×n such that G(x) = ∇J(x) +
rotK(x) for all x ∈ Rn, where J(x) :=

∑n
i=1 Pii(x) and K(x) :=

P(x) − P(x)� satisfy div(rotK(x)) = 0 and rot(∇J) = 0 for

all x ∈ Rn.

To ensure uniqueness of solutions to (3) and guarantee that

the flow along the corresponding vector field is well-defined,

we impose the following conditions on the elements of the

decomposition in Lemma 1.

Assumption 1: (i) Strong Monotonicity: ∃κJ > 0 such

that 〈∇J(x1) − ∇J(x2), x1 − x2〉 ≥ κJ|x1 − x2|2 for all

x1, x2 ∈ Rn. Additionally, we have that 〈rotK(x1) −
rotK(x2), x1 − x2〉 ≥ 0 for all x1, x2 ∈Rn.

(ii) Lipschitz continuity: ∃�J, �R > 0 such that |∇J(x1) −
∇J(x2)| ≤ �J|x1 − x2| and |rotK(x1) − rotK(x2)| ≤
�K |x1 − x2| ∀x1, x2 ∈ Rn.

(iii) Scaling relationship: �K = α
√

�J with α ∈ (0, 1].

Assumption 1-(i) ensures that the scalar function J is

strongly convex, which, via [2, Th. 3], guarantees accelerated
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convergence of Nesterov’s ODE to the unique minimizer of J

when the non-conservative term rotK is not present. The next

example presents a class of vector fields that satisfies these

conditions.

Example 1: Given Q ∈ Rn×n, the vector field G(x) =
Qx is analytic and satisfies Assumption 1. The Helmholtz

decomposition in Lemma 1 can be explicitly constructed by

letting J(x) = x�Qsx, (K(x))ij = 1
2
(Qa)ij|x|2 for all x ∈

Rn and i, j ∈ {1, 2, . . . , n}, where Qs := 1
2
(Q+Q�) and Qa :=

1
2
(Q − Q�).

Using Lemma 1 and Assumption 1, by letting s := τ/ε,

with ε := (�J)
− 1

2 , and letting y := (y1, y2) = (x, dx
ds

) ∈ R2n,

from (3) we obtain that dτ/ds = ε and

dy

ds
=

(

y2

−∇ Ĵ(y1)

)

+ ε

(
0

− 3
εs+T0

y2 − rotK̂(y1)

)

=: h(y) + εu(y, εs), (4)

for all y ∈ Rn, where Ĵ(x) := γ
�J

J(x) and K̂(x) := αγ
�K

K(x).

By using the pullback of uεs(y) := u(y, εs) via the flow along

h, we obtain a system with state (z, τ ) ∈ R2n × [T0,∞) and

dynamics given by

dz

ds
= ε

((

�h
τ

)∗
uεs

)

(z) =: εv(z, εs, s),
dτ

ds
= ε. (5)

By Theorem 1, a solution y to system (4) and a solution z to

system (5) with y(0) = z(0), satisfy y(s) = �h
s (z(s)) for all

s ∈ dom y.

Remark 1: The system in (5) admits a series representation

that expands the pullback in integrals of iterated Lie brackets

between uεs and h. While closed forms are generally not

available, simplifications emerge when certain Lie brackets

vanish; an approach used for Euler-Lagrange systems in [12].

Although Nesterov’s ODE has an Euler-Lagrange formulation

that might benefit from similar simplifications, our instability

analysis studies the linear case of Example 1, leaving the

nonlinear case for future work.

IV. INSTABILITY UNDER LINEAR MAPPINGS

In this section, we study the setting where G(x) = Qx for

some Q ∈ Rn×n and all x ∈ Rn. In this case, the Helmholtz

decomposition yields J(x) = 1
2
x�Qsx and rot K(x) = Qax,

where Qs and Qa are the symmetric and skew-symmetric parts

of Q, respectively. Therefore, the ODE in (4) becomes

dy

ds
=

(

0 I

−Q̂s 0

)

︸ ︷︷ ︸

=:A

y + ε

(
0 0

−Q̂a − 3
εs+T0

I

)

︸ ︷︷ ︸

=:B(εs)

y, (6)

with dτ/ds = ε, and where Q̂s = Qs

‖Qs‖ , Q̂a = α
Qa

‖Qa‖ , with

α ∈ (0, 1]. Similarly, the dynamical system in (5) reduces to

dz

ds
= ε�(τ, s)z := ε

(

e−AsB(τ )eAs
)

z,
dτ

ds
= ε. (7)

Before presenting the first main result of this letter, we

introduce a lemma that, under suitable conditions on Qs, shows

that the flow of the vector field y �→ Ay is periodic.

Lemma 2: Let G(x) = Qx where Q ∈ Rn×n and suppose

G satisfies Assumption 1. Suppose there exists μ ∈ R, μ �= 0,

such that for each λ ∈ spec(Qs) there exists cλ ∈ Q>0
1

satisfying λ = (cλμ)2. Then, there exists T > 0 such that

every solution ψ to

dψ

ds
= Aψ, (8)

where A is defined in (6), is periodic with period T .

Proof: By the definition of A and the determinant formula

for block matrices, det(λI − A) = det(λ2I + Q̂s). Thus,

the eigenvalues of A are ±iωj, where ω2
j = λj for λj ∈

spec(Q̂s). Since J(x) = 1
2

x�Qsx is strongly convex, Q̂s is

positive definite, so all ωj ∈ R>0. Since Q̂s is positive definite,

there exists an orthogonal matrix U that diagonalizes Q̂s. In

the coordinates defined by U, the system (8) decouples into

planar rotation blocks of the form ψ̇j =
(

0 −ωj

ωj 0

)

ψj. Thus,

each solution ψ to (8) is a superposition of periodic signals

with frequencies {ωj}n
j=1. By the assumption on Qs, we have

that λj = (cjμ)2 for cj ∈ Q, cj > 0. Then, writing cj = aj/bj

with aj, bj ∈ N>0, for each j ∈ {1, 2, . . . , n} there exists kj ∈
Z such that ωj = kjω0 where ω0 := μ/L, with L being the

least common multiple of {b1, b2, . . . , bn}. This result ensures

periodicity of each solution ψ , with period T = 2π/ω0.

The result of Lemma 2 enables the use of techniques for

averaging of periodic systems with slow-time dependence

(see [13, Sec. 3.3]), and leads to our first main result.

Theorem 2: Let G(x)= Qx, Q ∈Rn×n, and assume G sat-

isfies Assumption 1. Suppose that: i) all off-diagonal entries

of Qa are nonzero, ii) Qs satisfies the assumptions in

Lemma 2, and iii) precisely one eigenvalue of Qs has

algebraic multiplicity greater than one. Then, for each η ∈
(0, 1], the origin is unstable for the x-dynamics in Nesterov’s

ODE (1).

Proof: Step 1 (Definition of the Average System): By

Lemma 2, there exists T > 0 such that �(τ, s) is periodic in

s with period T . Indeed, since solutions to (8) are periodic,

the matrix exponential eAs is periodic in s. Because B(τ ) is

independent of s, the matrix �(τ, s) = e−AsB(τ )eAs is also

periodic with period T . By averaging (7) over s, we obtain

the following slow time-varying2 average system:

dζ

ds
= ε

(

B1 + 3

τ + T0
B2

)

ζ,
dτ

ds
= ε, (9)

where Bk := 1
T

∫ T

0 e−AsBkeAsds, for k ∈

{1, 2}, and B1:=
(

0 0

−Q̂a 0

)

and B2:=
(

0 0

0 −I

)

.

Step 2 (Instability of the Average System): We analyze the term

B1 in (9) which, as s → ∞, dominates the stability properties

of (9). First, since Q̂s is positive definite, by the spectral

theorem [14, 2.5.6], there exists an orthonormal matrix P such

that P�Q̂sP = diag{qk}n
k=1 =: �s, qk > 0, where {qk}n

k=1 =
spec(Q̂s), and where qk > 0. Let P̂ := I2⊗P, where ⊗ denotes

1Q>0 denotes the set of positive rational numbers.
2The system is called slow time-varying because the resulting vector field

depends on τ , which evolves slowly since dτ
ds

= ε � 1.
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the Kronecker product, and define � := P̂�AP̂ =
(

0 I

−�s 0

)

.

Then, we have that

P̂�e±Aτ P̂ = e�τ =
(

C(s) ±S2(s)

∓S1(s) C(s)

)

, (10)

with C(s) := diag{cos(λks)}n
k=1, S1(s) := diag{λk sin(λks)}n

k=1,

S2(s) := diag{λ−1
k sin(λks)}n

k=1, and λk := √
qk for all k =

{1, 2, . . . , n}. Using these definitions, we analyze the term

P̂�B1P̂ = 1
T

∫ T

0 e−�sP̂�B1P̂e�sds. From (10), by letting

Q̃a := P�Q̂aP, we have that

e−�sP̂�B1P̂e�s =
(

S2(s)Q̃aC(s) S2(s)Q̃aS2(s)

−C(s)Q̃aC(s) −C(s)Q̃aS2(s)

)

.

Then, from the definitions of C(s) and S2(s):
[

S2(s)Q̃aC(s)
]

ij
= λ−1

i sin(λis)Q̃a,ij cos
(

λjs
)

[

S2(s)Q̃aS2(s)
]

ij
= λ−2

i sin(λis)Q̃a,ij sin
(

λjs
)

[

C(s)Q̃aC(s)
]

ij
= cos(λis)Q̃a,ij cos

(

λjs
)

[

C(s)Q̃aS2(s)
]

ij
= λ−1

j cos(λis)Q̃a,ij sin
(

λjs
)

.

Since the period T can be written as the least common

multiple of { 1
λ1

, . . . , 1
λn

}, it follows that the terms C(s)Q̃aS2(s)

and C(s)Q̃aS2(s) vanish under the averaging operation.

Therefore, P̂�B1P̂ = 1
2

(

0 Q
(2)

a

Q
(1)

a 0

)

, where (Q
(1)

a )ij := −(Qa)ij,

(Q
(2)

a )ij := (Qa)ij/qi, and

(

Qa

)

ij
:=

{

0 if i = j ∨ qi �= qj

Q̃a,ij if qi = qj
, (11)

where we used the fact that Q̃�
a = −Q̃a which implies that

Q̃a,ii = 0 for all i ∈ {1, 2, . . . , n}.
Given that Qs has exactly one degenerate eigenvalue, there

exists q > 0 such that qi = q for all indices i in some subset

I ⊂ {1, 2, . . . , n}. Also, for all (j, k) ∈ J := {1, 2, . . . , n} \ I,

we have qj �= qk �= q. Thus, from (11), both Q
(1)

a and Q
(2)

a

have zeros in their jth row and jth column for all j ∈ J . Hence,

given λ ∈ C, we have that det(λI − P̂�B1P̂) = λ|J | det(λ2I +
1
2q

Q̃2
J

), where |J | denotes the cardinality of J , and where

Q̃J is obtained from Q̃a by removing its jth row and column

for every j ∈ J . Therefore,

{λ = ±
√

−μ2

2q
: μ ∈ spec

(

Q̃J

)

} ⊂ spec
(

B1

)

, (12)

where we used the fact that the spectrum of a matrix is

invariant under similarity transformations.

Now, since Q̃a is skew-symmetric, Q̃J is also skew-

symmetric by construction. Additionally, given that Qa,ij �= 0

for all i, j ∈ {1, 2, . . . , n} by assumption, it follows that there

exists a set {ωk}m
k=1 ⊂ R>0, with m = �|J |/2�, such that

{±i ωk}m
k=1 ⊂ spec(Q̃J ). Thus, letting μ = iωk in (12) yields

λ = ±ωk/
√

2q and λ ∈ spec(B1), giving a positive real

eigenvalue for B1. Hence, the origin is unstable under the φ

dynamics of (9).

Step 3 (Instability of the Original System): Instability of

system (7) follows from Step 2 by applying the Floquet

Theorem in [10, Sec. 2]. Also, by Theorem 1 we note that

|y(s)| = |�h
s (z)| = |eAsz(s)| ≥ σmin(e

As)|z(s)| for all s ∈ R≥0,

where σmin(�) denotes the minimum singular value of � ∈
Rn×n. Since σmin(e

As) > 0 by the same reasoning used in the

proof of Lemma 2, the instability of system (6) is implied by

the instability of system (7).

Remark 2: Theorem 2 provides a theoretical explanation

for the instability observed numerically in [5] whenever

non-conservative terms appear in the vector field G in (1).

Such terms arise when G is the pseudo-gradient of a non-

potential game, or in consensus-based dynamics when the

communication graph is directed [6]. Note that the instability

emerges regardless of the size of Qa. In this sense, Theorem 2

also provides a procedure for the synthesis of arbitrarily

small (compared to the conservative part of G), adversarial,

state-dependent perturbations able to destabilize (1) under

conservative mappings of the form G = ∇J, by adding to ∇J

a perturbation of the form rot K.

V. PRECLUDING INSTABILITY VIA RESTARTING

To address the instability of Nesterov’s ODE under non-

conservative mappings, we regularize the dynamics using

resets that restart the momentum. Similar approaches have

been studied in [15] under conservative maps, in [5] for Nash

equilibrium-seeking problems in monotone games, and in [6]

for consensus-based concurrent learning in directed-graphs.

Compared to these works, we establish improved convergence

rates and tighter resetting conditions for a subclass of vector

fields satisfying Assumption 1-(i)(ii), that includes nonlinear

vector fields beyond the linear setting studied in Section IV.

Starting from Nesterov’s ODE in (1), we let q := x, p := ẋ,

and embed the dynamics in the HDS H = (C, f , D, g) with

state χ = (q, p, τ ) ∈ Rn × Rn × R≥0, and data

f (χ) :=

⎛

⎝

p

− 3
τ

p − G(q)

η

⎞

⎠, g(χ) :=

⎛

⎝

q

0

T0

⎞

⎠,

C := {(q, p, τ ) : q ∈ Rn, p ∈ Rn, τ ∈ [T0, T]},
D := {(q, p, τ ) : q ∈ Rn, p ∈ Rn, τ = T},

where η ∈ (0, 1] and 0 < T0 < T are tunable parameters. The

HDS periodically resets τ to T0 when it reaches T , preventing

the damping term −3p/τ from vanishing, and p to 0 to ensure

the strict decrease of a suitable Lyapunov function across

jumps. For this HDS, we analyze the stability of the compact

set A := {x�} × {0} × [T0, T], where x� ∈ Rn is the unique

point3 that satisfies G(x�) = 0.

Theorem 3: Let G satisfy Assumption 1-(i),(ii). Suppose

that η ∈ (0, 1), and T < T ≤ T , where T2 := T2
0 +4η2/κJ and

T := 2 min{3(1−η), κJη}/�K . Then, the set A is UGES for H.

Moreover, there exists ρ > 0 such that, for each compact set

K0 ⊂ C ∪ D, there exist MJ, MG > 0 for which each solution

χ = (q, p, τ ) with χ(0, 0) ∈ K0 satisfies

J̃(q(t, j)) ≤ MJT2e−ρj

τ 2(t, j)
, |G(q(t, j))|2 ≤ MGT2e−ρj

τ 2(t, j)

∀(t, j) ∈ dom χ , where J̃(q) := J(q) − J(x�) ∀q ∈ Rn.

3Guaranteed to exist due to the strong monotonicity properties of G.
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Proof: For each χ ∈ C∪D, consider the Lyapunov function

V(χ) = a

∣
∣
∣q + τ

b
p − x�

∣
∣
∣

2
+ cτ 2|p|2 + δτ 2

(

J(q) − J(x�)
)

,

where a = 2ηb/T2, b := 3 − η, c := 3a(1−η)

2ηb2 , and δ :=
a
ηb

= 2
T2 . Since τ ∈ [T0, T], and J is strongly convex by

Assumption 1, we obtain c|χ |2
A

≤ V(χ) ≤ c|χ |2
A

where c :=
T2

0 min{c, δκJ

2
}, c := max{a+ aT

b
+ δT2�J

2
, mT2 + aT

b
}, and m :=

a

b2 + c = δ/2.

Computing V̇(χ) = 〈∇V(χ), f (χ)〉, and using the

Helmholtz decomposition G(q) = ∇J(q) + rot K(q), yields

V̇(χ) = −2cτ(3 − η)|p|2

− 2aτ

b

(〈

q − x�,∇J(q)
〉

−
(

J(q) − J(x�)
))

−2aτ

b

〈

q − x�, rotK(q)
〉

− δτ 2〈p, rotK(q)〉 ∀χ ∈ C.

By Assumption 1, 〈∇J(q), q−x�〉−(J(q)−J(x�)) ≥ κJ

2
|q−x�|2,

〈q − x�, rotK(q)〉 ≥ 0, and |rotK(q)| ≤ �K |q − x�| for all

q ∈ Rn. Using these facts, together with the Cauchy-Schwarz

and Young’s inequalities, we obtain that

V̇(χ) ≤ −τλ
(

|p|2 + |q − x�|2
)

+ δTτ�K

2

(

|p|2 + |q − x�|2
)

= −λτ

(

1 − T

T

)

|χ |2A ≤ −μV(χ) ∀χ ∈ C,

where λ := min{2c(3 − η), aκJ

b
} and μ := λ(T − T)T0/Tc.

On the other hand, for χ ∈ D, V(g(χ)) − V(χ) =
−mT2|p|2− 2aT

b
〈q−x�, p〉−δ(T2−T2

0 )(J(q)−J(x�)). Defining

� :=
√

(T2 − T2
0 )κJ , and applying Cauchy-Schwarz together

with Young’s inequality with parameter θ = T/�, and using

the strong convexity of J, by letting �V(χ) := V(g(χ)) −
V(χ), we obtain that

�V(χ) ≤ −
(

aT2

2ηb
− aT2

b�

)

|p|2 −
(

a�2

2ηb
− a�

b

)

|q − x�|2

= −ν1|p|2 − ν2|q − x�|2 ≤ −ν

c
V(χ)

for all χ ∈ D, where ν1 := 1 − 2η
�

, ν2 := �(�−2η)

T2 , and ν :=
min{ν1, ν2}. Since T > T implies � > 2η, ν ∈ (0, 1).

The quadratic bounds on V , combined with the strict

decrease of V during the flows and jumps of H establish

that A is UGES for H via [16, Th. 1]. To obtain the

convergence bounds for G and J̃, let K0 ⊂ C ∪ D be

compact. For any solution χ to H with χ(0, 0) ∈ K0,

define cj := V(χ(sj, j)) where sj := min{t : (t, j) ∈
dom χ}. The flow and jump conditions give cj+1 ≤ e−ρcj

where ρ := − ln(1 − ν
c
) + μ(T − T0) > 0. Thus, cj ≤

e−ρjV(χ(0, 0)). From δτ 2(J(q) − J(x�)) ≤ V(χ), we obtain

J̃(q(t, j)) ≤ V(χ(0, 0))T2e−ρj/2τ 2(t, j) for all (t, j) ∈ dom χ .

Using strong convexity and Lipschitz continuity of G gives

|G(q(t, j))|2 ≤ (�J + �K)2V(χ(0, 0))T2e−ρjκJτ
2(t, j). Letting

MJ := 1
2

maxχ∈K0
V(χ) and MG := 2(�J+�K)2

κJ
MJ completes

the proof. Additional details are presented in the extended

manuscript [17].

Corollary 1: Under the assumptions of Theorem 3, as

T0 → 0, T ∈ [2T, eT] guarantees convergence of q(t, j) to x�

at a rate of order O(e−η
√

κJ t).

Proof: For any solution χ = (q, p, τ ) to H, the state τ resets

every (T−T0)/η units of time, giving j ≤ ηt
T−T0

for any (t, j) ∈
dom χ . Additionally, from Theorem 3 and strong convexity, we

obtain |q(t, j) − x�|2 ≤ kM exp(−α(T, T0)t) where α(T, T0) =
− η

T−T0
ln(1 − ν

c
).

As T0 → 0, we have ν → min{1, κJ}(1 − T

T
) where T →

2η√
κJ

. Setting ξ = T

T
and β = min{1,κJ}

c
, we maximize f (ξ) =

−ξ ln(1 − β(1 − ξ)). The unique critical point satisfies ln(1 −
β(1 − ξ∗)) + βξ∗

1−β(1−ξ∗) = 0, which can be verified to be a

maximum by checking g(ξ) = ln(1 − β(1 − ξ)) + βξ
1−β(1−ξ)

is

strictly increasing with g(0) < 0 and limξ→1− g(ξ) > 0. For

β = 1, we obtain ξ∗ = e−1, giving Topt = eT . For small β,

ξ∗ ≈ 1/2, giving Topt ≈ 2T . In general, Topt ∈ [2T, eT].

At T = Topt, α(T) =
√

κJ

2
β(ξ∗)2

1−β(1−ξ∗) , yielding convergence

rate O(e−cη
√

κJ t) for c > 0. Additional details are presented

in the extended manuscript [17].

Remark 3: Theorem 3 yields the semi-acceleration bound

O(1/τ(t, j)2) along flow intervals, matching the classical

O(1/t2) rate of Nesterov-type ODEs with damping 3/t for

smooth convex objectives [2] during intervals of flow. In

low-curvature regimes (κJ < 1), Corollary 1 improves

upon gradient-like dynamics ẋ = −G(x), which attain

O(e−κJ t) convergence rates under Assumption 1-(i),(ii), and

refines [5, Lemma 5] by removing the factor σ := (�J +
�κ)/κJ from the exponent in O(e−(

√
κJ/σ) t). When G = ∇J,

existing acceleration results achieve exponential convergence

with exponent proportional to
√

κJ [3, Th. 1]; our result attains

the same qualitative
√

κJ scaling without the gradient-structure

assumption.

VI. NUMERICAL SIMULATIONS

Instability Example: We consider a non-conservative driving

term G(x) = (Qs + Qa)x = �J(Q̂s + 1√
�J

Q̂a)x with Q̂s :=
(

1 0

0 1

)

, Q̂a :=
(

0 0.5

−0.5 0

)

, and �J = 100, leading to ε = 0.1.

With these choices, all the conditions of Theorem 2 are satis-

fied. We set τ(0) = T0 = 0.1, y(0) = z(0) = (0.1,−0.1, 0, 0)

for systems (6)-(7). We also simulate system (8) from ψ(0) =
y(0) and the average system (9) from ζ(0) = z(0). The trajec-

tories are shown in Figure 1. The left plot shows the periodic

behavior of the linear system (8), where the ψ-components

exhibit bounded oscillations consistent with the periodic flow

predicted by Lemma 2. The middle plot validates the averaging

analysis by showing how the solution z(τ ) of the pulled-back

system (7) closely follows the solution ζ(τ ) of the averaged

system (9) on the timescale O(1/ε). The right plot confirms

the instability predicted by Theorem 2.

Precluding Instability via Restarting: We simulate the

restarting hybrid dynamics H using the same vector field

G(x) = (Qs + Qa)x, which yields �K = 5, �J = 100, and κJ =
100. We set η = 1/2, T0 = 0.1, and T = 0.3844, which satisfy

the condition 0.14 = T < T ≤ T = 0.6 from Theorem 3.

Using χ(0, 0) = (104,−104, 104,−104, 0.1), Figure 2 shows

the evolution of |q(t) − x∗| for both Nesterov’s ODE and

the HDS H. The red stars indicate the restarting events. The

simulations confirm both the UGES property of Theorem 3

and the O(e−√
κJ t) convergence rate of Corollary 1.
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Fig. 1. Left: Components of ψ showing a solution of the periodic system (8). Middle: Components of z and ζ showing the solutions of the
pulled-back system (7) and the averaged system (9). Right: Components of y showing a solution of Nesterov’s ODE in (6).

Fig. 2. Comparison of trajectories of |q(t) − x∗| under Nesterov’s ODE
and the restarting HDS H.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this letter, we prove that for linear vector fields with

nonzero skew-symmetric components, Nesterov’s ODE can

exhibit instability even under strong monotonicity conditions.

To resolve this instability, we design a hybrid dynamical

system that achieves robust stability while inducing conver-

gence rates of order O(e−√
κJ t) through periodic restarting

mechanisms. Future work will focus on Lie bracket expansions

of the pullback operator to analyze the instability of Nesterov’s

ODE in the case of nonlinear vector fields.
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