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Abstract—This study investigates secret-key generation for
device authentication using physical identifiers, such as responses
from physical unclonable functions (PUFs). The system includes
two legitimate terminals (encoder and decoder) and an eaves-
dropper (Eve), each with access to different measurements of
the identifier. From the device identifier, the encoder generates a
secret key, which is securely stored in a private database, along
with helper data that is saved in a public database accessible by
the decoder for key reconstruction. Eve, who also has access to
the public database, may use both her own measurements and the
helper data to attempt to estimate the secret key and identifier.
QOur setup focuses on authentication scenarios where channel
statistics are uncertain, with the involved parties employing
multiple antennas to enhance signal reception. Our contributions
include deriving inner and outer bounds on the optimal trade-off
among secret-key, storage, and privacy-leakage rates for general
discrete sources, and showing that these bounds are tight for
Gaussian sources.

Index Terms—Capacity region, compound channels, multiple
outputs, key generation, privacy leakage, PUFs.

I. INTRODUCTION

HE Internet of Things (IoT) is a rapidly growing tech-
nology that enables numerous sensors and small-chip
devices to interact and exchange information over the internet.
However, ensuring security and privacy in IoT communica-
tions presents significant challenges compared to conventional
networks due to the diverse range of applications and resource
constraints of these devices [2]. To help address these dif-
ficulties, recent efforts have focused on developing security
protocols at the physical layer for authenticating devices.
Secret-key generation using physical identifiers, such as
responses from physical unclonable functions (PUFs), is a
promising protocol for device authentication because it offers
several advantages, including simple designs, low costs, and
eliminating the need to save the secret key on the device [3].
A PUF is defined as a physical function that for a given input
(challenge), provides an output (response) that serves as a
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Fig. 1. An authentication scheme based on secret-key generation with PUFs.
The eavesdropper (Eve) is a passive adversary who is interested in learning
the secret key and the source identifier, but does not interfere with the
communication mechanism of the system.

unique identifier for each device [4], [5]. Some examples of
PUFs are static random access memory (SRAM) PUFs and
ring-oscillator (RO) PUFs.

Secret-key authentication using PUFs is illustrated in Fig. 1
[6]' and consists of an enrollment phase and an authentication
phase. During the enrollment phase, the terminal (encoder)
challenges the device, i.e., the PUF embedded in the device,
with a challenge C and gets a response R, from which the
encoder generates a secret key and helper data. The secret key
is securely stored in a private database, while the helper data
are saved in a public database, which can be accessed by both
the decoder and Eve. In the authentication phase, the terminal
(decoder) challenges the device by sending the same challenge
C, which produces a different response R due to noise effects.
The decoder reconstructs the secret key based on both the
response and helper data from the public database and then
compares it with the one saved in the private database. If they
match, the device is successfully authenticated; otherwise, the
authentication fails.

In subsequent discussions, the response of a PUF unaffected
by noise is referred to as the source identifier. The responses
of a PUF observed at the terminals and Eve through communi-
cation channels are called the observed identifiers. It is worth

1[6] does not consider the presence of Eve, but is included in the figure to
facilitate understanding of our system model in Section II.
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noting that the source identifiers are assumed to be fixed and
thus the secret-key generation model considered in this paper
corresponds to the source-type model, unlike the channel-type
models, where the source distribution can be controlled [7].

A. Motivations

We study the capacity region of secret-key generation
from source identifiers for a setup involving compound
authentication channels with multiple outputs. The motivation
for considering compound-channel settings is to capture a
situation in which device authentication takes place in environ-
ments where the channel statistics may not be perfectly known.
This contrasts with most previous studies, which assume that
the encoder and decoder have perfect knowledge of the source
and channel statistics of the systems.

For example, as shown in Fig. 1, consider a situation
where the decoder needs to authenticate a flying drone. As
the channel state information (CSI) of the channel from the
drone to the decoder may fluctuate, it makes it difficult for
the decoder to obtain the exact CSI. Additionally, Eve is
unlikely to share her CSI with the legitimate terminals. Thus,
compound channels are used to model the channels to the
decoder and Eve. In this setting, the encoder and decoder do
not possess precise CSI of the relevant channels but are aware
that these channels belong to certain predefined sets.

Additionally, we consider multiple outputs for the channels
to the encoder, decoder, and Eve to capture the circumstance
where these parties may deploy multiple antennas to enhance
signal reception. Note that having more antennas can increase
the correlation between Eve’s observation and the source
identifier, giving her an advantage in learning the secret key
and the source identifier. Hence, in this setting, we want to
quantify the potential leakage to Eve from both security and
privacy perspectives.

Finally, in practice, certain types of PUFs produce
continuous-value identifiers. For example, the source of RO
PUFs can be modeled as a Gaussian distribution [8]. Addi-
tionally, a number of communication channels are sometimes
approximated as additive white Gaussian noise (AWGN) chan-
nels. This motivates us to study setups with Gaussian sources
and AWGN channels.

B. Related Work

Secret-key generation using PUFs? has been studied from
information-theoretic perspectives in [9] and [10]. Later, sev-
eral extensions of this model were found in [11, Ch. 4] for
Gaussian sources, [12] for separated and combined enroll-
ments, and [13] for multiple rounds of enrollments and
authentications. Limited storage rate was introduced to the
model in [14]. Furthermore, the fundamental limits among
secret-key, storage, and privacy-leakage rates when Eve also
has a correlated sequence of the source were characterized in
[15] for discrete sources and [16] for Gaussian sources. This
model is similar to the key-agreement problem with forward

2PUF and biometric identifiers share similar characteristics, and thus, the
theoretical results developed for one can be applied to the other as well [3].
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communication only studied in [17], [18], and [19], but an
additional privacy constraint is imposed in the problem for-
mulation to limit information leakage on the source identifier.

More recent works have considered a setup that incorporates
a noisy channel in the enrollment phase [20], [21], [22]. The
channel is modeled to account for the noise introduced to the
source identifier during the enrollment process, providing a
more general framework, as signals generated by a PUF are
inherently affected by noise. Further progress in this setting
has been investigated in [23], [24], [25], and [26], addressing
user identification.

Secret-key generation with PUFs for compound sources has
been studied in [27] and [28] for the generated-secret (GS)
model and the chosen-secret (CS) model. In the GS model,
the secret key is generated using the observed identifier at the
encoder. In contrast, the CS model assumes that the secret key
is independently and uniformly chosen in advance. Relevant
applications of the GS model include field-programmable gate
array (FPGA) based key generation with PUFs [29], [30] and
that of the CS model can be seen in key-binding biometric
authentication [31] and fuzzy commitment schemes [32], [33].
Some extensions on this setting are explored in [34] and [35]
to incorporate user identification. Similar problems can be
found in [36] and [37], [38], [39] for key generation where the
privacy constraint is not imposed and in [40], [41], [42], and
[43] for compound wiretap channels. We note that the works
[40], [41], [42], [43] focus on compound channels under the
channel-type model, whereas our work addresses compound
structure in the source-type model.

C. Main Challenges and Contributions

We begin by explaining challenges of proving the achiev-
ability part for general discrete sources. In [37], key generation
for compound sources without the privacy constraint is inves-
tigated. While [37] derives a single-letter inner bound for
discrete sources and a single-letter outer bound for degraded
sources, we establish single-letter inner and outer bounds for
discrete sources and also characterize the capacity region for
Gaussian sources, which require different approaches from the
discrete case. The key differences for inner-bound derivations
between the work [37] and ours are twofold.

First, the techniques used for analyzing the secret-key
uniformity and secrecy-leakage constraints are distinct. In [37,
Th. 1], the secret key is derived from the shared randomness
between encoder and decoder, and the analyses of the two
constraints rely on extending the method proposed in [44] for
non-compound sources. Our approach, in contrast, aligns with
[21], where the secret key is generated through index mapping,
and the analyses of the constraints build upon the technique
used in [40] for analyzing the secrecy constraint in compound
wiretap channels.

Second, the privacy-leakage constraint is not considered in
[37]. In our problem formulation, as in [21] and [22], this
constraint is imposed and quantified by the mutual information
between the source identifier and the helper data, condi-
tioned on Eve’s observation. Its analysis is not straightforward
because the helper data does not have an independent and
identically distributed (i.i.d.) structure: although the encoder
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observes an i.i.d. identifier sequence, it generates the helper
data based on the entire block rather than on individual
symbols.

In the converse part, for a given channel state, the proofs
of the GS and CS models mirror the ones in [21, Th. 3 and
4] with a proper modification for the privacy-leakage analysis
as the definition is distinct. These results are then generalized
to the compound-channel settings by taking the intersection
over all possible channel states to establish the outer bounds.
As a result, the inner region first involves an optimization
carried over the distributions of auxiliary random variables,
and then a minimization of the index pair for channel states.
In contrast, the order of these two operations is reversed in the
outer region. This leads to a gap between the inner and outer
bounds, similar to the conclusion drawn in [40] for compound
wiretap channels.

However, we show that, for a noiseless enrollment channel,
our inner and outer regions coincide for Gaussian sources,
providing a complete capacity characterization. The main chal-
lenging aspect arises in proving the converse part. Given the
multiple-antenna settings at the legitimate terminals and Eve,
the vector-form observations are not stochastically degraded
in general [45]. We use sufficient statistics [46] to convert
the vector problem into a scalar one. However, after this
conversion, showing that all constraints of the original problem
definition are preserved is challenging, and it is unclear
whether the same expressions of the outer bounds for general
discrete sources also hold for the scalar variables. Therefore,
we cannot directly apply the technique in [47, Appx. B] to
eliminate the second auxiliary random variable. In this paper,
we instead derive new single-letter expressions of outer bounds
for the Gaussian case using scalar random variables.

Another difficulty arises in proving the converse for the
parametric expression of Gaussian sources. In the analysis of
the model without side information at Eve [11, Appx. D],
[48], the conditional entropy power inequality (EPI) plays an
important role. However, the EPI is insufficient to prove the
converse for all possible values of the optimization parameter
in our problem. To overcome this issue, we adopt a distinct
method introduced in [49, Sect. IV-C], using Fisher informa-
tion. This approach enables us to derive the outer region that
coincides with the inner one for any value of the optimization
parameter.

Our main contributions are summarized as follows:

e We derive inner and outer bounds on the capacity regions
of secret-key, storage, and privacy-leakage rates of the GS
and CS models for discrete sources.

e We provide complete characterizations of the capacity
regions of the GS and CS models for Gaussian sources
by demonstrating the existence of a saddle point at which
the inner and outer bounds coincide.

e We conduct numerical calculations for the Gaussian case
to illustrate how the change of the number of antennas at
the decoder and Eve affects the secret-key and storage
rates. The results show that increasing the number of
antennas at the decoder leads to a higher secret-key
rate, while increasing antennas at Eve reduces the secret-
key rate. Nevertheless, even if Eve has more antennas,
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a positive secret-key rate is still achievable as long as
the worst channel power gain at the decoder is greater
than the best channel power gain at Eve. Moreover, we
compare the secret-key and privacy-leakage rates between
the GS and CS models under the same values of storage
rates. The results reveal that in the low storage-rate
regime, the GS model outperforms the CS model in
terms of secret-key rate, whereas the CS model provides
better privacy-leakage performance. In the high storage-
rate regime, the CS model is better suited as it can achieve
the same secret-key rate as the GS model but with lower
privacy leakage.

Our results recover, as special cases, results derived in
previous works. For discrete sources, when only the channel to
the decoder is compound and all channels have a single output,
the inner and outer bounds match the preliminary result given
in [1, Props. 1 and 2]. Additionally, the inner and outer bounds
are tight for single-output and non-compound channels, and
recover [21, Th. 3 and 4] without action cost. For Gaussian
sources, as detailed in Section III-B, our results recover as
special cases the capacity regions derived in [11, Ch. 4] and
[22] for single-output and non-compound channels.

D. Modeling Assumptions

In general, PUF responses from devices are correlated.
However, techniques such as transform coding-based algo-
rithms [3] and principal component analysis [50] can be
applied to convert these responses into a sequence with
almost independent symbols. Therefore, we assume that each
symbol in the source and observed identifier sequences is
i.i.d. generated. Additionally, we assume that the database that
stores helper data is public, e.g., in the cloud, and accessible
to both the decoder and Eve. These modeling assumptions
are consistent with those used in prior works [9], [10], [20],
[21], [22].

E. Notation and Paper Organization

R is the set of non-negative real numbers. For any a,b € R,
define [a : b] = [Lal,[b]]NN. Italic uppercase X and lowercase
x denote a random variable and its realization, respectively.
Boldface letters X and x represent a collection of random
variables and its realization. X" denotes the vector (X1,..., X))
and X; represents the #-th element in the vector. X} stands for
a partial sequence (Xj,...,X;) for any [k : #] C [1 : n]. o’§
and Xy denote the variance of X and the covariance matrix of
Y. N(0,02) denotes the Gaussian distribution with zero mean
and variance o>. TJ(X) denotes the set of §-strongly typical
sequences according to Py [51] and the random variable inside
the parentheses is omitted, e.g., 7., when it is clear from
the context. Additionally, the set of conditionally o-typical
sequences is denoted as TJ'(XY|Z") = {(x",y") : (x",y",2") €
T} for a given 2" € Z".

The remainder of the paper is organized as follows. In
Section II, we state the problem definitions for the GS and
CS models. We present our main results in Section III. Proofs
of our main results are available in the appendices. Finally,
we provide concluding remarks and some future directions in
Section IV.
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Fig. 2. Illustration of the system model in State (k, ).

II. PROBLEM STATEMENT

The source identifier X" is i.i.d. according to Pyx. The
terminals do not have direct access to this identifier but can
only observe its noisy versions. The encoder, decoder, and
Eve are equipped with (Qg, Qy,Qy) € N3 receiver antennas,
respectively. Furthermore, there are || possible states for the
channel to the decoder Py, x with k € K, and |L| possible
states for the channel to Eve Pz;x with [ € L in the
authentication phase.3 When the channels are in State (k, 1),
the setting is depicted in Fig. 2. The vector-form random
variables X" = [X},X7,--- ,X;’)X]T, Y, = Y, ,Y,:‘Qy]T,
and Z} = [Z}},--- ’erbz]T denote the outputs of the~source
identifier X" via the channel to the encoder, (X, Pgx X), and
the channels to the decoder and Eve (X, Py,z,x, Vi X Z)),
respectively. The joint distribution of the system is

A TT? -
Pyoyizy = Tl Pxx, - Px, Pyzix,- (1

Secret-key generation strategies are formally defined below.
Let S£[1:2™s]and J 2 [1:2"™].
Definition 1 (GS Model): For the GS model, a
(2™s  n, Ry, R;) secret-key generation strategy consists of:
e Encoding mapping ¢ : X" — J x S;
e Decoding mapping d : YV x J — S;
and operates as follows:
e The encoder observes X" and generates the helper data
J e J and a secret key S € S, as (J,S5) = e(X™);
e The helper data J is stored in a public database, accessible
to anyone;
e From Y} and J, retrieved from the public database, the
decoder estimates S as S; = d(Y", J).
Definition 2 (CS Model): For the CS model, a
(2™”s  n, Ry, R;) secret-key generation strategy consists of:

o A secret key S, chosen uniformly at random in S and
independently of (X", X", Y, Z");

e Encoding mapping ¢ : X" x S — J;

e Decoding mapping d: Yy x J — S;

and operates as follows:

e From X" and S, the encoder generates J £ eX", S);

o The helper data J is saved in a public database, accessible
to anyone;

3Considering multiple states for the enrollment channel is unnecessary since
its state could be estimated at the encoder and shared with the decoder through
the helper data with a negligible cost.
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e From Y” and J, the decoder estimates S as S; = d(Y", J).
In the following, we write (max, min) and (max, min) as
kelC  kelC leL el

(m]?x, mkin) and (max, min), respectively, for simplicity.

Definition 3 (GS Model): A tuple of secret-key, storage, and
privacy-leakage rates (Rs,R;,Ry) € ]R?1r is achievable for the
GS model if, for sufficiently small 6 > 0 and large enough n,
there exist pairs of encoders and decoders satisfying

mfxp{ﬁk #8} <6, )
H(S) 4+ né > log|S| = n(Ry — 8), 3)
log|J1 < n(R; +0), “4)

max (S, Z]) < n, (5)
mlax IX"; JIZ}) < n(Ry + 9). (6)

R is defined as the closure of the set of all achievable rate
tuples for the GS model, and it is called the capacity region.

Definition 4 (CS Model): A tuple of secret-key, storage, and
privacy-leakage rates (Rg,R;,RL) € ]Ri is achievable for the
CS model if, for sufficiently small 6 > 0 and large enough n,
there exist pairs of encoders and decoders that satisfy all the
conditions (2)—(6) with replacing (3) by log|S| > n(Rs — 6).
Let R¢ be the capacity region of the CS model.

In Definition 3, (2) denotes the reliability constraint, (3) is
the uniformity requirement of the generated secret key, (4)
is the storage rate constraint, (5) is the secrecy-leakage con-
straint, evaluating the information about the secret key leaked
to Eve, and (6) is the privacy-leakage constraint, quantifying
the amount of information leaked to Eve regarding the source
identifier via the helper data given Eve’s side information.

III. MAIN RESULTS

This section presents the inner and outer bounds for the GS
and CS models with discrete sources, followed by the tight
bounds for Gaussian sources and numerical results for both
models.

A. Discrete Sources

Proposition 1 (Inner Bounds): We have

Re2 |J |®Rs.RiR)ER:

Py, Pyix

Rg < mkin 1Y, UIV) = mlax 1(Z;; U|V),
R, > max IX; UV, Y + max IX; VY,
R > max IX; UV, Yy + max IX; VIYy)

-IX;UIX) + Irgn I(Yy; V) - mlin 1(Zy; V)}, @)

Re2 |J |Rs.RpRp R :

Pviu,Pyx

Rg < mkin 1(Y; UIV) — mlax 1(Z;; U|V),

R; > m]le](X; U\v, Yy + m/flx IX; VY
+ mkin I(Y; UV) - max I(Z;U|V),

Ry > max IX; UV, Y + max I(X; VIYy)
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= 1K UIX) + min [(Y3 V) = min I(Z; V)}, (8)

where auxiliary random variables V and U satisfy the Markov
chain V-U-X-X—- (Y Z) forall ke K and [ € £, and
VI < 121+ 20K + 1L + 1 and U] < (] + 2(K] + L)) +
DAX|+ K]+ L]+ 1).

Proof: The proof is available in Appendix A-A, where the
random codebook is constructed based on two layered random
coding techniques. The first layer consists of the auxiliary
sequences V" generated by Py and the second layer consists
of the auxiliary sequences U" associated with Pyyy. The main
challenge in the proof is to ensure that the secret-key unifor-
mity (3) and the secrecy-leakage constraint (5) are satisfied
for all possible receiver-eavesdropper states. To prove these
constraints, the key idea is to introduce a random variable 7"
that jointly satisfies the equality I(Z; U|V) = max, I(Z;; U|V)
and the Markov chain V — U — X — Z. The random variable
7" plays a central role in analyzing the two constraints. This
technique is not seen in the existing works [9], [21], [22] that
study the secret-key generation with PUFs without compound
channels. O

In Proposition 1, how each term in the constraints defining
the regions Rg and R arises can be explained as follows.
We begin with the region Rg. In the secret-key rate con-
straint, the term ming /(Yy; U|V) represents the minimum rate
required for reliably estimating the sequence U”" across all
indices k, which in turn enables reliable reconstruction of
the secret key since the key is extracted from U”". On the
other hand, the term max; I(Z;; U|V) is the maximum rate at
which Eve can gain information about U" over all indices
I. Therefore, the achievable secret-key rate is given by the
difference ming I(Yy; U|V) — max; I(Z;; U|V), similar to the
one derived in [37, Th. 1] for compound sources. The terms
max; I(X; V|Y,) and max; I(X; U|V,Y;) in the storage-rate
constraint represents the rates of the bin indices at the first
and second layers, respectively. In each layer, the maximum
rate across all indices k must be shared between the encoder
and decoder to ensure reliable reconstruction of the secret
key at the decoder. For the privacy-leakage rate, note that
we can expand the mutual information }lmaxl I(X"; J|Z}) as
L1H() - LH(JIX™) - L min, I(Z}; J) by using the Markov chain
J=X"-7Z. In the constraint of the privacy-leakage rate, the first
and second terms in the right-hand side represent the upper
bound on the entropy %H(J), the third term represents the
upper bound on the conditional entropy —%H(JIX"), and the
forth and fifth terms represent the upper bound on the mutual
information —% min; I(Z}; J).

For the region R¢, the codebook and coding scheme devel-
oped for proving the region Rg are employed as a subsystem
to prove the achievability part. One-time pad operation is
applied to conceal the chosen secret key in the CS model by
adding the secret key generated in the subsystem [9, Appx.
B-C], which leads to the same achievable secret-key rate.
However, the storage rate is different because the masked
information must be saved in the public database together
with the helper data generated by the subsystem, so that the
chosen secret key can be reliably estimated at the decoder.
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Therefore, the storage rate of the CS model is the sum of
the storage rate for the GS model (the subsystem) and the
secret-key rate. Moreover, the privacy-leakage rate remains
unchanged because the concealed information reveals no extra
leakage to Eve after applying the one-time pad addition.
Similar behaviors are reflected in the outer bound derived
below in Proposition 2.

A special case of the GS model considered in this paper
was investigated in [1]. One can check that, when Qg = Qy =
Q7 = |L| = 1, the region in (7) reduces to [1, Prop. 1].

Proposition 2 (Outer Bounds): We have

Rac(N U {®Rs.RpR R :

kelC leL PVlU!PU\X
Rs < I(Y UIV) - I(Z;; UV),
R; > IX; UIYy),

Ry 2 10X U + 1(Yas V) = 1(Zis V)l ©)

RecMN U {®RsRiR R

keK leL Pyy.Pyx
Rs < I(Y; U|V) = I(Z; UIV),
Ry > IX; UIY) + I(Yi UIV) = I(Zy; UV),

Ry 2 IOGUYD + I V) = 12V}, (10)
where V anq U satisfy the Markov chain Vi U-X-X —(Yi, Z),
and JVI < | X+ 20K+ 1) + 1, U] < (X 4+ 20K + |1£) +
DX+ K]+ L]+ 1).

Proof: The proof is provided in Appendix A-B. For a fixed
state (k,[), the proof is the same as that of [21, Th. 3 and 4]
without considering the action cost. Therefore, we make use
of the result of those theorems to derive Proposition 2 for the
compound channel setting. However, due to the difference in
the definition of the privacy-leakage rate, appropriate modifi-
cations are required. O

The region in (9) matches [1, Prop. 2] when Qg3 = Qy =
Q7 = |L] = 1. Moreover, in the non-compound settings, i.e.,
when || = 1 = ||, the bounds in Propositions 1 and 2 match,
yielding the following corollary.

Corollary 1 (Capacity Regions): When || = 1 = |L], we
have

Ro= |J {®Rs.RR)ER:

Pviu.Pyx
Rs < I(Y: U|V) - I(Z; U|V),
R, > IX; UY),

R. > I(X: UIY) + I(Y: V) — I(Z; V)},
Re= | {(RS,R,,RL) eR3 :

Pviu.Pyx
Rs < I(Y;U|V) - I(Z; U|V),
R; > IX; UIY) + I(Y; U|V) — I(Z; U|V),

R, > I(X; UIY) + I(Y; V) = I(Z: V)},

(1)

12)

where (U, V) satisfy the same conditions as in Proposition 2.
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Proof: We only sketch the proof of (11), as that of (12)
follows similarly. When || = |£| = 1 and by dropping the
indices k and /, the constraints in Proposition 1 become

Rs < I(Y;U|V) - I(Z; U|V), (13)
R; > IX;UIV.Y) + IX; V]Y) @ IX; UY), (14)
Ry, > IX; UIV,Y) + IX; V]Y)
- IX;UIX) + I(Y; V) - I(Z; V)
=IX; UY) - IX; UIX) + I(Y; V) = I(Z; V)
QX UIY) + I0Y; V) - I(Z: V), (15)

where (a) and (b) hold by the Markov chains V — U — X-Y
and U — X — X - Y, respectively. As |K| = |£] = 1, (13)—~(15)
match (9) in Proposition 2, and thus (11) is proved. O

Remark 1: The privacy-leakage rate in [21, Th. 3 and 4]
without action cost is bounded as

Ry 2 I(X;U,Y) - I(X; Y|V) + I(X; Z|V)

=IX; U+ 1Y, V)-1(Z, V) + [(X; 2), (16)

where the equality holds by the Markov chain V — X — (Y, Z).
Compared to the privacy-leakage rate in (11) and (12), there
is an extra term I(X;Z), because the privacy-leakage rate
constraint in [21, Ths. 3 and 4] is defined as %I(X”;J, 7" =
%I(X”; J|IZ"") 4+ I(X; Z). Therefore, (11) and (12) coincide with
[21, Ths. 3 and 4] (without action cost) if [21, eq. (5)] is
replaced by (6).

In Propositions 1 and 2, the orders of the optimization
(union) over the test channels Pyy, Pyx and the minimiza-
tion (intersection) over the channel states (k,[) are reversed.
Specifically, Proposition 1 requires one to choose test channels
Pyyy, Pyx that work simultaneously for all (k, /) pairs, whereas
Proposition 2 allows one to choose different test channels
Py, Pyx for a channel state pair (k, /), and then only keeps
the intersection over what is achievable per channel state pair.
Therefore, Proposition 1 imposes stronger requirements, and
as a result, the regions in Proposition 2 may be potentially
larger.

In the next subsection, we demonstrate that the regions in
Propositions 1 and 2 match for Gaussian sources.

B. Gaussian Sources

In this subsection, we limit our discussion to a special case
of setup in Section III-A where the enrollment channel is
noiseless, i.e., X = X. We consider Pxy,z, the joint distribution
of zero-mean Gaussian random variables with a non-singular
covariance matrix. Suppose that the source X ~ N(0, a'g(), then
it suffices to model the channels to the decoder and Eve as
follows.

Lemma 1: Without loss of generality, one can write

Y, = HiX + Ny,, Z; = H)X + Nz, (17

where H; € R *! H; € R%*! and Ny, ~ N(0,1g,), and
Nz, ~ N(0,Ig,) are independent of X. Here, I denotes the
identity matrix.

Proof: See Appendix B. [l
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Remark 2: In the case where the enrollment channel is noisy,
ie., X # X, the noise covariance matrices of the involved
channels are not positive definite in general. This prevents the
use of Cholesky decomposition to normalize them to identity
matrices, and thus the channel models described in Lemma 1
may no longer be applicable.

Note that the single-letter expressions characterized in
Propositions 1 and 2 can be extended to the channel model
(17). To derive a closed-form analytical (parametric) expres-
sion for Gaussian sources, we directly leverage Proposition 1
to show the achievability. In the converse, we transform the
problem in (17) into a scalar Gaussian problem using suffi-
cient statistics [46, Ch. 2], which helps avoid the complexity
of working with vector random variables. However, after
the transformation, it is unclear whether all constraints in
Definition 3, particularly (2), remain preserved under the scalar
random variables. As a result, Proposition 2 may not hold
when the vector random variables are replaced with scalar
ones. To this end, as shown in the proof of Theorem 1, we
derive new outer regions for the channel model (17) using
scalar variables to establish the converse part of Theorem 1.

In the sequel, we define

k* € argmin (H/Hy}, [I" € argmax{IjIlTI:II}. (18)

kelkC el
To simplify the presentation of the results for Gaussian
sources, we define the following rate constraints, where a €
(0, 1] serves as a tuning parameter that adjusts the variance
of the auxiliary Gaussian random variable. For further details,
the reader is referred to (60).

1 (2HLHy + D(ec?H H: + 1)
Rss—mg( —— L , (19
2 (ec}HLH; + (XA H;: + 1)
1 THLH + 1
Ry > 5 log (wf’;—") , (20)
a(ocyH . Hp + 1)
1 YHIH; + 1
Ry > 5 log (wf’T—’) : 1)
a(ocxyH . Hy + 1)
1 HLH; + 1
Ry > 3 log (W?’;—k) : (22)
a(ocyH . Hp + 1)

Theorem I (Capacity Regions): If H[.Hy. > I:IlT H;., then the
capacity regions of the GS and CS models are

Rg = U {(Rs,Ry,Ry) € R, :

O<e<l1

(19), (20), and (22)

are satisfied},

(19), (21), and (22)

(23)
Re= | J ((Rs.R..R) € R :

O<a<l1
are satisfied}. 24)
If HL.H;- < HIH;, then
Rc =Rc ={(Rs,R;,R.) : Rs =0,R; 2 0,R, 2 0}.  (25)

Proof: The proof is provided in Appendix C and includes the
achievability and converse parts. For the achievability, we set
the test channel Py x to be an AWGN channel and then apply
Weinstein—Aronszajn Identity [52, Appx. B] to calculate the
mutual information with vector random variables. Finally, we
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use Lemma 5 to show that the optimal inner region is achieved
when the indices of the channels to the decoder and Eve are
k* and I*, respectively. For the converse, we begin by invoking
the sufficient statistics [46] to convert vector variables to scalar
ones. Next, we derive a single-letter characterization of the
outer bound using these scalar variables, which is then used
to determine the parametric expressions for the Gaussian case.
The proof employs a technique based on Fisher information,
introduced in [49]. In the final step, we again apply Lemma 5
to derive the outer region valid for an arbitrary pair (k, [), which
is obtained when the decoder and Eve observe the channels
indexed by k* and [* as well, coinciding with the optimal inner
bound. U

In Theorem 1, the condition H. Hj. > I:IlT H, indicates that
the channel power gain of the worst link to the decoder is at
least as large as that of the best link to Eve. In the single-
antenna case, i.e., |K| = 1 = |£], this condition corresponds
to physically degraded channels, where the channel to Eve is
physically degraded with respect to the channel to the decoder.

Unlike the discrete sources, the inner and outer bounds
for the Gaussian sources coincide. This is because, in the
outer bound, the variable involved in the optimization is a
scalar parameter, and rate constraints are given by logarithmic
functions of the optimization parameter, @, and the values of
channel power gains H;H; and IjIlTI:I,. These functions are
monotonic with respect to the channel power gains for an
arbitrary a. As a result, the order of intersection and union
does not matter and can be swapped, which enable us to
take the intersection over channel states (k,/) for each rate
constraint and determine the saddle point (k*,[*) at which the
outer bound matches the inner bound.

As a special case, when Qy, Q, |K], and |£] are all one (let
H = h and H = /), the AWGN channels to the decoder and
Eve reduce to Y = hX + Ny and Z = hX + N, respectively,
with Ny ~ N(0,1) and Nz ~ N(0, 1). In this case, using the
correlation coefficients of (X, Y), p%y = oxh*/(c%h* + 1) and
that of (X,Z), p%, = o2h*/(c%h* + 1), the regions (23) and
(24) can be transformed as

RG = U {(Rs,R],RL) ERi :

O<a<l

ll apyz +1-pis

RS S ’
2" apyy +1-pyy
2 _ 2
Ry > Llog Wy T1=Pxy
2 a
1 2 1= 2
R, > EIOg W—'DXY}’ (26)
Re=|J {Rs.Ri.R) € RS :
O<a<l1
1 2 1= 2
R < 5 log A2 Z Pz,
2 Tapxy +1-pxy
2 _ 2
R;leog—apxz+1 sz’
2 a
1 2 1= 2
R, > Elog W—'OXY} (27)
@

The regions in (26) and (27) align with [22, Cor. 1] when [22,
eq. (5)] is replaced with (6) to eliminate the quantity I(X;Z).
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Moreover, when the storage rate is not considered, i.e., (4) is
not imposed, and Eve has no side information, i.e., pxz = 0,
the regions in (26) and (27) simplify to [11, Th. 4.1 and 4.2].

C. Numerical Examples

We begin by presenting numerical calculations that illustrate
the relationship between the secret-key and storage rates in
the GS model, and then proceed to compare the secret-key
and privacy-leakage rates of the GS and CS models under the
same storage rate.

For investigating the relation of the secret-key and storage
rates, we consider three cases, with the parameters summarized
as follows: 1. Qy = Q; = 1 with H]. = 0.95 and H] = 0.8, 2.
Qy =3 and Qz = 1 with H]. =[0.950.95 0.95] and H;. = 0.8,
and 3. Qy = 3 and Qz = 4 with HJ. = [0.95 0.95 0.95] and
fIlT =[0.8 0.8 0.5 0.5]. Moreover, we fix the variance of the
source identifier as o-% =5 for all cases.

For a given «, define the optimal storage rate R;(a) =
1 lOg aoyHL Hp +1

3 A L Hy 1) from which one can express @ as

1
T PR@ 1 (22R@ DoZHLH-

(28)

Substituting (28) into the right-hand side of (19), the
optimal secret-key rate based on R;(e@) is given by

2T —2R (@) AT 0-2R (@)
1 oy L Hp (127 ) 4o HL Hpp 2770 @ -1
RS (RJ(Q’)) =3 lOg ( £ (Tiﬁ;* i, +11 . Note

that if R;(a) — oo, R;(Rs(@)) - Llog (%ﬁjﬁ .

Figure 3(a) depicts the relation of (R;(a),Rs(R;(a))). In
this figure, Case 2 (blue curve) shows a high secret-key
rate compared to the other cases. This is due to an increase
in the number of antennas at the decoder, which enhances
the correlation between the source and observations at the
terminal. On the other hand, in Case 3 (red curve), as the
number of antennas at Eve increases, the secret-key rate drops
compared to Case 2 because the stronger correlation with Eve
reduces the key-generation rate. Also, Case 3 shows that even
when Eve has more antennas, a positive secret-key rate is still
achievable as long as HL.Hy > H] H;.

Figure 3(b) presents the secret-key and storage rates for a
given «, focusing on Case 3, where the maximum secret-key
rate reaches 0.2771 (cf. Fig. 3(a)). As @ — 0, the storage rate
grows unbounded, reflecting the absence of encoding, while
the secret-key rate is maximized. In contrast, as @ — 1, both
rates approach zero. According to (60), this is because U is
highly correlated with X when @ — 0, leading to a high secret-
key rate, whereas U becomes independent of X when o = 1,
resulting in zero secret-key rate.

Figures 3(c) and 3(d) respectively compare the secret-key
and privacy-leakage rates between the GS and CS models
for Case 2, under the same values of storage rates. In the
low storage rate regime, the GS model results in a higher
secret-key rate than the CS model, but at the cost of greater
privacy leakage, highlighting a trade-off between these two
security metrics. In the high storage rate regime, both models
achieve the same secret-key rate, but the GS model still incurs
greater privacy leakage than the CS model with the difference
equal to the secret-key rate. This occurs because, in the CS
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1 3 1 5
""""""""""" ~ —— Ry, of the GS model :
0.8 f 0.8 o 4} | ——Ry of the CS model R

Qg —Case 1 [21] I £ ©
) =
- ---R; > o0 5, 2 ) =
- e 2 b= ©

8 06 —Case 2 = —a—Secret-key rate Rg 8 0.6 0 3
2 ---Ry—= e é ——Storage rate R 2 g
B ——Case 3 ] - & g

< 04 C--Ry - 0 = % 04 R of the GS model] | T 2
& 31 2 &
A A S 2 g ——Rs of the CS model g
n g @ 2

02 mmmoe T zas = 0.2 £ 1
> 9
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Storage rate R Values of parameter « Storage rate Ry Storage rate Ry
(@ (W) © (@)

Fig. 3. (a) The relation of storage and secret-key rates in the GS model, (b) the secret-key and storage rates for a given value of « in the GS model, and for
given a storage rate, a comparison of the secret-key and privacy-leakage rates in the GS and CS models are shown in (c) and (d), respectively.

model, the concealed data (with rate equal to the secret-key
rate) reveals no information about the source identifier. These
results suggest that in practical system designs, where the
storage space is fixed, the GS model may be preferred in the
low storage rate regime when maximizing the secret-key rate
is important, while the CS model is preferable for minimizing
privacy leakage. In the high storage rate regime, the CS model
becomes the preferred option as it can achieve the same secret-
key rate as the GS model but with lower privacy leakage.

IV. CONCLUDING REMARKS AND FUTURE DIRECTIONS

We studied secret-key generation from private identifiers
under channel uncertainty and multiple-output settings. This
setup addresses authentication robustness against eavesdrop-
pers in scenarios where the legitimate terminals lack exact
CSI and Eve may use multiple antennas to improve signal
reception. We derived inner and outer bounds for discrete
sources and provided a full capacity characterization for Gaus-
sian sources. The main technical contributions lie in proving
the inner bound for discrete memoryless sources and the outer
bound for the Gaussian case.

To prove the inner bound for discrete sources, we first
extend the technique used in [40] for compound wiretap
channels to ensure that the generated secret key is uniform
and remains secret from Eve’s observation for any channel
state. For the outer bound in the Gaussian case, we first
employ sufficient statistics to convert the vector problem into
a scalar one, so that we can use the degraded property of
the scalar Gaussian random variables to derive a single-letter
characterization of the outer region. Then, we apply the single-
letter characterization to derive the parametric expression for
the Gaussian case with Fisher information-based techniques
playing a crucial role in the derivation.

We also performed numerical evaluations for the Gaussian
case to illustrate how changes in the number of antennas at
the legitimate terminals and the eavesdropper affect the trade-
offs between secret-key and storage rates, and to compare
the secret-key and privacy-leakage rates of the GS and CS
models under the same storage rate. The first set of results
indicates that increasing the number of antennas at the decoder
leads to a higher secret-key rate, while adding antennas at
Eve reduces the secret-key rate. Nevertheless, even if Eve has
more antennas, a positive secret-key rate remains achievable
as long as the worst-case channel power gain at the decoder

exceeds the best-case channel power gain at Eve. The second
set of results shows that in the low storage-rate regime, the
GS model achieves a higher secret-key rate, whereas the CS
model offers better privacy-leakage performance. In contrast,
in the high storage-rate regime, the CS model proves to be the
more favorable choice as it provides the same secret-key rate
as the GS model with lower privacy leakage.

A natural extension of this work is to characterize the
capacity region for Gaussian sources under noisy enrollment
channels. As noted in Lemma 2, since we may not be able
to model the covariance matrices of the independent noises
as identity matrices, the analysis will become more involved
compared to that of Theorem 1. This arises because the scalar
problem obtained by transforming the original vector problem
using sufficient statistics results in more complicated forms
than the expressions in Lemma 7. Extending the scenario to
the case of vector Gaussian sources is also an interesting topic.
Another possible avenue is to include user identification as
studied in [23], [24], [25] and see how the identification rate
influences the capacity region.

APPENDIX A
PROOF OF PROPOSITIONS 1 AND 2

A. Proof of Proposition 1

We only prove (7) since (8) follows similarly with an extra
procedure, a one-time pad procedure to conceal the chosen
secret key. As a result, an extra rate equal to the secret-key
rate is needed for storing the concealed key information in the
database, which appears in the constraint of the storage rate
of the CS model.

Fix the test channels Pyx and Pyjy and let 6 > 0. In the

following, we show that these rates are achievable
Ry = rIlljnI(Yk;U|V)—m121x1(Zl;U|V)—5, (29)

(30)

1>

R, max IX; UV, Yy + max IX; VIYy) + 56,

1>

Ry max IX; UV, Y + max IX; VIYy)

-IX;UIX) + mkinI(Yk; V) - mlinI(Zl; V)+46. (31)

For the random codebook construction, we also define
REIX;V)+6, Ry 2 max IX; VIYy) + 26, (32)

RA IX;UIV) 46, Rju,ém,gxl(X;U|Yk,V)+35, (33)
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and the sets J,,=[1 : 2R 1, Tn=[1 2R=Ra )Y T =11 :
2Ry, T2 2 28s ] 7, 2[1 : 2rmax IZiUIV)=9)] Note that
R, = RJ“] + Rs + max; I(Zl; U|V) -

Random Codebook: Generate ii.d. sequences v'(j,,, jv,)
from Py., where (j,,j,,) € Jy, X J,. For every (ji,, jv,)s
generate i.i.d. sequences  u"(ju,, juy» Juss Juis Jvy)s» Where
s Jurs Juz) € Tuy X Tuy X Ty » according to Pymyn=yn(, j,)- All
the generated sequences (V"(ju,s jv,)s U (uys Juzs Juss Jors Jva))
form the codebook C,,.

Encoding: Observing X", the encoder first finds (jy,, jy,)
such that (X",v"(j,,, j,)) € T4'. Then, it looks for (ju,, ju,» ju;)
such that &, " Gju, us» Jusn s o)) € TP XUV Gy o). I 2
unique tuple (ju,, juy> Jus» jvi» Jv,) 1S found, the encoder assigns
the helper data j = (j,,,j,,) and the secret key s = j,,. If
multiple such tuples are found, the encoder selects one tuple
uniformly at random and assigns j = (jy,, ji,) and s = j,,. In
case no such tuple exists, the encoder sets all j,,, ju,» Juys Juss
and j,, to be one and assigns j=(1,1) and s = 1.

Decoding: From y;} and (Juy» Jv,), the decoder first looks
for the unique index Jvz such that (y7, "(]w ]VZ)) e T
Then, it looks for the unique pair g Jurs j,,,j) such that
Vs U Gugs Jugs Juss Jus J)) - € T3 OYRUW" Gy Jiy))- T the
indices ju,, ju,» and j,, are uniquely determined, then the
decoder estimates § = juz; otherwise, it sets § = 1 and declares
an error.

In the following, we write V"(J,,J,,)
U'(Juys Juys Juss Jvy» Jy,) @as V' and U” for convenience.

Analysis of Error Probability: Possible error events at the
encoder are

gl: {(Xn’~vll(jl'|’jV2)) ¢ 7(-Sn7v(jv1’j\22) € \7\11 X \7\22}’ -

Er AKX U Jurs Juss Juys Jvis I12)) ¢ Ts' XUV,
Y urs Juss Jus) € Ty X Ty X Tz}

and those at the decoder are

E (YL U VY ¢ T,

&y {37, € s gy, # v, and (Y, V(4 1)) € T,

E: 30U Ju) € T X s Uiy Juy)  # (Jups Juy) and
Y5 Uiy Juys Juys Jvis I)) € T5" (Y UV

and

Then, we have

mI?xP{ﬁk # S} =P{UL, &)

<SPEL + P& +PIE N (6 U E)T + P&} + P& (34)

The first and second terms vanish by the covering lemma
[51, Lemma 3.3] since R, > I(X;V) and R, > IX;U|V),
respectively. The third term vanishes by Markov lemma [46,
Lemma 15.8.1]. The last two terms vanish by the packing
lemma [51, Lemma 3.1], since the rate of index va is less
than ming I(Yy; V) and that of index pair (}uz, ]A'm) is less than
minyg I(Yy; U|V), respectively. Hence, we have

lim max P{S;y#S}— 0. (33)

n—oo
Before we analyze the constraints (3), (4), (5), and (6) in
Definition 3, we state two lemmas. The first one, Lemma 2,
is an extended version of [40, Lemma A.l] to incorporate
conditional mutual information.
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Lemma 2: 1If the inequality I(Z;; U|V) < I(Zy; U|V) holds
for [,I’ € L, then there exists a vector random variable A such
that the equality /(Z;,A; U|V) = I(Z;; U|V) and the Markov
chain V-U-X - (Z;,Zy) — A are satisfied.

Proof: Let B be a binary random variable taking values [
and " with probabilities p and 1 — p, respectively, where 0 <
p < 1, and assume that B is independent of all other random
variables. Define A = (Zg, B) and I'(p) = I(Z;, A; U|V). Due
to the independence of B, we have

U(p) = pI(Z;; UIV) + (1 = p)I(Zy, Zy; U|V). (36)

Now observe that I'(1) < I(Zy; U|V) < I'(0), where the first
inequality follows by the assumption I(Z;; U|V) < I(Zy; U|V).
Due to the continuity of the function I'(p) for all p € [0, 1],
there exists a p* € [0, 1] such that I'(p*) = I(Z;; U|V), and thus
the equality I(Z;,A; U|V) = I(Zy; U|V) is satisfied with A =
(Zp-, B*) and B* taking the values [ and !’ with probabilities
p* and 1—p*, respectively. Also, this choice of A ensures that
the Markov chain V - U — X — (Z;,Zy) — A is satisfied. [

Lemma 2 is used to show the existence of a random variable
that achieves max; I(Z;; U|V) and forms a Markov chain with
v,u ,X), as detailed in the following intermediate step.

Intermediate Step: For any [ € £, by Lemma 2, there exists
A such that for

Z=(Z,A), (37)
we have I(Z; U|V) = max; I(Z;; U|V) and
V-U-X-17. (38)

Moreover, define a binary random variable 7, which takes 1
if (U",X",7") € 7} and 0 otherwise. For large enough n, it
holds that

Pr(1)>1-6, (39)

with 6, | 0 as 6 | 0 and n — oo. This follows because the
pair (U",X") is jointly typical with probability approaching
one, as shown in (35), and Z” is i.i.d. generated according to
[T, Pz, from (38), and thus (39) follows by applying the
Markov lemma [46, Lemma 15.8.1]. Similarly, we have joint
typicality of (V",Z") as (V",X") is jointly typical with high
probability. These properties are applied in proving the next
lemma, which plays a key role in the analyses of the secret-key
uniformity and secrecy-leakage.
Lemma 3: For an arbitrary index [/ € £, we have

Cn) 2 n(Rs — &),

where &, goes to zero as ¢ | 0 and n — oo.
Proof: We have

H(J Wy, Jvy, 2], (40)

H(Ju2|Jul7Jv1,Zn’Cn)
> H(]uzl‘]u]?JVIsJV29Zn,An7C )

Q HU W Ty Joy 2.C)

- H(Ju]sJuz,JupJV]sJVZ’Zn|Cn)
- H(Ju3|Ju]7Ju27 JV17J"2’ Zn’ Cn)
-H(J,, JVI,JVZ,Z”IC )

(b) -
Z H(Ju|7 Ju27 Ju3a ‘]V|7 JVZ’ancn)
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- H(Jula va Jvzvznlcn) - nén

© ~ -

> HU",Z"|C,) — HZ"|V",C,)
- H(Jul > Jvl > Jvz|cn) - n(sn

> Pr(OHU",Z"T =1,C,) — H(Z"\V",C,)
_H(Jul IC,) — H(Jv1 IC,) — H(JV2|CI1) —noy,

(@) ~ - -

> (1-38)HU",Z"T = 1,C,) - HZ"\V",Cy)
_H(Jm |Cn) - H(Jv1 |Cn) - H(Jvz|cn) - nén

Q) ~ - ~ -

> n(l -6,)UX;U)+ HZ|U) — 2¢5) — H(Z"|V",C,,)
- H(Jm Icn) - H(Jvl |Cn) - H(Jvz |Cn) - l’lé,,

(f) ~ - -

2 n(IX;U) + H(ZIU) - HZ|V) = ¥n)
- H(Jul |Cn) - H(Jvl |Cn) - H(Jvzlcn) - né;q

S aIK: U) - 12 UW) - 7,)
~ n(max IX; VIV, Yp) + 36)
- n(m]flx I(X; VYY) + 20)
- n(mkin I(Y; V) —6) — nd,
€ niX; U) - (Z; UIV))
- n(m]flx{l(X; Ulv) - 1(Yi; UIV)D
- n(m]flx{l(X; V)= IY; VD) - nmkin 1Y V)
— (46 + 7y, + 8))
< n(min I(Ye; UIV) = max I(Zi; UIV) = 6 = &,)
= n(Rs - &),

where (a) holds from (37), (b) follows because the index
Ju, can be reliably estimated from (JL,I,JMZ,JV,,JVZ,Z”), as
Llog| 73| < max; I(Z;; UIV) = I(Z; U|V), (c) holds because
U" and V" are determined by the tuple (J,,, Ju,, Jus» Sy, J0y)
and the pair (J,,, J,,), respectively, (d) follows from (39), and
(e) follows from

>

X"Eﬁ”(f{ﬁ”,u")
< HEKIZU)~€5) | o-n(HX.Z)~&)

(41)

Py (@', u") < Pgngn (X", Z")

- 2*'1(1(X;U)+H(ZIU)*26<»'), (42)
(f) follows because, as shown in the intermediate step, (V”, v/
is jointly typical with high probability and thus H(Z"|V",C,) <
n(H(ZIV) + v,) (cf. [53, eq. (16)]) and &, = 6,(I(X;U) +
H(Z|\U))+2(1-6,)€5+6,, () is due to the Markov chain (38)
and H(Jul |Cn) < nRJuI > H(Jvl |Cn) < nRJ.,I > H(Jvzlcn) < n(Rv -
R ]Vl) = ngmink 1(Yy; V) = 9), (h) is Elue to the Markov chain
V-U-X-Yy, (i) follows from I(Z; U|V) = max,; I(Z;; U|V)
and &, = 30+ vy, + 7). O

Analyses of Uniformity and Secrecy-Leakage: The con-
straints of (3) and (5) can be evaluated as

H(S |Cn) = H(Ju2|cn)
Z H(Jug"]u] ) JV] s Zn, cn)

2 n(Rs — &), (43)
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and
rnlaxI(S s LZYC,) = mlax I(J.y5 Juys oy Z1ICy)
= mlaX{H(]ug IC) — H(Juy s Iy, s 2, Co)}
< mlax{nRS —n(Rs — &)} = nép, (44)

where (43) and (44) follow from Lemma 3.

Analysis of Storage Rate: The helper data is J = (J,,, Ju, ),
and thus the total storage rate is %log |To 1T | = Ry, + Ry,
R;.

Analysis of Privacy-Leakage Rate: We have

mlaXI(X"; JIZ7},C,) = mlax X" Jy,, I |2}, C)
= I(Xn, Jul s Jvl |Cn) - rnlln I(Zn; Ju| s Jv1 |Cn)
< H(-’m |Cn) + H(Jv1 |Cn) - H(Jul 5 JV] |Xn: Cn)

- mlin I(Zn; Ju] 5 Jvl |Cn)

= H(Jul |Cn) + H(Jvl |Cn) - H(Xnv Jul s Jv1 |Xn’ Cn)
+ HXX", Ty Sy Co) = min [(Zf5 uy, Ty 1C)

(@) .
< H(Ju1 |Cn) + H(Jvl |Cn) - I’lH(X|X)
+nHX|X,U) +€) - min I(Z}; ;5 J,1Co)
< H(J4|Cy) + H(J,,|Cy) — nI(X; UIX)
- mlin I(Z};J,,IC,) + ne,
< H(J,,|Cy) 4+ H(J,,ICy) — nl(X; UIX)
- mlin{H(Z}’) - H(Zj|J,,, Jy,,Co)}
+ max 1(J,,;Z}1J,,,C,) + ne,

®) g
< H(J,1Cy) + H(J,, ICy) — nI(X; UX)
- mlin{H(Z?) - HZ{|V",C)} + H(J,,|Cy) + ne,

S H(J,IC) + H(Jy o) — nI(K: UIX)

~ n(min{H(Zs) ~ HZAV)) + H( C) + el
< n(m]?x IX; VYY) + ml?x IX;UIV,Yy) +46

~ 1K UIX) + min I[(Ye; V) = min I(Z;; V) + €;)
=n(R; + E,/l/), 45)

where (a) follows from (46), shown below, and the codebook
C, is independent of (X",X”,YZ,Z;’), (b) holds because V" is
a function of (J,,, J,,), and (c) follows because H(Z}'|V",C,) <
n(HZ|V) + v,) and €' = vy, + €,. For brevity, define
E 2= (Ju,Jus, Jy,), where the decoder can reliably estimate
the index E for given (Y}, Jy,, Jy,). Observe that

HX"X", Juy, Iy, Cn)
= H(anxn’ Jm , Jv, JE, Cn) + I(E;Xn|Xn7 Ju|7 Jvlvcn)

(a) -

< HX"|X", U",C,) + HEIX", . J,,.Cy)
(b) ~

< HX'IX", U",Cy) + HE!, Jyy 1y, .Cr)
(c) -

< HX"|X", U".C,) + ne,

(2 n(HX|X,U) + €), (46)
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where (a) follows since U" is a function of
(Juy> Juy> Juz> Jvy5 Jiy), (b) is due to the Markov chain
E - (X",J,.Jy) — Y; and conditioning reduces entropy,
(c) follows from Fano’s inequality with ¢, | 0 as 6 | O and
n — oo, and (d) because H(X"|X", U",C,) < n(HX|X, U)+vy"")
for jointly typical sequences (cf. [53, eq. (16)]) and
€ =, + €.

From (35), (43), (44), and (45), there must be at least one
codebook satisfying all the conditions in Definition 3, so that
the region in (7) is achievable.

B. Proof of Proposition 2

The cardinality bounds of the auxiliary random variables
can be obtained from the support lemma [51, Lemma 3.4].

We show the proof for the GS model via a result derived
in [21] in the absence of action cost. By replacing (6) with
I(X";J,Z}) < n(Ry + ¢), the outer bound for a pair (k,1),
denoted by Og,,, is [21, Th. 3]

| {Rs.R/.Rp) €R,

Py.Pyx
Rs < I(Yi; UIV) = I(Z; UIV), R; > IX; UIY)),
Ry 2 I(X; U, Yi) = I(X; YiV) + [(X; Zy| V),

A
O, =

(47)

where V and U satisfy V - U — X — X — (Y, Z)).

In Definition 3, the constraints on the secret-key and storage
rates are the same as in [21, Def. 6], and the resulting bounds
are given in the same form as in (47). For the privacy-leakage
rate, we expand the right-hand side of R, in (47) as

IX; U, Yi) — I YY) + I Z| V)

=IXUY) + 1Y V) =1Ly V) + [(X;Zy), (48)

where we use the Markov chain V — X — (Y, Z;). By (48), the
privacy-leakage rate is lower bounded as
n(Ry +6) > X" JIZ}) = [(X"; J,Z}) — [(X"; Z})
> n(I(X; UIYi) + 1Y, V) = I(Zy; V). (49)
Therefore, an outer bound for a given (k, /) in Definition 3 is
Og,t | ((Rs.R,.R) R :

Pyiu,.Pyx
Rs < I(Yy; UIV) = I(Z; UV), R; > I(X; UIY)y),

Ry 2 I(X; UIYp) + 1Y V) = I(Zy; V), (50)

where V and U satisfy V — U — X — X — (Y, Z;). Hence,

Rg € ﬂ ﬂ Og,-

kelC leL

(G

The proof for the CS model can be derived using the same
reasoning from [21, Th. 4].

APPENDIX B
PROOF OF LEMMA 1

Denote the covariance matrix of (X, Yi,Z;) as X, where

o% Xyy, Xxz,
X=|Zyx Zy, Xygz (52)
Xzx  Xzv, Xz,
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Note that (2) depends on the marginal distribution of
(X,Yr), (3) depends on the marginal distribution of X, and
(5) and (6) depend on the marginal distribution of (X,Z;).
Therefore, without loss of generality, using [54, Th. 3.5.2]
and (52), it suffices to consider

Yk = ZykxO';(ZX + NYk,
Zl = ZZ’)(O';(ZX + NZ/,

(53)
(54)

where Ny, ~ N'(0,En, ) with Zn, = Zy, —Zy, x0y*Lxy,, and
Nz, ~ N(0,Xx, ) with Ey, = Zg - Y7,x0y Lxz,, independent
of X.
Since X is non-singular (positive definite), the sub-matrix
[ o g( nyk
Xy x Xy,
matrix X, is positive definite as it is the Schur complement
of a'i in the sub-matrix. By Cholesky decomposition, there
exists an invertible matrix C € R® > guch that Iy, = CCT.
Then, we can reformulate (53) as

is also positive definite. This implies that the

Y, = Ay, X + Ny, (55)

where Y} = C™'Yy, Ay, = C'Ey xo5* and Ny~ N(0,Ig,).
Similarly, the same approach can be applied to (54).

APPENDIX C
PROOF OF THEOREM 1

This appendix consists of two parts, that is, the achievability
part in Appendix C-A and the converse part in Appendix C-B.

A. Achievability Proof

Note that Proposition 1 was proved under finite source
alphabets. However, the result can be extended to Gaussian
sources as well by employing a fine quantization before
encoding and decoding processes, similar to [55].

By choosing V as a constant in Proposition 1, the following
regions are achievable.

Ro 2 \J{Rs. R R € RS

Pyix

Rs < minI(Yy; U) - max I(Z;; U),
R; > IX;U) - mkin 1Y U),

Ry > I(X: U) = min I(Y; U)}, (56)
Re 2 \J{®Rs.Rp R € R :

Pyix

Rs < mkin 1(Y; U) - mlax 1(Z; U),

R; > I(X;U) - mlaxI(Zl; U),

Ry > I(X: U) - min I(Y; U)}, (57)

where auxiliary random variable U satisfies the Markov chain
U-X- Y, Z) forall ke L and [ € L.

Lemma 4 (Weinstein—Aronszajn Identity [52, Appx. B]): For
any a € R, and matrix H € R®*!, we have

det(HaH™ 4 Ig) =aH™H + 1, (58)
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where det(-) denotes the determinant of a matrix.
Lemma 5: For given a € (0, 1], the function

0§(HTH +1
a/oﬁHTH +1

is monotonically increasing with respect to HTH.

Lemma 4 is applied in the calculation of mutual information
with vector random variables for given k and /, and the role
of Lemma 5 is to find the minimum and maximum values of
the mutual information among all possible k € K and [ € L.

For 0 < @ < 1, consider

SHTH) = log ( (59)

X=U+0, (60)

where U ~ N0, (1-a)c%)) and ® ~ N'(0,ac%). This relation
implies that

1 1
IX;U) = < log (—) . 61)
2 a
From (17) and (60), it follows that
Yk = HkU + Hk@ + NYk, (62)
Z,=HU+HO + Ny, (63)
Using Lemma 4, we have
1 o-g(H,IHk +1
IXY;U)=zlog———7-——, 64
YU =7 loe | oyl + 1 (4
1. o}HH +1
1(Z 5 U)=—- log ————5— 65
@) =7 loe i, + 1 .
for a fixed pair (k,/), and invoking Lemma 5 gives
1 o2HLH + 1
in/(Y;;U) = s log | 25— ), 66
e (Y U) 2 8 (QO'%(H,LH;($+1) (66)
1 oxHIH. + 1
maxI(Z;;U) = = log| ——————]. 67
1 Z:U) 2 g(ao&H;Hl*—f—l ©7)

Finally, substituting (61), (66), (67) into (56) and (57), gives
(23) and (24).

B. Converse Proof

We will need the following lemmas. These lemmas con-
vert vector observations in (17) into scalar Gaussian random
variables using sufficient statistics [46, Sect. 2.9]. This trans-
formation plays an important role in deriving the outer bound
of Gaussian sources.

Lemma 6 ([56, Lemma 3.1]): Consider a channel with input
W and output W, namely, W £ AW + Ny, where A is a
matrix and Ny, ~ MV(0, ). A sufficient statistic to correctly
determine W from W is the following scalar

_— 1w
W=ATEGW. (68)
Lemma 7: The vector equations in (17) can be rewritten as

Y= vy X + Nyk,Z, =vzX + Nz, (69)

where Vi, = HZHk, 7 2 I:IITI:IZ, Nyk ~ N(O, Vyk), and NZ, ~
N(0,vz).
Proof: Applying Lemma 6 to our settings in (17), we have

Y = H{IG Yo, Z, = HI Z,. (70)
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Now substituting (17) into (70), we have

Y = H{(HiX + Ny,) = v5, X + Ny,, (71)
Z[ = I:I;—(I:LX + NZ,) = VZ,X + NZ,, (72)

where we denote vy, = HHy, v; = H/H,, Ny, £ HNy,,
and Nz = H/Nz,. Note that Ny _and Nz are Gaussian random
variables, and their variances are Var[H/Ny, ] = H]H,, and
Var[H/Nz,1 = HTH,. O

As (X, Yy, Z;) are scalar Gaussian random variables, when
the squared value of the correlation coefficient of (X, ¥;-) is
greater than that of (X,Z), i.e., HLHy- > HIH;, implying
that H/H, > HJH, for any pair (k,/), there exist Gaussian
random variables (X', ¥/, Z]) such that X’ - ¥; - Z] is satisfied,
and the marginal distributions of (X,Y;) and (X’,Y}) and
that of (X,Z;) and (X’,Z]) coincide [47, Lemma 6]. In the
subsequent discussions, we denote (X, ¥{,Z)) as (X, ¥y, Z)) for
brevity. This property is used in the derivation of the following
lemma.

Lemma 8 (Outer Bounds): If H.H;. > I:I,II:I;*, the outer
bounds of the GS and CS models are provided as

Rg C ﬂﬂ@Gk,, Rc < ﬂﬂ@@/’
kel leL kel leL
where Og, and O, are outer bounds of the GS and CS
models for a given pair (k,/) and are defined as

@le = U{(RS,R],RL) € Ri :

Pyix

(73)

Rs < 1(Y; U) - I(Z; U),
R; > I(X;U) - I(Yi; U),

Ry > 106G U) ~ 1T U, (74)
@Ckl ES U{(Rs,R],RL) € Ri_ :

Pyix

Rs <I(Yi;U) - I(Z;; V),

R; > I(X;U) - I(Z; U),

R; > I(X; U)—I(Yk;U)}, (75)

and U satisfies the Markov chain U - X — ¥, — Z;. If HL. H; <
H]H;, Rg = Rc = {(Rs,R;,R) : Rs =0,R; > 0,R; > 0}

Proof: The proof is provided in Appendix D and follows
standard converse proof techniques, where Fano’s inequality
and the introduction of auxiliary random variable are used. The
key idea is to exploit the relationship in (70), which shows that
(Yx,Z)) and (Yy, Z;) are mutually deterministic. This allows the
vector random variables (Y, Z;) to be removed from the rate
constraints during the analysis. O

Next, we utilize the single-letter expressions in Lemma 8 to
derive the parametric forms for Gaussian sources. We begin
with the proof of (74). Each rate constraint in (74) can be
expanded as

] _ | HJH(o2H]H; + 1
Rs < IV U) - 1Z; U) 2 < log =& ~k(0'§ [H, + )
2 " HH(0ZHTH, + 1)
+ WZ|U) = h(Y,|U), (76)
_ ® 1 0'3(
R 2 IX:U) - 1T ) 2 <1
R e T T
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+ h(Y(|U) — h(X|U), 77
2
o
Ry > IX,U) - (T U) € = 10 X
L2 I U) = 10 U) SHIH(2HH, + 1)
+ h(Yi|U) — h(X|U), (78)
where (a), (b), and (c) follow from (69).
From Lemma 7, we have
1 +1 1 - 1
- log u - (—z,) _h (—Yk)
2 O'X + 1/vy, vz, vy,
1 -
h( z,|u) (_mu)
VZ’ VYI:
(b) 1 - 1 - 1 7
<h (—z,|x) —h (—YkIX) = - log Va (79
VZ, Vyk 1/ y

where (a) and (b) follow from the fact that I(Yy; U|Z) > 0
and I(Yy; X|U,Z;) > 0, respectively. Thus, there must exist a
parameter « € (0, 1] such that

ack + 1/v;

1. | |
) () 2
vz V¥, 2 +1/vy,
Equation (80) also indicates that
7 (@oyvy + 1
WZIU) - hTIU) = 2 1o ﬁﬁng_g
2 v,-/k(a/axv,—,k 1)
1 HH ATH, +1
L (o HIH; + 1) &

= O .
2 HH (e ZH H, + 1)
The conditional Fisher information of A is defined by
: 2

JA|IU) = E[(W) , where the expectation is taken

over (U,A) [49, Def. 1].
Lemma 9 ([49, Cor. 1]): Let W, A, B be random variables,
and let the density for any combination of them exist. More-

over, assume that given W, A and B are independent. Then,

we have
1 1 1

> + .
J(A+ BIW) — JAIW) ~ I(BIW)
We use Lemma 9 to establish a lower bound on the

conditional Fisher information, as presented in Lemma 10.
This lemma is then used to derive a lower bound on the

(82)

difference h(Y,|U) — h(X|U) given that h(Z|U) — h(¥,|U) is
fixed.
Lemma 10: For 0 < r < 1/vy,, it holds that
J(X + VrNIU) > (83)

a'0'§( +r
with an independent Gaussian random variable N ~ N(0, 1).
Proof: From [49, Lemma 3], it follows that

1 - 1 1 [ o
h (—ZAU)—h (—YkIU) = —/ IJ(X+ VIN|U)dt (84)
VZ[ Vyk 2 I/Vyk
with an independent random variable N ~ A/(0, 1). Then,
1 [ N
3 / I(X + ViN|U)dt

/Vm

1
@ 2/ JX + VPN + Vi= rN'|U)dt
/vy,
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® 1 [ -
< 5/ (IX + VrNIUY ! +2—-7) at
1/Vﬁ

l/“% I(X + VPNIU)

2 iy, 1HIX+ \VrNIU)( - r)

1 1+ IJX + rNIU)(1/vz - 1)

= Liog : (85)
2 1+ X + rNIU)(1 /vy, — 1)

where (a) follows by picking a real number r in the range

of 0 < r < 1/vy, and using independent Gaussian random

variables N ~ A(0,1) and N’ ~ N(0,1), and (b) is due to

Lemma 9. Lastly, comparing (80) and (85), we obtain (83)..d

Observe that

1 1 [
h (V—ka) — h(X|U) = 5/ “IX + VEN|U)dr
Y 0

Yy

@1 e 1 ¥+ 1/vy
N _/ ‘ ———dr = - log WX—Z/VYk’ (86)
2 Jo aoy +r 2 aoy
where (a) follows from Lemma 10, which implies that
_ 1 vy (@o%vy, + 1
WY IU) - h(X|U) > = log ”(X—zyk)
2 aoy
1 H'H 2HIH; + 1
= Ljog BelOnd L e+ D - o
2 aoy

Substituting (81) and (87) into the rate constraints in
(76)—(78), the outer bound for a fixed pair (k,[) is expressed
as

@sz = U {(RS,RJ,RL) € Ri_ :
O<a<l1
oo OxHiHe+ 1 1 oRHIH + 1

Rs < 0g ————=——
§ g a/O'XHTH, +1

2 % e H +1 2
1 ) acyHHy + 1
2

Ry > ~log —Txk kT
/ & A(ZHH, + 1)
1 H'H, + |
R.> =~ log M} (88)
2 % W(ZHIH, + 1)

Applying Lemma 5 to (73) and (88), the outer region of the
GS model for all possible index pairs (k, /) is

Ro € | {Rs.RpR) € R, :
O<a<l1

1 og (OXHLHe + D(eo 3 HIH + 1)

Rg < = C— )
2 (a/0'§(HT Hy + D(o3H H: + 1)
1 HT H;- +1
2 O’(O'XHT H;- +1)
1 HT H;- +1
R.>=1lo gaa’X—"}. (89)
2 (O'XHT H;- + 1)
The outer region of the CS model in (24) can be shown
similarly. [l
APPENDIX D

PROOF OF LEMMA 8

We only prove (74), the outer bound of the GS model for
a given pair (k,[), as the proof of (8) follows by a similar
manner. Assume that a rate tuple (Rs,R;,Ry) is achievable
with respect to Definition 3 for every pair (k,/) € I x L.
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We begin by establishing the following Markov chains:

LSH-X"-Y;-Y, (ILS)-X"-Y!-Y}, (90)
(J,S)—X”—Zf’—_f, (J,S)—X"—Zl”— 7 (C2))
(J’S)_Xn_( Z’ ?)_(_I?’Z?)’ (92)

where the left-hand sides of (90) and (91), and (92) hold
because ¥} and ZJ' are functions of Y/ and Z/, respectively, by
Lemma 7, and the right-hand sides of (90) and (91) are due to
the sufficient statistic [46, Sect. 2.9]. In addition, for the scalar
random variables (X, Y, Z;), the Markov chain X" — ¥} — Z;
holds for any pair (k,/) when H.H. > fIleIl Combining
this with (92) gives

JLS-X"-V} -7 93)
Define auxiliary random variables
V=Y. Z7Yand U, = (1S, Y2, 27, (99)
which guarantee the Markov chain
Vi-U =X, - Y, —Z,. 95)
Also, we define
0= - (Hy(®) + 5logIS). 96)

where H,(-) denotes the binary entropy function, and &, | O
as d |} 0 and n — co.
Analysis of Secret-Key Rate: From (3),

n(Rs —6) < H(S)
= HS|J,Z) + 1(S; J,Z})

(a)
< H(S|J,Z}) - H(S|J, Yy) +n(d +6,)

© y(s 1,20, 20) - HS|J, YL, 7 + 16 + 6,)

© H(SI1.Z) - HS|J.T]) + n(d + 6,)

= I(S; Y1) = IS5 Z1J) + n(S + 6,)

@ N5 _
=Y UV UlVi) = IZig UV} + (8 + 6,)

97)
=1
SN UWis U - 1213 U
t=1
- (I(Yk,t§ Vi) - I(Zl,t; Vo)) +n(6 + d,)
® . - _
< U T Up) = 12y U+ 08 + 6,), 98)

t=1

where (a) is due to (5) and Fano’s inequality with §,, defined in
(96) as the secret key S can be reliably estimated from (J, Y}),
(b) follows from the left-hand sides of (90) and (91), (c) holds
by the right-hand sides of (90) and (91), (d) follows by [7,
Lemma 4.1], (e) follows from the Markov chains V,— U, — ?k,l
and V, — U, — Z;;, and (f) is due to (95), which results in
1Y V) - I(Zl,t§ V) = 0.
Analysis of Storage Rate: From (4),

n(Ry +06) > log|J| = H(J) = I(X"; J)

(a)
> I(X"; JIYY)
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> I(X" J,SI1Y) —HS YL D)

(b)

> 1(X"; J,S1Yy) — nd,

= IX" YYD + (X" T, S|V Y
—IX"; Y, S, Y} — nd,

Q 1(x", 1,878, YD) - no,

D 1x"; 7,817 - né, (99)
© S X T) — B, S XYL ZY) - s,
t=1
O — _ _
> Y {h(X|Ye,) = (XU, Y )} = no,
t=1
© v _
£ UX U = (T Up} = 16, (100)

t=1

where (a) is due to the Markov chain J-X"-Y}, (b) follows by
Fano’s inequality with ¢,, defined in (96), (c) follows because
Y ¢ 18 a function of Y}, (d) holds from the left-hand side of (90),
(e) holds due to the Markov chain X, —(J,S, X", ¥#,)-ZI"!,
(f) follows because conditioning reduces entropy, and (g) is
due to U; - X, - ¥y,

Analysis of Privacy-Leakage Rate: For a fixed I, we first
show that the left-hand side of (6) is preserved when (X", Z")
is replaced with (X", Z").

1m0z L 1m0y - 128 0)

210 - 125, 250)
©1xm - 1200

Qrxn iz, (101)

where (a), (b), (c¢), and (d) follow from the Markov chains
J-X"-Z, J-L'-Z}, J-Z}-Z}, and J-X]-Z}, respectively,
all of which are obtained as special cases of (91).

Therefore, we can evaluate the privacy-leakage rate as

n(Ry, + 6) = I(X"; J|ZI")
@ 10 1z
=1(X",J,8,Y}IZ}) - IX"; Y, Z))
- I(X"; S\, Y, Z))
> I(X"; 1,8, Y!Z!) - [(X"; Y!1J, Z0) — H(S|J, Y?)
> I(X"; 1,8, Y!Z!) - [(X"; Y!1J, Z1) = né,
© X" 1.8 VR YAZY ~ 1K T2 YL Z) = s,
91X 7,8, 720 - (X" TV, Z0) = né,
@ jxmy g, 8170, 20 + 1(X" 72
- (X" Y1Z]) = 1Y D\Z))) = né,
> I(X"; J, S|P2, Z1) = né,
Q 1(x"; 7, 8|7") - ns,
O — _
> Y (X Up) = I(Yess U} = 1y,

t=1

(102)
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where (a) is due to (101), (b) follows from (70), i.e., Y,? is
a function of Y%, (c) holds because the Markov chain X" —
(J,S, Y2, Z) - Y} holds, from the right-hand side of (90), (d)
and (e) are due to the Markov chain (J,S) — X" - Y} - Z}',
obtained from (93), and (e) follows by the same steps from
(99) to (100).

For the case where HL.H;. < I:IIEFI,*, the Markov chain

Vl_

U,—X;—Z;;— Y, holds. The secret-key rate follows from

(97) since I(Yk,ﬁ UilVy) < I(Zl,t; UiVy).

Finally, we introduce a time-sharing random variable Q ~
Unif[1 : n], independent of other random variables, and define
U= (Up Q) X =Xg, Y = Yip, and Z; = Z;p, so that the
Markov chain U — X — ¥; — Z; holds. By letting n — oo and
6 | 0, one can see that for a given pair (k, /), the outer bound
of the GS model is given by (74). Hence, the outer bound
valid for any pair (k,[) is given by (73). O
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