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Secret-Key Generation From Private Identifiers

Under Channel Uncertainty
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Abstract—This study investigates secret-key generation for
device authentication using physical identifiers, such as responses
from physical unclonable functions (PUFs). The system includes
two legitimate terminals (encoder and decoder) and an eaves-
dropper (Eve), each with access to different measurements of
the identifier. From the device identifier, the encoder generates a
secret key, which is securely stored in a private database, along
with helper data that is saved in a public database accessible by
the decoder for key reconstruction. Eve, who also has access to
the public database, may use both her own measurements and the
helper data to attempt to estimate the secret key and identifier.
Our setup focuses on authentication scenarios where channel
statistics are uncertain, with the involved parties employing
multiple antennas to enhance signal reception. Our contributions
include deriving inner and outer bounds on the optimal trade-off
among secret-key, storage, and privacy-leakage rates for general
discrete sources, and showing that these bounds are tight for
Gaussian sources.

Index Terms—Capacity region, compound channels, multiple
outputs, key generation, privacy leakage, PUFs.

I. INTRODUCTION

THE Internet of Things (IoT) is a rapidly growing tech-

nology that enables numerous sensors and small-chip

devices to interact and exchange information over the internet.

However, ensuring security and privacy in IoT communica-

tions presents significant challenges compared to conventional

networks due to the diverse range of applications and resource

constraints of these devices [2]. To help address these dif-

ficulties, recent efforts have focused on developing security

protocols at the physical layer for authenticating devices.

Secret-key generation using physical identifiers, such as

responses from physical unclonable functions (PUFs), is a

promising protocol for device authentication because it offers

several advantages, including simple designs, low costs, and

eliminating the need to save the secret key on the device [3].

A PUF is defined as a physical function that for a given input

(challenge), provides an output (response) that serves as a
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Fig. 1. An authentication scheme based on secret-key generation with PUFs.
The eavesdropper (Eve) is a passive adversary who is interested in learning
the secret key and the source identifier, but does not interfere with the
communication mechanism of the system.

unique identifier for each device [4], [5]. Some examples of

PUFs are static random access memory (SRAM) PUFs and

ring-oscillator (RO) PUFs.

Secret-key authentication using PUFs is illustrated in Fig. 1

[6]1 and consists of an enrollment phase and an authentication

phase. During the enrollment phase, the terminal (encoder)

challenges the device, i.e., the PUF embedded in the device,

with a challenge C and gets a response eR, from which the

encoder generates a secret key and helper data. The secret key

is securely stored in a private database, while the helper data

are saved in a public database, which can be accessed by both

the decoder and Eve. In the authentication phase, the terminal

(decoder) challenges the device by sending the same challenge

C, which produces a different response R due to noise effects.

The decoder reconstructs the secret key based on both the

response and helper data from the public database and then

compares it with the one saved in the private database. If they

match, the device is successfully authenticated; otherwise, the

authentication fails.

In subsequent discussions, the response of a PUF unaffected

by noise is referred to as the source identifier. The responses

of a PUF observed at the terminals and Eve through communi-

cation channels are called the observed identifiers. It is worth

1[6] does not consider the presence of Eve, but is included in the figure to
facilitate understanding of our system model in Section II.
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noting that the source identifiers are assumed to be fixed and

thus the secret-key generation model considered in this paper

corresponds to the source-type model, unlike the channel-type

models, where the source distribution can be controlled [7].

A. Motivations

We study the capacity region of secret-key generation

from source identifiers for a setup involving compound

authentication channels with multiple outputs. The motivation

for considering compound-channel settings is to capture a

situation in which device authentication takes place in environ-

ments where the channel statistics may not be perfectly known.

This contrasts with most previous studies, which assume that

the encoder and decoder have perfect knowledge of the source

and channel statistics of the systems.

For example, as shown in Fig. 1, consider a situation

where the decoder needs to authenticate a flying drone. As

the channel state information (CSI) of the channel from the

drone to the decoder may fluctuate, it makes it difficult for

the decoder to obtain the exact CSI. Additionally, Eve is

unlikely to share her CSI with the legitimate terminals. Thus,

compound channels are used to model the channels to the

decoder and Eve. In this setting, the encoder and decoder do

not possess precise CSI of the relevant channels but are aware

that these channels belong to certain predefined sets.

Additionally, we consider multiple outputs for the channels

to the encoder, decoder, and Eve to capture the circumstance

where these parties may deploy multiple antennas to enhance

signal reception. Note that having more antennas can increase

the correlation between Eve’s observation and the source

identifier, giving her an advantage in learning the secret key

and the source identifier. Hence, in this setting, we want to

quantify the potential leakage to Eve from both security and

privacy perspectives.

Finally, in practice, certain types of PUFs produce

continuous-value identifiers. For example, the source of RO

PUFs can be modeled as a Gaussian distribution [8]. Addi-

tionally, a number of communication channels are sometimes

approximated as additive white Gaussian noise (AWGN) chan-

nels. This motivates us to study setups with Gaussian sources

and AWGN channels.

B. Related Work

Secret-key generation using PUFs2 has been studied from

information-theoretic perspectives in [9] and [10]. Later, sev-

eral extensions of this model were found in [11, Ch. 4] for

Gaussian sources, [12] for separated and combined enroll-

ments, and [13] for multiple rounds of enrollments and

authentications. Limited storage rate was introduced to the

model in [14]. Furthermore, the fundamental limits among

secret-key, storage, and privacy-leakage rates when Eve also

has a correlated sequence of the source were characterized in

[15] for discrete sources and [16] for Gaussian sources. This

model is similar to the key-agreement problem with forward

2PUF and biometric identifiers share similar characteristics, and thus, the
theoretical results developed for one can be applied to the other as well [3].

communication only studied in [17], [18], and [19], but an

additional privacy constraint is imposed in the problem for-

mulation to limit information leakage on the source identifier.

More recent works have considered a setup that incorporates

a noisy channel in the enrollment phase [20], [21], [22]. The

channel is modeled to account for the noise introduced to the

source identifier during the enrollment process, providing a

more general framework, as signals generated by a PUF are

inherently affected by noise. Further progress in this setting

has been investigated in [23], [24], [25], and [26], addressing

user identification.

Secret-key generation with PUFs for compound sources has

been studied in [27] and [28] for the generated-secret (GS)

model and the chosen-secret (CS) model. In the GS model,

the secret key is generated using the observed identifier at the

encoder. In contrast, the CS model assumes that the secret key

is independently and uniformly chosen in advance. Relevant

applications of the GS model include field-programmable gate

array (FPGA) based key generation with PUFs [29], [30] and

that of the CS model can be seen in key-binding biometric

authentication [31] and fuzzy commitment schemes [32], [33].

Some extensions on this setting are explored in [34] and [35]

to incorporate user identification. Similar problems can be

found in [36] and [37], [38], [39] for key generation where the

privacy constraint is not imposed and in [40], [41], [42], and

[43] for compound wiretap channels. We note that the works

[40], [41], [42], [43] focus on compound channels under the

channel-type model, whereas our work addresses compound

structure in the source-type model.

C. Main Challenges and Contributions

We begin by explaining challenges of proving the achiev-

ability part for general discrete sources. In [37], key generation

for compound sources without the privacy constraint is inves-

tigated. While [37] derives a single-letter inner bound for

discrete sources and a single-letter outer bound for degraded

sources, we establish single-letter inner and outer bounds for

discrete sources and also characterize the capacity region for

Gaussian sources, which require different approaches from the

discrete case. The key differences for inner-bound derivations

between the work [37] and ours are twofold.

First, the techniques used for analyzing the secret-key

uniformity and secrecy-leakage constraints are distinct. In [37,

Th. 1], the secret key is derived from the shared randomness

between encoder and decoder, and the analyses of the two

constraints rely on extending the method proposed in [44] for

non-compound sources. Our approach, in contrast, aligns with

[21], where the secret key is generated through index mapping,

and the analyses of the constraints build upon the technique

used in [40] for analyzing the secrecy constraint in compound

wiretap channels.

Second, the privacy-leakage constraint is not considered in

[37]. In our problem formulation, as in [21] and [22], this

constraint is imposed and quantified by the mutual information

between the source identifier and the helper data, condi-

tioned on Eve’s observation. Its analysis is not straightforward

because the helper data does not have an independent and

identically distributed (i.i.d.) structure: although the encoder
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observes an i.i.d. identifier sequence, it generates the helper

data based on the entire block rather than on individual

symbols.

In the converse part, for a given channel state, the proofs

of the GS and CS models mirror the ones in [21, Th. 3 and

4] with a proper modification for the privacy-leakage analysis

as the definition is distinct. These results are then generalized

to the compound-channel settings by taking the intersection

over all possible channel states to establish the outer bounds.

As a result, the inner region first involves an optimization

carried over the distributions of auxiliary random variables,

and then a minimization of the index pair for channel states.

In contrast, the order of these two operations is reversed in the

outer region. This leads to a gap between the inner and outer

bounds, similar to the conclusion drawn in [40] for compound

wiretap channels.

However, we show that, for a noiseless enrollment channel,

our inner and outer regions coincide for Gaussian sources,

providing a complete capacity characterization. The main chal-

lenging aspect arises in proving the converse part. Given the

multiple-antenna settings at the legitimate terminals and Eve,

the vector-form observations are not stochastically degraded

in general [45]. We use sufficient statistics [46] to convert

the vector problem into a scalar one. However, after this

conversion, showing that all constraints of the original problem

definition are preserved is challenging, and it is unclear

whether the same expressions of the outer bounds for general

discrete sources also hold for the scalar variables. Therefore,

we cannot directly apply the technique in [47, Appx. B] to

eliminate the second auxiliary random variable. In this paper,

we instead derive new single-letter expressions of outer bounds

for the Gaussian case using scalar random variables.

Another difficulty arises in proving the converse for the

parametric expression of Gaussian sources. In the analysis of

the model without side information at Eve [11, Appx. D],

[48], the conditional entropy power inequality (EPI) plays an

important role. However, the EPI is insufficient to prove the

converse for all possible values of the optimization parameter

in our problem. To overcome this issue, we adopt a distinct

method introduced in [49, Sect. IV-C], using Fisher informa-

tion. This approach enables us to derive the outer region that

coincides with the inner one for any value of the optimization

parameter.

Our main contributions are summarized as follows:

• We derive inner and outer bounds on the capacity regions

of secret-key, storage, and privacy-leakage rates of the GS

and CS models for discrete sources.

• We provide complete characterizations of the capacity

regions of the GS and CS models for Gaussian sources

by demonstrating the existence of a saddle point at which

the inner and outer bounds coincide.

• We conduct numerical calculations for the Gaussian case

to illustrate how the change of the number of antennas at

the decoder and Eve affects the secret-key and storage

rates. The results show that increasing the number of

antennas at the decoder leads to a higher secret-key

rate, while increasing antennas at Eve reduces the secret-

key rate. Nevertheless, even if Eve has more antennas,

a positive secret-key rate is still achievable as long as

the worst channel power gain at the decoder is greater

than the best channel power gain at Eve. Moreover, we

compare the secret-key and privacy-leakage rates between

the GS and CS models under the same values of storage

rates. The results reveal that in the low storage-rate

regime, the GS model outperforms the CS model in

terms of secret-key rate, whereas the CS model provides

better privacy-leakage performance. In the high storage-

rate regime, the CS model is better suited as it can achieve

the same secret-key rate as the GS model but with lower

privacy leakage.

Our results recover, as special cases, results derived in

previous works. For discrete sources, when only the channel to

the decoder is compound and all channels have a single output,

the inner and outer bounds match the preliminary result given

in [1, Props. 1 and 2]. Additionally, the inner and outer bounds

are tight for single-output and non-compound channels, and

recover [21, Th. 3 and 4] without action cost. For Gaussian

sources, as detailed in Section III-B, our results recover as

special cases the capacity regions derived in [11, Ch. 4] and

[22] for single-output and non-compound channels.

D. Modeling Assumptions

In general, PUF responses from devices are correlated.

However, techniques such as transform coding-based algo-

rithms [3] and principal component analysis [50] can be

applied to convert these responses into a sequence with

almost independent symbols. Therefore, we assume that each

symbol in the source and observed identifier sequences is

i.i.d. generated. Additionally, we assume that the database that

stores helper data is public, e.g., in the cloud, and accessible

to both the decoder and Eve. These modeling assumptions

are consistent with those used in prior works [9], [10], [20],

[21], [22].

E. Notation and Paper Organization

R+ is the set of non-negative real numbers. For any a, b ∈ R,

define [a : b] , [bac, dbe]∩N. Italic uppercase X and lowercase

x denote a random variable and its realization, respectively.

Boldface letters X and x represent a collection of random

variables and its realization. Xn denotes the vector (X1, . . ., Xn)

and Xt represents the t-th element in the vector. Xt
k stands for

a partial sequence (Xk, . . . , Xt) for any [k : t] ⊆ [1 : n]. σ2
X

and ΣY denote the variance of X and the covariance matrix of

Y. N (0, σ2) denotes the Gaussian distribution with zero mean

and variance σ2. T n
δ (X) denotes the set of δ-strongly typical

sequences according to PX [51] and the random variable inside

the parentheses is omitted, e.g., T n
δ , when it is clear from

the context. Additionally, the set of conditionally δ-typical

sequences is denoted as T n
δ (XY |zn) , {(xn, yn) : (xn, yn, zn) ∈

T n
δ } for a given zn ∈ Zn.

The remainder of the paper is organized as follows. In

Section II, we state the problem definitions for the GS and

CS models. We present our main results in Section III. Proofs

of our main results are available in the appendices. Finally,

we provide concluding remarks and some future directions in

Section IV.
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Fig. 2. Illustration of the system model in State (k, l).

II. PROBLEM STATEMENT

The source identifier Xn is i.i.d. according to PX . The

terminals do not have direct access to this identifier but can

only observe its noisy versions. The encoder, decoder, and

Eve are equipped with (ΩX̃ ,ΩY ,ΩZ) ∈ N3 receiver antennas,

respectively. Furthermore, there are |K| possible states for the

channel to the decoder PYk |X with k ∈ K, and |L| possible

states for the channel to Eve PZl |X with l ∈ L in the

authentication phase.3 When the channels are in State (k, l),

the setting is depicted in Fig. 2. The vector-form random

variables X̃n , [X̃n
1 , X̃

n
2 , · · · , X̃n

ΩX̃
]ᵀ, Yn

k , [Yn
k1, · · · ,Yn

kΩY
]ᵀ,

and Zn
l , [Zn

l1, · · · ,Zn
lΩZ

]ᵀ denote the outputs of the source

identifier Xn via the channel to the encoder, (X , PX̃|X , X̃ ), and

the channels to the decoder and Eve (X , PYkZl |X ,Yk × Z l),

respectively. The joint distribution of the system is

PX̃nXnYn
k Zn

l
,

Qn
t=1 PX̃t |Xt

· PXt
· PYk,tZl,t |Xt

. (1)

Secret-key generation strategies are formally defined below.

Let S , [1 : 2nRS ] and J , [1 : 2nRJ ].

Definition 1 (GS Model): For the GS model, a

(2nRS , n,RJ ,RL) secret-key generation strategy consists of:

• Encoding mapping e : X̃
n → J × S;

• Decoding mapping d : Yn
k × J → S;

and operates as follows:

• The encoder observes X̃n and generates the helper data

J ∈ J and a secret key S ∈ S , as (J, S ) , e(X̃n);

• The helper data J is stored in a public database, accessible

to anyone;

• From Yn
k and J, retrieved from the public database, the

decoder estimates S as Ŝ k , d(Yn
k , J).

Definition 2 (CS Model): For the CS model, a

(2nRS , n,RJ ,RL) secret-key generation strategy consists of:

• A secret key S , chosen uniformly at random in S and

independently of (X̃n, Xn,Yn
k ,Z

n
l );

• Encoding mapping e : X̃
n
× S → J ;

• Decoding mapping d : Yn
k × J → S;

and operates as follows:

• From X̃n and S , the encoder generates J , e(X̃n, S );

• The helper data J is saved in a public database, accessible

to anyone;

3Considering multiple states for the enrollment channel is unnecessary since
its state could be estimated at the encoder and shared with the decoder through
the helper data with a negligible cost.

• From Yn and J, the decoder estimates S as Ŝ k , d(Yn
k , J).

In the following, we write (max
k∈K
,min

k∈K
) and (max

l∈L
,min

l∈L
) as

(max
k
,min

k
) and (max

l
,min

l
), respectively, for simplicity.

Definition 3 (GS Model): A tuple of secret-key, storage, and

privacy-leakage rates (RS ,RJ ,RL) ∈ R3
+

is achievable for the

GS model if, for sufficiently small δ > 0 and large enough n,

there exist pairs of encoders and decoders satisfying

max
k
P{bS k , S } ≤ δ, (2)

H(S ) + nδ ≥ log |S | ≥ n(RS − δ), (3)

log |J | ≤ n(RJ + δ), (4)

max
l

I(S ; J,Zn
l ) ≤ nδ, (5)

max
l

I(Xn; J|Zn
l ) ≤ n(RL + δ). (6)

RG is defined as the closure of the set of all achievable rate

tuples for the GS model, and it is called the capacity region.

Definition 4 (CS Model): A tuple of secret-key, storage, and

privacy-leakage rates (RS ,RJ ,RL) ∈ R3
+

is achievable for the

CS model if, for sufficiently small δ > 0 and large enough n,

there exist pairs of encoders and decoders that satisfy all the

conditions (2)–(6) with replacing (3) by log |S | ≥ n(RS − δ).
Let RC be the capacity region of the CS model.

In Definition 3, (2) denotes the reliability constraint, (3) is

the uniformity requirement of the generated secret key, (4)

is the storage rate constraint, (5) is the secrecy-leakage con-

straint, evaluating the information about the secret key leaked

to Eve, and (6) is the privacy-leakage constraint, quantifying

the amount of information leaked to Eve regarding the source

identifier via the helper data given Eve’s side information.

III. MAIN RESULTS

This section presents the inner and outer bounds for the GS

and CS models with discrete sources, followed by the tight

bounds for Gaussian sources and numerical results for both

models.

A. Discrete Sources

Proposition 1 (Inner Bounds): We have

RG ⊇
[

PV |U ,PU |X̃

n
(RS ,RJ ,RL) ∈ R3

+ :

RS ≤ min
k

I(Yk; U |V) −max
l

I(Zl; U |V),

RJ ≥ max
k

I(X̃; U |V ,Yk) + max
k

I(X̃; V |Yk),

RL ≥ max
k

I(X̃; U |V ,Yk) + max
k

I(X̃; V |Yk)

− I(X̃; U |X) + min
k

I(Yk; V) −min
l

I(Zl; V)
o
, (7)

RC ⊇
[

PV |U ,PU |X̃

n
(RS ,RJ ,RL) ∈ R3

+ :

RS ≤ min
k

I(Yk; U |V) −max
l

I(Zl; U |V),

RJ ≥ max
k

I(X̃; U |V ,Yk) + max
k

I(X̃; V |Yk)

+ min
k

I(Yk; U |V) −max
l

I(Zl; U |V),

RL ≥ max
k

I(X̃; U |V ,Yk) + max
k

I(X̃; V |Yk)
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− I(X̃; U |X) + min
k

I(Yk; V) −min
l

I(Zl; V)
o
, (8)

where auxiliary random variables V and U satisfy the Markov

chain V − U − X̃ − X − (Yk,Zl) for all k ∈ K and l ∈ L, and

|V | ≤ |X̃ | + 2(|K| + |L|) + 1 and |U | ≤ (|X̃ | + 2(|K| + |L|) +
1)(|X̃ |+ |K|+ |L|+ 1).

Proof: The proof is available in Appendix A-A, where the

random codebook is constructed based on two layered random

coding techniques. The first layer consists of the auxiliary

sequences Vn generated by PV and the second layer consists

of the auxiliary sequences Un associated with PU |V . The main

challenge in the proof is to ensure that the secret-key unifor-

mity (3) and the secrecy-leakage constraint (5) are satisfied

for all possible receiver-eavesdropper states. To prove these

constraints, the key idea is to introduce a random variable Z̃n

that jointly satisfies the equality I(Z̃; U |V) = maxl I(Zl; U |V)

and the Markov chain V − U − X̃ − Z̃. The random variable

Z̃n plays a central role in analyzing the two constraints. This

technique is not seen in the existing works [9], [21], [22] that

study the secret-key generation with PUFs without compound

channels.

In Proposition 1, how each term in the constraints defining

the regions RG and RC arises can be explained as follows.

We begin with the region RG. In the secret-key rate con-

straint, the term mink I(Yk; U |V) represents the minimum rate

required for reliably estimating the sequence Un across all

indices k, which in turn enables reliable reconstruction of

the secret key since the key is extracted from Un. On the

other hand, the term maxl I(Zl; U |V) is the maximum rate at

which Eve can gain information about Un over all indices

l. Therefore, the achievable secret-key rate is given by the

difference mink I(Yk; U |V) − maxl I(Zl; U |V), similar to the

one derived in [37, Th. 1] for compound sources. The terms

maxk I(X̃; V |Yk) and maxk I(X̃; U |V ,Yk) in the storage-rate

constraint represents the rates of the bin indices at the first

and second layers, respectively. In each layer, the maximum

rate across all indices k must be shared between the encoder

and decoder to ensure reliable reconstruction of the secret

key at the decoder. For the privacy-leakage rate, note that

we can expand the mutual information 1
n

maxl I(Xn; J|Zn
l ) as

1
n
H(J)− 1

n
H(J|Xn)− 1

n
minl I(Zn

l ; J) by using the Markov chain

J−Xn−Zn
l . In the constraint of the privacy-leakage rate, the first

and second terms in the right-hand side represent the upper

bound on the entropy 1
n
H(J), the third term represents the

upper bound on the conditional entropy − 1
n
H(J|Xn), and the

forth and fifth terms represent the upper bound on the mutual

information − 1
n

minl I(Zn
l ; J).

For the region RC, the codebook and coding scheme devel-

oped for proving the region RG are employed as a subsystem

to prove the achievability part. One-time pad operation is

applied to conceal the chosen secret key in the CS model by

adding the secret key generated in the subsystem [9, Appx.

B-C], which leads to the same achievable secret-key rate.

However, the storage rate is different because the masked

information must be saved in the public database together

with the helper data generated by the subsystem, so that the

chosen secret key can be reliably estimated at the decoder.

Therefore, the storage rate of the CS model is the sum of

the storage rate for the GS model (the subsystem) and the

secret-key rate. Moreover, the privacy-leakage rate remains

unchanged because the concealed information reveals no extra

leakage to Eve after applying the one-time pad addition.

Similar behaviors are reflected in the outer bound derived

below in Proposition 2.

A special case of the GS model considered in this paper

was investigated in [1]. One can check that, when ΩX̃ = ΩY =

ΩZ = |L| = 1, the region in (7) reduces to [1, Prop. 1].

Proposition 2 (Outer Bounds): We have

RG ⊆
\

k∈K

\

l∈L

[

PV |U ,PU |X̃

n
(RS ,RJ ,RL) ∈ R3

+ :

RS ≤ I(Yk; U |V) − I(Zl; U |V),

RJ ≥ I(X̃; U |Yk),

RL ≥ I(X; U |Yk) + I(Yk; V) − I(Zl; V)
o
, (9)

RC ⊆
\

k∈K

\

l∈L

[

PV |U ,PU |X̃

n
(RS ,RJ ,RL) ∈ R3

+ :

RS ≤ I(Yk; U |V) − I(Zl; U |V),

RJ ≥ I(X̃; U |Yk) + I(Yk; U |V) − I(Zl; U |V),

RL ≥ I(X; U |Yk) + I(Yk; V) − I(Zl; V)
o
, (10)

where V and U satisfy the Markov chain V−U−X̃−X−(Yk,Zl),

and |V | ≤ |X̃ | + 2(|K| + |L|) + 1, |U | ≤ (|X̃ | + 2(|K| + |L|) +
1)(|X̃ |+ |K|+ |L|+ 1).

Proof: The proof is provided in Appendix A-B. For a fixed

state (k, l), the proof is the same as that of [21, Th. 3 and 4]

without considering the action cost. Therefore, we make use

of the result of those theorems to derive Proposition 2 for the

compound channel setting. However, due to the difference in

the definition of the privacy-leakage rate, appropriate modifi-

cations are required.

The region in (9) matches [1, Prop. 2] when ΩX̃ = ΩY =

ΩZ = |L| = 1. Moreover, in the non-compound settings, i.e.,

when |K| = 1 = |L|, the bounds in Propositions 1 and 2 match,

yielding the following corollary.

Corollary 1 (Capacity Regions): When |K| = 1 = |L|, we

have

RG =
[

PV |U ,PU |X̃

n
(RS ,RJ ,RL) ∈ R3

+ :

RS ≤ I(Y; U |V) − I(Z; U |V),

RJ ≥ I(X̃; U |Y),

RL ≥ I(X; U |Y) + I(Y; V) − I(Z; V)
o
, (11)

RC =
[

PV |U ,PU |X̃

n
(RS ,RJ ,RL) ∈ R3

+ :

RS ≤ I(Y; U |V) − I(Z; U |V),

RJ ≥ I(X̃; U |Y) + I(Y; U |V) − I(Z; U |V),

RL ≥ I(X; U |Y) + I(Y; V) − I(Z; V)
o
, (12)

where (U,V) satisfy the same conditions as in Proposition 2.
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Proof: We only sketch the proof of (11), as that of (12)

follows similarly. When |K| = |L| = 1 and by dropping the

indices k and l, the constraints in Proposition 1 become

RS ≤ I(Y; U |V) − I(Z; U |V), (13)

RJ ≥ I(X̃; U |V ,Y) + I(X̃; V |Y)
(a)
= I(X̃; U |Y), (14)

RL ≥ I(X̃; U |V ,Y) + I(X̃; V |Y)

− I(X̃; U |X) + I(Y; V) − I(Z; V)

= I(X̃; U |Y) − I(X̃; U |X) + I(Y; V) − I(Z; V)

(b)
= I(X; U |Y) + I(Y; V) − I(Z; V), (15)

where (a) and (b) hold by the Markov chains V − U − X̃ − Y

and U − X̃ − X − Y, respectively. As |K| = |L| = 1, (13)–(15)

match (9) in Proposition 2, and thus (11) is proved.

Remark 1: The privacy-leakage rate in [21, Th. 3 and 4]

without action cost is bounded as

RL ≥ I(X; U,Y) − I(X; Y |V) + I(X; Z|V)

= I(X; U |Y) + I(Y; V) − I(Z; V) + I(X; Z), (16)

where the equality holds by the Markov chain V − X − (Y ,Z).

Compared to the privacy-leakage rate in (11) and (12), there

is an extra term I(X; Z), because the privacy-leakage rate

constraint in [21, Ths. 3 and 4] is defined as 1
n
I(Xn; J,Zn) =

1
n
I(Xn; J|Zn)+ I(X; Z). Therefore, (11) and (12) coincide with

[21, Ths. 3 and 4] (without action cost) if [21, eq. (5)] is

replaced by (6).

In Propositions 1 and 2, the orders of the optimization

(union) over the test channels PV |U , PU |X̃ and the minimiza-

tion (intersection) over the channel states (k, l) are reversed.

Specifically, Proposition 1 requires one to choose test channels

PV |U , PU |X̃ that work simultaneously for all (k, l) pairs, whereas

Proposition 2 allows one to choose different test channels

PV |U , PU |X̃ for a channel state pair (k, l), and then only keeps

the intersection over what is achievable per channel state pair.

Therefore, Proposition 1 imposes stronger requirements, and

as a result, the regions in Proposition 2 may be potentially

larger.

In the next subsection, we demonstrate that the regions in

Propositions 1 and 2 match for Gaussian sources.

B. Gaussian Sources

In this subsection, we limit our discussion to a special case

of setup in Section III-A where the enrollment channel is

noiseless, i.e., X̃ = X. We consider PXYkZl
the joint distribution

of zero-mean Gaussian random variables with a non-singular

covariance matrix. Suppose that the source X ∼ N (0, σ2
X), then

it suffices to model the channels to the decoder and Eve as

follows.

Lemma 1: Without loss of generality, one can write

Yk = HkX + NYk
, Zl = H̃lX + NZl

, (17)

where Hk ∈ RΩY×1, H̃l ∈ RΩZ×1, and NYk
∼ N (0, IΩY

), and

NZl
∼ N (0, IΩZ

) are independent of X. Here, I denotes the

identity matrix.

Proof: See Appendix B.

Remark 2: In the case where the enrollment channel is noisy,

i.e., X̃ , X, the noise covariance matrices of the involved

channels are not positive definite in general. This prevents the

use of Cholesky decomposition to normalize them to identity

matrices, and thus the channel models described in Lemma 1

may no longer be applicable.

Note that the single-letter expressions characterized in

Propositions 1 and 2 can be extended to the channel model

(17). To derive a closed-form analytical (parametric) expres-

sion for Gaussian sources, we directly leverage Proposition 1

to show the achievability. In the converse, we transform the

problem in (17) into a scalar Gaussian problem using suffi-

cient statistics [46, Ch. 2], which helps avoid the complexity

of working with vector random variables. However, after

the transformation, it is unclear whether all constraints in

Definition 3, particularly (2), remain preserved under the scalar

random variables. As a result, Proposition 2 may not hold

when the vector random variables are replaced with scalar

ones. To this end, as shown in the proof of Theorem 1, we

derive new outer regions for the channel model (17) using

scalar variables to establish the converse part of Theorem 1.

In the sequel, we define

k∗ ∈ arg min
k∈K

{Hᵀk Hk}, l∗ ∈ argmax
l∈L

{H̃ᵀl H̃l}. (18)

To simplify the presentation of the results for Gaussian

sources, we define the following rate constraints, where α ∈
(0, 1] serves as a tuning parameter that adjusts the variance

of the auxiliary Gaussian random variable. For further details,

the reader is referred to (60).

RS ≤
1

2
log

�
(σ2

XH
ᵀ
k∗Hk∗ + 1)(ασ2

XH̃
ᵀ
l∗H̃l∗ + 1)

(ασ2
XH
ᵀ
k∗Hk∗ + 1)(σ2

XH̃
ᵀ
l∗H̃l∗ + 1)

�
, (19)

RJ ≥
1

2
log

�
ασ2

XH
ᵀ
k∗Hk∗ + 1

α(σ2
XH
ᵀ
k∗Hk∗ + 1)

�
, (20)

RJ ≥
1

2
log

�
ασ2

XH̃
ᵀ
l∗H̃l∗ + 1

α(σ2
XH̃
ᵀ
l∗H̃l∗ + 1)

�
, (21)

RL ≥
1

2
log

�
ασ2

XH
ᵀ
k∗Hk∗ + 1

α(σ2
XH
ᵀ
k∗Hk∗ + 1)

�
. (22)

Theorem 1 (Capacity Regions): If H
ᵀ
k∗Hk∗ ≥ H̃

ᵀ
l∗H̃l∗ , then the

capacity regions of the GS and CS models are

RG =
[

0<α≤1

{(RS ,RJ ,RL) ∈ R3
+ : (19), (20), and (22)

are satisfied}, (23)

RC =
[

0<α≤1

{(RS ,RJ ,RL) ∈ R3
+ : (19), (21), and (22)

are satisfied}. (24)

If H
ᵀ
k∗Hk∗ < H̃

ᵀ
l∗H̃l∗ , then

RG = RC = {(RS ,RJ ,RL) : RS = 0,RJ ≥ 0,RL ≥ 0}. (25)

Proof: The proof is provided in Appendix C and includes the

achievability and converse parts. For the achievability, we set

the test channel PU |X to be an AWGN channel and then apply

Weinstein–Aronszajn Identity [52, Appx. B] to calculate the

mutual information with vector random variables. Finally, we
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use Lemma 5 to show that the optimal inner region is achieved

when the indices of the channels to the decoder and Eve are

k∗ and l∗, respectively. For the converse, we begin by invoking

the sufficient statistics [46] to convert vector variables to scalar

ones. Next, we derive a single-letter characterization of the

outer bound using these scalar variables, which is then used

to determine the parametric expressions for the Gaussian case.

The proof employs a technique based on Fisher information,

introduced in [49]. In the final step, we again apply Lemma 5

to derive the outer region valid for an arbitrary pair (k, l), which

is obtained when the decoder and Eve observe the channels

indexed by k∗ and l∗ as well, coinciding with the optimal inner

bound.

In Theorem 1, the condition H
ᵀ
k∗Hk∗ ≥ H̃

ᵀ
l∗H̃l∗ indicates that

the channel power gain of the worst link to the decoder is at

least as large as that of the best link to Eve. In the single-

antenna case, i.e., |K| = 1 = |L|, this condition corresponds

to physically degraded channels, where the channel to Eve is

physically degraded with respect to the channel to the decoder.

Unlike the discrete sources, the inner and outer bounds

for the Gaussian sources coincide. This is because, in the

outer bound, the variable involved in the optimization is a

scalar parameter, and rate constraints are given by logarithmic

functions of the optimization parameter, α, and the values of

channel power gains H
ᵀ
k Hk and H̃

ᵀ
l H̃l. These functions are

monotonic with respect to the channel power gains for an

arbitrary α. As a result, the order of intersection and union

does not matter and can be swapped, which enable us to

take the intersection over channel states (k, l) for each rate

constraint and determine the saddle point (k∗, l∗) at which the

outer bound matches the inner bound.

As a special case, when ΩY , ΩZ , |K|, and |L| are all one (let

H = h and H̃ = h̃), the AWGN channels to the decoder and

Eve reduce to Y = hX + NY and Z = h̃X + NZ , respectively,

with NY ∼ N (0, 1) and NZ ∼ N (0, 1). In this case, using the

correlation coefficients of (X,Y), ρ2
XY = σ

2
Xh2/(σ2

Xh2
+ 1) and

that of (X,Z), ρ2
XZ = σ

2
X h̃2/(σ2

X h̃2
+ 1), the regions (23) and

(24) can be transformed as

RG =
[

0<α≤1

n
(RS ,RJ ,RL) ∈ R3

+ :

RS ≤
1

2
log
αρ2

XZ + 1 − ρ2
XZ

αρ2
XY + 1 − ρ2

XY

,

RJ ≥
1

2
log
αρ2

XY + 1 − ρ2
XY

α
,

RL ≥
1

2
log
αρ2

XY + 1 − ρ2
XY

α

o
, (26)

RC =
[

0<α≤1

n
(RS ,RJ ,RL) ∈ R3

+ :

RS ≤
1

2
log
αρ2

XZ + 1 − ρ2
XZ

αρ2
XY + 1 − ρ2

XY

,

RJ ≥
1

2
log
αρ2

XZ + 1 − ρ2
XZ

α
,

RL ≥
1

2
log
αρ2

XY + 1 − ρ2
XY

α

o
. (27)

The regions in (26) and (27) align with [22, Cor. 1] when [22,

eq. (5)] is replaced with (6) to eliminate the quantity I(X; Z).

Moreover, when the storage rate is not considered, i.e., (4) is

not imposed, and Eve has no side information, i.e., ρXZ = 0,

the regions in (26) and (27) simplify to [11, Th. 4.1 and 4.2].

C. Numerical Examples

We begin by presenting numerical calculations that illustrate

the relationship between the secret-key and storage rates in

the GS model, and then proceed to compare the secret-key

and privacy-leakage rates of the GS and CS models under the

same storage rate.

For investigating the relation of the secret-key and storage

rates, we consider three cases, with the parameters summarized

as follows: 1. ΩY = ΩZ = 1 with H
ᵀ
k∗ = 0.95 and H̃

ᵀ
l∗ = 0.8, 2.

ΩY = 3 and ΩZ = 1 with H
ᵀ
k∗ = [0.95 0.95 0.95] and H̃

ᵀ
l∗ = 0.8,

and 3. ΩY = 3 and ΩZ = 4 with H
ᵀ
k∗ = [0.95 0.95 0.95] and

H̃
ᵀ
l∗ = [0.8 0.8 0.5 0.5]. Moreover, we fix the variance of the

source identifier as σ2
X = 5 for all cases.

For a given α, define the optimal storage rate RJ(α) =
1
2

log
ασ2

XH
ᵀ

k∗Hk∗+1

α(σ2
XH
ᵀ

k∗Hk∗+1)
, from which one can express α as

α =
1

22RJ (α) + (22RJ (α) − 1)σ2
XH
ᵀ
k∗Hk∗

. (28)

Substituting (28) into the right-hand side of (19), the

optimal secret-key rate based on RJ(α) is given by

RS (RJ(α)) = 1
2

log
�
σ2

XH
ᵀ

k∗Hk∗ (1−2−2RJ (α))+σ2
XH̃
ᵀ

l∗ H̃l∗2
−2RJ (α)+1

σ2
XH̃
ᵀ

l∗ H̃l∗+1

�
. Note

that if RJ(α)→ ∞, R∗S (RJ(α))→ 1
2

log
�
σ2

XH
ᵀ

k∗Hk∗+1

σ2
XH̃
ᵀ

l∗ H̃l∗+1

�
.

Figure 3(a) depicts the relation of (RJ(α),RS (RJ(α))). In

this figure, Case 2 (blue curve) shows a high secret-key

rate compared to the other cases. This is due to an increase

in the number of antennas at the decoder, which enhances

the correlation between the source and observations at the

terminal. On the other hand, in Case 3 (red curve), as the

number of antennas at Eve increases, the secret-key rate drops

compared to Case 2 because the stronger correlation with Eve

reduces the key-generation rate. Also, Case 3 shows that even

when Eve has more antennas, a positive secret-key rate is still

achievable as long as H
ᵀ
k∗Hk∗ ≥ H̃

ᵀ
l∗H̃l∗ .

Figure 3(b) presents the secret-key and storage rates for a

given α, focusing on Case 3, where the maximum secret-key

rate reaches 0.2771 (cf. Fig. 3(a)). As α→ 0, the storage rate

grows unbounded, reflecting the absence of encoding, while

the secret-key rate is maximized. In contrast, as α → 1, both

rates approach zero. According to (60), this is because U is

highly correlated with X when α→ 0, leading to a high secret-

key rate, whereas U becomes independent of X when α = 1,

resulting in zero secret-key rate.

Figures 3(c) and 3(d) respectively compare the secret-key

and privacy-leakage rates between the GS and CS models

for Case 2, under the same values of storage rates. In the

low storage rate regime, the GS model results in a higher

secret-key rate than the CS model, but at the cost of greater

privacy leakage, highlighting a trade-off between these two

security metrics. In the high storage rate regime, both models

achieve the same secret-key rate, but the GS model still incurs

greater privacy leakage than the CS model with the difference

equal to the secret-key rate. This occurs because, in the CS
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Fig. 3. (a) The relation of storage and secret-key rates in the GS model, (b) the secret-key and storage rates for a given value of α in the GS model, and for
given a storage rate, a comparison of the secret-key and privacy-leakage rates in the GS and CS models are shown in (c) and (d), respectively.

model, the concealed data (with rate equal to the secret-key

rate) reveals no information about the source identifier. These

results suggest that in practical system designs, where the

storage space is fixed, the GS model may be preferred in the

low storage rate regime when maximizing the secret-key rate

is important, while the CS model is preferable for minimizing

privacy leakage. In the high storage rate regime, the CS model

becomes the preferred option as it can achieve the same secret-

key rate as the GS model but with lower privacy leakage.

IV. CONCLUDING REMARKS AND FUTURE DIRECTIONS

We studied secret-key generation from private identifiers

under channel uncertainty and multiple-output settings. This

setup addresses authentication robustness against eavesdrop-

pers in scenarios where the legitimate terminals lack exact

CSI and Eve may use multiple antennas to improve signal

reception. We derived inner and outer bounds for discrete

sources and provided a full capacity characterization for Gaus-

sian sources. The main technical contributions lie in proving

the inner bound for discrete memoryless sources and the outer

bound for the Gaussian case.

To prove the inner bound for discrete sources, we first

extend the technique used in [40] for compound wiretap

channels to ensure that the generated secret key is uniform

and remains secret from Eve’s observation for any channel

state. For the outer bound in the Gaussian case, we first

employ sufficient statistics to convert the vector problem into

a scalar one, so that we can use the degraded property of

the scalar Gaussian random variables to derive a single-letter

characterization of the outer region. Then, we apply the single-

letter characterization to derive the parametric expression for

the Gaussian case with Fisher information-based techniques

playing a crucial role in the derivation.

We also performed numerical evaluations for the Gaussian

case to illustrate how changes in the number of antennas at

the legitimate terminals and the eavesdropper affect the trade-

offs between secret-key and storage rates, and to compare

the secret-key and privacy-leakage rates of the GS and CS

models under the same storage rate. The first set of results

indicates that increasing the number of antennas at the decoder

leads to a higher secret-key rate, while adding antennas at

Eve reduces the secret-key rate. Nevertheless, even if Eve has

more antennas, a positive secret-key rate remains achievable

as long as the worst-case channel power gain at the decoder

exceeds the best-case channel power gain at Eve. The second

set of results shows that in the low storage-rate regime, the

GS model achieves a higher secret-key rate, whereas the CS

model offers better privacy-leakage performance. In contrast,

in the high storage-rate regime, the CS model proves to be the

more favorable choice as it provides the same secret-key rate

as the GS model with lower privacy leakage.

A natural extension of this work is to characterize the

capacity region for Gaussian sources under noisy enrollment

channels. As noted in Lemma 2, since we may not be able

to model the covariance matrices of the independent noises

as identity matrices, the analysis will become more involved

compared to that of Theorem 1. This arises because the scalar

problem obtained by transforming the original vector problem

using sufficient statistics results in more complicated forms

than the expressions in Lemma 7. Extending the scenario to

the case of vector Gaussian sources is also an interesting topic.

Another possible avenue is to include user identification as

studied in [23], [24], [25] and see how the identification rate

influences the capacity region.

APPENDIX A

PROOF OF PROPOSITIONS 1 AND 2

A. Proof of Proposition 1

We only prove (7) since (8) follows similarly with an extra

procedure, a one-time pad procedure to conceal the chosen

secret key. As a result, an extra rate equal to the secret-key

rate is needed for storing the concealed key information in the

database, which appears in the constraint of the storage rate

of the CS model.

Fix the test channels PU |X̃ and PV |U and let δ > 0. In the

following, we show that these rates are achievable

RS , min
k

I(Yk; U |V) −max
l

I(Zl; U |V) − δ, (29)

RJ , max
k

I(X̃; U |V ,Yk) + max
k

I(X̃; V |Yk) + 5δ, (30)

RL , max
k

I(X̃; U |V ,Yk) + max
k

I(X̃; V |Yk)

− I(X̃; U |X) + min
k

I(Yk; V) −min
l

I(Zl; V) + 4δ. (31)

For the random codebook construction, we also define

Rv, I(X̃; V) + δ, RJv1
,max

k
I(X̃; V |Yk) + 2δ, (32)

Ru, I(X̃; U |V) + δ, RJu1
,max

k
I(X̃; U |Yk,V) + 3δ, (33)
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and the sets Jv1
,[1 : 2nRJv1 ], Jv2

,[1 : 2n(Rv−RJv1
)], Ju1

,[1 :

2nRJu1 ], Ju2
,[1 : 2nRS ], Ju3

,[1 : 2n(maxl I(Zl;U |V)−δ)]. Note that

Ru = RJu1
+ RS + maxl I(Zl; U |V) − δ.

Random Codebook: Generate i.i.d. sequences vn( jv1
, jv2

)

from PVn , where ( jv1
, jv2

) ∈ Jv1
× Jv2

. For every ( jv1
, jv2

),

generate i.i.d. sequences un( ju1
, ju2
, ju3
, jv1
, jv2

), where

( ju1
, ju2
, ju3

) ∈ Ju1
×Ju2

×Ju3
, according to PUn |Vn=vn( jv1

, jv2
). All

the generated sequences (Vn( jv1
, jv2

),Un( ju1
, ju2
, ju3
, jv1
, jv2

))

form the codebook Cn.

Encoding: Observing x̃n, the encoder first finds ( jv1
, jv2

)

such that (x̃n, vn( jv1
, jv2

)) ∈ T n
δ . Then, it looks for ( ju1

, ju2
, ju3

)

such that (x̃n, un( ju1
, ju2
, ju3
, jv1
, jv2

)) ∈ T n
δ (X̃U |vn( jv1

, jv2
)). If a

unique tuple ( ju1
, ju2
, ju3
, jv1
, jv2

) is found, the encoder assigns

the helper data j = ( jv1
, ju1

) and the secret key s = ju2
. If

multiple such tuples are found, the encoder selects one tuple

uniformly at random and assigns j = ( jv1
, ju1

) and s = ju2
. In

case no such tuple exists, the encoder sets all jv1
, jv2

, ju1
, ju2

,

and ju3
to be one and assigns j = (1, 1) and s = 1.

Decoding: From yn
k and ( ju1

, jv1
), the decoder first looks

for the unique index ĵv2
such that (yn

k , v
n( jv1
, ĵv2

)) ∈ T n
δ .

Then, it looks for the unique pair ( ĵu2
, ĵu3

) such that

(yn
k , u

n( ju1
, ĵu2
, ĵu3
, jv1
, ĵv2

)) ∈ T n
δ (YkU |vn( jv1

, ĵv2
)). If the

indices ĵu2
, ĵu3

, and ĵv2
are uniquely determined, then the

decoder estimates ŝ = ĵu2
; otherwise, it sets ŝ = 1 and declares

an error.

In the following, we write Vn(Jv1
, Jv2

) and

Un(Ju1
, Ju2
, Ju3
, Jv1
, Jv2

) as Vn and Un for convenience.

Analysis of Error Probability: Possible error events at the

encoder are

E1: {(X̃n,Vn( jv1
, jv2

)) < T n
δ ,∀( jv1

, jv2
) ∈ Jv1

× Jv2
},

E2: {(X̃n,Un( ju1
, ju2
, ju3
, Jv1
, Jv2

)) < T n
δ (X̃U |Vn),

∀( ju1
, ju2
, ju3

) ∈ Ju1
× Ju2

× Ju3
},

and those at the decoder are

E3: {(Yn
k ,U

n,Vn) < T n
δ },

E4: {∃ j′v2
∈ Jv2

, j′v2
, Jv2

and (Yn
k ,V

n(Jv1
, j′v2

)) ∈ T n
δ },

E5: {∃( j′u2
, j′u3

) ∈ Ju2
× Ju3

, ( j′u2
, j′u3

) , (Ju2
, Ju3

) and

(Yn
k ,U

n(Ju1
, j′u2
, j′u3
, Jv1
, Jv2

)) ∈ T n
δ (YkU |Vn)}.

Then, we have

max
k
P{Ŝ k , S } = P{∪5

i=1Ei}

≤ P{E1}+ P{E2}+ P{E3 ∩ (E1 ∪ E2)c}+ P{E4}+ P{E5}. (34)

The first and second terms vanish by the covering lemma

[51, Lemma 3.3] since Rv > I(X̃; V) and Ru > I(X̃; U |V),

respectively. The third term vanishes by Markov lemma [46,

Lemma 15.8.1]. The last two terms vanish by the packing

lemma [51, Lemma 3.1], since the rate of index ĵv2
is less

than mink I(Yk; V) and that of index pair ( ĵu2
, ĵu3

) is less than

mink I(Yk; U |V), respectively. Hence, we have

lim
n→∞

max
k
P{Ŝ k , S } → 0. (35)

Before we analyze the constraints (3), (4), (5), and (6) in

Definition 3, we state two lemmas. The first one, Lemma 2,

is an extended version of [40, Lemma A.1] to incorporate

conditional mutual information.

Lemma 2: If the inequality I(Zl; U |V) < I(Zl′ ; U |V) holds

for l, l′ ∈ L, then there exists a vector random variable A such

that the equality I(Zl,A; U |V) = I(Zl′ ; U |V) and the Markov

chain V − U − X̃ − (Zl,Zl′ ) − A are satisfied.

Proof: Let B be a binary random variable taking values l

and l′ with probabilities p and 1 − p, respectively, where 0 ≤
p ≤ 1, and assume that B is independent of all other random

variables. Define A , (ZB, B) and Γ(p) = I(Zl,A; U |V). Due

to the independence of B, we have

Γ(p) = pI(Zl; U |V) + (1 − p)I(Zl,Zl′ ; U |V). (36)

Now observe that Γ(1) < I(Zl′ ; U |V) ≤ Γ(0), where the first

inequality follows by the assumption I(Zl; U |V) < I(Zl′ ; U |V).

Due to the continuity of the function Γ(p) for all p ∈ [0, 1],

there exists a p∗ ∈ [0, 1] such that Γ(p∗) = I(Zl′ ; U |V), and thus

the equality I(Zl,A; U |V) = I(Zl′ ; U |V) is satisfied with A =

(ZB∗ , B
∗) and B∗ taking the values l and l′ with probabilities

p∗ and 1− p∗, respectively. Also, this choice of A ensures that

the Markov chain V − U − X̃ − (Zl,Zl′ ) − A is satisfied.

Lemma 2 is used to show the existence of a random variable

that achieves maxl I(Zl; U |V) and forms a Markov chain with

(V ,U, X̃), as detailed in the following intermediate step.

Intermediate Step: For any l ∈ L, by Lemma 2, there exists

A such that for

Z̃ , (Zl,A), (37)

we have I(Z̃; U |V) = maxl I(Zl; U |V) and

V − U − X̃ − Z̃. (38)

Moreover, define a binary random variable T , which takes 1

if (Un, X̃n, Z̃n) ∈ T n
δ and 0 otherwise. For large enough n, it

holds that

PT (1) ≥ 1 − δ̃n (39)

with δ̃n ↓ 0 as δ ↓ 0 and n → ∞. This follows because the

pair (Un, X̃n) is jointly typical with probability approaching

one, as shown in (35), and Z̃n is i.i.d. generated according toQn
t=1 PZ̃t |X̃t

from (38), and thus (39) follows by applying the

Markov lemma [46, Lemma 15.8.1]. Similarly, we have joint

typicality of (Vn, Z̃n) as (Vn, X̃n) is jointly typical with high

probability. These properties are applied in proving the next

lemma, which plays a key role in the analyses of the secret-key

uniformity and secrecy-leakage.

Lemma 3: For an arbitrary index l ∈ L, we have

H(Ju2
|Ju1
, Jv1
,Zn

l , Cn) ≥ n(RS − ξn), (40)

where ξn goes to zero as δ ↓ 0 and n→ ∞.

Proof: We have

H(Ju2
|Ju1
, Jv1
,Zn

l , Cn)

≥ H(Ju2
|Ju1
, Jv1
, Jv2
,Zn

l ,A
n, Cn)

(a)
= H(Ju2

|Ju1
, Jv1
, Jv2
, Z̃n, Cn)

= H(Ju1
, Ju2
, Ju3
, Jv1
, Jv2
, Z̃n|Cn)

− H(Ju3
|Ju1
, Ju2
, Jv1
, Jv2
, Z̃n, Cn)

− H(Ju1
, Jv1
, Jv2
, Z̃n|Cn)

(b)

≥ H(Ju1
, Ju2
, Ju3
, Jv1
, Jv2
, Z̃n|Cn)
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− H(Ju1
, Jv1
, Jv2
, Z̃n|Cn) − nδn

(c)

≥ H(Un, Z̃n|Cn) − H(Z̃n|Vn, Cn)

− H(Ju1
, Jv1
, Jv2
|Cn) − nδn

≥ PT (1)H(Un, Z̃n|T = 1, Cn) − H(Z̃n|Vn, Cn)

−H(Ju1
|Cn) − H(Jv1

|Cn) − H(Jv2
|Cn) − nδn

(d)

≥ (1 − δ̃n)H(Un, Z̃n|T = 1, Cn) − H(Z̃n|Vn, Cn)

−H(Ju1
|Cn) − H(Jv1

|Cn) − H(Jv2
|Cn) − nδn

(e)

≥ n(1 − δ̃n)(I(X̃; U) + H(Z̃|U) − 2εδ) − H(Z̃n|Vn, Cn)

− H(Ju1
|Cn) − H(Jv1

|Cn) − H(Jv2
|Cn) − nδn

(f)

≥ n(I(X̃; U) + H(Z̃|U) − H(Z̃|V) − γn)

− H(Ju1
|Cn) − H(Jv1

|Cn) − H(Jv2
|Cn) − nδ′n

(g)

≥ n(I(X̃; U) − I(Z̃; U |V) − γn)

− n(max
k

I(X̃; U |V ,Yk) + 3δ)

− n(max
k

I(X̃; V |Yk) + 2δ)

− n(min
k

I(Yk; V) − δ) − nδ′n

(h)
= n(I(X̃; U) − I(Z̃; U |V))

− n(max
k
{I(X̃; U |V) − I(Yk; U |V)})

− n(max
k
{I(X̃; V) − I(Yk; V)}) − n min

k
I(Yk; V)

− n(4δ+ γn + δ
′
n)

(i)
= n(min

k
I(Yk; U |V) −max

l
I(Zl; U |V) − δ − ξn)

= n(RS − ξn), (41)

where (a) holds from (37), (b) follows because the index

Ju3
can be reliably estimated from (Ju1

, Ju2
, Jv1
, Jv2
, Z̃n), as

1
n

log |J3| < maxl I(Zl; U |V) = I(Z̃; U |V), (c) holds because

Un and Vn are determined by the tuple (Ju1
, Ju2
, Ju3
, Jv1
, Jv2

)

and the pair (Jv1
, Jv2

), respectively, (d) follows from (39), and

(e) follows from

PZ̃nUn (z̃n, un) ≤
X

x̃n∈T n
δ (X̃|z̃n,un)

PX̃nZ̃n (x̃n, z̃n)

≤ 2n(H(X̃|Z̃,U)−εδ) · 2−n(H(X̃,Z̃)−εδ)

= 2−n(I(X̃;U)+H(Z̃|U)−2εδ), (42)

(f) follows because, as shown in the intermediate step, (Vn, Z̃n)

is jointly typical with high probability and thus H(Z̃n|Vn, Cn) ≤
n(H(Z̃|V) + γn) (cf. [53, eq. (16)]) and δ′n , δ̃n(I(X̃; U) +

H(Z̃|U))+2(1− δ̃n)εδ+δn, (g) is due to the Markov chain (38)

and H(Ju1
|Cn) ≤ nRJu1

, H(Jv1
|Cn) ≤ nRJv1

, H(Jv2
|Cn) ≤ n(Rv −

RJv1
) = n(mink I(Yk; V) − δ), (h) is due to the Markov chain

V −U − X̃ −Yk, (i) follows from I(Z̃; U |V) = maxl I(Zl; U |V)

and ξn , 3δ+ γn + δ
′
n.

Analyses of Uniformity and Secrecy-Leakage: The con-

straints of (3) and (5) can be evaluated as

H(S |Cn) = H(Ju2
|Cn)

≥ H(Ju2
|Ju1
, Jv1
,Zn

l , Cn)

≥ n(RS − ξn), (43)

and

max
l

I(S ; J,Zn
l |Cn) = max

l
I(Ju2

; Ju1
, Jv1
,Zn

l |Cn)

= max
l
{H(Ju2

|Cn) − H(Ju2
|Ju1
, Jv1
,Zn

l , Cn)}

≤ max
l
{nRS − n(RS − ξn)} = nξn, (44)

where (43) and (44) follow from Lemma 3.

Analysis of Storage Rate: The helper data is J = (Jv1
, Ju1

),

and thus the total storage rate is 1
n

log |Jv1
||Ju1
| = RJv1

+RJu1
=

RJ .

Analysis of Privacy-Leakage Rate: We have

max
l

I(Xn; J|Zn
l , Cn) = max

l
I(Xn; Ju1

, Jv1
|Zn

l , Cn)

= I(Xn; Ju1
, Jv1
|Cn) −min

l
I(Zn

l ; Ju1
, Jv1
|Cn)

≤ H(Ju1
|Cn) + H(Jv1

|Cn) − H(Ju1
, Jv1
|Xn, Cn)

−min
l

I(Zn
l ; Ju1

, Jv1
|Cn)

= H(Ju1
|Cn) + H(Jv1

|Cn) − H(X̃n, Ju1
, Jv1
|Xn, Cn)

+ H(X̃n|Xn, Ju1
, Jv1
, Cn) −min

l
I(Zn

l ; Ju1
, Jv1
|Cn)

(a)

≤ H(Ju1
|Cn) + H(Jv1

|Cn) − nH(X̃|X)

+ n(H(X̃|X,U) + ε′n) −min
l

I(Zn
l ; Ju1

, Jv1
|Cn)

≤ H(Ju1
|Cn) + H(Jv1

|Cn) − nI(X̃; U |X)

−min
l

I(Zn
l ; Jv1
|Cn) + nε′n

≤ H(Ju1
|Cn) + H(Jv1

|Cn) − nI(X̃; U |X)

−min
l
{H(Zn

l ) − H(Zn
l |Jv1
, Jv2
, Cn)}

+ max
l

I(Jv2
; Zn

l |Jv1
, Cn) + nε′n

(b)

≤ H(Ju1
|Cn) + H(Jv1

|Cn) − nI(X̃; U |X)

−min
l
{H(Zn

l ) − H(Zn
l |Vn, Cn)}+ H(Jv2

|Cn) + nε′n

(c)

≤ H(Ju1
|Cn) + H(Jv1

|Cn) − nI(X̃; U |X)

− n(min
l
{H(Zl) − H(Zl|V)}) + H(Jv2

|Cn) + nε′′n

≤ n(max
k

I(X̃; V |Yk) + max
k

I(X̃; U |V ,Yk) + 4δ

− I(X̃; U |X) + min
k

I(Yk; V) −min
l

I(Zl; V) + ε′′n )

= n(RL + ε
′′
n ), (45)

where (a) follows from (46), shown below, and the codebook

Cn is independent of (X̃n, Xn,Yn
k ,Z

n
l ), (b) holds because Vn is

a function of (Jv1
, Jv2

), and (c) follows because H(Zn
l |Vn, Cn) ≤

n(H(Zl|V) + γ′n) and ε′′n , γ′n + ε′n. For brevity, define

E , (Ju2
, Ju3
, Jv2

), where the decoder can reliably estimate

the index E for given (Yn
k , Ju1

, Jv1
). Observe that

H(X̃n|Xn, Ju1
, Jv1
, Cn)

= H(X̃n|Xn, Ju1
, Jv1
, E, Cn) + I(E; X̃n|Xn, Ju1

, Jv1
, Cn)

(a)

≤ H(X̃n|Xn,Un, Cn) + H(E|Xn, Ju1
, Jv1
, Cn)

(b)

≤ H(X̃n|Xn,Un, Cn) + H(E|Yn
k , Ju1

, Jv1
, Cn)

(c)

≤ H(X̃n|Xn,Un, Cn) + nεn
(d)

≤ n(H(X̃|X,U) + ε′n), (46)
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where (a) follows since Un is a function of

(Ju1
, Ju2
, Ju3
, Jv1
, Jv2

), (b) is due to the Markov chain

E − (Xn, Ju1
, Jv1

) − Yn
k and conditioning reduces entropy,

(c) follows from Fano’s inequality with εn ↓ 0 as δ ↓ 0 and

n→ ∞, and (d) because H(X̃n|Xn,Un, Cn) ≤ n(H(X̃|X,U)+γ′′n )

for jointly typical sequences (cf. [53, eq. (16)]) and

ε′n , γ
′′
n + εn.

From (35), (43), (44), and (45), there must be at least one

codebook satisfying all the conditions in Definition 3, so that

the region in (7) is achievable.

B. Proof of Proposition 2

The cardinality bounds of the auxiliary random variables

can be obtained from the support lemma [51, Lemma 3.4].

We show the proof for the GS model via a result derived

in [21] in the absence of action cost. By replacing (6) with

I(Xn; J,Zn
l ) ≤ n(RL + δ), the outer bound for a pair (k, l),

denoted by OGkl
, is [21, Th. 3]

OGkl
,

[

PV |U ,PU |X̃

{(RS ,RJ ,RL) ∈ R3
+ :

RS ≤ I(Yk; U |V) − I(Zl; U |V), RJ ≥ I(X̃; U |Yk),

RL ≥ I(X; U,Yk) − I(X; Yk |V) + I(X; Zl|V)}, (47)

where V and U satisfy V − U − X̃ − X − (Yk,Zl).

In Definition 3, the constraints on the secret-key and storage

rates are the same as in [21, Def. 6], and the resulting bounds

are given in the same form as in (47). For the privacy-leakage

rate, we expand the right-hand side of RL in (47) as

I(X; U,Yk) − I(X; Yk |V) + I(X; Zl|V)

= I(X; U |Yk) + I(Yk; V) − I(Zl; V) + I(X; Zl), (48)

where we use the Markov chain V −X − (Yk,Zl). By (48), the

privacy-leakage rate is lower bounded as

n(RL + δ) ≥ I(Xn; J|Zn
l ) = I(Xn; J,Zn

l ) − I(Xn; Zn
l )

≥ n(I(X; U |Yk) + I(Yk; V) − I(Zl; V)). (49)

Therefore, an outer bound for a given (k, l) in Definition 3 is

OGkl
,

[

PV |U ,PU |X̃

{(RS ,RJ ,RL) ∈ R3
+ :

RS ≤ I(Yk; U |V) − I(Zl; U |V), RJ ≥ I(X̃; U |Yk),

RL ≥ I(X; U |Yk) + I(Yk; V) − I(Zl; V)}, (50)

where V and U satisfy V − U − X̃ − X − (Yk,Zl). Hence,

RG ⊆
\

k∈K

\

l∈L

OGkl
. (51)

The proof for the CS model can be derived using the same

reasoning from [21, Th. 4].

APPENDIX B

PROOF OF LEMMA 1

Denote the covariance matrix of (X,Yk,Zl) as Σ, where

Σ =

2
4
σ2

X ΣXYk
ΣXZl

ΣYk X ΣYk
ΣYkZl

ΣZlX ΣZlYk
ΣZl

3
5 . (52)

Note that (2) depends on the marginal distribution of

(X,Yk), (3) depends on the marginal distribution of X, and

(5) and (6) depend on the marginal distribution of (X,Zl).

Therefore, without loss of generality, using [54, Th. 3.5.2]

and (52), it suffices to consider

Yk = ΣYk Xσ
−2
X X + NYk

, (53)

Zl = ΣZlXσ
−2
X X + NZl

, (54)

where NYk
∼ N (0,ΣNYk

) with ΣNYk
= ΣYk

−ΣYk Xσ
−2
X ΣXYk

, and

NZl
∼ N (0,ΣNZl

) with ΣNZl
= ΣX̃ −ΣZlXσ

−2
X ΣXZl

, independent

of X.

Since Σ is non-singular (positive definite), the sub-matrix�
σ2

X ΣXYk

ΣYk X ΣYk

�
is also positive definite. This implies that the

matrix ΣNYk
is positive definite as it is the Schur complement

of σ2
X in the sub-matrix. By Cholesky decomposition, there

exists an invertible matrix C ∈ RΩY×ΩY such that ΣNYk
= CCᵀ.

Then, we can reformulate (53) as

Y′k = AY′k
X + N′Yk

, (55)

where Y′k = C−1Yk, AY′k
= C−1

ΣYk Xσ
−2
X and N′Yk

∼ N (0, IΩY
).

Similarly, the same approach can be applied to (54).

APPENDIX C

PROOF OF THEOREM 1

This appendix consists of two parts, that is, the achievability

part in Appendix C-A and the converse part in Appendix C-B.

A. Achievability Proof

Note that Proposition 1 was proved under finite source

alphabets. However, the result can be extended to Gaussian

sources as well by employing a fine quantization before

encoding and decoding processes, similar to [55].

By choosing V as a constant in Proposition 1, the following

regions are achievable.

RG ⊇
[

PU |X

n
(RS ,RJ ,RL) ∈ R3

+ :

RS ≤ min
k

I(Yk; U) −max
l

I(Zl; U),

RJ ≥ I(X; U) −min
k

I(Yk; U),

RL ≥ I(X; U) −min
l

I(Yk; U)
o
, (56)

RC ⊇
[

PU |X

n
(RS ,RJ ,RL) ∈ R3

+ :

RS ≤ min
k

I(Yk; U) −max
l

I(Zl; U),

RJ ≥ I(X; U) −max
l

I(Zl; U),

RL ≥ I(X; U) −min
l

I(Yk; U)
o
, (57)

where auxiliary random variable U satisfies the Markov chain

U − X − (Yk,Zl) for all k ∈ K and l ∈ L.

Lemma 4 (Weinstein–Aronszajn Identity [52, Appx. B]): For

any a ∈ R+ and matrix H ∈ RΩ×1, we have

det(HaHᵀ + IΩ) = aHᵀH + 1, (58)
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where det(·) denotes the determinant of a matrix.

Lemma 5: For given α ∈ (0, 1], the function

f (HᵀH) = log

�
σ2

XHᵀH + 1

ασ2
XHᵀH + 1

�
(59)

is monotonically increasing with respect to HᵀH.

Lemma 4 is applied in the calculation of mutual information

with vector random variables for given k and l, and the role

of Lemma 5 is to find the minimum and maximum values of

the mutual information among all possible k ∈ K and l ∈ L.

For 0 < α ≤ 1, consider

X , U + Θ, (60)

where U ∼ N (0, (1−α)σ2
X)) and Θ ∼ N (0, ασ2

X). This relation

implies that

I(X; U) =
1

2
log

�
1

α

�
. (61)

From (17) and (60), it follows that

Yk = HkU + HkΘ+ NYk
, (62)

Zl = H̃lU + H̃lΘ+ NZl
. (63)

Using Lemma 4, we have

I(Yk; U) =
1

2
log
σ2

XH
ᵀ
k Hk + 1

ασ2
XH
ᵀ
k Hk + 1

, (64)

I(Zl; U) =
1

2
log
σ2

XH̃
ᵀ
l H̃l + 1

ασ2
XH̃
ᵀ
l H̃l + 1

(65)

for a fixed pair (k, l), and invoking Lemma 5 gives

min
k

I(Yk; U) =
1

2
log

�
σ2

XH
ᵀ
k∗Hk∗ + 1

ασ2
XH
ᵀ
k∗Hk∗ + 1

�
, (66)

max
l

I(Zl; U) =
1

2
log

�
σ2

XH̃
ᵀ
l∗H̃l∗ + 1

ασ2
XH̃
ᵀ
l∗H̃l∗ + 1

�
. (67)

Finally, substituting (61), (66), (67) into (56) and (57), gives

(23) and (24).

B. Converse Proof

We will need the following lemmas. These lemmas con-

vert vector observations in (17) into scalar Gaussian random

variables using sufficient statistics [46, Sect. 2.9]. This trans-

formation plays an important role in deriving the outer bound

of Gaussian sources.

Lemma 6 ([56, Lemma 3.1]): Consider a channel with input

W and output W̃, namely, W̃ , AW + NW̃, where A is a

matrix and NW̃ ∼ N (0,ΣW̃). A sufficient statistic to correctly

determine W from W̃ is the following scalar

W̄ , AᵀΣ−1
W̃

W̃. (68)

Lemma 7: The vector equations in (17) can be rewritten as

Ȳk = νȲk
X + NȲk

, Z̄l = νZ̄l
X + NZ̄l

, (69)

where νȲk
, H

ᵀ
k Hk, νZ̄l

, H̃
ᵀ
l H̃l, NȲk

∼ N (0, νȲk
), and NZ̄l

∼
N (0, νZ̄l

).

Proof: Applying Lemma 6 to our settings in (17), we have

Ȳk = H
ᵀ
k I−1
ΩY

Yk, Z̄l = H̃
ᵀ
l I−1
ΩZ

Zl. (70)

Now substituting (17) into (70), we have

Ȳk = H
ᵀ
k (HkX + NYk

) = νȲk
X + NȲk

, (71)

Z̄l = H̃
ᵀ
l (H̃lX + NZl

) = νZ̄l
X + NZ̄l

, (72)

where we denote νȲk
, H

ᵀ
k Hk, νZ̄l

, H̃
ᵀ
l H̃l, NȲk

, HkNYk
,

and NZ̄l
, H̃lNZl

. Note that NȲk
and NZ̄l

are Gaussian random

variables, and their variances are Var[H
ᵀ
k NYk

] = H
ᵀ
k Hk, and

Var[H̃
ᵀ
l NZl

] = H̃
ᵀ
l H̃l.

As (X, Ȳk, Z̄l) are scalar Gaussian random variables, when

the squared value of the correlation coefficient of (X, Ȳk∗ ) is

greater than that of (X, Z̄l∗ ), i.e., H
ᵀ
k∗Hk∗ ≥ H̃

ᵀ
l∗H̃l∗ , implying

that H
ᵀ
k Hk ≥ H̃

ᵀ
l H̃l for any pair (k, l), there exist Gaussian

random variables (X′, Ȳ ′k, Z̄
′
l ) such that X′− Ȳ ′k − Z̄′l is satisfied,

and the marginal distributions of (X, Ȳk) and (X′, Ȳ ′k) and

that of (X, Z̄l) and (X′, Z̄′l ) coincide [47, Lemma 6]. In the

subsequent discussions, we denote (X′, Ȳ ′k, Z̄
′
l ) as (X, Ȳk, Z̄l) for

brevity. This property is used in the derivation of the following

lemma.

Lemma 8 (Outer Bounds): If H
ᵀ
k∗Hk∗ ≥ H̃

ᵀ
l∗H̃l∗ , the outer

bounds of the GS and CS models are provided as

RG ⊆
\

k∈K

\

l∈L

ŌGkl
, RC ⊆

\

k∈K

\

l∈L

ŌCkl
, (73)

where ŌGkl
and ŌCkl

are outer bounds of the GS and CS

models for a given pair (k, l) and are defined as

ŌGkl
,

[

PU |X

n
(RS ,RJ ,RL) ∈ R3

+ :

RS ≤ I(Ȳk; U) − I(Z̄l; U),

RJ ≥ I(X; U) − I(Ȳk; U),

RL ≥ I(X; U) − I(Ȳk; U)
o
, (74)

ŌCkl
,

[

PU |X

n
(RS ,RJ ,RL) ∈ R3

+ :

RS ≤ I(Ȳk; U) − I(Z̄l; U),

RJ ≥ I(X; U) − I(Z̄l; U),

RL ≥ I(X; U) − I(Ȳk; U)
o
, (75)

and U satisfies the Markov chain U −X − Ȳk − Z̄l. If H
ᵀ
k∗Hk∗ <

H̃
ᵀ
l∗H̃l∗ , RG = RC = {(RS ,RJ ,RL) : RS = 0,RJ ≥ 0,RL ≥ 0}.
Proof: The proof is provided in Appendix D and follows

standard converse proof techniques, where Fano’s inequality

and the introduction of auxiliary random variable are used. The

key idea is to exploit the relationship in (70), which shows that

(Ȳk, Z̄l) and (Yk,Zl) are mutually deterministic. This allows the

vector random variables (Yk,Zl) to be removed from the rate

constraints during the analysis.

Next, we utilize the single-letter expressions in Lemma 8 to

derive the parametric forms for Gaussian sources. We begin

with the proof of (74). Each rate constraint in (74) can be

expanded as

RS ≤ I(Ȳk; U) − I(Z̄l; U)
(a)
=

1

2
log

H
ᵀ
k Hk(σ2

XH
ᵀ
k Hk + 1)

H̃
ᵀ
l H̃l(σ

2
XH
ᵀ
l Hl + 1)

+ h(Z̄l|U) − h(Ȳk |U), (76)

RJ ≥ I(X; U) − I(Ȳk; U)
(b)
=

1

2
log

σ2
X

H
ᵀ
k Hk(σ2

XH
ᵀ
k Hk + 1)
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+ h(Ȳk |U) − h(X|U), (77)

RL ≥ I(X; U) − I(Ȳk; U)
(c)
=

1

2
log

σ2
X

H
ᵀ
k Hk(σ2

XH
ᵀ
k Hk + 1)

+ h(Ȳk |U) − h(X|U), (78)

where (a), (b), and (c) follow from (69).

From Lemma 7, we have

1

2
log
σ2

X + 1/νZ̄l

σ2
X + 1/νȲk

= h

�
1

νZ̄l

Z̄l

�
− h

�
1

νȲk

Ȳk

�

(a)

≤ h

�
1

νZ̄l

Z̄l|U
�
− h

�
1

νȲk

Ȳk |U
�

(b)

≤ h

�
1

νZ̄l

Z̄l|X
�
− h

�
1

νȲk

Ȳk |X
�
=

1

2
log

1/νZ̄l

1/νȲk

, (79)

where (a) and (b) follow from the fact that I(Ȳk; U |Z̄l) ≥ 0

and I(Ȳk; X|U, Z̄l) ≥ 0, respectively. Thus, there must exist a

parameter α ∈ (0, 1] such that

h

�
1

νZ̄l

Z̄l|U
�
− h

�
1

νȲk

Ȳk |U
�
=

1

2
log
ασ2

X + 1/νZ̄l

ασ2
X + 1/νȲk

. (80)

Equation (80) also indicates that

h(Z̄l|U) − h(Ȳk |U) =
1

2
log
νZ̄l

(ασ2
XνZ̄l

+ 1)

νȲk
(ασ2

XνȲk
+ 1)

=
1

2
log

H̃
ᵀ
l H̃l(ασ

2
XH̃
ᵀ
l H̃l + 1)

H
ᵀ
k Hk(ασ2

XH
ᵀ
k Hk + 1)

. (81)

The conditional Fisher information of A is defined by

J(A|U) = E

��
∂ log fA|U (a|u)

∂a

�2
�

, where the expectation is taken

over (U, A) [49, Def. 1].

Lemma 9 ([49, Cor. 1]): Let W, A, B be random variables,

and let the density for any combination of them exist. More-

over, assume that given W, A and B are independent. Then,

we have
1

J(A + B|W)
≥ 1

J(A|W)
+

1

J(B|W)
. (82)

We use Lemma 9 to establish a lower bound on the

conditional Fisher information, as presented in Lemma 10.

This lemma is then used to derive a lower bound on the

difference h(Ȳk |U) − h(X|U) given that h(Z̄l|U) − h(Ȳk |U) is

fixed.

Lemma 10: For 0 ≤ r ≤ 1/νȲk
, it holds that

J(X +
√

rN|U) ≥ 1

ασ2
X + r

(83)

with an independent Gaussian random variable N ∼ N (0, 1).

Proof: From [49, Lemma 3], it follows that

h

�
1

νZ̄l

Z̄l|U
�
−h

�
1

νȲk

Ȳk |U
�
=

1

2

Z 1/νZ̄l

1/νȲk

J(X+
√

tÑ |U)dt (84)

with an independent random variable Ñ ∼ N (0, 1). Then,

1

2

Z 1/νZ̄l

1/νȲk

J(X +
√

tÑ |U)dt

(a)
=

1

2

Z 1/νZ̄l

1/νȲk

J(X +
√

rN +
√

t − rN′|U)dt

(b)

≤ 1

2

Z 1/νZ̄l

1/νȲk

�
J(X +

√
rN|U)−1

+ t − r
�−1

dt

=
1

2

Z 1/νZ̄l

1/νȲk

J(X +
√

rN |U)

1 + J(X +
√

rN|U)(t − r)
dt

=
1

2
log

1 + J(X +
√

rN |U)(1/νZ̄l
− r)

1 + J(X +
√

rN|U)(1/νȲk
− r)
, (85)

where (a) follows by picking a real number r in the range

of 0 ≤ r ≤ 1/νȲk
and using independent Gaussian random

variables N ∼ N (0, 1) and N′ ∼ N (0, 1), and (b) is due to

Lemma 9. Lastly, comparing (80) and (85), we obtain (83).

Observe that

h

�
1

νȲk

Ȳk |U
�
− h(X|U) =

1

2

Z 1/νȲk

0

J(X +
√

rN |U)dr

(a)

≥ 1

2

Z 1/νȲk

0

1

ασ2
X + r

dr =
1

2
log
ασ2

X + 1/νȲk

ασ2
X

, (86)

where (a) follows from Lemma 10, which implies that

h(Ȳk |U) − h(X|U) ≥ 1

2
log
νȲk

(ασ2
XνȲk

+ 1)

ασ2
X

=
1

2
log

H
ᵀ
k Hk(ασ2

XH
ᵀ
k Hk + 1)

ασ2
X

. (87)

Substituting (81) and (87) into the rate constraints in

(76)–(78), the outer bound for a fixed pair (k, l) is expressed

as

ŌGkl
,

[

0<α≤1

n
(RS ,RJ ,RL) ∈ R3

+ :

RS ≤
1

2
log
σ2

XH
ᵀ
k Hk + 1

ασ2
XH
ᵀ
k Hk + 1

− 1

2
log
σ2

XH̃
ᵀ
l H̃l + 1

ασ2
XH̃
ᵀ
l H̃l + 1

,

RJ ≥
1

2
log
ασ2

XH
ᵀ
k Hk + 1

α(σ2
XH
ᵀ
k Hk + 1)

,

RL ≥
1

2
log
ασ2

XH
ᵀ
k Hk + 1

α(σ2
XH
ᵀ
k Hk + 1)

o
. (88)

Applying Lemma 5 to (73) and (88), the outer region of the

GS model for all possible index pairs (k, l) is

RG ⊆
[

0<α≤1

n
(RS ,RJ ,RL) ∈ R3

+ :

RS ≤
1

2
log

(σ2
XH
ᵀ
k∗Hk∗ + 1)(ασ2

XH̃
ᵀ
l∗H̃l∗ + 1)

(ασ2
XH
ᵀ
k∗Hk∗ + 1)(σ2

XH̃
ᵀ
l∗H̃l∗ + 1)

,

RJ ≥
1

2
log
ασ2

XH
ᵀ
k∗Hk∗ + 1

α(σ2
XH
ᵀ
k∗Hk∗ + 1)

,

RL ≥
1

2
log
ασ2

XH
ᵀ
k∗Hk∗ + 1

α(σ2
XH
ᵀ
k∗Hk∗ + 1)

o
. (89)

The outer region of the CS model in (24) can be shown

similarly.

APPENDIX D

PROOF OF LEMMA 8

We only prove (74), the outer bound of the GS model for

a given pair (k, l), as the proof of (8) follows by a similar

manner. Assume that a rate tuple (RS ,RJ ,RL) is achievable

with respect to Definition 3 for every pair (k, l) ∈ K × L.
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We begin by establishing the following Markov chains:

(J, S ) − Xn − Yn
k − Ȳn

k , (J, S ) − Xn − Ȳn
k − Yn

k , (90)

(J, S ) − Xn − Zn
l − Z̄n

l , (J, S ) − Xn − Z̄n
l − Zn

l , (91)

(J, S ) − Xn − (Yn
k ,Z

n
l ) − (Ȳn

k , Z̄
n
l ), (92)

where the left-hand sides of (90) and (91), and (92) hold

because Ȳn
k and Z̄n

l are functions of Yn
k and Zn

l , respectively, by

Lemma 7, and the right-hand sides of (90) and (91) are due to

the sufficient statistic [46, Sect. 2.9]. In addition, for the scalar

random variables (X, Ȳk, Z̄l), the Markov chain Xn − Ȳn
k − Z̄n

l

holds for any pair (k, l) when H
ᵀ
k∗Hk∗ ≥ H̃

ᵀ
l∗H̃l∗ . Combining

this with (92) gives

(J, S ) − Xn − Ȳn
k − Z̄n

l . (93)

Define auxiliary random variables

Vt = (J, Ȳn
k,t+1, Z̄

t−1
l ) and Ut = (J, S , Ȳn

k,t+1, Z̄
t−1
l ), (94)

which guarantee the Markov chain

Vt − Ut − Xt − Ȳk,t − Z̄l,t. (95)

Also, we define

δn =
1

n

�
Hb(δ) + δ log |S |

�
, (96)

where Hb(·) denotes the binary entropy function, and δn ↓ 0

as δ ↓ 0 and n→ ∞.

Analysis of Secret-Key Rate: From (3),

n(RS − δ) ≤ H(S )

= H(S |J,Zn
l ) + I(S ; J,Zn

l )

(a)

≤ H(S |J,Zn
l ) − H(S |J,Yn

k) + n(δ+ δn)

(b)
= H(S |J,Zn

l , Z̄
n
l ) − H(S |J,Yn

k , Ȳ
n
k ) + n(δ+ δn)

(c)
= H(S |J, Z̄n

l ) − H(S |J, Ȳn
k ) + n(δ+ δn)

= I(S ; Ȳn
k |J) − I(S ; Z̄n

l |J) + n(δ+ δn)

(d)
=

nX

t=1

{I(Ȳk,t; Ut |Vt) − I(Z̄l,t; Ut |Vt)}+ n(δ+ δn) (97)

(e)
=

nX

t=1

{I(Ȳk,t; Ut) − I(Z̄l,t; Ut)

− (I(Ȳk,t; Vt) − I(Z̄l,t; Vt))}+ n(δ+ δn)

(f)

≤
nX

t=1

{I(Ȳk,t; Ut) − I(Z̄l,t; Ut)}+ n(δ+ δn), (98)

where (a) is due to (5) and Fano’s inequality with δn defined in

(96) as the secret key S can be reliably estimated from (J,Yn
k),

(b) follows from the left-hand sides of (90) and (91), (c) holds

by the right-hand sides of (90) and (91), (d) follows by [7,

Lemma 4.1], (e) follows from the Markov chains Vt −Ut − Ȳk,t

and Vt − Ut − Z̄l,t, and (f) is due to (95), which results in

I(Ȳk,t; Vt) − I(Z̄l,t; Vt) ≥ 0.

Analysis of Storage Rate: From (4),

n(RJ + δ) ≥ log |J | ≥ H(J) = I(Xn; J)

(a)

≥ I(Xn; J|Yn
k)

≥ I(Xn; J, S |Yn
k) − H(S |Yn

k , J)

(b)

≥ I(Xn; J, S |Yn
k) − nδn

= I(Xn; Ȳn
k |Yn

k) + I(Xn; J, S |Ȳn
k ,Y

n)

− I(Xn; Ȳn
k |J, S ,Yn

k) − nδn
(c)
= I(Xn; J, S |Ȳn

k ,Y
n
k) − nδn

(d)
= I(Xn; J, S |Ȳn

k ) − nδn (99)

(e)
=

nX

t=1

{h(Xt |Ȳk,t) − h(Xt |J, S , Xt−1, Ȳn
k , Z̄

t−1
l )} − nδn

(f)

≥
nX

t=1

{h(Xt |Ȳk,t) − h(Xt |Ut, Ȳk,t)} − nδn

(g)
=

nX

t=1

{I(Xt; Ut) − I(Ȳk,t; Ut)} − nδn, (100)

where (a) is due to the Markov chain J−Xn−Yn
k , (b) follows by

Fano’s inequality with δn defined in (96), (c) follows because

Ȳn
k is a function of Yn

k , (d) holds from the left-hand side of (90),

(e) holds due to the Markov chain Xt − (J, S , Xt−1, Ȳn
k , )− Z̄t−1

l ,

(f) follows because conditioning reduces entropy, and (g) is

due to Ut − Xt − Ȳk,t.

Analysis of Privacy-Leakage Rate: For a fixed l, we first

show that the left-hand side of (6) is preserved when (Xn,Zn)

is replaced with (Xn, Z̄n).

I(Xn; J|Zn
l )

(a)
= I(Xn; J) − I(Zn

l ; J)

(b)
= I(Xn; J) − I(Zn

l , Z̄
n
l ; J)

(c)
= I(Xn; J) − I(Z̄n

l ; J)

(d)
= I(Xn; J|Z̄n

l ), (101)

where (a), (b), (c), and (d) follow from the Markov chains

J−Xn−Zn
l , J−Zn

l −Z̄n
l , J−Z̄n

l −Zn
l , and J−Xn

l −Z̄n
l , respectively,

all of which are obtained as special cases of (91).

Therefore, we can evaluate the privacy-leakage rate as

n(RL + δ) ≥ I(Xn; J|Zn
l )

(a)
= I(Xn; J|Z̄n

l )

= I(Xn; J, S ,Yn
k |Z̄n

l ) − I(Xn; Yn
k |J, Z̄n

l )

− I(Xn; S |J,Yn
k , Z̄

n
l )

≥ I(Xn; J, S ,Yn
k |Z̄n

l ) − I(Xn; Yn
k |J, Z̄n

l ) − H(S |J,Yn
k)

≥ I(Xn; J, S ,Yn
k |Z̄n

l ) − I(Xn; Yn
k |J, Z̄n

l ) − nδn
(b)
= I(Xn; J, S , Ȳn

k ,Y
n
k |Z̄n

l ) − I(Xn; Ȳn
k ,Y

n
k |J, Z̄n

l ) − nδn
(c)
= I(Xn; J, S , Ȳn

k |Z̄n
l ) − I(Xn; Ȳn

k |J, Z̄n
l ) − nδn

(d)
= I(Xn; J, S |Ȳn

k , Z̄
n
l ) + I(Xn; Ȳn

k |Z̄n
l )

− (I(Xn; Ȳn
k |Z̄n

l ) − I(Ȳn
k ; J|Z̄n

l )) − nδn

≥ I(Xn; J, S |Ȳn
k , Z̄

n
l ) − nδn

(e)
= I(Xn; J, S |Ȳn

k ) − nδn

(f)

≥
nX

t=1

{I(Xt; Ut) − I(Ȳk,t; Ut)} − nδn, (102)
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where (a) is due to (101), (b) follows from (70), i.e., Ȳn
k is

a function of Yn
k , (c) holds because the Markov chain Xn −

(J, S , Ȳn
k , Z̄

n
l )−Yn

k holds, from the right-hand side of (90), (d)

and (e) are due to the Markov chain (J, S ) − Xn − Ȳn
k − Z̄n

l ,

obtained from (93), and (e) follows by the same steps from

(99) to (100).

For the case where H
ᵀ
k∗Hk∗ < H̃

ᵀ
l∗H̃l∗ , the Markov chain

Vt −Ut −Xt − Z̄l,t − Ȳk,t holds. The secret-key rate follows from

(97) since I(Ȳk,t; Ut |Vt) ≤ I(Z̄l,t; Ut |Vt).

Finally, we introduce a time-sharing random variable Q ∼
Unif[1 : n], independent of other random variables, and define

U = (UQ,Q), X = XQ, Ȳk = Ȳk,Q, and Z̄l = Z̄l,Q, so that the

Markov chain U − X − Ȳk − Z̄l holds. By letting n → ∞ and

δ ↓ 0, one can see that for a given pair (k, l), the outer bound

of the GS model is given by (74). Hence, the outer bound

valid for any pair (k, l) is given by (73).
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