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Abstract—Essential tremor (ET) is the most prevalent type
of movement disorder responsible for inducing tremor in an
individual’s limbs. Various scales, such as the Fahn-Tolosa-Marin
(FTM) tremor rating scale and The Essential Tremor Rating
Assessment Scale (TETRAS), have been developed and used by
physicians to classify the severity of ET. While the FTM scale
is highly utilized in ET severity diagnosis, it relies on subjective
assessments of the tremor. TETRAS, on the other hand, provides
a more quantitative analysis of ET severity by ranking the
severity of the tremor based on tremor magnitude. However,
TETRAS requires a trained professional (such as a neurologist)
to be present, and even in such cases, physicians use TETRAS
as a metric baseline to visually approximate the severity of the
tremor. In this pilot study, a deep neural network (DNN)-based
scale is developed to accurately classify ET severity without the
presence of trained experts. To validate the developed DNN-based
ET classification scale, a preliminary experiment is performed
on a single healthy participant during a leg extension exercise.
Tremor was artificially induced at the knee using a motorized
lower-limb exoskeleton. To enable near real-time ET classification
and to enable rapid DNN response, the DNN assessed the severity
of ET every 0.5 seconds; utilizing the previous 0.5 seconds of
knee-angle data for DNN training and ET severity classification.
The results of the preliminary experiment showed that the DNN
achieved a training accuracy of 94.80% and a validation accuracy
of 95.18%. Additionally, the DNN achieved a training accuracy
of 93.63% and a validation accuracy of 94.05% using computer
generated knee-angle measurements.

I. INTRODUCTION

Essential tremor (ET) is the most common type of move-
ment disorder that causes tremor, characterized by rhythmic
and involuntary shaking of an individual’s limbs during task
specific actions [1–3]. The diagnosis of ET severity often relies
on subjective methods, such as simple clinical observation,
standardized rating scales, or the subjective assessment of
drawn figures [4]. One of the earliest and most commonly used
scales for classifying the severity of ET is the Fahn-Tolosa-
Marin (FTM) tremor rating scale, which establishes a metric
baseline for physicians to visually approximate the severity of
ET [5]. Yet, despite the wide use of FTM in tremor severity
diagnosis, FTM spans a smaller range of tremor amplitudes,
potentially resulting in a ceiling effect in studies involving
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more severe ET [6]. A more contemporary ET classifica-
tion scale is The Essential Tremor Rating Assessment Scale
(TETRAS), which addresses the limitation of the FTM scale
by allowing physicians to visually approximate the severity
of ET across a broader spectrum of tremor amplitudes [7–
9]. Another approach to classify ET severity involves having
a participant draw spirals on a paper and rating the tremor
based on the individual’s ability to draw a perfect spiral [4],
[10], [11]. Despite their common usage, these ET severity
classifiers are highly subjective and inconsistent due to the
potential for clinician bias and misdiagnosis. In fact, the
misdiagnosis rate has been reported to range between 37%-
50% [12], [13]. Consequently, limitations of existing tremor
rating scales, such as the FTM and TETRAS, are that they
require the expertise of a clinician and still result in poor
tremor classification. An open problem is the development of
a quantifiable, accurate, and repeatable tremor classification
scale that can be implemented without trained expertise.

Quantitative classification of ET requires wearable sensors
that can be used to measure the motion of the affected limbs.
The use of wearable sensors, such as inertial measurement
units and gyroscopes, have allowed quantitative measurements
of ET by converting task specific motion into time-series
based signals [14–19]. These quantitative measurements allow
the use of statistics, machine learning, and, due to tremors
being quasi-sinusoidal movements, power spectral techniques
to aid the diagnosis of ET severity and to help differentiate
between Parkinsonian tremor and ET [20–26]. Additionally,
electromyography (EMG) sensors can monitor the nerve’s
stimulation of the muscle to detect tremor activity [27].

Driven by advancements in Artificial Intellegence (AI), the
widespread adoption of neural networks (NNs) for classifying
and assessing tremors is evident in the work of numerous
researchers [25], [26], [28–32]. These NN-based classifiers
employ a variety of NN architectures, including convolutional
NNs, artificial NNs, and long short term memory to identify
and diagnose various tremors. Most notably, these classifiers
utilize affordable and readily available wearable sensors (i.e.,
accelerometers from smartphones) to collect time-series data
for training and classifying tremors with NNs, highlighting the
validity and extensive research into the use of wearable sensors
and machine learning techniques for tremor classification and
its potential application to daily life. Moreover, the implemen-
tation of AI-driven ET diagnostics can enhance teleoperative
approaches in ET diagnosis by enabling individuals with ET to
receive treatment and ET diagnosis from the comfort of their
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homes. However, despite extensive research, there is currently
no DNN-based approach capable of rapid diagnosis (i.e., 0.5
second increments) of ET severity using TETRAS to the best
of the authors’ knowledge. In this pilot study, a multi-layer
perceptron, that is trained using 0.5 second incremented time
series signals obtained from simulations and experiments, is
developed to accurately and objectively classify the severity
of ET. Moreover, by eliminating subjectivity in the diagnosis
of ET severity, the outcomes of this study will improve the
classification of individuals with ET before developing one’s
treatment plans. Notably, the proposed DNN classifier excels
in its ability to classify in real-time, delivering assessments
every 0.5 second. Unlike previous classification methods that
analyze tremor severity during post-processing, this rapid
approach offers near real-time insights into the variability of
tremor during treatments that may require constant monitoring
of the severity of tremor [33]. To elaborate, rapid severity
diagnosis of ET will provide clinicians with an increased
understanding of the temporal pattern of ET in the context
of daily life and activities [33]. Furthermore, near real-time
tremor classification capabilities can have extensive applica-
tions; for instance, real-time tremor classification can serve as
a tool to facilitate novel anti-tremor medications and tremor
suppression treatments, and can serve as a categorical factor
during a statistical analysis, all of which may need continuous
ET severity diagnosis.

II. MATERIAL AND METHODS

A. Participants

A single able body subject (23 year old male) participated
in this pilot study. Prior to participation, written informed
consent was obtained from the participant, as approved by
the institutional review board at Auburn University (protocol
#23-100 MR 2303).

B. Tremor analysis

ET severity can be classified based on the tremor’s fre-
quency and amplitude. In most cases, the tremor frequency
for ET occurs at a frequency band between 4-12 Hz, with
more intense ET typically exhibiting a lower frequency band
of 4-8 Hz [34–36]. TETRAS, a scale used to assess the
severity of ET based on tremor amplitude, assigns higher
scores to tremors with greater amplitudes to indicate a more
severe tremor. Specifically, TETRAS comprises of nine items,
each rated individually from 0 to 4, with 0 indicating no
tremor and 4 indicating the most severe tremor. These nine
items include head tremor, face tremor, voice tremor, lower
limb tremor, and handwriting induced tremor, among others.
In this work, a DNN classifier will be trained to classify
ET using only the lower limb metric of TETRAS. Table I
outlines the amplitudes employed by TETRAS to classify the
severity of lower limb tremor. Although TETRAS provides
a comprehensive evaluation of ET severity based on tremor
amplitude, it lacks a distinct evaluation of tremor frequency
across different ET severities. Therefore, ET frequencies were
assigned using findings from [34]. It is important to note that

Table I
TETRAS SCALE FOR LOWER LIMB ET

Rating Lower Limb Tremor Amplitude*
0 none
1 < 0.5 cm
2 0.5− < 1 cm
3 1− < 5 cm
4 ≥ 5 cm

This table depicts the metric measurements of lower limb ET amplitude for
different severities.
*The lower limb ET amplitude is measured bilaterally through heel-shin
movement. Scoring is based on the difference between the highest and
lowest amplitude during the entire tremor cycle.

TETRAS characterizes patients with ET only; therefore, the
scale does not assess drug induced tremor, rest tremor, or
Parkinsonian Tremor.

C. Signal Generation for Simulation

A data set composed of 25,000 leg extension signals was
generated to train the DNN classifier. Since the pilot study fo-
cuses on lower limb ET during leg extensions, each signal rep-
resents knee angle measurements between the vertical axis and
the shank of the leg, as illustrated in Fig. 1. These signals are
sinusoidal with a frequency of 0.2 Hz and maximum/minimum
angles of 70 degrees and 0 degrees, respectively. To ensure
rapid DNN response and to mimic the sampling frequency of
the exoskeleton testbed, each signal had a sampling frequency
of 200 Hz over a 0.5 second interval, resulting in a total of 101
samples per signal. Additionally, an auxiliary ET signal was
incorporated into the aforementioned signals to simulate ET
during leg extensions. The ET signals followed a sinusoidal
trajectory, and are scaled based on the severity criteria outlined
in Table I. To account for the frequencies associated with
different ET severities, ET signals with greater amplitudes
(indicating more severe ET) were given lower frequencies,
consistent with the findings in [34]. The generated signals,
denoted as ϕ ∈ R101, are defined as

ϕi = (35− 35cos (P + 0.4πti)) + sin−1

(
Asin (2πσti)

2L

)
,

where ϕi is the ith element of ϕ, i ∈ Z takes values from 0
to 100 such that i ∈ [0, 100], ti = 0.005i is the time index
that ranges from 0 and 0.5 seconds, P ∈ R≥0 is the phase
of the signal which has a value randomly selected from 0 to
2π such that P ∈ [0, 2π], A ∈ R is the amplitude associated
with the ET signal, randomly selected based on the criteria
in TETRAS, σ ∈ R denotes the frequency of the ET signal,
selected based on the randomly selected tremor amplitude, and
L ∈ R is the length of the leg. Subsequently, the signals were
labeled based on the severity of the tremor to represent the
true tremor classification.

D. Experimental Testbed

The lower limb exoskeleton used in this pilot study was
an Ekso Bionics Indego exoskeleton as depicted in Fig. 1.
Adjustments were made to the lower-limb exoskeleton to
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Figure 1. Exoskeleton testbed used to simulate tremor and to measure the
knee joint angle (θ in the image).

guarantee user comfort and to facilitate pure rotation about the
knees. Optical encoders, positioned at both knees, are capable
of measuring the angular displacements between the vertical
axis and the shanks of both legs, as illustrated for the left leg
in Fig. 1 as θ.

E. Experimental Protocol

The participant was asked to extend their left knee to near
full extension over a duration of approximately 2.5 seconds
and to flex their knee back to the initial position over another
duration of approximately 2.5 seconds for a knee extension
and flexion frequency of 0.2 Hz. The total experimental
run time was 200 seconds, which led to approximately 40
leg extension repetitions. To simulate a tremor, a sinusoidal
input with an amplitude and frequency obtained from the
TETRAS scale and [34] was injected into the motor at the
knee. An optical encoder measured the angle of the knee
during the knee extension and flexion movements and captured
the knee angle measurements at 200 Hz. While the encoder
captured the knee movements, the motor inputs intended to
simulate tremor where simultaneously recorded. Similar to the
generated simulation signals, the encoder measurements were
separated into 0.5 second intervals in real-time for a total of
101 samples per training feature. The encoder measurements
were then used to train and test the DNN classifier.

F. Neural Network Structure and Training

Fig. 2 depicts the DNN architecture used to classify ET in
this pilot study. The DNN structure is a multi-layer perceptron
consisting of three sequentially connected hidden layers that
take 101 knee angle measurements as the inputs. Weights and
biases are implemented at each layer of the DNN, where the
outputs of each of the hidden layers are fed through a rectified
linear activation function. Each hidden layer contained 15
neurons, a ReLU activation function, and was connected to

Hidden layer 1
15 nodes

Hidden layer 2
15 nodes

Hidden layer 3
15 nodes

Output layer
4 nodes

ReLU
activation function

ReLU
activation function

ReLU
activation function

Softmax
activation function

Input layer

100 training
features

Figure 2. The structure of the DNN consists of three hidden layers, each with
15 nodes and employing rectified linear (ReLU) activation functions. These
layers are connected sequentially to the output layer, which consists of four
nodes, each employing a softmax activation function. Each node in the output
layer represents the severity of ET.

the next layer. To compute the confidence and classify the
severity of ET, the outputs of the output-layer vector had 4
elements that were fed into a softmax activation function. The
DNN f : R101 → R4 can be defined as

f = σ4 (W4σ3 (W3σ2 (W2σ1 (W1x+ b1) + b2) + b3) + b4)

where σ4 : R4 → R4 is the activation function associated with
the output layer, W4 ∈ R4×15 are the output layer weights,
b4 ∈ R4 are the output layer biases, W3,W2 ∈ R15×15 are
the hidden layer weights, b3, b2 ∈ R15 are the hidden layer
biases, σ3, σ2, σ1 : R15 → R15 are the hidden layer activation
functions, W1 ∈ R15×101 is the input layer weights, b1 ∈ R15

is the input layer biases, and x ∈ R101 is a vector of inputs
of the DNN and represents the knee angle measurements. The
value of each element in the output layer ranges from 0 to
1 and corresponds to the severity of the ET. To be specific,
the first element of the vector indicates level 0-1 ET severity
while the final element indicates level 4 ET severity according
to TETRAS. The element with the greatest value indicates the
estimated severity of the ET. Categorical cross-entropy was
selected as the loss function for the DNN, and the Adam
optimizer algorithm was used to train the DNN. A total of 300
epochs and a batch size of 101 was selected to train the DNN
using the simulation data. For the experimental data, a batch
size of 70 was used, instead. To monitor the performance and
prevent over-fitting, the data was randomly split where 75%
of the training data was used to train the DNN, while the
remaining 25% of the data was used to validate the DNN.

III. EVALUATION OF THE DEEP NEURAL NETWORK

As previously mentioned, the purpose of this pilot study is to
classify the severity of ET in near real-time using a multi-layer
perceptron. Results using the simulation and experimental data
to train the DNN classifier are detailed below.
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Figure 3. Simulation DNN Model Performance: this figure depicts the training
and validation accuracy of the DNN for each training epoch. The DNN model
achieved a 93.63% training accuracy and a 94.05% validation accuracy. The
blue line indicates the training accuracy per training epoch and the red line
indicates the validation accuracy per training epoch.

A. Simulation Results

Knee angle measurements that were created and ranked
using the criteria obtained from TETRAS was used to train
the DNN. Fig. 3 depicts the training and validation accuracy
of the DNN trained using simulation data per training epoch.
After 300 training iterations, the model achieved a 93.63%
training accuracy and a 94.05% validation accuracy.

B. Experiment Results

To validate the effectiveness of implementing a DNN to
classify the severity of ET, shank-angle measurements were
taken from an encoder located at the left knee of the exoskele-
ton testbed. An artificial tremor was injected into the left knee
motor of the exoskeleton and ranked using TETRAS. Fig. 4
depicts the training and validation accuracy of the DNN trained
using experimental data per training epoch. After 300 training
iterations, the model achieved a 94.80% training accuracy and
a 95.18% validation accuracy.

IV. DISCUSSION

The proposed DNN classifier, which was trained using ex-
perimental data from a single able bodied subject, has proven
effective in classifying ET severity, with simulation results
indicating a 93.63% training accuracy and experimental results
showing 94.80% accuracy. Although the proposed TETRAS-
based classifier demonstrates good training and validation
accuracies, data obtained from a single test subject may limit
the generalizability of the DNN, impeding its classification
ability for a broader population. Hence, to enhance the DNN’s
generalizability and to cater to a wider demographic, a more
diverse training data set will be created in the future by
including data from additional participants, particularly those
diagnosed with lower limb ET. Moreover, since the DNN
was trained using a simulated and experimental data sets,
combining the computer generated signals with the encoder

Figure 4. Experimental DNN Model Performance: this figure depicts the
training and validation accuracy of the DNN for each training epoch. The
DNN model achieved a 94.80% training accuracy and a 95.18% validation
accuracy. The blue line indicates the training accuracy per training epoch and
the red line indicates the validation accuracy per training epoch.

measurements could further diversify the data set, further
enhancing the generalizability of the DNN classifier. Addi-
tionally, employing different DNN training methodologies and
architectures, such as implementing a dropout layer in the
DNN, could help improve the generalizability of the DNN.
These approaches aim to improve the model’s effectiveness
throughout a broader population.

It should be mentioned that the DNN exhibited better
performance (i.e., training accuracy and validation) when the
experimentally recorded signals were used to train the DNN.
Despite potential noise and biases introduced by sensor mea-
surements, this improvement in performance may be credited
to the data-processing techniques applied to the sensor data
prior to inputting it into the DNN. In actuality, research
has indicated that a DNN’s performance is influenced by
the characteristics of the signals used for training [37], [38].
Consequently, the DNN may have demonstrated improved
performance due to the application of a zero order hold on
the knee encoder which, in turn, introduced discretized sensor
data to the input of the DNN.

It’s important to note that while tremors are characterized
as sinusoidal oscillations in this pilot study, research suggests
that ET signals exhibit asymmetric, quasi-sinusoidal patterns
[11], [39]. This asymmetry can be attributed to various factors
in the leg, such as differing joint stiffness across the joint
space and the viscoelastic effects of the leg. This can be
addressed by leveraging the generalizability of DNNs as the
quasi-sinusoidal features may be captured in the experimental
data. Moreover, the use of 0.5 second increments might not
provide sufficient time for the asymmetric tremor behavior
to be expressed within the signal, which may result in a
more sinusoidal pattern for each training feature. Nonetheless,
future efforts will incorporate the varying parameters of the
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leg as inputs, such as joint stiffness, enhancing the categorical
performance of the DNN.

V. CONCLUSION

This study marks the initial phase in the creation of an
AI driven tremor classification system capable of diagnosing
the severity of ET continuously without the presence of a
physician, furthering the implementation of remote in ET
diagnosis and treatment. Specifically, this study demonstrates
the feasibility of continuously identifying the severity of lower
limb tremors in near real-time succession (i.e., 0.5 second
increments) when using encoder measurements and computer
generated signals as inputs to the DNN. Moreover, TETRAS
was utilized to establish a metric benchmark for creating
accurate training labels and data, facilitating effective DNN
training. Given an ample amount of training data, this rapid
response in diagnosing the severity of ET holds promise for
advancing the classification and treatment of ET by elim-
inating clinician bias and providing clinicians a temporal
understanding of an individuals ET. Beyond computer gener-
ated signals, This study demonstrates the DNN’s effectiveness
in classifying the severity of lower limb ET using signals
obtained from an exoskeleton encoder. Future work will extend
the results to classify additional items included in TETRAS
such as upper limb tremor, and additional experiments will be
performed using participants with ET.

REFERENCES

[1] CD Marsden. Movement disorders: Tremor. Book, 1984.
[2] Elan D Louis. Essential tremor. The Lancet Neurology, 4(2):100–110,

2005.
[3] WC Koller A Anouti. Tremor disorders. diagnosis and management.

The Western Journal of Medicine, 1995.
[4] Mario Manto Giuliana Grimaldi. Neurological tremor: Sensors, signal

processing and emerging applications. Sensors (Basel, Switzerland),
2010.

[5] Annemarie Smid, Rik WJ Pauwels, Jan Willem J Elting, Cheryl SJ
Everlo, J Marc C van Dijk, DL Marinus Oterdoom, Teus van Laar,
Katalin Tamasi, AM Madelein van der Stouwe, and Gea Drost. A
novel accelerometry method to perioperatively quantify essential tremor
based on fahn–tolosa–marin criteria. Journal of Clinical Medicine,
12(13):4235, 2023.

[6] William Ondo, Vera Hashem, Peter A LeWitt, Rajesh Pahwa, Ludy Shih,
Daniel Tarsy, Theresa Zesiewicz, and Rodger Elble. Comparison of the
fahn-tolosa-marin clinical rating scale and the essential tremor rating
assessment scale. Movement Disorders Clinical Practice, 5(1):60–65,
2018.

[7] Stanley Fahn, Eduardo Tolosa, and Concepcíon Marín. Clinical rating
scale for tremor. Parkinson’s disease and movement disorders, 2:271–
280, 1993.

[8] Rodger Elble, Peter Bain, Maria João Forjaz, Dietrich Haubenberger,
Claudia Testa, Christopher G Goetz, Albert FG Leentjens, Pablo
Martinez-Martin, Anne Pavy-Le Traon, and Bart Post. Task force report:
scales for screening and evaluating tremor: critique and recommenda-
tions. Movement Disorders, 28(13):1793–1800, 2013.

[9] Rodger J Elble. The essential tremor rating assessment scale. Journal
of Neurology & Neuromedicine, 1(4), 2016.

[10] Sheik Mohammed Ali, Sridhar Poosapadi Arjunan, James Peters, Laura
Perju-Dumbrava, Catherine Ding, Michael Eller, Sanjay Raghav, Peter
Kempster, Mohammod Abdul Motin, and PJ Radcliffe. Wearable
sensors during drawing tasks to measure the severity of essential tremor.
Scientific Reports, 12(1):5242, 2022.

[11] Christopher W. Hess and Seth L. Pullman. Tremor: Clinical phe-
nomenology and assessment techniques. Tremor and Other Hyperkinetic
Movements, 2012.

[12] Samay Jain, Steven E Lo, and Elan D Louis. Common misdiagnosis of
a common neurological disorder: how are we misdiagnosing essential
tremor? Archives of neurology, 63(8):1100–1104, 2006.

[13] A Schrag, A Münchau, KP Bhatia, NP Quinn, and CD Marsden.
Essential tremor: an overdiagnosed condition? Journal of neurology,
247:955–959, 2000.

[14] Basilio Vescio, Andrea Quattrone, Rita Nisticò, Marianna Crasà, and
Aldo Quattrone. Wearable devices for assessment of tremor. Frontiers
in Neurology, 12, 2021.

[15] Kathleen E Norman, Roderick Edwards, and Anne Beuter. The measure-
ment of tremor using a velocity transducer: comparison to simultaneous
recordings using transducers of displacement, acceleration and muscle
activity. Journal of neuroscience methods, 92(1-2):41–54, 1999.

[16] Eus JW Van Someren, Myrthe D Pticek, Johannes D Speelman, Peter R
Schuurman, Rianne Esselink, and Dick F Swaab. New actigraph for
long-term tremor recording. Movement disorders: official journal of the
Movement Disorder Society, 21(8):1136–1143, 2006.

[17] Dustin A. Heldman, Joseph Jankovic, David E. Vaillancourt, Janey
Prodoehl, Rodger J. Elble, and Joseph P. Giuffrida. Essential tremor
quantification during activities of daily living. Parkinsonism Related
Disorders, 17(7):537–542, 2011.

[18] Donatas Lukšys, Gintaras Jonaitis, and Julius Griškevičius. Quantitative
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