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Abstract
Given a zigzag filtration, we want to find its barcode representatives, i.e., a compatible choice of
bases for the homology groups that diagonalize the linear maps in the zigzag. To achieve this,
we convert the input zigzag to a levelset zigzag of a real-valued function. This function generates
a Mayer–Vietoris pyramid of spaces, which generates an infinite strip of homology groups. We
call the origins of indecomposable (diamond) summands of this strip their apexes and give an
algorithm to find representative cycles in these apexes from ordinary persistence computation. The
resulting representatives map back to the levelset zigzag and thus yield barcode representatives for
the input zigzag. Our algorithm for lifting a p-dimensional cycle from ordinary persistence to an
apex representative takes O(p ·m log m) time. From this we can recover zigzag representatives in
time O(log m + C), where C is the size of the output.
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1 Introduction

In topological data analysis, one often wants to not only describe the distribution of topo-
logical features in data, but also to identify individual features directly in the input. For
persistent homology, a natural starting point are the cycle representatives of homology classes.
Specifically, one wants to find barcode representatives, a consistent choice of bases for the
input sequence of homology groups. For ordinary persistence, this comes directly from the
computation: a representative at the start of the bar includes into every consecutive space
and therefore remains a valid choice of the basis element.

For zigzag persistence, the situation is more complicated. Because simplices can enter and
leave the complex, a representative cycle at one step in the zigzag filtration may not exist at
a later step. So even though zigzag persistence algorithms keep track of representative cycles,
the specific choices that they make do not always produce compatible barcode representatives.
To cope with this problem, Dey et al. [9] introduced an algorithm that keeps track of
additional information that allows it to report consistent barcode representatives. For a
zigzag filtration with m insertions and deletions, the algorithm requires O(m3) preprocessing
and O(m2) time to report one or all representatives for any single bar, and O(m3) time to
report all representatives.
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Figure 1 A zigzag on the top. A total complex K on the left. The support of each simplex
in a zigzag, T (σ), shown as an interval. The corresponding prism K on the bottom. A 1-cycle in
K[11, 17] and its lift in K[11, 17] are highlighted in red. The lifted cycle is an apex representative;
its slices (pairs of vertices in red) are representatives of a bar in the original zigzag.

On the surface, this is as well as one can hope to do: there are O(m) bars, over O(m)
spaces, with each representative consisting of O(m) simplices. But we can do better. Every
zigzag filtration is isomorphic to a levelset zigzag filtration of some function. The function
generates the Mayer–Vietoris pyramid [5], which decomposes into diamond summands [2].
Each diamond has a single space as its origin, its apex: this space maps into every other
space in the diamond. By finding the diamond’s representative in the apex – an apex
representative – we can quickly recover its representative in every other space, including
those that fall in the levelset zigzag, and therefore in the original zigzag; see Figure 1. All
the information can be recovered from an ordinary persistence computation. It takes matrix
multiplication time, O(mω), to compute persistence [16], and an extra O(p ·m log m) time to
recover a p-dimensional apex representative of size O(p ·m). After the preprocessing, zigzag
representatives can be recovered in O(log m + C) time, where C is the size of the output.

2 Background

We assume familiarity with simplicial and cell complexes, homology, persistent homology,
including zigzag persistence. We only recap select topics to establish notation. Any gaps can
be filled with the standard literature [14, 12, 13].

Throughout the paper, we take care to work with arbitrary field coefficients, but abuse
notation as follows. Cell σ ∈ z means the coefficient of σ in z is non-zero, ⟨σ, z⟩ ̸= 0. If α is
a chain in some cell complex K, then α ⊆ L means that α is supported on the subcomplex
L ⊆ K, i.e., ∀σ ∈ (K − L), ⟨σ, α⟩ = 0. Similarly, z ∩ L refers to the restriction of chain z to
L, i.e., z ∩ L =

∑
σ∈L⟨σ, z⟩ · σ.
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Persistence. Given a filtered cell complex K, let D be a matrix that represents its boundary
operator, with rows and columns ordered according to the filtration. To find ordinary
persistence pairing, one can compute a decomposition, R = DV , where matrix R is reduced,
meaning its pivots – lowest non-zero elements in its columns – appear in unique rows, and
matrix V is full-rank upper-triangular. We index the columns and rows of the matrices by
the (totally ordered) cells of the input complex. The persistence pairing is given by the
pivots of matrix R: a p-dimensional homology class created by the addition of simplex σ is
destroyed by the addition of simplex τ iff low R[τ ] = σ, where low R[τ ] returns the pivot in
the column R[τ ]. By definition, the corresponding column V [τ ] stores a (p + 1)-dimensional
chain whose boundary is the cycle R[τ ].

The decomposition R = DV is not unique: multiple matrices R and V satisfy it. However,
the original persistence algorithm [10] performs operations in a lazy fashion, subtracting
columns from left to right only if their pivots collide. We call this a lazy reduction. It has
the following special properties that simplify our algorithms.

▶ Lemma 1 (Lemma 1 in [17]). Assume decomposition R = DV is obtained via the lazy
reduction, and σi = low R[τi] and σj = low R[τj ] are such that τi < τj . If σi < σj , then entry
V [τi, τj ] = 0.

Proof. Induction on V ; see [17]. ◀

▶ Remark 2. The authors of [17] simplify the statement of the preceding lemma by abusing
the notation. They assume that if R[τ ] = 0, then low R[τ ] = σ̄, a special imaginary cell that
precedes every cell in the complex. In particular, it follows that in a lazy reduction, entry
V [τi, τj ] = 0 if R[τi] = 0.

The contrapositive of the lemma is the following corollary.

▶ Corollary 3. Assume decomposition R = DV is obtained via the lazy reduction, and σi =
low R[τi] and σj = low R[τj ] are such that τi < τj. If V [τi, τj ] ̸= 0, then σj < σi < τi < τj.

Zigzag persistence. We start with a zigzag of simplicial complexes,

K0 → K1 ← K2 → K3 ← K4 → . . .← Kn, (1)

where every consecutive pair of complexes vary by at most one simplex, i.e., Ki can be
equal to Ki+1 in the sequence. It is convenient to assume that every simplex σ appears
and disappears exactly once in this sequence, and therefore is present during some interval
T (σ) = [i, j], i.e., σ ∈ Kk iff k ∈ T (σ). This assumption can be made without loss of
generality by assuming that the union K of all simplices across all times, K =

⋃
i Ki forms a

∆-complex. The full definition of this object is too verbose – we refer the reader to [7], which
adapts the classical concept of ∆-complexes in [14, p. 103] to our case of zigzag filtration –
but informally it relaxes the requirement that in a simplicial complex two simplices intersect
in a common face. All the familiar notions of simplicial homology work the same, but now
instead of having a simplex supported over multiple intervals in the zigzag, we can have
multiple simplices, with the same boundary, each supported on a single interval. We use
m = |K| to denote the size of the input complex.
▶ Remark. To simplify the notation we let min(σ) = min T (σ) and max(σ) = max T (σ).
▶ Remark 4. We assume that max(σ) > min(σ), i.e., T (σ) is not a single point. We can
assume this without loss of generality because we can always pad the zigzag with extra copies
of a space.

SoCG 2025
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Applying homology, we get a zigzag of homology groups, where we suppress dimension
for simplicity,

H(K0)→ H(K1)← H(K2)→ H(K3)← H(K4)→ . . .← H(Kn). (2)

Just like with ordinary persistence, this zigzag decomposes into k bars or persistence
intervals [3]. Let {α1

i , . . . , αk
i } be a choice of elements in H(Ki) such that the non-zero

elements form a basis for H(Ki). We say that such bases are compatible across the zigzag
if the maps in Equation (2) diagonalize, i.e., αj

2i−1 ← [ αj
2i 7→ αj

2i+1. For every j, αj
∗ are

non-zero over a single persistence interval [bj , dj ]. Cycles zj
i that give a set of compatible

bases αj
i = [zj

i ] are called zigzag representatives, with zj
∗ being the representatives of the j-th

bar in the zigzag barcode.

Real-valued function. A convenient setting for persistence is that of a Morse-like [4] real-
valued function f : X→ R. We denote with Xb

a = f−1[a, b] the preimage of an interval and
allow the endpoints to be infinite, a, b = ±∞, in which case the interval is understood to be
open at the infinite ends. We denote the following pairs of spaces:

X[b, d] = (Xd
b , ∅), X(b, d] = (Xd

−∞,Xb
−∞),

X[b, d) = (X∞
b ,X∞

d ), X(b, d) = (X,Xb
−∞ ∪ X∞

d ).

Let a1 < . . . < an be the critical values of the function f . Let si be regular values
interleaved with the critical values: s0 < a1 < s1 < a2 < . . . < sn−1 < an < sn. The
following constructions play an important role in the theory of persistent homology:

Extended persistence (EP):

0→ H(X[−∞, s0])→ . . .→ H(X[−∞, sn]) = H(X)
→ H(X[−∞, sn))→ . . .→ H(X[−∞, s1))→ H(X[−∞, s0)) = 0.

Levelset zigzag (LZZ):

0← H(X[s0, s0])→ H(X[s0, s1])← H(X[s1, s1])→ . . .→ H(X[sn−1, sn])← H(X[sn, sn])→ 0.

Carlsson et al. [5] showed that these two sequences contain the same information by
arranging the four types of spaces into a Mayer–Vietoris Pyramid, see Figure 2(left). Once
homology is applied, the pyramid unrolls into an infinite Mayer–Vietoris strip of homology
groups, where every diamond belongs to the Mayer–Vietoris long exact sequence, making
it exact in the terminology of [3], see Figure 2(right). This allows one to translate the
decomposition between any two paths that differ by a single diamond (and therefore between
any pair of paths via composition).

Bendich et al. [2] further showed that the translation rules in [5] hold at the level of the
basis elements of the individual paths, which means the entire pyramid decomposes as a
direct sum of (indecomposable) pointwise 1-dimensional diamond summands, flush with its
boundaries, shown in blue in Figure 2(right). The decomposition of the levelset zigzag and
extended persistence are simply slices through these flush diamond summands. Bauer et
al. [1] study the Mayer–Vietoris Pyramid in the cohomological setting.

We call the bottom-most space in the support of a diamond its apex. The homology
class assigned to the diamond in that space, an apex class, and any cycle that belongs
to such a class, an apex representative. We note that just like the choice of the basis for
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X[x, y]

X(x, y]
X[x, y)

X(x, y)

Hp
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Figure 2 Left: Mayer–Vietoris Pyramid arranges spaces X[b, d],X(b, d],X[b, d),X(b, d) in a way
where every diamond in the pyramid belongs to the Mayer–Vietoris long exact sequence. Right:
Four types of flush diamond indecomposables in the infinite strip of homology groups; the apex of
each diamond is marked.

ordinary persistence is not unique, neither is the choice of the apex classes. An apex class is
characterized by lying outside the image of the maps into the apex; specifically, for the four
types of apexes their classes satisfy:

[z] ∈ H(X[b, d]) s.t. [z] /∈ im(H(X[b + ε, d])→ H(X[b, d])) and [z] /∈ im(H(X[b, d− ε])→ H(X[b, d]))
[z] ∈ H(X(b, d]) s.t. [z] /∈ im(H(X(b− ε, d])→ H(X(b, d])) and [z] /∈ im(H(X(b, d− ε])→ H(X(b, d]))
[z] ∈ H(X[b, d)) s.t. [z] /∈ im(H(X[b + ε, d))→ H(X[b, d))) and [z] /∈ im(H(X[b, d + ε))→ H(X[b, d)))
[z] ∈ H(X(b, d)) s.t. [z] /∈ im(H(X(b + ε, d))→ H(X(b, d))) and [z] /∈ im(H(X(b, d− ε))→ H(X(b, d)))

Because there is a map from the apex to every space in the diamond, we can recover
a representative in any space by simply mapping an apex representative forward. All the
maps in the pyramid are inclusions, except for the boundary homomorphism connecting
two consecutive dimensions of homology in the strip. We say more about this translation in
Section 7, but the overarching point is that given an apex representative, it is straightforward
to recover every other representative, and levelset zigzag representatives in particular.

3 Setup

Prism. Given a zigzag in Equation (1), we define a larger cell complex K, called a prism:

K = {σ × [i, i + 1] | [i, i + 1] ⊆ T (σ), i ∈ Z} ∪ {σ × i | i ∈ T (σ), i ∈ Z} , (3)

together with a function f : |K| → R on its underlying space, defined by the projection onto
the second component, f(x× t) = t. See Figure 3. We observe that the prism consists of two
types of cells: horizontal cells σ × [i, i + 1] and vertical cells σ × i.

We define an integer interlevel set, for i, j ∈ Z, K
j

i = {σ × T ∈ K | T ⊆ [i, j]}. We note
that its underlying space |Kj

i | = f
−1[i, j]. Then for any pair of integers b, d, we get four

types of pairs of subspaces,
K[b, d] = K

d
b , K(b, d] = (Kd

−1, K
b
−1), K[b, d) = (Kn+1

b , K
n+1
d ), K(b, d) = (K, K

b
−1 ∪K

n+1
d ).

Applying homology to each pair, we get relative homology groups that appear in the four
quadrants of the Mayer–Vietoris pyramid: H(K[b, d]), H(K(b, d])), H(K[b, d)), H(K(b, d)).

Because even-indexed spaces in Equation (1) include into odd-indexed spaces, K2i−1 ←
K2i → K2i+1, we have an isomorophism of homology groups H(K[2i, 2i + 1]) ≃ H(K[2i +
1, 2i + 1]) ≃ H(K[2i + 1, 2i + 2]), induced by deformation retractions. It follows that the

SoCG 2025
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Figure 3 A ∆-complex K, with the times T (σ) of its simplices illustrated, together with the
corresponding prism K and its projection f onto the second coordinate.

levelset zigzag [5] of function f ,

H(K[0, 0])︸ ︷︷ ︸
H(K0)

→ H(K[0, 1]) ≃← H(K[1, 1]) ≃→ H(K[1, 2])︸ ︷︷ ︸
H(K1)

← H(K[2, 2])︸ ︷︷ ︸
H(K2)

→ . . .← H(K[n, n])︸ ︷︷ ︸
H(Kn)

is isomorphic to our starting zigzag in Equation (2). Explicitly, the isomorphism is given by
the following bijection between the four types of intervals:

(H(K2i), H(K2j)) ↔ (H(K[2i, 2i]), H(K[2j, 2j])) (open-open)
(H(K2i), H(K2j+1)) ↔ (H(K[2i, 2i]), H(K[2j + 1, 2j + 2])) (open-closed)
(H(K2i+1), H(K2j)) ↔ (H(K[2i, 2i + 1]), H(K[2j, 2j])) (closed-open)
(H(K2i+1), H(K2j+1)) ↔ (H(K[2i, 2i + 1]), H(K[2j + 1, 2j + 2])) (closed-closed)

Intervals. Because we perform computation on the input complex K, rather than the prism,
we need a notation for different intervals and pairs of intervals. The connection between
these and the corresponding intervals in K will be made clear in Section 6. We denote the
sub- and super-level sets:

Ki
−1 = {σ ∈ K | min(σ) ≤ i}, Kn+1

j = {σ ∈ K | max(σ) ≥ j},

and define four pairs of spaces:

K[b, d] = Kn+1
b ∩Kd

−1, K(b, d] = (Kd
−1, Kb

−1),
K[b, d) = (Kn+1

b , Kn+1
d ), K(b, d) = (K, Kb

−1 ∪Kn+1
d ).

Because every step of the input zigzag is a simplicial complex, it follows that for any σ, τ ∈ K,

σ ∈ ∂τ ⇒ min(σ) < min(τ) < max(τ) < max(σ). (4)
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The following relationships between sub- and super-levelsets follow immediately:

α ⊆ Kx
−1 ⇒ ∂α ⊆ Kx

−1 (5)
α ⊆ K −Kn+1

x ⇒ α ⊆ Kx
−1 (6)

Cone. To compute the persistence decomposition of the zigzag, we follow the algorithm
of Dey and Hou [7], who use a construction similar to extended persistence [6] on the cone
K̂ = ω ∗K over the input complex K, where ∗ indicates a join with the cone vertex ω. Every
simplex σ in the base space K gets value min(σ) from the input zigzag. Every simplex σ̂ in
the cone K̂ −K gets value max(σ) from the input zigzag. We then define a filtration, where
the base space simplices come first, ordered by increasing value, and the cone simplices come
second, ordered by decreasing value. Specifically,

0→ H(K1
−1)→ . . .→ H(Kn

−1) = H(K)→ H(K, Kn+1
n )→ . . .→ H(K, Kn+1

1 )→ H(K, K) = 0,

which in reduced homology is isomorphic to

0→ H(K1
−1)→ . . .→ H(K)→ H(K∪ω∗Kn+1

n )→ . . .→ H(K∪ω∗Kn+1
1 )→ H(K̂) = 0. (7)

The latter is an ordinary filtration and we compute its persistence via the R = DV decom-
position of the boundary map of the cone K̂. Crucially, the resulting bars are in one-to-one
correspondence with the bars in the decomposition of the input zigzag in Equation (2).

4 Lifting

Because prism K has so many cells, it is expensive to process directly. We want to perform
computation on the cone K̂ instead. To recover the apex representatives for the prism, we
need to lift cone cycles in K̂ to prism cycles in K. In Section 6, we explain what exact cycles
to lift to get different apex representatives. Meanwhile, we first describe an algorithm that
given a (relative) cycle z in KI produces a cycle z in KI, where I is one of the four types
of intervals, (b, d], [b, d), (b, d), [b, d]. Algorithm 1 in this section is a reinterpretation of an
inefficient, but easier-to-understand Lift-Cycle-easy algorithm in the full version of this
paper [8]. We encourage the reader to go through through that algorithm first.
▶ Remark. A p-chain z in K consists of two types of p-cells: τ × t, where τ is a p-simplex,
and σ × [t1, t2], where σ is a (p− 1)-simplex.
▶ Remark. We use an abridged notation, c ·σ× [i, j], to represent the chain

∑
k∈[i,j−1] c ·σ×

[k, k + 1]. This choice is guided by computational efficiency: the former requires constant
space vs. the O(j − i) space required for the latter.

Algorithm 1 takes a p-cycle z, a direction expressed as a pair of values (s, f), and an
initial (p− 1)-cycle winit. We call the pair (s, f) a direction because the order of the values
specifies whether we process the cycle in increasing (s < f) or decreasing (f < s) order. The
algorithm stretches the cycle from K[s, s] to K[f, f ], covering KI; see Figure 1.

Correctness. The correctness of Algorithm 1 follows from the following claim about the
boundary structure, which will be important in Section 6. We let zy

x be the restriction of cycle
z to the simplices τ whose times tτ lie in the interval [x, y], i.e., zy

x =
∑

τ∈z,tτ ∈[x,y]⟨τ, z⟩ · τ .

▷ Claim 5. Given input cycle z ∈ K, the boundary of the lifted cycle z satisfies ∂z =
winit × s + wfinal × f, where wfinal = winit + ∂zd

b .

SoCG 2025
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Algorithm 1 Lift-Cycle(z, (s, f), winit.)

Input:
relative p-cycle z in H(KI), where I is one of (b, d], [b, d), (b, d), [b, d];
direction from start to finish, s, f (= b, d or d, b);
initial boundary winit = −∂z ∩K[s, s] ⊆ K[s, s]

Output:
relative p-cycle z in H(KI)

1: for each τ ∈ z do
2: tτ ← a value in T (τ) ∩ [b, d] ▷ if T (τ) ∩ [b, d] = ∅, ignore τ

3: z ← z + ⟨τ, z⟩ · (τ × tτ )
4: for each σ s.t. ∃τ ∈ z, σ ∈ ∂τ do ▷ each face of some simplex in z

5: c← ⟨σ, winit⟩
6: l← s

7: for (tτ , τ) ∈ {(tτ , τ) | τ ∈ δσ} in order of tτ from s to f do
8: if l ̸= tτ then
9: z ← z + c · (σ × [l, tτ ])

10: c← c + ⟨τ, z⟩ · ⟨σ, ∂τ⟩
11: l← tτ

12: if l ̸= f then
13: z ← z + c · (σ × [l, f ])

Proof. Simplex σ generates a cell σ× [s, l] ∈ z iff ⟨σ, winit⟩ ̸= 0 (Line 5). This cell contributes
σ × s to the boundary of z. Simplex σ generates a cell σ × [l′, f ] ∈ z iff ⟨σ, winit⟩ +∑

τ∈δσ∩zd
b
⟨σ, τ⟩ ̸= 0. By definition this is the case only for simplices in wfinal = winit + ∂zd

b .
◁

It follows that if winit ⊆ K[s, s], then z is a cycle in KI. What is not immediate is why the
chains σ × [l, tτ ] and σ × [l, f ] in Lines 9 and 13 are in the prism K.

▷ Claim 6. Chains σ × [l, tτ ] and σ × [l, f ] added in Lines 9 and 13 of Algorithm 1 are
present in K.

Proof. Without loss of generality, assume s < f . There are three types of chains:
1. σ× [s, tτ1 ]. σ has a non-zero coefficient on this interval iff ⟨σ, winit⟩ ̸= 0 (Line 5), in which

case σ ∈ K[s, s]. Existence of coface τ1 implies min(σ) ≤ s ≤ tτ1 < max(σ).
2. σ × [tτi

, tτi+1 ]. From Equation (4), min(σ) < tτi
≤ tτi+1 < max(σ).

3. σ × [tτi , f ]. Suppose that this chain is not in K. This means x = max(σ) ∈ [tτi , f).
Equation (4) implies that σ has no cofaces in [x, f ]. Therefore, σ ∈ winit + ∂zx

s and
σ /∈ ∂zf

x . Therefore, σ ∈ ∂z. Since we assumed z is a relative cycle in KI, it cannot have
any boundary inside the interval itself – a contradiction. ◁

▶ Remark. It may seem strange that we state nothing about the relationship between z and
z. This is because we exploit additional properties of the algorithm in Section 6.

Running time. Let m be the size of the input p-cycle z. Algorithm 1 requires O(p ·m log m)
time. It goes through all simplices σ that are faces of some simplex τ ∈ z; there are at most
(p + 1) ·m such (p− 1)-simplices. For each one, the algorithm sorts its cofaces by their times
tτ . Although there is no bound on the number of cofaces of one simplex, the total number of
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the cofaces to sort is again at most (p + 1) ·m. Individual operations in the update take
constant time, so the overall running time of Algorithm 1 is O(p ·m log m). The size of the
lifted cycle is O(p ·m).

5 Apex Representatives

We give a characterization of apex representatives in the prism.

▶ Lemma 7 (Closed endpoint).
1. If a relative cycle z, with [z] ∈ H(K(b, d]), contains τ × d with min τ = d, then

[z] ̸∈ im
(
H(K(b, d− 1])→ H(K(b, d])

)
.

2. If a relative cycle z, with [z] ∈ H(K[b, d)), contains τ × b with max τ = b, then

[z] ̸∈ im
(
H(K[b + 1, d))→ H(K[b, d))

)
.

3. If an absolute cycle z, with [z] ∈ H(K[b, d]), contains σ× b and τ × d with max σ = b and
min τ = d, then

[z] ̸∈ im
(
H(K[b + 1, d])→ H(K[b, d])

)
and [z] ̸∈ im

(
H(K[b, d− 1])→ H(K[b, d])

)
.

Proof. All the statements follow the same proof, except for the endpoints of the intervals,
so we only show the first. Suppose there is some class [α] ∈ H(K(b, d − 1]) that maps
to [z] ∈ H(K(b, d]). Then z = α + ∂β for some chain β. Since τ ∈ z and τ ̸∈ α (since
min τ = d > d− 1), τ must be in ∂β. But from Equation (4), τ has no cofaces in Kd

−1 – a
contradiction. ◀

▶ Lemma 8 (Open endpoint).
1. If the boundary ∂z of a relative cycle z, with [z] ∈ H(K(b, d]), contains σ × b with

min σ = b, then [z] ̸∈ im
(
H(K(b− 1, d])→ H(K(b, d])

)
.

2. If the boundary ∂z of a relative cycle z, with [z] ∈ H(K[b, d)) contains σ×d with max σ = d,
then [z] ̸∈ im

(
H(K[b, d + 1))→ H(K[b, d))

)
.

3. If the boundary ∂z of a relative cycle z, with [z] ∈ H(K(b, d)), contains σ × b with
min σ = b and τ × d with max τ = d, then

z ̸∈ im
(
H(K(b− 1, d))→ H(K(b, d))

)
and z ̸∈ im

(
H(K(b, d + 1))→ H(K(b, d))

)
.

Proof. All the statements follow the same proof, except for the endpoints of the intervals,
so we only show the first. From the long exact sequence of the triple [14, p. 118], Kb−1

−1 ⊆
Kb

−1 ⊆ Kd
−1, we know that the image in the claim is equal to the kernel of the map induced

by the boundary,

im
(

H∗(K(b− 1, d])→ H∗(K(b, d])
)

= ker
(

H∗(K(b, d]) ∂∗

→ H∗−1(K(b− 1, b])
)

.

For [z] to be in the kernel, ∂z needs to be a relative boundary in K(b− 1, b], i.e., ∂z = ∂β + γ

for some β ⊆ Kb
−1 and γ ⊆ Kb−1

−1 . Since σ ∈ ∂z and σ ̸∈ γ, σ must be in ∂β. But from
Equation (4), σ has no cofaces in Kb

−1 – a contradiction. ◀

Putting Lemmas 7 and 8 together, we get the following theorem.

▶ Theorem 9.
1. If a relative cycle z, with [z] ∈ H(K(b, d]), contains τ×d with min τ = d, and its boundary

∂z contains σ × b with min σ = b, then z is an apex representative.
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2. If a relative cycle z, with [z] ∈ H(K[b, d)), contains τ×b with max τ = b, and its boundary
∂z contains σ × d with max σ = d, then z is an apex representative.

3. If an absolute cycle z, with [z] ∈ H(K[b, d]), contains σ× b and τ × d with max σ = b and
min τ = d, then z is an apex representative.

4. If the boundary ∂z of a relative cycle z, with [z] ∈ H(K(b, d)), contains σ × b with
min σ = b and τ × d with max τ = d, then z is an apex representative.

6 Four Intervals

We assume R = DV is the decomposition of the boundary matrix D of the cone K̂ filtration
in Equation (7). We use σ, τ to refer to simplices in the base space K, and σ̂, τ̂ for the
simplices in the cone K̂ −K.

Summary. The main content of this section is summarized in Table 1: lifting the stated
cycles z in K, derived from the lazy reduction, with the given arguments to the algorithm
Lift-Cycle, produces apex representatives in K. The results of the section are more general,
but also more verbose; they derive the expression for the cycles for any reduction.

Table 1 Summary of the chains and arguments used in different cases of the Lift-Cycle
algorithm, derived from the lazy reduction.

EP type LZZ type Apex z (s, f) winit

Ordinary closed-open K(b, d] V [τ ] (d, b) 0

Relative open-closed K[b, d) R[τ̂ ] ∩K (b, d) 0

Extended (d, b) open-open K[b, d] R[τ̂ ] (d, b) 0

Extended (b, d) closed-closed K(b, d) V [τ̂ ] ∩K (b, d) −R[τ̂ ]

6.1 Ordinary (closed-open)
Throughout this subsection, we assume the following setting:

a pair (σ, τ) in the cone filtration, born at b and dying at d, i.e., min(σ) = b < d = min(τ).

K(b, d]
d

b

▷ Claim 10. Let z = V [τ ]. Then [z] ∈ H(K(b, d]). Furthermore, τ ∈ z and σ ∈ ∂z = R[τ ].



T. K. Dey, T. Hou, and D. Morozov 40:11

Proof. Since V is upper-triangular with all diagonal entries non-zero, τ is the latest simplex
in V [τ ], i.e., max {min(τ ′) | τ ′ ∈ V [τ ]} = min(τ) = d. Therefore, V [τ ] ⊆ Kd

−1. By definition,
the boundary ∂V [τ ] = R[τ ]. σ is its latest simplex, i.e., max {min(σ′) | σ′ ∈ R[τ ]} =
min(σ) = b. Therefore, ∂V [τ ] ⊆ Kb

−1. It follows that if z = V [τ ], then [z] ∈ H(Kd
−1, Kb

−1) =
H(K(b, d]). ◁

▷ Claim 11. Relative cycle z produced by the call Lift-Cycle(V [τ ], (d, b), 0) is an apex
representative in H(K(b, d]).

Proof. Let z = V [τ ].
1. σ × b ∈ ∂z, min(σ) = b.

Because σ ∈ ∂z (Claim 10) and min(σ) = b, its coboundary δσ ⊆ Kn+1
b . Meanwhile,

z ⊆ Kd
−1. Therefore, all cofaces of σ in z intersect [b, d]. Therefore, σ ∈ ∂ (z ∩ [b, d]). It

follows from Claim 5 that

σ × b ∈ ∂z = wfinal × b = ∂ (z ∩ [b, d])× b.

2. τ × d ∈ z, min(τ) = d.
This follows immediately since τ ∈ z (Claim 10) and T (τ) ∩ [b, d] = {d}.

It follows from Theorem 9 that z is an apex representative in H(K(b, d]). ◁

6.2 Relative (open-closed)
Throughout this subsection, we assume the following setting:

a pair (σ̂, τ̂) in the cone filtration, born at d and dying at b, i.e., max(σ) = d > b = max(τ).

K[b, d)

d

b

▷ Claim 12. Let chain z consist of the boundary of the cone simplices in V [τ̂ ] restricted to
the base space,

z = ∂
(

V [τ̂ ] ∩ (K̂ −K)
)
∩K.

Then [z] ∈ H(K[b, d)). Furthermore, τ ∈ z and σ ∈ ∂z.

Proof. Let γ = V [τ̂ ] ∩ (K̂ −K), i.e., z = (∂γ) ∩K.

1. z ⊆ Kn+1
b , τ ∈ z.

Because γ consists of only cone simplices, every simplex τ ′ ∈ z is in the boundary of some
cone simplex τ̂ ′. Because τ̂ is the latest simplex in V [τ̂ ], we have that τ̂ ′ is added before
τ̂ . Therefore, max(τ ′) ≥ max(τ) = b. Because τ̂ is the only simplex in γ with τ in its
boundary, τ ∈ ∂γ ∩K = z.
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2. ∂z ⊆ Kn+1
d .

Let

α = ∂z = −∂
(

∂γ ∩ (K̂ −K)
)

be the shared boundary between the base space and the cone parts of ∂γ. We note that
because cone simplices can only be in the boundary of cone simplices, (∂V [τ̂ ])∩(K̂−K) =
∂γ ∩ (K̂ − K). Therefore, all the cone simplices σ̂′ ∈ ∂γ ∩ (K̂ − K)) are such that
max(σ′) ≥ max(σ) = d. Therefore, any simplex in the shared boundary α is in Kn+1

d .
Putting the first two sub-claims together, [z] ∈ H(Kn+1

b , Kn+1
d ) = H(K[b, d)).

3. σ ∈ ∂z.
(σ̂, τ̂) is a persistence pair, therefore, σ̂ ∈ ∂V [τ̂ ]. Because cone simplices can only be in
the boundaries of cone simplices, σ̂ ∈ ∂γ. Because σ̂ is the only simplex in (∂γ)∩ (K̂−K)
that has σ in its boundary, it follows that

σ ∈ ∂z = ∂ ((∂γ) ∩K) = ∂
(

(∂γ) ∩ (K̂ −K)
)

. ◁

▶ Remark 13 (Lazy reduction). If R = DV is obtained by lazy reduction, it follows from
Corollary 3 that V [τ̂ ] consists only of cone simplices. In other words, the chain in the prior
claim simplifies to

z = (∂V [τ̂ ]) ∩K = R[τ̂ ] ∩K.

▷ Claim 14. Relative cycle z produced by the call Lift-Cycle(R[τ̂ ] ∩K, (b, d), 0) is an
apex representative in H(K[b, d)).

Proof. Let z = R[τ̂ ] ∩K.
1. σ × d ∈ ∂z, max(σ) = d.

Because σ ∈ ∂z (Claim 12) and max(σ) = d, its coboundary δσ ⊆ Kd
−1. Meanwhile,

z ⊆ Kn+1
b . Therefore, all cofaces of σ in z intersect [b, d]. Therefore, σ ∈ ∂ (z ∩ [b, d]). It

follows from Claim 5 that

σ × d ∈ ∂z = wfinal × d = ∂ (z ∩ [b, d])× d.

2. τ × b ∈ z, max(τ) = b.
This follows immediately since τ ∈ z (Claim 12) and T (τ) ∩ [b, d] = {b}.

It follows from Theorem 9 that z is an apex representative in H(K[b, d)). ◁

6.3 Extended (open-open)
Throughout this subsection, we assume the following setting:

a pair (σ, τ̂) in the cone filtration born at d, dying at b, i.e., min(σ) = d > b = max(τ).

K[b, d]

d

b
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▷ Claim 15. Let chain c consist of those simplices in V [τ̂ ] that are either in the cone, or in
Kn+1

b , i.e.,

c = V [τ̂ ] ∩ (K̂ −K) + V [τ̂ ] ∩Kn+1
b .

Let z = ∂c; then [z] ∈ H(K[b, d]). Furthermore, σ, τ ∈ z.

Proof. We split the chain V [τ̂ ] into three parts:

α = V [τ̂ ] ∩ (K −Kn+1
b ), β = V [τ̂ ] ∩Kn+1

b , γ = V [τ̂ ] ∩ (K̂ −K),

and re-write its boundary accordingly: R[τ̂ ] = ∂V [τ̂ ] = ∂α + ∂β + ∂γ. c = (β + γ) = V [τ̂ ]−α.

1. z = ∂c ⊆ Kd
−1, σ ∈ z.

∂V [τ̂ ] ⊆ Kd
−1 because σ is the latest simplex in R[τ̂ ]. Putting together Equations (5)

and (6), α ⊆ K −Kn+1
b implies ∂α ⊆ Kb

−1 ⊆ Kd
−1. Therefore, z = ∂V [τ̂ ]− ∂α ⊆ Kd

−1.
Because σ ∈ ∂V [τ̂ ], but σ ̸∈ ∂α, σ ∈ z.

2. z ⊆ Kn+1
b , τ ∈ z.

Since chain β ⊆ Kn+1
b , its boundary ∂β ⊆ Kn+1

b . Since boundaries ∂V [τ̂ ], ∂α, ∂β ⊆ K,
so is ∂γ. Every simplex in γ has the form ω ∗ τ , where τ ∈ Kn+1

b . Therefore, ∂γ ⊆ Kn+1
b .

It follows that z = ∂β + ∂γ ⊆ Kn+1
b .

Because max(τ) = b, it has no cofaces in Kn+1
b . Therefore, τ ̸∈ ∂β. Because τ̂ is the only

simplex in γ that has τ in its boundary, τ ∈ ∂γ. Therefore, τ ∈ z = ∂β + ∂γ.

Therefore, [z] ∈ H(Kn+1
b ∩Kd

−1) = H(K[b, d]). ◁

▶ Remark 16 (Lazy reduction). Furthermore, if R = DV comes from the lazy reduction, then
the next claim proves that in the previous claim, chain c = V [τ̂ ]. In other words, we can use
z = R[τ̂ ] = ∂V [τ̂ ] directly.

▷ Claim 17 (Lazy reduction). If R = DV is obtained from the lazy reduction, then all the
base space simplices in V [τ̂ ] are in Kn+1

b , i.e., V [τ̂ ] ∩K ⊆ Kn+1
b .

Proof. Let τ ′ be a simplex in V [τ̂ ] ∩ K. In this case, for the lazy reduction, because
V [τ ′, τ̂ ] ̸= 0, from Corollary 3, taking σj = σ and τi = τ ′, we get

max(τ ′) > min(τ ′) > min(σ) = d > b. ◁

▷ Claim 18. Absolute cycle z produced by the call Lift-Cycle(R[τ̂ ], (d, b), 0) is an apex
representative in H(K[b, d]).

Proof. Let z = R[τ̂ ]. Because σ, τ ∈ z (Claim 15) and min(σ) = d and max(τ) = b, both
simplices σ × d and τ × b are in the lifted cycle z. It follows from Theorem 9 that z is an
apex representative in H(K[b, d]). ◁

6.4 Extended (closed-closed)

Throughout this subsection, we assume the following setting:

a pair (σ, τ̂) in the cone filtration, born at b, dying at d, i.e., min(σ) = b < d = max(τ).
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K(b, d)

d

b

▷ Claim 19. Let z = V [τ̂ ] ∩Kn+1
b . Then [z] ∈ H(K(b, d)). Furthermore,

σ ∈ winit = −∂
(

V [τ̂ ] ∩ (K̂ −K) + V [τ̂ ] ∩Kn+1
b

)
⊆ K[b, b]

and τ ∈ (winit + ∂z) = −∂
(

V [τ̂ ] ∩ (K̂ −K)
)

.

Proof. We split the chain V [τ̂ ] into three parts:

α = V [τ̂ ] ∩ (K −Kn+1
b ), z = β = V [τ̂ ] ∩Kn+1

b , γ = V [τ̂ ] ∩ (K̂ −K),

and re-write its boundary accordingly: R[τ̂ ] = ∂V [τ̂ ] = ∂α + ∂β + ∂γ.

1. ∂z ⊆ Kb
−1 ∪Kn+1

d .
Putting together Equations (5) and (6), α ⊆ K −Kn+1

b implies ∂α ⊆ Kb
−1. Because σ

is the latest simplex in R[τ̂ ] and min(σ) = b, R[τ̂ ] ⊆ Kb
−1. It follows that ∂(β + γ) =

R[τ̂ ] − ∂α ⊆ Kb
−1. Since ∂γ ⊆ Kn+1

d , we have ∂z = ∂(β + γ) − ∂γ ⊆ Kb
−1 ∪ Kn+1

d .
Therefore, [z] ∈ H(K(b, d)).

2. σ ∈ winit = ∂(β + γ) ⊆ K[b, b].
We already saw that ∂(β + γ) ⊆ Kb

−1. To show that it is also in Kn+1
b , we note that since

β ⊆ Kn+1
b , its boundary ∂β ⊆ Kn+1

b . ∂γ ⊆ Kn+1
d ⊆ Kn+1

b . Therefore, ∂(β + γ) ⊆ Kn+1
b .

Because min(σ) = b, Equation (4) implies that σ cannot be in the boundary of any
simplex τ ∈ α since max(τ) < b. Since σ ∈ R[τ̂ ] and winit = ∂(β + γ) = R[τ̂ ] − ∂α, it
follows that σ ∈ winit.

3. τ ∈ −∂γ.

Because τ̂ is the only simplex in γ that has τ in its boundary, τ ∈ −∂γ. ◁

▷ Claim 20 (Lazy reduction). If R = DV is obtained from the lazy reduction, then
z = V [τ̂ ] ∩K is in K(b, d), σ ∈ winit = −R[τ̂ ] = −∂V [τ̂ ] ⊆ K[b, b], and τ ∈ (winit − ∂z).

Proof. We only need to show that, in the case of the lazy reduction, α = V [τ̂ ]∩(K−Kn+1
b ) = 0,

i.e., V [τ̂ ] ∩K = V [τ̂ ] ∩Kn+1
b . Then the claim follows from the previous Claim 19.

The proof is analogous to the proof of Claim 17. Let τ ′ be a simplex in V [τ̂ ] ∩K. In
this case, for the lazy reduction, because V [τ ′, τ̂ ] ̸= 0, from Corollary 3, taking σj = σ and
τi = τ ′, we get max(τ ′) > min(τ ′) > min(σ) = b. ◁

▶ Remark 21. V [τ̂ ] ∩K can be empty. For example, if K is a single vertex that appears at b

and then disappears at d. This is the reason why we need to bootstrap Algorithm 1 with an
initial cycle winit.

▷ Claim 22. Relative cycle z produced by the call Lift-Cycle(V [τ̂ ] ∩K, (b, d),−R[τ̂ ]) is
an apex representative in H(K(b, d)).
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Proof.
1. σ × b ∈ ∂z, min(σ) = b.

Simplex σ, with min(σ) = b, is in the initial cycle winit (Claim 19). Therefore, σ × b is in
the boundry ∂z of the lifted cycle.

2. τ × d ∈ ∂z, max(τ) = d.
Simplex τ , with max(τ) = d, is in winit + ∂z (Claim 19). Its coboundary δτ ⊆ Kd

−1.
Meanwhile, z ⊆ Kn+1

b (Claim 19). Therefore, all cofaces of τ in z intersect [b, d]. Therefore,
τ ∈ winit + ∂ (z ∩ [b, d]) = wfinal. It follows from Claim 5 that

τ × d ∈ wfinal × d ⊆ ∂z.

It follows from Theorem 9 that z is an apex representative in H(K(b, d)). ◁

7 Zigzag Representatives

To solve our original problem – to find zigzag representatives – all that remains is to map an
apex representative into an appropriate space in the zigzag. Because we assumed in Remark 4
that no simplex is supported on a single space, the death and the birth for any given interval
are distinct. Suppose we want to map an apex representative z, with [z] ∈ H(KI), into a
zigzag representative in H(K[i, i]) ≃ H(Ki).

If i is odd, then the p-cycle z may contain a vertical cell τ × i, which does not map into
(p− 1)-cells in the levelset. To sidestep this complication, we perturb i. Let x = i± ε ∈ I be
a real value near i that lies inside our birth-death interval. We assume x = i + ε; the other
case is symmetric. We implicitly subdivide K at x and extend our previous notation to allow
for the interlevel sets ending at x, e.g., K

x

i . We note that K
x

i deformation retracts onto K
i

i,
with the homotopy following the second (time) coordinate, and K

x

x includes into K
i

i once
the cell times are shifted from x to i. We want to compose three maps:

Hp(KI)→ Hp(K(i, x)) ∂∗

→ Hp−1(K[x, x])→ Hp−1(Ki).

Because KI is an apex of a diamond, and K(i, x) is a space in the diamond, the first map is
an inclusion (of pairs), so z remains a relative cycle in K(i, x). Let

z =
∑

ατ · (τ × tτ ) +
∑

ασ · (σ × [t1
σ, t2

σ]),

then the second (boundary) map takes z to

z[x, x] =
∑

(σ×[t1
σ,t2

σ ])∈z

x∈[t1
σ,t2

σ ]

ασ · (σ × x),

which maps into Ki by dropping the second coordinate,

z(i) =
∑

(σ×x)∈z[x,x]

ασ · σ.

By storing the apex cycle z in an interval tree [11, 15], we can retrieve any zigzag representative
of size C in time O(log m + C).
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