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Towards Futuristic Autonomous
Experimentation—A Surprise-Reacting Sequential
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Abstract—An autonomous experimentation platform in
manufacturing is supposedly capable of conducting a sequential
search for finding suitable manufacturing conditions by itself
or even for discovering new materials with minimal human
intervention. The core of the intelligent control of such platforms
is a policy to decide where to conduct the next experiment based
on what has been done thus far. Such policy inevitably trades off
between exploitation and exploration. Currently, the prevailing
approach is to use various acquisition functions in the Bayesian
optimization framework. We discuss whether it is beneficial
to trade off exploitation versus exploration by measuring the
element and degree of surprise associated with the immediate
past observation. We devise a surprise-reacting policy using two
existing surprise metrics, known as the Shannon surprise and
Bayesian surprise. Our analysis shows that the surprise-reacting
policy appears to be better suited for quickly characterizing
the overall landscape of a response surface under resource
constraints. We do not claim that we have a fully autonomous
experimentation system but believe that the surprise-reacting
capability benefits the automation of sequential decisions in
autonomous experimentation.

Note to Practitioners Autonomous systems should be able to
go beyond repetitive automatic actions that are generally pre-
programmed through a recipe. To decide what to do next on the
fly differentiates autonomy from automation. Arguably, auton-
omy is the highest form of automation. To endow a manufacturing
with autonomy, one necessary capability is for it to react properly
to the “unexpected,” which are those observations disagreeing
with its model’s anticipation. Are these bad measurements, an
anomaly, or an indicator of model inadequacy? Should the
observations be discarded or should the model be updated using
the new observation? If latter, should model be updated gradually
overtime or radically altered? Figuratively, upon observing the
unexpected, we say that a manufacturing control system is
“surprised” and ask the question of how it should react. Our
investigation shares our current insights on this question.

Index Terms—Autonomous experimentation; Bayesian opti-
mization; exploitation-exploration; Gaussian process; surprise.

I. INTRODUCTION

N recent years we witness concerted efforts spent on,
and rapid growth in the area of, researching and devel-
oping autonomous systems or platforms [1, 2, 3, 4, 5]. An
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autonomous system is certainly an automation system. But
researchers use the phrase “autonoumous” or “autonomy” to
emphasize a higher level of automation beyond the repetitive
type. An autonomous system is ideally capable of search a
complex design (or parameter) space of process conditions and
material elements with minimal human intervention. Although
the above-cited systems are labeled autonomous, none in
reality is truly or fully autonomous yet. We think it is more
appropriate to label the autonomous systems as “futuristic”.
To help readers understand how an autonomous manufac-
turing platform should ideally operate, consider an example
of laser additive manufacturing (LAM). The platform must
navigate a vast combination space of input parameters, such
as laser power, scan speed, and layer thickness, to achieve
desired properties, like the tensile strength or surface finish,
of a manufactured item. An experiment location refers to a
specific combination of parameters chosen for a particular
action. For example, one experiment location might be defined
by the laser power of 200W, scan speed at 300 mm/s, and a
layer thickness of 50 microns. Conducting an experiment at
this location entails the actions of setting the LAM machine to
these parameters, doing the additive manufacturing, and then
measuring the resulting properties of the manufactured part.
The goal is to accurately approximate the underlying re-
sponse surface, which helps understand how different param-
eter settings impact the manufacturing/materials properties,
especially under a limited budget, to quickly reach an ideal
setting. Given the large number of parameter combinations,
an exhaustive search is impractical due to high costs and time
constraints. Therefore, autonomous platforms must employ se-
quential experimental designs and decision-making processes
to identify high-quality settings efficiently and effectively [6].
The key is for the platform’s intelligent control to decide where
to take action in the next steps and then instruct its hardware
system to carry out these actions. In doing so, it always tries
to trade off and balance between two actions: exploration and
exploitation. Exploitation refers to follow-up investigations in
a nearby region by fine-tuning parameters around the current
settings, whereas exploration involves conducting experiments
in different regions by significantly changing the parameter
values to discover potentially better configurations.
Balancing these two approaches is vital, as over-exploitation
can miss out on better settings, while over-exploration can
waste resources. An ideal method would dynamically ad-
just this balance based on previous experiments, exploring
new parameter spaces when necessary and exploiting known



good areas when warranted. This adaptive approach ensures
accurate characterization of the response surface within a
limited experimental budget, ultimately enhancing the ability
to achieve desired material properties in the manufacturing
process. While delaying the detailed review of the related
literature in Section II, we would like to point out that the
dominating paradigm used nowadays is still the Bayesian
optimization (BO) framework [7], despite the warnings [8, 9]
that the BO-driven approaches are generally greedy, attempting
to hone in on optima too fast and overweighing exploitation
over exploration.

Along the line of finding a better balance between explo-
ration and exploitation, we study the issue of handling the
“surprise observations” and our research shows that reacting
to surprises leads the system to react differently. Speaking
colloquially, a surprise is an observation disagreeing with one’s
current working hypothesis. But does a surprise observation
mean the hypothesis is wrong or does it mean the observation
is corrupted? Pertinent to surprise observations, the following
questions need to be addressed: (1) how to define and quantify
a surprise? This is to say, given an observation, when should
a sequential approach treats it as a surprise and when not? (2)
how to react when a surprise is observed? (3) what impact,
positive or negative, may there be when a surprise-reacting
policy is used? Integrating a surprise measure and devising a
corresponding reaction mechanism are considered crucial for
advancing autonomous systems [10].

It turns out that there has been research in the field of
information and computer science to provide a quantitative
definition of surprise [11, 12, 13]. Two widely used ones are
the Shannon surprise [11] and Bayesian surprise [12]. In this
work, we do not intend to introduce new surprise definitions
but plan to make use of the existing ones for our analysis.
This does not mean that the current surprise definitions are
perfect and have no need for improvement (they do need
improvement). Rather it just means that as one of the first
works on this topic, we choose to dedicate more effort in
addressing the other two questions posed above.

Making use of existing surprise measures, we propose a
surprise-reacting sequential experimentation policy for mate-
rials/manufacturing experiments under a resource-constrained
environment. The purpose of these experiments is to get a
quick idea about the underlying design space using as few
experiments as possible. It falls into the area of “approximating
the underlying function” and different from the objective of
finding a single optimal response (a maximum or a minimum).
It is not entirely detached from the pure optimization ob-
jective, as a good function approximation lays solid ground
for optimizing a design in the next step. But understanding
the design space provides other benefits. For instance, it can
help material scientists or manufacturing engineers to have
a holistic view of the entire landscape and thereby enhance
the chance to make a new discovery or a robust decision.
We contrast our proposed surprise-reacting approach with
different acquisition functions [14] within the BO framework,
which include both exploitation-friendly approaches such as EI
and Probability of Improvement (PI) and exploration-oriented
acquisition functions such as Upper Confidence Bound (UCB)

and Maximum Variance (Max Var). The performance compari-
son with these BO-based methods demonstrates the advantage
of the proposed surprise-reacting approach.

What insights do we garner through this research? Those
can be summarized in the following two principal aspects.

First of all, taking advantage of surprise observations helps
redirect the effort that better balances exploitation and explo-
ration. Upon observing a surprise, the system spends some
extra resources to confirm if the observation is corrupted—an
action of exploitation. If yes, then the current working hypoth-
esis is maintained, and further exploration ensues. If not, the
working hypothesis is seriously challenged and the statistical
model incorporating the working hypothesis is then updated,
so that subsequent exploration will be guided differently. At
first glance, the extra resources spent on deciding the nature
of an observation is wasteful. Through our empirical analysis,
however, it appears that the additional exploitation informs
better subsequent decisions, leading to a better performance
than the existing acquisition functions.

Secondly, the introduction of the surprise metric helps
explore the underlying design space. On a high level, we think
that the surprised-reacting policy is amounted to an adaptive
BO, where the adjudication of surprise observations injects
adaptivity into the system. It is this adaptivity that helps the
learning algorithm escape from local optima and continue
searching for new discoveries.

We note that an earlier version of our surprise-reacting idea
was posted on arXiv and then used in a 3D printing study [15].
In the present study, we refine the idea and present both the
benchmark studies and the real-life case differently from what
was studied in [15]. The rest of the paper unfolds as follows.
Section II summarizes the past relevant research. Section III
elaborates on the concept and measurement of surprise and
discusses how to react to surprise. We conclude this section
by providing a simple illustration example. Section IV presents
the performance evaluation of the proposed surprise-reacting
approach as compared to the competing approaches. Finally,
we summarize the paper in Section V.

II. RELEVANCE TO THE LITERATURE

Systematic study of experimental designs, or design of
experiments (DOE), was initially started with applications to
biology and agriculture areas [16]. Later the DOE method-
ologies are popularized to many different applications and
industries [17]. Researchers have long realized the importance
of sequential experiments, as it is impossible to understand a
complex system fully through a single shot of action. The early
effort of sequential experiments can be traced back to Wald’s
sequential analysis [18], Box and Wilson’s response surface
methodology [19], and Feldbaum’s dual control theory [20].

The introduction of Gaussian processes (GP) from geo-
spatial statistics [21] into the modeling of computer experi-
ment’s outputs [22] brought a paradigm shift. GP models were
initially used on modeling responses from the deterministic
computer experiments, which, when run repeatedly with the
same input, would produce the same output. GP, being a
perfect interpolator, was a natural choice to be used for



modeling such responses. Over the years, however, the use
of GP models is not limited to the deterministic computer
experiments, but also extended to the modeling of stochastic
computer simulations [23] as well as to modeling physical
experiments [24, 25, 26]. They become ever more popular
when the machine learning era arrives [27].

Jones et al. [28] proposed the idea of Expected Improvement
(ED), a criterion to decide where to collect the next data point.
The EI criterion tries to balance between sampling the next
data point with the highest expected value (exploitation) and
sampling the point with the highest uncertainty (exploration)
and was proven effective. The effort of finding a GP-driven
efficient global optimization is evolved into the research of
Bayesian optimization. BO decides the next sample point
by optimizing an acquisition function and EI forms one
such function. Other popular choices of acquisition function
include Probability of Improvement [29], Upper Confidence
Bounds [30, 31], and Maximum Variance [32]. Recent years
one has seen new applications of BO in areas such as manu-
facturing [33, 34], material handling [35], neuroscience [36],
and materials discovery [37].

Recent research [38, 39, 40] has highlighted the limitations
of various BO acquisition functions, particularly their tendency
to either over-exploit or over-explore the search space. For
instance, EI is known for its exploitation-heavy nature, of-
ten leading to local optima without sufficient exploration of
the broader design space. UCB aims to balance exploration
and exploitation, but its effectiveness heavily depends on
the choice of hyperparameters, which may not be adaptive
enough for dynamic environments. PI and MaxVar face similar
challenges, where PI tends to focus on regions with high
expected improvement and Max Var targets areas of high uncer-
tainty without necessarily finding optimal solutions. Adaptive
strategies are identified as the best way to balance exploration
and exploitation to improve performance in varying condi-
tions [41]. The dynamic adjustment of acquisition functions
in real-time is demonstrated to better suit the needs of au-
tonomous platforms [42]. These findings underscore why our
surprise-reacting policy could be advantageous, for it adjusts
exploration and exploitation dynamically based on the degree
of surprise and is thus adaptive, offering a more robust and
effective approach for autonomous experimentation.

We have previously mentioned a number of existing au-
tonomous platforms, although none is fully autonomous
yet. Most of these platforms still rely on BO to direct
their choices in the sequential experimentation, including
the robotic chemist [3], featured in a Nature cover story.
Bukkapatnam [43] provides a comprehensive overview on
autonomous manufacturing, stressing that a lot of challenges
remain unsettled and that we are still far away from developing
a practical sequential strategy for these autonomous platforms.
It is in this context that we would like to report our work in
terms of incorporating the element of surprise into a sequential
experimentation policy.

III. SURPRISE-REACTING EXPERIMENTATION POLICY

This section discusses how to handle surprise observations,
i.e., how to measure a surprise and how to react to it. The

reaction plays the role of guiding the sequential framework to
select the next experiment location and update its understand-
ing of the design space or the underlying response function.

Before we proceed with the technical discussion, we would
like to present a brief account of how “surprises” acted as
an important element in the process of scientific discovery.
Surprise can be considered as the observations that disagree
with the current hypotheses concerning or the understanding of
the underlying systems. Surprise often brings forth puzzlement
first, and as an immediate reaction, one investigates further
to understand the surprise. It may trigger an adjustment to
one’s current understanding of the systems (or processes) and
eventually leads to the sublime knowledge one aspires to reach,
known as enlightenment. Whenever one is surprised, a natural
scientific feedback is to exploit the neighborhood, close to
the surprise location, to find out the nature and extent of the
surprising responses. This is the process of adjudicating the
surprise observation, and it could help unearth a new feature
or pattern of the response surface.

Surprise can be linked to two different states of mind,
i.e., puzzlement and enlightenment, that comes one after
another [13]. To appreciate the two different states, let us
revisit the discovery process of penicillin by sir Alexander
Fleming in 1928, a bacteriologist working at St. Mary’s
Hospital in London. One day upon returning from a two-
week summer vacation, sir Alexander found that a culture plate
of Staphylococcus aureus that he had been working on was
contaminated by a mold, which inhibited the growth of the
Staph bacteria. He was puzzled by this outcome and named
the mold broth filtrate penicillin. He did not stop there or
threw away the culture plate as a “bad” data point but started
investigating the event instead, which led to the discovery of
antibiotic. The two states of mind of Sir Alexander were: the
puzzlement in the first hour right after being surprised (when
bacteria growth was stopped) and the enlightenment when he
understood the reason (discovery of antibiotics).

A. Measures of Surprise

To learn from surprise, a well-defined mathematical measure
is needed to quantify the abstract concept. As we explained in
the introduction, we intend to use the two existing surprise
definitions known as Shannon surprise [11] and Bayesian
surprise [12], respectively.

Shannon surprise uses a negative log-likelihood of an
observation, D = {x, y}, given the current state of mind. Here,
x represents the input event while y represents the observed
response. Let us use 7,(0) to represent the current state of
mind, i.e., the belief regarding the underlying system captured
by a statistical model (more on this in the next subsection) after
observing n data points. This state of mind is parameterized
through ©. Then the Shannon surprise is defined as:

“log / (D | ), (6)de, ()
<)

where p(D | ©) measures the probability of a new data point,
conditioned on ©. The degree of surprise is proportional to



the value of the Shannon surprise measure. Observations with
a low probability of occurrence imply a big surprise.

Shannon surprise measures a surprise using the posterior
probability. However, not all low-probability events are sur-
prising. Faraji et al. [13] uses the following example to
illustrate the point. Consider that someone noticed a car of
a specific make, a specific color, and a specific license plate
parking next to his/her own car in a parking lot. Assume that
all cars are parked randomly. Given so many cars out there,
the probability of observing a particular car parking next to
one’s own is very low. Yet, one will not be typically surprised
by this low probability event because one does not have the
anticipation of either seeing or not seeing that car in the first
place. In Shannon surprise, neither does one update his/her
belief after seeing the surprising event, nor does one compare
it with the prior belief. In other words, Shannon surprise does
not capture the sense of anticipation.

Bayesian surprise: It captures the change in one’s belief
brought by the newly observed data point. Bayesian surprise
quantifies the change using the Kullback-Leibler (KL) diver-
gence between the distribution of the prior belief and that of
the posterior belief, such as:

KL(m,(8) || 7p41(8)), and 2)

o (0) = p(D | 0)m,(0)
it [sp(D]8)m,(8)d6

Here, 7,,+1(0) represents the updated belief after observing
a new data point (D) and is calculated using the Bayes rule.
Bayesian surprise updates the state of mind after observing
new data; that is an act of enlightenment. The KL divergence
compares the two believes, and the prior belief serves as the
anticipation. Events that cause a big change in one’s belief,
i.e., a big KL divergence, are labeled as surprises. Apparently,
Bayesian surprise is a measure of the enlightenment surprise.

Compared to the Bayesian surprise, Shannon surprise is
more sensitive and can lead to a faster reaction, because
Shannon surprise is about capturing the initial puzzlement,
whereas Bayesian surprise is more about updating the belief.
Consider the example that a student with a very good grade
history suddenly gets a poor grade in one test. Using the
Shannon measure, under the belief, 7, (0) = {good student},
the probability of D = {bad score} is low, so that one would
be puzzled and tag this event as a surprise. On the contrary,
using the Bayesian measure, one is unlikely to change from
m,(0) = {good student} to m,,1(0) = {bad student} after
one single test. This is to say, m,(0) and m,1(0) stay the
same and the KL divergence is close to zero. As such, one is
not surprised if using the Bayesian measure. In order to change
the belief, much more bad scores are needed to gradually
overturn the prior belief of “{good student}”. The slower
response often comes as a criticism of Bayesian surprise,
especially when the experiments are expensive and resources
are precious (meaning that one does not afford a lot of new
observations to react).

It appears that neither of the existing surprise measures
are perfect [13]. While introducing a new surprise measure

3)

is worthy, doing so is not straightforward. We believe the
existing measures, however imperfect they may be, are still
useful. So we stay with the two definitions and demonstrate
their usefulness in this paper.

B. Statistical Model for Sequential Experimentation

In order to compute the above-defined surprise measures
and incorporate them into a sequential framework, we need
to introduce a statistical model. We expect this model to
hypothesize one’s belief over the design space and sequentially
update its belief by using the new observations. In this work,
we choose to adopt the Gaussian process as the statistical
model. Using GP makes our effort better connected with and
comparable to the work under the BO framework.

1) GP Model: Consider we are trying to model physical
experiments with an underlying function f(X). Let X =
[x1,X2,...,X,] represent the observed experiment locations.
GP models the function values at these locations as a vector of
random variables, f = [f(x1), f(X2), ..., f(x,)] and assumes
that the set of random variables in f is jointly distributed as a
multivariate Gaussian:

GP ~p(f | X) = N1, K), “4)

where p = m(X) = [m(x1), m(x2), ..., m(x,)] is the mean
function, and K = [k(x;, x;)]};_; is the covariance or kernel
function.

The mean function defines the expected value of the process
at any point. It is often set to zero (i.e., m(X) = 0) for simplic-
ity, particularly when there is no prior information about the
trend in the data. Even with this simplistic choice, GPs, with
their flexible covariance functions, can model complex patterns
and deviations from the mean well. GPs can also incorporate
prior knowledge by using non-zero mean functions, such as
linear, polynomial, or other parametric forms, to reflect known
trends or biases in the data.

The covariance function, or kernel, k(xi,xj), dictates the
structure and smoothness of the function being modeled in
a GP. Generally, the choice of kernel determines how the
function values correlate with each other. There are two broad
categories of kernels: stationary and non-stationary. Station-
ary kernels, such as the squared exponential, Matérn, and
Ornstein-Uhlenbeck functions, depend only on the distance
between x; and x; and not on their absolute locations. This
implies that the covariance between function values is a
function of the relative distance. Non-stationary kernels, on the
other hand, can vary with the absolute positions of the points,
allowing for more flexibility in capturing varying structures in
different regions of the input space.

GP assigns a prior on the function space that the sequential
algorithm tries to master using the data from sequential exper-
iments. The covariance function (K) plays the most significant
role in this prior as it encodes the similarity of each pair of
experimental data points. In this study, we utilize the Matérn
kernel due to its flexibility in modeling different degrees of
smoothness:

v
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where K, is the modified Bessel function, v controls the
smoothness of the learned function. We use v = 2.5 through-
out our study. There are two parameters in this function whose
values need to be learned during the sequential learning pro-
cess: [ is the length-scale parameter controlling the smoothness
of the functional representation of the design space and oy
is the variance parameter determining the magnitude of the
function values.

The actual experiments may be noisy, which means the
observed response, y, can contain variability not captured by
the underlying function. In GP, noise in the observations can
be modeled as either independent and identically distributed
(i.i.d.) Gaussian noise or as non-i.i.d. noise. Using i.i.d. noise
simplifies the modeling but may not capture more complex
noise structures present in real experiments.

For this study, we choose to model the noise as i.i.d.
Gaussian noise for simplicity and computational efficiency.
The observed output y at any input point x is given by:

y=f(x)+& €E~N(0,07), (6)

where o° is the variance of the noise, reflecting constant
observational uncertainty across the design space. This o2,
along with the parameters of the chosen covariance function
(I, o), also known as GP hyperparameters and represented by
¢, constitute the parameters of the statistical model.

The choice of hyperparameters is part of the modeling
effort and often utilizes domain or expert knowledge. We
do not consider any informative prior distribution on these
hyperparameters. Instead, we use flat priors, i.e., start with
arbitrarily selected hyperparameter values (or values informed
by domain knowledge, bounded within a minimum and max-
imum range), and use data to iteratively update and optimize
these hyperparameters after each iteration.

The GP model is utilized as a surrogate for the true
underlying function of the design space, enabling updates
through a probabilistic Bayesian learning process. Initially,
a set of experiments, (X,y), where y = [y1,¥2,--.,Yn]s
provides a basic understanding of the design space. The model
then updates its parameters by maximizing the log marginal
likelihood. :

tog py[X) = 3 (y ~ m(X)) 'K, (y — m(X)

2

(7
1
~3 log |K,| — glog 2,

where K, = K + 021, with I being the identity matrix and
|K, | represents the determinant of K,,.

To measure surprise, it is important to predict the ex-
perimental outcomes at new test locations (X,) so that the
predicted values can be compared with the actual outcomes
(y+). This comparison helps to update the sequential policy
after each iteration. The prediction is made easier due to the
GP formulation, for which the posterior predictive distribution
of the function response at the new locations, f,, is well known
to be [27]:

p(E |y, X, X) ~ N(py, o), ®)
where
p,=KIK,'y and %, =K., -K/K/'K,, (9

and K, = k(X,X,) and K.. = k(X,,X.). This posterior
distribution, p(f. | y, X, X), reflects the current understand-
ing of the design space and can be sequentially updated with
each new experiment.

2) Capturing and Labeling Surprise: We can compute the
Shannon surprise of a new observation, D = {x.,y.}, by
using the GP posterior predictive distribution. Note that the
state of mind, © is equivalent to f of the GP model, and the
current state of mind, 7, (0) is equivalent to the GP posterior
p(fs | y,X,,X), as in Equation (8), after observing n data
points.

To measure the Bayesian surprise, first, we need to include
the new experiment location and its response to our GP
model’s training dataset. The model hyperparameters (¢) will
be then re-estimated through the optimization formulation as
in Equation (7), so that we get an updated posterior distribution
through Equations (8) and (9). This updated model (7,,+1(0))
will be compared with the old model (7, (0)) through their
KL divergence to measure the surprise.

To label a new observation as a surprise, a threshold
is needed. We propose to use the credible interval (p, =+
Kshannon2%) for each new test response (y.). For instance,
when the credible interval is set at 95%, kspannon = 1.96
for a normal distribution. This credible interval can be easily
computed given the posterior distribution. If the degree of
surprise associated with an observation is greater than the
degree of surprise associated with the credible band, it implies
that the new test response does not agree with the statistical
model and then this new experiment will be treated as surprise.

Similarly, Bayesian surprise value will be compared with
KkBayesian,» Which is the counterpart of kshannon above, for deem-
ing a surprise. When kpayesian 1S chosen to be the same as
Kshannon, USing Bayesian surprise leads to a slower reaction, or
alternatively, in order for Bayesian surprise to have a compa-
rable rate of reaction as that using Shannon surprise, kayesian
generally needs to be smaller than kgpannon. In Section IV,
we analyze the performance variations with different threshold
selections and discuss the resulting impacts.

C. How to React to Surprise

Once an observation is flagged as a surprise, the next
question is how the model should react to that declaration.
To mimic a human scientist, the next action is to investigate
the nature of the surprise observation. We understand that the
nature of the investigation could vary, but given our focus on
engineering systems for manufacturing and material discovery,
our experience suggests that the first line of action is to confirm
whether the surprise is due to data corruption or a discrepancy
between the underlying response surface and the model that
has been built thus far.

While settling on such a question itself entails complexity,
we choose to conduct a simple test for the time being. The test
is for the sequential approach to draw a new observation in
close proximity to the location where the surprise is declared
and see if it is a surprise again. In this context, we define
“close proximity” as a small perturbation around the last



experimented point within the Euclidean space, using a normal
distribution with a small standard deviation. Mathematically,
for a given point x € R?, where d is the dimension of the
input space, we generate a point Xperturbed € R? as follows:

Xperturbed = X + €, (10)

where € ~ N(0,02,5]) and Operus is a small standard
deviation that defines the “neighborhood” within the Euclidean
space.

If the response at the perturbed location is once again a
surprise, it confirms the earlier finding. Both responses are kept
in the data collected and used to update the model to reflect
the new understanding. If the model is not surprised by the
subsequent response, it suggests that the previous surprising
observation is more likely a corrupted observation. Then, the
previous observation is discarded and not used to update the
model.

The confirmation process is an act of exploitation, as
it is conducted within a defined local region. This action
commits additional resources to double-checking, which on
the surface slows down the experiment progress. However,
we find that a simple exploitation action like this actually
helps with the overall exploration of the design space. The
surprises serve as wake-up calls to prevent misleading new
data from dragging the model to incorrect conclusions. This
is particularly critical in resource-constrained processes, such
as running experiments in material sciences or manufacturing,
where high costs limit the number of experiments.

After the confirmation step, additional observations would
be taken at the same “neighborhood” for model updating, until
a new data collection does not return a surprise declaration.
What this means is that the model is now consistent with what
the data informs the model for that local area. What this entails
in reality is just one or two additional data points, not an undue
burden for the overall experimentation process.

Once the model is updated to accurately reflect the local
area just being exploited, the sequential learning process goes
back to the exploration mode, which is to look for new patterns
elsewhere in the design space which in principle should be far
away from the previously experimented locations. During each
exploration step of the sequential experiment, we initialize a
set of candidate points, denoted by S. The new experiment
location, X,ex;, Will be selected from this set based on the set
of previously experimented locations, denoted by E.

On the note of candidate points, we want to emphasize that
our model does not strictly follow BO but rather employs a
Bayesian mechanism for sequential experimentation. Unlike
traditional BO, which typically optimizes an acquisition func-
tion to select the next experimental location, our approach
leverages surprise-driven Bayesian inference to guide the
selection of the next points for exploration or exploitation.
The objective of our method is to quickly approximate the
design space and obtain an overall understanding, as opposed
to just optimizing expensive black-box functions as in BO. The
use of candidate points balances computational efficiency and
effective exploration of the design space and thus helps achieve
our objective. One more advantage for using the candidate sets
is that doing so can incorporate complex design constraints

more easily; for example, infeasible designs or designs known
to be harmful.

We generate the candidate set S at each iteration using Sobol
sequences [44] as in Equation (11), which provide a well-
distributed set of points in the Euclidean space.

Y

where Xypoungs defines the bounds of the input space and
TNecandidates 1S the number of candidate points.

Sobol sequences are a type of low-discrepancy sequence
used in quasi-random number generation and are particu-
larly useful in high-dimensional integration and optimization
problems because they provide better space-filling properties
compared to purely random sequences. This ensures that
the candidate points cover the design space more uniformly,
making them ideal for exploration in Bayesian optimization.
In this work, we generate 5,000 new candidate points in each
iteration. For higher dimensional (d > 6) and more complex
functional spaces, more points may be generated to maintain
good coverage.

To select the next experiment location, we use a maximin
strategy, which seeks to maximize the minimum distance from
the new location to all previously explored locations; see
Equation (12). This strategy ensures good coverage of the
design space by preventing clustering of points and promoting
exploration [45, 46, 47]. Specifically, to identify the nearest
neighbour of experimented locations in the candidate set, we
use Ball Trees [48] for efficient distance computations. Ball
Trees are used for efficient nearest-neighbor queries which
organize points in a hierarchical structure based on their
distances. This allows for fast distance computations and
nearest-neighbor queries, which is crucial for our maximin
strategy.

S = SObOl(XboundSa ncandidates)7

Xpext = arg Max (min BallTree(x, e)) ) (12)

x€S \ ecE

The degree of surprise associated with the new observation
will then be evaluated. In the event of no surprise, the
exploration will be continued until a surprise is encountered.
Upon encountering a surprise, exploitation will begin. This
iteration will be repeated until the experimentation budget is
exhausted.

Using this surprise-reacting policy, the expected number of
surprises decreases rather quickly as the experimentation pro-
ceeds, because the underlying response is better understood.
The sequential approach is able to recuperate the benefit of not
being stuck in a local neighborhood. As a result, the surprise-
reacting policy could approximate the design space quickly.

D. Steps of the Surprise-Reacting Sequential Experimentation

The policy is described step wise below, which is also
summarized in Fig. 1.
I. Initial experiments:
In order for the sequential experiment to begin, the
sequential algorithm must be given a set of initial
experimental locations (Xjuiia) and the corresponding



responses, in order to build a statistical model. For this
purpose, we still use the Sobol sequence as we do for the
sequential experimentation. The number of experiments
in Xjyiiar are required to be low compared to the total al-
located experimentation budget. Considering the resource
constrained nature of the autonomous experimentation
platform, in this work, we use only 10 initial experiments
for all the benchmark functions and the grinding dataset.
Once the responses from these experiments, Yinital, are
recorded, the statistical model will be trained using these
initial experiments, which can then be used to produce
the posterior predictive distribution.

II. Surprise measure:
After the initial experiments, the very next experiment
location will be randomly selected, Xg.t. The experiment
will be carried out to get the response of y(Xist). The
model posterior predictive distribution is used to calculate
the Shannon surprise (using Equation (1)), whereas the
Bayesian surprise is calculated by comparing the old and
updated model (using Equation (2)). Then, the statistical
model is updated by adding this new location, i.e., X =
{Xinitial, Xfirst }» Y = {Yinitial» Yfirst }-

III. Exploration-Exploitation switching:
If the sequential algorithm is not surprised, exploration
will be pursued. The next exploration location is chosen
according to the maximin criterion, i.e., following Equa-
tion (12). On the other hand, if the sequential algorithm
is surprised, the next location will be selected according
to our exploitation policy, i.e., following Equation (10).

IV. Update:
Once the next experiment location is selected, actual
experiments will be performed. The update to the statis-
tical model depends on the outcome of the exploitation
of a surprise observation. The sequential algorithm then
moves back to Step II and continues until the allotted
experiment budget is reached.

E. A Simple Illustrative Example

To highlight the differences between the proposed approach
and the existing EI-based BO sequential policy, we would like
to walk through a simple function approximation problem.

1) Problem Description: In this example, we consider a
simple, univariate function of the form of

y=f(z) + &

The specific f(-) used in this simple example is — sin(3z) —
22 + 0.7z, shown as the solid red curve in Fig. 2. One can
observe that the f(-) function has two peaks, one higher than
the other. Without knowing the underlying true function, a se-
quential algorithm would run experiments and take responses.
Those are marked as the black crosses in the figure. Once there
are a sufficient number of data pairs, the statistical model can
recover the function reasonably well, which is the dotted green
curve. For a simple function of a single input as in Fig. 2, one
does not need a large number of experiments before recovering
the underlying true function. This example is simply used for
illustration purposes.

13)

Select an initial set of locations
for experiments using space-filling
design
Record these initial
responses and train
the model
Select the first experiment
location to initiate the sequential
experiments
Perform chosen experiment and
record response

!

Surprised Halt the ?u«)(l('l update
and perform another

experiment nearby

. X 3| Update the model; select
Not surprised

the next experiment
using exploitation

Discard the original
surprised experiment

Update the model; select the next
experiment using exploration

Fig. 1: The flowchart of the surprise-reacting experimentation
policy.
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Fig. 2: Approximation of a response function.

Specifically in this example, the realization of y is the
addition of function f(-) with a zero-mean Gaussian noise
with ¢ = 0.2. The experimental budget is constrained to 13
physical experiments, including the two initial experiments.
Input x takes value in the range of [—1.0,2.0]. We use both
the lower and upper bound values as the initial experiment
locations; these are the same for both the surprise-reacting
policy and the El-based BO policy. The sequential experiments
start after these two initial experiments and run a total of 11
additional experiments which makes in total 13 experiments.
We use a GP with Matérn kernel as the statistical model for all
policy options. We use a pre-determined lengthscale parameter
value of 1 and a smoothness parameter value of 2.5.

2) Surprise-reacting experiment policy : The iteration by
iteration approximation performance following the surprise-
reacting experiment policy are shown in Fig. 3, in which the
left panel, i.e., Fig. 3(a), presents the approximation iteration



based on the Shannon surprise, whereas the right panel, i.e.,
Fig. 3(b), presents the approximation iteration based on the
Bayesian surprise. The threshold parameter in the Shannon
surprise is chosen as Kspannon = 1.96 and that for the Bayesain
suprise is chosen to be kpayesian = 0.5. By using kgayesian = 0.5,
the Bayesian surprise is to flag a distribution change of the
magnitude of approximately one standard deviation, which is
smaller than that to be flagged in the Shannon surprise. This
small magnitude is used to compensate the slowness of the
Bayesian surprise.

If we look at Fig. 3(a), at first, using the two initial
experiment locations (x = —1.0 and z = 2.0) and their
corresponding responses, the statistical model does not have
an accurate understanding of the underlying function. Rather
its model output is a flat response line as shown in iteration
1. The shaded region is the 95% credible band. Then the
sequential algorithm chooses one random location and as
the response behaves significantly differently than what the
current statistical model anticipates, the sequential algorithm
is presumably surprised after assessing the degree of surprise.
So, as a reaction the sequential algorithm then selects a nearby
location and do an experiment there as the next sample. The
sequential algorithm is surprised again, which confirms that
the surprise observation is a valid response and they are
both used to update the statistical model so that the updated
response starts to move away from the flat line and adapt to
the underlying function. This whole surprise confirming action
is done in a single iteration.

In iteration 2, after the update, to gain more knowledge
about the local region it does a follow-up experiment nearby
again. However, it will not be surprised anymore and following
the proposed policy, the sequential algorithm will go back
to exploration and selects a distant sample in iteration 3, at
which location, the sequential algorithm is surprised again.
The subsequent exploitation confirms again the validity of
the response and further adopts the response closer to the
underlying true function. This process will continue until the
experimentation budget is reached at iteration 9 (consuming
13 experiments). Bayesian surprise measure also worked in a
similar manner in Fig. 3(b). Both surprise metrics are able to
reach a good approximation of the underlying function at the
end of the experiment (experiment 13).

Using Shannon surprise, the number of experiments con-
sumed is {2, 4, 5, 7, 8, 9, 10, 11, 12, 13}, whereas using
Bayesian surprise, the number sequence is {2, 3, 5, 6, 8, 9,
10, 11, 12, 13}. It is apparent that the difference between
the two surprise measures takes place in the earlier iterations.
If we look at the first two iterations of these two surprise
measures, we can understand the difference between two
measures. Shannon surprise, being more sensitive, declares
the middle point (z = 0.5, first sequential experiment output)
as surprise and carry out confirmatory experiments near this
location. On the contrary, Bayesian surprise declares this event
as normal and move to carry out exploration in other regions.
Using both approaches reaches a reasonable approximation of
the underlying function at the end of iteration 6 and after that,
there are not much differences using either surprise measure.

We want to highlight that using the surprise-reacting policy,

we successfully identified both the left and right peaks and the
valley in between. This is one of the benefits as we consider
the surprise-reacting policy, i.e., they may not be the quickest
for honing in on the exact optima but they are good for design
space or response surface approximation.

3) El-based BO experiment policy: As a representation of
the existing BO acquisition functions, let us now discuss the
El-based BO experiment policy and see how the sequential
learning policy behaves differently. This BO experiment policy
uses the popular EI acquisition function. Bayesian optimiza-
tion tries to find the optimum of inputs, Xy, so that we can
attain the global maximum (or minimum) [2] of the design
space, i.e.,

Xopt = argmax f(x). (14)

xER4
The acquisition function is the key in a BO framework
for deciding where to conduct the next experiment. The EI
acquisition function is expressed as [28]:

Bl (@) = (1. (2)- e o (2 ) o (@)o (S22,

o« (x) 04 ()

15)
where A, () = p«(x) — f(z") and it captures the potential
improvement over the current best solution (™) if the se-
quential algorithm chooses x as the new experiment location,
ty(x) and o, (x) represent the mean and standard deviation
of the GP posterior predictive at x, and ¢ and ¢ are the
cdf and pdf of the standard normal distribution, respectively.
The first component of Equation (15) favors exploitation and
the second component favors exploration. A high value of
improvement over the current best solution (component 1)
and a high uncertainty (component 2) both result in a final
high EI. Equation (15) decides the trade-off between the two
considerations. To apply the El-based experiment policy to
the same example explained in Section III-El, all settings are
kept the same as in the surprise-based policy, including the
initial experiments and the GP-based statistical model. The
key difference is the mechanism of exploitation-exploration
switching and where to select the next experiment.

The experiment process using the El-based policy is il-
lustrated in Fig. 4. One can find that BO is able to locate
the maximum value of the underlying function successfully
but in that process, the El-based policy fails to approximate
the right half of the functional space. Such an outcome is
much expected considering the design of the EI acquisition
function itself. If one looks at the construction of Equation
(15), we notice that potential improvement (A,,) of the can-
didate locations are weighted by their respective variances.
Moreover, the cdf of the variance-corrected improvements is
multiplied by the actual improvement to form the exploitation
component, while the corresponding pdf is multiplied by the
variance of the candidate location to form the exploration
component. As such, the first component of Equation (15)
often overweighs the second component, so much so that
unless the improvement is very minimum in regions with low
variability, EI hesitates to move towards a high-reward-high-
variability region.

In summary, the El-based policy is in favor of locations that
provide a small improvement with more certainty (low o (x))
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Fig. 3: Surprise driven experimentation.

over a bigger improvement with less certainty (high o, (x)).
Such policy tends to over-exploit local peaks and could be
trapped in local optima. If we look at iteration 12 in the EI
policy, we find that the sequential algorithm is stuck to the
neighborhood of the left peak. In order for the EI policy to
explore the right peak, it could take many more samples.

One may argue that the objective of the El-based policy
is not to fully explore a design space or a response surface.
Rather it is to hone in on optima rapidly. We agree that the EI-
based policy is doing a fair job for honing in the optima. But
we want to stress the importance of characterizing response
surfaces or design spaces, a well-established need shared
across multiple disciplines such as biological systems [6],
energy field [49], or machining process [50]. We hope to
convey the message that the surprise-reacting policy provides
a better alternative than the EO-based policy.

IV. PERFORMANCE COMPARISON

We here present the performance comparison between
the proposed surprise-reacting approach and several well-
established acquisition functions utilized in a BO framework
for the task of function approximation. When choosing acqui-
sition functions, we prioritize those that are typically used in
sequential experimentation on an autonomous platform [3, 51].
These include EI [28], UCB [31], PI [29], and MaxVar [32].

These acquisition functions are chosen because they repre-
sent different strategies in balancing exploration and exploita-
tion. They employ different criteria to select the experimental
locations. EI selects points that maximize the expected im-
provement over the current best observation, tending to favor
exploitation. UCB balances exploration and exploitation by
considering both the mean and variance of the prediction, thus

encouraging exploration. PI selects points that maximize the
probability of improvement over the current best observation.
MaxVar selects points with the highest prediction variance,
targeting regions of high uncertainty and favoring exploration.

We employ five synthetic benchmark functions and a real-
life dataset to test the efficacy of the competing approaches.
For a fair comparison, we use the same initial experiments for
all the competing approaches. A GP-based statistical model
will be used for all the competing approaching including the
surprise-reacting policy under the same resource-constrained
environment. To compare the prediction performance of the
underlying response surface, we use both the Root Mean
squared Error (RMSE) and the Continuous Ranked Probability
Score (CRPS) as the performance metrics. The RMSE is
defined as:

j=T
RMSE = %Z(yj — )2, (16)
J=1
where T is the size of the test set, g; is the prediction made
by the trained statistical model, and y; is the true response.
For the simulated datasets, y; is generated by the underlying
true function, whereas in the real-life dataset, y; is the actual
physical measurement. A lower RMSE corresponds to better

function approximation.
The CRPS is defined as:

T
1 oo
CRPS = Z/ (Fj(z) —1{z>y;})?dz,  (17)
j=177%
where I is the cumulative distribution function (CDF) of the

predictive distribution for y;, and z is a variable over which the
CDF is integrated. The CRPS measures the difference between
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Fig. 4: El-based experimentation policy.

the predicted cumulative distribution and the actual value, with
a lower CRPS indicating better probabilistic predictions.

A. Synthetic Benchmark Functions

We consider several popular benchmark functions routinely
used for testing the performance of BO-based acquisition
functions and global optimization algorithms [52, 53]. Among
these are the six-hump camelback function and the Branin
function, both of which are two-dimensional. The six-hump
camelback function is typically evaluated within bounds of
[—3,3] for the first dimension and [—2,2] for the second
dimension, and the Branin function within bounds of [—5, 10]
for the first dimension and [0, 15] for the second dimension.
Additionally, we utilize higher-dimensional functions such as
the Ackley, Rastrigin, and Sum Squares functions. The Ackley
function is evaluated within bounds of [—32.768,32.768] in
five dimensions, the Rastrigin function within [—5.12,5.12]
in five dimensions, and the Sum Squares function within
[—10,10] in six dimensions.

We allocate 10 initial experiments and 50 sequential ex-
periments to the competing approaches, making a total of
60 experiments to learn the function. While allowing more
evaluations would likely result in all approaches approxi-
mating the function well in the long run, our goal is to
assess how well they approximate with a fixed budget. After

completing these experiments, the trained statistical models
from all competing approaches are used to perform predictions
@j) on an independent test set of 50 locations, i.e., T" = 50.
The RMSEs and CRPSs are then calculated for each approach.
This process is repeated 50 times to quantify the uncertainty
in RMSE and CRPS.

Tables I and II summarize the performance comparison
among the competing approaches for the five benchmark
functions, using RMSE and CRPS metrics, respectively. For
both RMSE and CRPS, we report the mean £+ 95% Con-
fidence Interval (CI). The results indicate that the surprise-
reacting approaches achieve superior prediction performance,
with Shannon surprise outperforming Bayesian surprise in
most cases. Additionally, the prediction variability is much
lower for most of the cases when using surprise measures
compared to other competing methods.

El performs poorly compared to the other approaches,
reflecting its tendency to over-exploit the current best obser-
vations rather than exploring the function space adequately.
PI, while slightly better than EI, still underperforms due to
a similar tendency to favor exploitation. UCB shows better
performance than the other BO acquisition functions in gen-
eral, as it balances exploration and exploitation by considering
both the mean and variance of the predictions. However,
it still lags behind the surprise-based approaches. MaxVar,



performance in each column is highlighted in bold.

TABLE I: Performance comparison of different acquisition functions using RMSE (mean £ 95% CI) values. Best

Branin Six-Hump Camelback Ackley Rastrigin Sum Squares

Acquisition Functions

Shannon Surprise 0.75 £ 0.09 2.67+0.19 0.80£0.07 28.79+1.03 165.80 £ 9.77
Bayesian Surprise 1.16 £0.12 2.73+0.20 0.84 +0.07 36.50 £ 1.38 150.09 + 6.54
EI 9.18 £4.97 10.42 +0.88 4.95 +2.22 41.19 £8.17  432.87 £ 70.60
PI 9.14 £1.08 15.17+1.24 5.70 £2.29 31.31 £2.99 223.91 £15.27
UCB 4.75 £ 3.09 5.71 £ 0.60 4.48 £2.16 31.66 £5.17  378.41 £65.17
Max Var 12.57 £ 7.14 2.85+0.12 5.33 £2.33 36.53 £6.53 389.02 £ 70.68

TABLE II: Performance comparison of different acquisition functions using CRPS (mean

performance in each column is highlighted in bold.

+ 95% CI) values. Best

Branin Six-Hump Camelback Ackley Rastrigin Sum Squares
Acquisition Functions
Shannon Surprise 0.64 +0.02 1.51+0.07 0.47+0.04 17.05+0.55 97.87 £6.80
Bayesian Surprise 0.93 £0.03 1.69 £ 0.06 0.49 £ 0.04 23.20 £ 0.58 85.50 + 4.09
EI 4.27 +2.82 4.75 + 0.47 293+ 1.34 24.52 £4.88  287.92 £ 53.66
PI 3.73+£0.42 7.35 +0.69 3.40£1.39 19.85 + 1.62 129.26 £ 10.02
UCB 2.32+£1.77 2.38 +0.19 2.66 £ 1.31 18.53 £ 3.11 245.14 £ 49.42
Max Var 7.39 £4.07 1.57 £0.05 3.17+£1.40 21.80 £3.85  260.13 £ 53.40

which focuses on selecting points with the highest prediction
variance, performs inconsistently across different functions,
indicating that while it encourages exploration, it may not
effectively balance it with exploitation.

Additionally, to evaluate the performance of the competing
approaches as the sequential experiment progresses, we record
their performance at each iteration until the budget of 50
experiments is reached. When plotting these iteration-wise
RMSE and CRPS values for all the benchmark functions, we
observe that the surprise-reacting approaches achieve a rapid
decrease in both RMSE and CRPS values compared to the
other acquisition functions. Due to space limitations, we only
present these plots for the Branin and Ackley functions in
Fig. 5 and Fig. 6, respectively. But the same message holds
for other benchmarking functions.

Overall, the results suggest that surprise-reacting ap-
proaches, particularly those using Shannon surprise, provide
a robust method for function approximation under limited
evaluation budgets, effectively balancing the trade-off between
exploration and exploitation.

B. Impact of Threshold

In the evaluation presented in the previous subsection, we
compute the RMSE and CRPS for both Shannon and Bayesian
surprise measures using specific threshold parameters to de-
termine surprise events. For Shannon surprise, kshannon = 1.96
is used to signify a 95% credible interval, arguably the most
commonly used C.I. For Bayesian surprise, kpayesian = 0.5
corresponding to a less than 95% C.I. to account for its slow
responsiveness.

To assess the impact of varying these threshold parame-
ters, we adjust these values to represent different confidence
levels for Shannon surprise: 90% (Kshannon = 1.645), 97.5%
(kshannon = 2.241), and 99% (Kkshannon = 2.576). Following a
similar approach, the Bayesian surprise threshold parameter is
adjusted to 0.42, 0.57, and 0.66, respectively.

The results, presented in Tables III and IV, indicate that
changing the threshold does change the prediction perfor-

mance of the surprise-reacting policy. But within a reasonable
range of the thresholds (for Shannon, 90% or above), the
difference in performance is acceptable. There is one case in
Bayesian surprise where the performance deviates from the
baseline by as much as 15.52%. But for the majority of the
cases, the performance change is less than 6%. This suggests
that the effect of threshold is manageable, highlighting the
degree of robustness of both Shannon and Bayesian surprise
measures in approximating the underlying response surface.

C. Grinding Dataset

In addition to synthetic benchmark functions we also eval-
uate the performance of our approach on a real-life grinding
data set [54]. This is not the first time that this surprise-
reacting policy was used on a real system. As mentioned in
Introduction, Jin et al. [15] applied an earlier version of the
surprise-reacting policy to a 3D printing process and reported
that for achieving the same quality output, the surprise-reacting
policy used one-third to one-half of the experimental runs that
the El-based approach used. Here we report a second case in
which an improvement is confirmed.

For the grinding process [55], the purpose is to quickly
characterizing the response surfaces using a limited amount
of resources, so that the operators can get the desired surface
roughness in different stages of the surface-finishing process
by setting the correct process conditions, such as the feed rate
and speed. The dataset is from a cylindrical plunge grinding
process. Three process parameters (x) are the work speed,
wheel speed, and the in-feed of the grinding wheel. The goal
is to establish a relationship between these process parameters
and the surface roughness. The actual surface roughness is
measured at the end of each experiment and the physical
measurement is treated as y, and the 7 is obtained from the
trained statistical model.
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Each experimentation goes through four stages starting from
roughing and then gradually proceeding into semi-finishing,
finishing, and then spark out at the very end. Surface roughness
measurements are taken at the end of these four stages. For this
grinding process, the experiments have already been carried
out before we could apply either the surprise-reacting policy or
the competing approaches to it. The existing experiment data
are obtained using a central composite design [54]. There were
a total of 38 experiments, each of which entails four stages.
It yielded a total of 152 data samples.

As the experiments involved an expensive Titanium work-
piece, it is not easy to repeat it in a brand new experiment.
To arrange our test to best reflect a sequential experiment
process, we divide the whole dataset of 152 samples into three
sets randomly. The first set consists of 10 samples and these
are used as initial experiments to train the initial statistical
model. A test set of 38 samples have been set aside to test
the performance of the competing approaches. The remaining
104 samples provide the possible settings that can be selected
in sequential experiments. In other words, as the sequential
experimentation policy starts with its process of selecting
experiments one at a time, its choices are limited to these 104
samples. We stress that this constraint is equally applied to all
the sequential experiment policies. The experimental budget
is fixed at 50 sequential experiments, which makes a total of
60 experiments counting the 10 initial experiments.

Similar to the case of synthetic benchmark functions, we
present the comparative performance in Table V. On this
real-life dataset, Shannon surprise performs better compared
to Bayesian surprise and the other competing approaches,
although the margin of improvement is smaller than that in the
benchmark function studies. This is due to the nature of the
sequential experiment setup as explained earlier—unlike the
benchmark functions, we cannot query an arbitrary candidate
location at will but are rather constrained to those already
conducted to candidate locations. Overall, we believe that
the surprise-reacting policy is able to deliver robust per-
formance in characterizing an unknown, complex response
surface quickly.

D. Potential Use in Futuristic Autonomous Platforms

As outlined at the beginning of the paper, the motivation
for our approach arises from its potential application in au-
tonomous platforms to guide the experimentation process. Due
to the lack of access to such a platform, we utilized standard
benchmark functions and a grinding dataset to simulate real
manufacturing experiments. This allows us to evaluate how
our method can approximate an unknown response surface
within a constrained budget, to some degree of mimicking
its expected performance in an autonomous setting. Neverthe-
less, we acknowledge that there exist several key differences
between benchmark functions and real-life scenarios, which
may affect the performance of the proposed approach. Below,
we outline these differences and their implications:

1) Experimental Uncertainty: Real-world experiments are

subjected to various sources of noise, such as measure-
ment errors and environmental variability, which are not

present in smooth benchmark functions. We introduced
a Gaussian noise into our statistical (GP) model, simu-
lating real-life uncertainties and thereby enhancing the
robustness of our proposed approach.

2) Time and Cost Constraints: Real-world experiments
are often constrained by time and cost, whereas the cost
of running the benchmark functions is very low, to the
degree that it can be neglected. To reflect the reality
that the cost of running experiments is not negligible,
we imposed an upper limit on the number of allowable
experiments and used that threshold for evaluating the
performance of our model and the competing approaches.

3) Delays in Response: Unlike the near instantaneous
responses in the case of benchmark functions, there
can be delays, sometimes substantial ones, in real-life
experiments for characterizing and measuring material
properties. We acknowledge that our current study did
not take the delays in response into full consideration.
As such, our current study is more suitable to a process
of slow changes, for which a delay in response does not
significantly affect the decision outcomes.

4) Constraints on Experimental Combinations: Real-life
settings often involve intricate interdependencies between
process variables and system behaviors, which may some-
times prevent the immediate testing of certain input
combinations based on the previous experimental settings.
While such complexities are challenging to replicate in
simulations, our approach can indeed accommodate them,
should they arise in an experiment, by treating them as
new design constraints. Our use of the candidate selection
sets can easily incorporate various kinds of constraints,
however complex they may be, and thus provides the
necessary flexibility when required.

5) Non-Stationary Behavior: Real-life experiments may
exhibit unpredictable behaviors, such as drift in or wear-
and-tear of particular equipment. These non-stationary
behaviors can affect the performance of the proposed
approach. While our statistical model does not consider
these irregular behaviors in its current version, it can still
handle these scenarios by incorporating non-i.i.d. noise
and non-stationary kernel functions when necessary. The
very nature of a sequential experiment as described in this
study is also an effective way to safeguard exploration
under non-stationary behavior, as long as the sampling
dynamics, measured by the gap between two experiments
in sequence, is sufficiently faster than the drifting dynam-
ics of the underlying process.

V. CONCLUSIONS

In this work, we propose a surprise-reacting policy for
guiding sequential experiments, which could be valuable for
futuristic autonomous experimentation platforms. This policy
dynamically switches between exploration and exploitation
based on the degree of surprise, achieving a natural balance
between the two and demonstrating adaptability. We show that
the proposed surprise-reacting approach is effective for the
rapid characterization of an unknown yet complex underlying



TABLE III: Impact of the threshold change on the performance of Shannon surprise and Bayesian surprise measures using
RMSE values. The percentage change relative to the use of the base threshold is included in the parentheses.

Shannon Surprise (Base threshold: 1.96)

Bayesian Surprise (Base threshold: 0.5)

2.24

2.58

0.42

0.57

0.66

1.65
Branin 0.78 £0.14 (4.00%)
Hump 2.69 + 0.20 (0.75%)
Ackley 0.78 + 0.06 (-2.50%)
Rastrigin 28.56 £ 1.19 (-0.80%)

Sum Squares  172.13 + 8.48 (3.82%)

0.78 + 0.13 (4.00%)

2.67 £ 0.19 (0.00%)

0.79 & 0.06 (-1.25%)

28.55 + 1.27 (-0.83%)
173.27 & 8.88 (4.51%)

0.74 + 0.09 (-1.33%)

2.83 £ 0.24 (5.99%)
0.78 & 0.06 (-2.50%)
27.99 + 0.98 (-2.78%)
174.90 = 11.34 (5.49%)

1.34 4 0.29 (15.52%)
2.54 = 0.20 (-6.96%)
0.80 = 0.07 (-4.29%)
35.51 &+ 1.57 (-2.71%)
153.56 & 7.01 (2.31%)

1.19 £ 0.13 (2.59%)
2.91 %+ 0.28 (6.59%)
0.83 %+ 0.07 (-1.25%)
34.66 + 1.39 (-5.04%)

151.96 % 7.04 (1.25%)

1.14 £ 0.14 (-1.72%)

2.92 £ 0.32 (6.96%)

0.83 £ 0.06 (-1.25%)
35.59 + 1.43 (-2.49%)
146.58 = 6.54 (-2.34%)

TABLE IV: Impact of the threshold change on the performance of Shannon surprise and Bayesian surprise measures using
CRPS values. The percentage change relative to the use of base threshold is included in the parentheses.

Shannon Surprise (Base threshold: 1.96)

Bayesian Surprise (Base threshold: 0.5)

2.24

2.58

0.42

0.57

0.66

1.65
Branin 0.63 + 0.02 (-1.56%)
Hump 1.51 £ 0.07 (0.00%)
Ackley 0.46 + 0.03 (-2.13%)
Rastrigin 16.92 4+ 0.58 (-0.76%)

Sum Squares 101.07 + 5.36 (3.27%)

0.63 £ 0.03 (-1.56%)
1.49 £ 0.06 (-1.32%)
0.46 £ 0.03 (-2.13%)
17.08 £ 0.66 (0.18%)
102.85 £ 5.90 (5.09%)

0.62 £ 0.02 (-3.13%)
1.52 £ 0.07 (0.66%)
0.45 £ 0.04 (-4.26%)
16.55 + 0.59 (-2.93%)
104.12 £ 7.89 (6.39%)

0.96 = 0.06 (3.23%)
1.67 £ 0.07 (-1.18%)
0.48 = 0.04 (-2.04%)
22.72 + 0.70 (-2.07%)
86.86 % 3.83 (1.59%)

0.91 + 0.03 (-2.15%)
1.71 £ 0.07 (1.18%)
0.48 = 0.03 (-2.04%)
22.35 £ 0.60 (-3.66%)
86.95 & 4.38 (1.70%)

0.92 %+ 0.03 (-1.08%)
1.70 £ 0.08 (0.59%)
0.49 = 0.04 (0.00%)
22.69 + 0.67 (-2.20%)
82.41 4 3.62 (-3.61%)

TABLE V: Performance comparison of different acquisition functions on Grinding Data using RMSE and CRPS (mean +
95% CI). Best performance in each column is highlighted in bold.

Acquisition Function RMSE CRPS

Shannon Surprise 0.157 £0.009 0.087 £ 0.004
Bayesian Surprise 0.165 + 0.011 0.101 + 0.005
EI 0.165 £ 0.012 0.091 £ 0.005
PI 0.162 £ 0.010 0.091 £ 0.005
UCB 0.169 £ 0.012 0.093 £ 0.006
Max Var 0.170 £0.011 0.093 £ 0.005

response surface. We test the surprise-based policy using two
existing surprise measures: Shannon surprise and Bayesian
surprise. Our results indicate that Shannon surprise produces
a faster response, aligning well with its design.

The comparison with the various acquisition functions re-
inforces our claim regarding the merit of conducting surprise-
reacting exploitation in sequential learning. Under a resource-
constrained environment, it is not effective to approximate
the underlying function using more exploration-oriented ap-
proaches; nor is it effective, either, using over-exploitation
approaches like EI.

Our findings suggest that the surprise-reacting policy is
more adaptive than traditional acquisition functions. A signif-
icant challenge with the use of existing acquisition functions
is to determine the optimal balance between exploration and
exploitation ahead of time. In contrast, the surprise-reacting
policy assesses surprise observations as the sequential ex-
periment progresses, providing an adaptive mechanism that
adjusts in real time based on observed data. This adaptivity
is a key advantage, enabling more efficient and effective
experimentation in dynamic and uncertain environments. Our
experiments also demonstrate that the rate of learning for
the surprise-based approaches is faster as compared to the
alternative methods, indicating a more efficient convergence
to the true response surface. Overall, the surprise-reacting
policy performs better in quickly approximating the response
within limited evaluations, making it ideal for autonomous
experimentation.

In future work, we plan to pursue several directions. First,
we aim to incorporate surprise measures into an autonomous

platform to conduct experiments based on its suggestions
and validate the results with real experiments. We will also
explore non-stationary kernels for Gaussian Processes and
non-IID noise to enhance model flexibility and robustness.
Additionally, we intend to develop new surprise measures
beyond those used in this work and potentially extend this
framework into a bandit setting to further improve adaptive
experimentation strategies.
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