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Abstract: Realizations of the holographic correspondence in String/M theory typically
involve spacetimes of the form AdS × Y where Y is some internal space which geometrizes
an internal symmetry of the dual field theory, hereafter referred to as an “R symmetry”.
It has been speculated that areas of Ryu-Takayanagi surfaces anchored on the boundary
of a subregion of Y , and smeared over the base space of the dual field theory, quantify
entanglement of internal degrees of freedom. A natural candidate for the corresponding
operators are linear combinations of operators with definite R charge with coefficients given
by the “spherical harmonics” of the internal space: this is natural when the product spaces
appear as IR geometries of higher dimensional AdS spaces. We study clustering properties of
such operators both for pure AdS×Y and for flow geometries, where AdS×Y arises in the IR
from a different spacetime in the UV, for example higher dimensional AdS or asymptotically
flat spacetime. We show, in complete generality, that the two point functions of such operators
separated along the internal space obey clustering properties at scales sufficiently larger than
the AdS scale. For non-compact Y , this provides a notion of approximate locality. When
Y is compact, clustering happens only when the size of Y is parametrically larger than the
AdS scale. This latter situation is realized in flow geometries where the product spaces arise
in the IR from an asymptotically AdS geometry at UV, but not typically when they arise
near black hole horizons in asymptotically flat spacetimes. We discuss the significance of this
result for entanglement and comment on the role of color degrees of freedom.
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1 Introduction

The past several decades have uncovered a deep relationship between entanglement in
holographic quantum field theories and emergence of smooth gravitational bulk [1, 2]. This is
best understood in AdS/CFT realizations of holography. The kind of entanglement which
is most widely discussed in this context is entanglement in base space, i.e. entanglement
of a sub-region of space A on which the field theory is defined, with its complement. In
this case, generalizations of the Ryu-Takayangi proposal [3–7] lead to the definition an
entanglement wedge in the bulk: the domain of dependence of a bulk hypersurface bounded
by the generalised RT surface corresponding to A. Entanglement wedge reconstruction then
reconstructs operators in the entanglement wedge from field theory operators in A [8–13].
Note that A need not be a part of the boundary, and could be some part of the bulk itself

— and these more general situations possibly realize entanglement wedge reconstruction in
spaces which are not asymptotically AdS [14–16] — in fact the proof of the RT formula
in [5, 6] already deals with such regions.

In microscopic realizations of AdS/CFT , the AdS space is usually accompanied with
an internal space, e.g. in AdS5 × S5, AdS4 × S7 or AdS3 × S3 × T 4. The internal space
geometrizes internal global symmetries of the field theory which we call R symmetry. From
the point of view of the bulk space-time, the internal space (e.g. S5) is on par with AdS5. It is
therefore natural to ask if there is an entanglement wedge reconstruction which reconstructs
a region of the bulk from a sub-region of the internal space. From the point of view of the
dual field theory this kind of entanglement cannot be the usual base space entanglement.
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A first step in understanding this issue would be to understand if there is a meaning of
the area of a Ryu-Takayanagi surface which is anchored on the boundary of a sub-region of the
internal space at the AdS cutoff boundary, and smeared along the AdS spatial directions. This
question was first investigated in [17]. An interpretation of such a RT surface is somewhat
confusing in view of a result due to Graham and Karch [18] which states that any such
codimension two RT surface which goes all the way to the boundary of AdS has to end on
a codimension three surface which is itself an extremal surface in the internal space, e.g. if
the internal space is a sphere, the anchor of such a surface is the equator. In a cutoff AdS
space such a surface can end on an arbitrary subregion, and one may try to find a meaning
of such surfaces. A cutoff AdS space corresponds to a boundary field theory with a finite UV
cutoff. [17] considered RT surfaces in AdS5 × S5 with a cutoff AdS, ending on a cap with
some lattitude angle θ0. Their (numerical) solutions showed that for small θ0 the area of
the RT surface is proportional to the volume of the cap. [17] proposed that this quantity
measures the entanglement between a SU(M) and SU(N − M) subsectors of the dual SU(N)
gauge theory, with M being proportional to the volume of the cap. In general, it is not clear
how to make a gauge-invariant sense of such a division of the degrees of freedom, though
this can be made a lot more precise in the Coulomb branch [17, 19].

A somewhat different proposal was made by [19]. Let us start with the primary operators
in the Yang-Mills theory. They have definite R-symmetry quantum numbers. In the S5

example, these operators Ol,m⃗(xµ) are labelled by the SO(6) quantum numbers (l, m1 · · ·m4).
Here l determines the value of the Casimir and mi are the “magnetic” quantum numbers,
while xµ denote the base space coordinates. The idea is to then take linear combinations of
these operators with the spherical harmonics Yl,m⃗(θi) as coefficients to form operators which
are now functions of the base space coordinates xµ and labelled by the angles on the sphere θi,

O(xµ, θi) ≡
∑
l,m⃗

Yl,m⃗(θi)Ol,m⃗(xµ) (1.1)

The proposal is that the RT surface which ends on a subregion A of the sphere S5 at the
cutoff boundary measures the von Neumann entropy associated with the reduced density
matrix which evaluates expectation values of operators belonging to a subalgebra constructed
by considering O(xµ, θi) where are θi are now restricted to lie in this region A, and taking
products and sums of operators of this type. This kind of construction appears in discussions
of entanglement entropies in non-commutative field theories [20–22] where e.g. the sum
in (1.1) extends to some finite value of l = lmax to construct a function on a fuzzy sphere.
Such operators have also been considered as interpretations of areas of extremal surfaces
in D0 brane backgrounds [23].

Unlike the proposal of [17], the projections used in definining this reduced density matrix
do not explicitly involve the color space. However, as we will see below, the color degrees of
freedom are indirectly involved: restriction of operators like (1.1) must come from a restriction
of some subset of the color degrees of freedom, albeit in a gauge invariant fashion.

In a recent paper [24], some of us looked at this issue from a different viewpoint. We
looked at geometries where such product space-times appear as IR geometries of a higher
dimensional asymptotically AdS space-time. Well known examples include extremal charged
black holes (branes) in AdSd+1 whose near-horizon geometry is AdS2 × Sd−1 (AdS2 × Rd−1),
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magnetic branes which flow from AdS5 to AdS3 × R2 [25–28],1 as well geometries with
“boomerang” RG flows where such a product space appears at an intermediate scale [29].
Other examples include [30–34]. Thus some of the base space directions of the field theory in
the UV become internal dimensions of a putative field theory dual to the IR geometry.

We considered RT surfaces which completely cover the spatial directions which will
become a part of the lower dimensional AdS, but cover a subregion A of the remaining
directions which appear as internal directions in the IR. Since the geometry is asymptotically
AdS, we know the meaning of the area of such a surface. In terms of the UV field theory,
this is the entropy associated with the subalgebra of local operators restricted to A. It
was found that when the region A is large compared to the scale of the RG flow (which
is the horizon radius for the extremal black hole or the magnetic field for magnetic brane)
the corresponding RT surface proceeds almost radially inward, without traversing much of
the directions along A, till they reach the IR region. This raises the possibility that the
leading size dependence of the entropy comes from the IR part of the geometry and has
an interpretation in a theory which is dual to the IR geometry. Such a putative dual must
reside on a holographic screen which is located at the junction of the UV and IR geometries.
The specific examples studied in [24] lead to the following general picture. When the IR
geometry is AdS2 × Sd−1 or AdS2 × Rd−1, as in extremal Reissner-Nordstrom black hole or
black brane, the warp factor plays a crucial role, and one can extract the IR part of the
entropy in a way which is completely insensitive to the location of the holographic screen on
which the IR field theory lives. The result is proportional to the volume of the subregion R,
in units with the scale of the RG flow, which is the horizon radius rh.

The situation is different for cases where the IR geometry contains a AdSd+1−n with
(d − n) > 1. In these latter cases the location of the holographic screen becomes relevant.
Consider e.g. magnetic branes dual to N = 4 Yang-Mills in 3 + 1 dimensional flat space
in the presence of a constant magnetic field B = F12. In this case, the RT surface reaches
the Poincare horizon when the width of the strip, l, reaches a finite value, and this scale
is also the scale at which the geometry can be approximated by a product space. When
the width exceeds this value, the RT surfaces go straight into the horizon and their areas
stop depending on the width. Indeed, an analysis of RT surfaces in the product geometry
AdSd+1−n × Rn which end on the boundary of a strip with width l extending along one
of the Rn directions shows this behavior as well for (d − n) > 1. Such a surface reaches
the horizon when l ∼ 1/(d − n − 1). The area of the surface is now proportional to rd−n−1

UV ,
the cutoff of the AdSd+1−n. When embedded in the higher dimensional AdS we must have
rUV ∼ lRG (e.g. rUV ∼ 1/B for magnetic branes).

The case d − n = 1 is special since this is the only situation where the geometry has a
horizon with non-vanishing area. Accordingly, the dual state has a non-vanishing classical
entropy. The extensive behavior is in fact this classical entropy. For d − n > 1 the classical
area of the horizon vanishes, so that the dual state is a pure state.

For other investigations of entanglement of regions of the base space in the UV which
become regions in an internal space in the IR in flow geometries, see [29–34].

These results are consistent with the proposal in [19]. Consider for example a geometry
1In the absence of supersymmetry these solutions are generically unstable [28].
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which flows from Poincare patch AdSd+1 in the UV to AdSd+1−n × Rn in the IR. The
radial coordinate is denoted by r, while the other coordinates are denoted by (xµ, yi) with
µ = 0, · · · (d − n) and i = 1 · · ·n. In the IR, the latter directions, yi split off into a space
Rn.2 In the dual field theory this is a rather unconventional RG flow from a theory with
(d + 1) dimensional base space-time to another theory with a (d + 1− n) dimensional base
space-time whose coordinates will be denoted by xµ. The primary operators of the UV theory
are of the form O(xµ, yi) which may be decomposed in terms of the momenta ki along the
yi directions, Oki

(xµ). In the IR of the bulk, ki are the Kaluza-Klein momenta associated
with the internal space. In a putative dual theory, the primary operators are indeed Oki

(xµ)
with dimension which depends on ki. For global AdSd+1−n × Sn the role of ki are played by
the angular momenta quantum numbers on Sn. In this lower dimensional dual field theory
one can now reverse this process, and consider Fourier transforms

Oyi(xµ) ≡
∫

dmk Oki
(xµ) eik⃗·y⃗, (1.2)

which is of the form of (1.1). Here we have adopted a notation which emphasizes that from
the point of view of the IR field theory yi should be considered as a label at this stage. The
discussion of RT surfaces then strongly suggest that the piece of the entanglement entropy
which is evaluated by a RT surface in the IR geometry with a cutoff, which is anchored on a
region of the internal space, relates to the subalgebra of these operators with yi restricted
to the appropriate region.

While these considerations do not apply to purely product spaces which are not IR
geometries of a higher dimensional AdS space, the above discussion motivates us to probe
properties of operators of the form (1.1) in these cases as well. In this paper we ask the
question: in what sense can we regard the yi as a label for a point in the internal space? We
do not expect them to be local in the internal space in the sense of characteristic singularities
of e.g. two point functions for coincident points. In fact, the above discussion shows that
we need to consider such product spaces with a (bulk) IR cutoff, corresponding to a UV
cutoff in the dual field theory. Indeed, we will argue that this is essential to make sense
of an expansion like (1.1), since the different terms have dimension conformal dimension.
However, we can ask if these operators obey clustering properties, e.g. whether the two point
function of operators which are far separated in the internal space and separated by at least
the cutoff in the base space decay. In this paper we address this question by computing
two point functions of scalar operators like (1.1).

Throughout this paper, we will consider euclidean two point functions. We will work in
units where the AdS scale is unity. For flow geometries the scale of the lower dimensional
AdS space is related to the UV AdS scale by a factor of order one.

We first consider the CFT which is dual to a product space EAdSd+1−n × Y n where Y n

is a space with an isometry group G. This means that the R symmetry of the CFT is G. The
scalar primary operators form a representation of this symmetry, characterized by some set
of quantum numbers which we will continue to denote by (l, m⃗), and the dimensions of these
operators are given by the standard AdS/CFT correspondence. The operators of interest

2Similarly for geometries which describe a flow from global AdSd+1 to global AdSd+1−n × Sn, xµ denote
the time and (d − n) angles ϕa while yi denote n angles on a Sn which splits off in the IR.
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are of the form (1.1) where Yl,m⃗(θi) form a irreducible representation of G. As mentioned
above, we need to properly define the operator sums like (1.1) by introducing a scale so that
all terms in the sum have the same dimension. We will do that by inserting an appropriate
factor of the UV cutoff of the field theory, as would naturally follow from the bulk. We
will show, in complete generality, that starting from the standard expression for the two
point function in the CFT, the correlator of these operators can be expressed in terms of the
Euclidean propagator of an auxilliary massive scalar field on (Euclidean time) ×Y n. The
Euclidean time coordinate (which we will denote by u) is the logarithm of the (invariant)
distance between the two points in the CFT in units of the UV cutoff. The mass of this
auxilliary scalar (which we will denote by M) is related to the conformal dimension of the
lowest primary and is order one in AdS units. The final result will be a function of the
geodesic distance (Euclidean time) ×Y n. When Y n is non-compact (e.g. Rn), the correlator
therefore falls off exponentially for geodesic distances large compared to 1/M . This implies
that there is clustering in the internal space. When Y n is compact with a size Rn in AdS
units, he same conclusion would hold if the separation in the internal space is much smaller
than Rn but much larger than 1/M , which is possible for Rn ≫ 1/M .

It should be emphasized that this is the result of a calculation in the CFT — the input
from AdS/CFT is the sprectrum. AdS/CFT also provides a preferred normalization of the
two point function of the primaries: we show that this normalizaion does not spoil the long
distance behavior described above. We then perform a bulk calculation of the same correlator
in the geodesic approximation, vindicating the above result.

We then consider a bulk calculation in a geometry which flows from a AdSd+1 in the
UV to AdSd+1−n × Rn. Such a flow is governed by a scale rh which acts a cutoff of the IR
geometry. For ease of calculation we consider a geometry with the metric

ds2 =
(

dr2

r2
+ r2

d−n∑
i=1

(dxi)2
)
+ (r + rh)2

n∑
j=1

(dyj)2 (1.3)

This is a carricature of a genuine solution in supergravity (e.g. RN black holes or magnetic
branes). However this is good enough to illustrate the main point. In particular, this enables
us to treat arbitrary d and n in a unified fashion. It turns out the scalar wave equation can
be exactly solved in this metric. However, since we are interested in the IR limit, we will
calculate the correlator first by solving the wave equation for small energy-momentum in the
field theory directions which become part of AdSd+1−n along the lines of [35] (see also [36]).
The main motivation for this detailed calculation is to determine the normalization of the IR
correlator, which would be different from pure product space. Generically we indeed find
that the IR correlator behaves as that in a product space geometry: the momenta along
the Rn now appear as quantum numbers for an internal space. The different normalization
does not spoil the long distance behavior.

The main lesson which we can draw from these calculations is the following. When the
internal space is non-compact, there is approximate locality in the internal space at scales
much larger than 1/M , which is of order one in AdS units. When the internal space is compact
the exponential fall-off of the correlator can set in only when there is a separation of the scale
of the size of the compact directions compared to the AdS scale. In standard realizations of
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AdS/CFT in String/M theory this does not happen: the operators of the form (1.1) are not
local in any useful sense. However, in the cases where the product spaces appear as a IR
geometry of a higher dimensional AdS space, there is such a separation of scale and locality in
the internal space. For example in the geometry (1.3) this is rh. In extremal RN black holes,
this relative scale is the black hole charge, while for magnetic branes this is the magnetic
field. This makes sense since these flow geometries are dual of RG flows of the field theory,
and the IR theory should be local for distance scales larger than the scale of the flow.

Finally, we comment on the role of color degrees of freedom in constructing operators
of the form (1.1) and then restricting them to some subregion of the internal space. The
operators Ol,m⃗ are of course gauge invariant operators. However, in typical realizations of
AdS/CFT these are single traces of products of N × N matrix valued operators. Because
of trace relationships these are not independent at any finite N ; thus this geomerization of
the internal space can happen only in the N → ∞. We will also argue that the count of the
number of degrees of freedom which underlie holography [37] itself implies that a restriction to
some region in this internal space must come from a restriction on the color degrees of freedom.

The question of (approximate) locality in an internal space which appears in the IR of a
flow geometry AdSd+1 → AdS2×Rd−1 has been considered earlier in [38–40] in the context of
condensed matter applications of AdS/CFT. Our results are more general, involving arbitrary
internal spaces and AdS factors of arbitrary dimensionality. Furthermore the physical context
as well as the lessons are quite different.

In section 2 we calculate the exact two point correlators in product spaces from the
CFT point of view and provide the result of a bulk geodesic calculation in the geodesic
approximation. In section 3 we discuss correlators in the flow geometry (1.3). This contains a
detailed solution of the wave equation in the low (invariant) energy limit obtained by matched
asymptotic expansions. The procedure is along the lines of [35]. In section 4 we discuss the
lesson drawn from these calculations and the implications for the question of entanglement of
internal degrees of freedom. Section 5 deals with the role of color degrees of freedom. In an
appendix we comment on the appearence of locality in target space in other contexts.

2 Correlators in a product space

In this section we study product spaces of the form AdSd+1−n × Y n in Euclidean signature.
Here Y n is some n-dimensional internal space. The metric is given by

ds2 = 1
z2

[
dx⃗2 + dz2

]
+ R2

ngij(y)dyidyj (2.1)

where yi, i = 1 · · ·n are the coordinates of the internal space and x⃗ = (x0 · · ·xd+1−n) and z

are (Poincare patch) coordinates on AdSd+1−n. The AdS scale has been set to unity. Rn

is then the scale of the internal space in these units.
The internal space has some isometry group, which we will call R-symmetry. The primary

operators in the dual field theory living on the boundary of the AdSd+1−n at z = 0 are
labelled by the quantum numbers of the R symmetry which we will generically denote by
(l, m⃗). For example, when the internal space is a Sn, these are angular momentum quantum
numbers. When the internal space is a Rn the quantum numbers are the momenta ki along
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the Rn directions. Consider a scalar operator Ol,m⃗(xµ) which is dual to a bulk scalar field
with mass m0. This has a conformal dimension ∆ℓ

∆ℓ =
d − n

2 + νℓ νℓ =

√
(d − n)2

4 + m2
0 + ℓ2 (2.2)

where ℓ2 denote the eigenvalues of the Laplacian on Y n,

∇2
Y Yℓ,m⃗(y⃗) = ℓ2Yℓ,m⃗(y⃗) (2.3)

For example, when the internal space is Sn we have ℓ2 = l(l + n − 1)/R2
n and Yℓ,m⃗ are the

spherical harmonics on Sn. When it is Rn we have ℓ2 = k⃗2/R2
n. These equations follow

from a KK reduction of the bulk wave equation on Y m. Starting with the wave equation
in (n + m + 2) dimensions, [

∇2
AdS +∇2

Y + m2
0

]
ϕ(z, x⃗, y⃗) = 0 (2.4)

we need to make to decompose the field into modes ϕl,m⃗(z, x⃗)

ϕ(z, x⃗, y⃗) =
∑
l,m⃗

Yℓ,m⃗(y⃗) ϕl,m⃗(z, x⃗) (2.5)

so that [
∇2

AdS + ℓ2 + m2
0

]
ϕl,m⃗(z, x⃗) = 0 (2.6)

Then ϕl,m⃗(z, x⃗) are dual to the operators Ol,m⃗(xµ).
In analogy with the bulk decomposition (2.5), we may be tempted to define an operator

like (1.1). However the different terms in the sum have different conformal dimension: this
means that the expression (1.1) as it stands needs revision. To make sense of this kind of
sum we will work in AdS with a cutoff at some small value of z = ϵ. Then the field ϕl,m⃗(z, x⃗)
has the asymptotics ϕl,m⃗(z, x⃗) → ϵ∆ℓϕl,m⃗,0(x⃗). This ϕl,m⃗,0(x⃗) is the source which couples to
the operator Ol,m⃗(xµ). This suggests that we consider the un-renormalized operators

Õl,m⃗(xµ) = ϵ∆ℓOl,m⃗(xµ) (2.7)

We can now combine them into an operator which is labelled by a point on the internal
space as well as a point on the base space,

Õ(x⃗, y⃗) =
∑
ℓ,m⃗

Õℓ,m⃗(x⃗)Yℓ,m⃗(y⃗) (2.8)

Since ϵ is a cutoff in the CFT, distances in the base space which are smaller than ϵ do
not make sense.

2.1 Exact calculation

We now calculate the correlators of Õ(x⃗, y⃗). The calculations in this section are those in
the CFT with no direct reference to the bulk. However the CFT we are considering has
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a spectrum of conformal dimensions given by (2.2) which appears in a hologarphic CFT
as described above.

The correlators of Õℓ,m⃗(x⃗) are given by

⟨Õℓ,m⃗(x⃗)Õℓ′,m⃗′(x⃗′)⟩ = C(νℓ)
(

ϵ

|x⃗ − x⃗′|

)2∆ℓ

δℓ,ℓ′δm⃗,−m⃗′ (2.9)

We have included a normalization factor C(νℓ). In a CFT this does not have any significance.
We will, however, retain this for two reasons. First, if this is the IR CFT which flows from
some other CFT in the UV, this facor is significant. Secondly, when we are dealing with
a CFT which is dual to a bulk AdS, there is a natural identification of the bulk field at
the boundary with the dual operator, and that provides a definite C(νℓ) [41], whose effect
will be considered at the end of this section.

C(νℓ) =
(2νℓ)
π

d−n
2

Γ
(

d−n
2 + νℓ

)
Γ(νℓ)

(2.10)

The correlators of operators defined in (2.8) then follow from (2.9),

⟨Õ(x⃗, y⃗)Õ(x⃗′, y⃗′)⟩ = e−
d−n

2 u
∑
ℓ,m⃗

C(νℓ) exp[−νℓu] Yℓ,m⃗(y⃗)Yℓ,m⃗(y⃗′) (2.11)

where we have defined the quantity

u ≡ 2 log
( |x⃗ − x⃗′|

ϵ

)
(2.12)

Since ϵ is the UV cutoff, we can only consider |x⃗ − x⃗′| > ϵ so that u > 0.
The key observation is that this correlator is closely related to the Euclidean correlator

of a massive scalar field on Y n× (Euclidean time). To see this, use the identity

exp[−νℓu] Yℓ,m⃗(y⃗)Yℓ,m⃗(y⃗′) = − ∂

∂u
Dℓ,m(u, y⃗, y⃗′) (2.13)

where Dℓ,m(u, y⃗, y⃗′) denotes the contribution of the mode (ℓ, m⃗) to the euclidean propagator
of a scalar of mass

M =

√
(d − n)2

4 + m2
0 (2.14)

on the space Y n with u playing the role of euclidean time,

Dℓ,m(u, y⃗, y⃗′) =
∫ ∞

−∞

dω

2πi

e−iωu

ω2 + ℓ2 + M2Yℓ,m⃗(y⃗)Yℓ,m⃗(y⃗′) (2.15)

Note that this scalar is not the same scalar we started out with. The full propagator of
this scalar on Y n × (time) is given by

D(u, y⃗, y⃗′) =
∑
ℓ,m⃗

Dℓ,m(u, y⃗, y⃗′) (2.16)
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and the correlator of interest may be formally written as

⟨O(x⃗, y⃗)O(x⃗′, y⃗′)⟩ = e−
d
2 uC(−∂u) ∂uD(u, y⃗, y⃗′) (2.17)

The explicit form of D(u, y⃗, y⃗′) of course depends on the details of the internal space. However,
the result will be function of the geodesic distance γ between the two points in Y m× (time),

γ2 = u2 + R2
n[s(y⃗, y⃗′)]2 (2.18)

where s(y⃗, y⃗′) is the geodesic distance on Y n with unit size.
When the internal space is non-compact the correlator decays exponentially for γ > 1

M ,

D(u, y⃗, y⃗′) ∼ exp[−Mγ] (2.19)

Thus there is clustering. In particular, for a given value of u,
When the internal space is compact, an exponential behavior will set in for a range

1/M ≪ Rns ≪ Rn (2.20)

The differential operator C(−∂u) does not change this long distance behavior. This is
because the coefficient C(νl) is finite in the l → 0 limit and has a power series expansion
in ℓ. In fact when (d − n) is odd, this factor is polynomial in ∂u.

An explicit expression for the correlator for AdSd+1−n × Rn is given in appendix A.

2.2 Geodesic approximation

We now perform a bulk calculation of the correlator in a geodesic approximatiopn for a
product space (2.1). The idea is to calculate the bulk 2 point function of the scalar field dual
to the operator in question ⟨ϕ(z, x⃗, y⃗)ϕ(z, x⃗′, y⃗′⟩ on a constant z slice and take the limit z = ϵ

at the end. When m0 is large (in AdS units) a saddle point approximation holds

⟨ϕ(z, x⃗, y⃗)ϕ(z, x⃗′, y⃗′)⟩ ∼
∑

geodesics
e−mL (2.21)

where L is the geodesic distance between these points. If there are multiple geodesics the
leading answer is given by the geodesic with the smallest invariant length. The calculation
is self-consistent when m0L ≫ 1.

Since we have a product space

L2 = L2
AdS + R2

n[s(y⃗, y⃗′)]2 (2.22)

Here LAdS is the geodesic length between two points (z, x⃗) and (z, x⃗′) in AdSd+1−n, and
s(y⃗, y⃗′) is the geodesic length in Y n. LAdS is given by the well known expression [42]

LAdS = log{ 1
2z2

[
2z2 + (∆x⃗)2 +∆x⃗

√
4z2 + (∆x⃗)2

]
} (2.23)

In the limit z = ϵ ≪ 1 this reduces to

LAdS ≈ u (2.24)

where u is defined in (2.12), so that the correlator becomes

⟨ϕ(ϵ, x⃗, y⃗)ϕ(ϵ, x⃗′, y⃗′)⟩ ∼ exp
[
−m0

√
u2 + R2

n[s(y⃗, y⃗′)]2
]

(2.25)

Since we are working in the limit of large m0, M ∼ m0 (M is defined in (2.14)) This therefore
reproduces the long distance behavior of the exact correlator in the previous subsection 2.19.
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2.3 Global AdS

In the above expressions, the AdS part of the metric is chosen to be the Poincare metric.
In any other coordinate system the CFT correlator would be an expression similar to (2.9)
with the quantity |x⃗ − x⃗′| replaced by the appropriate invariant distance in the boundary
field theory. For example when the AdS is in global coordinates

ds2 = sec2 ρ[dt2 + dρ2 + sin2 ρdΩ2
d−n−1] (2.26)

the expression (2.9) is replaced by

⟨Õℓ,m⃗(t, θi)Õℓ,−m⃗(t′, θ′i)⟩ ∼
(

δ

d(t, θi; t′, θ′i)

)2∆ℓ

(2.27)

where θi denote the angles on the Sd−n−1 in (2.19) and

[d(t, θi; t′, θ′i)]2 = 4 sinh2
(

t − t′

2

)
+ [v(θi, θ′i)]2 (2.28)

v(θi, θ′i) denotes the geodesic distance on the sphere Sd−n−1 at the cutoff boundary ρ = π
2 − δ.

In the expression for the quantity u in (2.12) the distance |x⃗ − x⃗′| is replaced by d(t, θi; t′, θ′i).

3 Correlators in flow geometries

In this section we evaluate correlators in a flow geometry and examine the precise limit in
which their IR behavior is captured by product spaces. In particular we will consider a
geometry which interpolates between AdSd+1 and AdSd+1−n × Rn,

ds2 =
(

dr2

r2
+ r2

d−n∑
i

(dxi)2
)
+ (r + rh)2

n∑
i

(dyi)2 (3.1)

This metric is not supposed to be a supergravity solution, but a convenient background to
work with. The correlator of an operator O(x⃗, y⃗) which is dual to a bulk scalar with mass
m0, ⟨O(x⃗, y⃗)O(x⃗′, y⃗′)⟩, should behave as a d dimensional CFT correlator in the UV. In the
IR, |x⃗ − x⃗′| ≫ rh one expects to behave as a correlator in a (d − n) dimensional CFT which
has an internal target space. More specifically the Fourier transform in the y⃗ space,

G(k⃗, x⃗ − x⃗′) =
∫

dny ⟨O(x⃗, y⃗)O(x⃗′, y⃗′)⟩eik⃗·y⃗ (3.2)

should scale like a correlator of an operator with dimension

∆k = d − n

2 + αk αk =
√

(d − n)2
4 + k2

r2h
+ m2

0 (3.3)

In the following we will remove the subscript k in αk. The form of this IR correlator should
be like (2.9), with the scale rh playing the role of the cutoff ϵ and a coefficient which is
different from the purely product space answer. If this coefficient has a nice k⃗ → 0 limit, we
will have an exponential fall off for rh|y⃗ − y⃗′| ≫ 1/M where M is given by (2.14).
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We will calculate the fourier transform

G(k⃗, ω⃗) =
∫

dd−nx

∫
dny ⟨O(x⃗, y⃗)O(0, 0)⟩eiω⃗·x⃗+ik⃗·y⃗ (3.4)

by solving the wave equation in the low energy-momentum regime |ω⃗| ≪ rh. This calculation
is along the lines of [35].

To leading order we will show that

G(ω, k) = K
(
2νr2ν

h

)Γ(−2ν)
Γ(2ν)

Γ(α − β + ν)
Γ(α − β − ν)

Γ(1 + α + β + ν)
Γ(1 + α + β − ν)

[
1 + b(α, β, ν)

(
ω

2rh

)2α

+ . . .

]
,

(3.5)
where K is positive constant coming from the normalization of the action and the coefficient
b(α, β, ν) is

b(α, β, ν) = Γ(−α)Γ(1− 2α)
Γ(α)Γ(1 + 2α)

{
Γ(α − β − ν)

Γ(−α + β + 1− ν)
Γ(α + β + 1− ν)
Γ(−α − β − ν)

− Γ(α − β + ν)
Γ(−α + β + 1 + ν)

Γ(α + β + 1 + ν)
Γ(−α − β + ν)

}
, (3.6)

with ω ≡ |ω⃗|, k ≡ |⃗k|,

α =
√

(d − n)2
4 + m2

0 +
k2

r2h
, β =

√
(n − 1)2

4 + k2

r2h
− 1

2 , and ν =

√
d2

4 + m2
0. (3.7)

The leading non-analytic term in (3.5), upon inverse Fourier transform in ω⃗ for fixed k,
leads to a power law of the form (2.9) with ℓ2 = k2/r2h. However the coefficient is different
from (2.10). These expressions clearly show that for m0 ̸= 0 these coefficients generically
have a smooth limit as k → 0.

We now proceed to a derivation of this result.

3.1 The setup

A free scalar field living on a background given by (3.1) obeys the Klein-Gordon equation

r2
d2Φ

ω⃗,⃗k
(r)

dr2
+ r ((d − n + 1) rh + (1 + d) r)

r + rh

dΦ
ω⃗,⃗k

(r)
dr

−
(

ω⃗2

r2
+ k⃗2

(r + rh)2
+ m0

2
)
Φ

ω⃗,⃗k
(r) = 0

(3.8)
With

Φ(r, x⃗, y⃗) =
∫

d(d−n)ω dnk

(2π)d
Φ

ω⃗,⃗k
(r)ei(ω⃗.x⃗+k⃗.y⃗) (3.9)

We can solve this wave equation exactly in terms of confluent Heun functions, and the two
independent solutions are given as

e−
ω
r r±ν− d

2

(
1 + rh

r

)β+1−n
2

HeunC
(2ω

rh
,∓2ν, 2β + 1, 0,

n(d − 1)
2 + 1

2 ,−rh

r

)
(3.10)

The next step would be to impose regularity at r = 0 which would enforce a certain linear
combination of the two solutions. It turns out however, that obtaining an expansion of the
confluent Heun functions as r → 0 is rather difficult. As such, we will try to obtain a solution
by matching the near horizon and asymptotic solutions instead.
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3.1.1 Matching solution

A matching procedure for fields living on such flow geometries was developed in [35]. In this
approach, one develops a careful perturbative expansion in powers of ω. The central result is
then that the full Green’s function can then be written as [35]

G(ω, k) = K
b
(0)
+ + ωb

(1)
+ + O

(
ω2)+ Gk(ω)

(
b
(0)
− + ωb

(1)
− + O

(
ω2))

a
(0)
+ + ωa

(1)
+ + O (ω2) + Gk(ω)

(
a
(0)
− + ωa

(1)
− + O (ω2)

) , (3.11)

where a
(n)
± and b

(n)
± are k-dependent functions, whose form only depend on the asymptotics

of the full geometry, and Gk(ω) is the IR region Green function.
We will start by giving a short review of how in the case of a scalar field living in some

flow geometry like the one described by (3.1), one can obtain an expression like (3.11) for the
Euclidean Green’s function. The fundamental idea of this discussion will follow a similar line
to the one given in [35] with a few adjustments and being adapted to our case of interest.

We are interested in obtaining a solution for (3.8) in the small ω regime that is regular
at r = 0. Let us denote this solution by ϕ. Then one way to state the idea for the matching
is roughly as follows: suppose ϕ admits a small ω series expansion, then our matching will
be based on claiming that the operations of taking the limit r/rh → 0 and expanding in
small ω commute. And so schematically we have(

Small ω expansion → lim
r/rh→0

)
ϕ =

(
lim

r/rh→0
→ Small ω expansion

)
ϕ (3.12)

More generally, the limit r/rh → 0 should be understood as the limit that, when applied
to the Klein-Gordon equation, produces the near horizon limit. Throughout this section,
in taking this limit we impose the condition that ω/r is kept finite. The usefulness of the
statement (3.12) is that one can try to solve (3.8) in between these two operations After
which, enforcing the above equality would be establishing the “matching” by making sure
that the ω expansion matches on either side.

A natural first approach to expand in small ω first would be to try to use perturbation
theory to develop the solution as a power series in ω2. Such an approach however is bound
to fail as r → 0 since the ω2 term in (3.8) blows up in this limit for any finite ω. But not
all is lost, perturbation theory is still a perfectly valid approach here as long as we stay
away from r = 0 and stop our solution at some cutoff r = ϵ. The solution obtained this
way then has the following form

ϕ = C+
(
ϕ+
0 + ω2ϕ+

1 + . . .
)
+ C−

(
ϕ−
0 + ω2ϕ−

1 + . . .
)

(3.13)

where ϕ±
0 are the two linearly independent solutions one gets by plugging in ω = 0 in (3.8).

The ϕ±
i in (3.13) are then the i-th corrections to ϕ±

0 one gets from standard perturbation
theory with the requirement that they do not have terms proportional to ϕ±

0 . Now note that
as long as the cutoff ϵ is not made equal to 0, we can make it to be as small as we like. This
implies that, at least formally, (3.13) can be made to represent the solution at any r ̸= 0.

To get the Euclidean Green’s function however, we need to make our solution regular at
r = 0. Enforcing this condition then specifies what C± are in terms of the parameters of the
problem, up to a freedom in choosing an overall normalization factor of the field.
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To determine C±, we try taking the limit r/rh → 0 in (3.8) first this time. This produces

r2
d2Φ

ω⃗,⃗k
(r)

dr2
+ r (d − n + 1)

dΦ
ω⃗,⃗k

(r)
dr

−
(

ω2

r2
+ k2

r2h
+ m0

2
)
Φ

ω⃗,⃗k
(r) = 0 (3.14)

which is just the equation describing a scalar field in a product space AdSd−n+1 × Rn. The
most general solution to (3.14) that is regular at r = 0 is given by

Φ
ω⃗,⃗k

(r) = Br
n−d

2 Kα

(
ω

r

)
(3.15)

where B is some constant and α is given by (3.7).
This solution of course has a standard expansion in ω given by

Φ
ω⃗,⃗k

(r)=Br
n−d

2

[
2α−1Γ(α)

(
ω

r

)−α

[1+. . .]−2−α−1Γ(1−α)
α

(
ω

r

)α

[1+. . .]
]

(3.16)

This should be then matched with the r/rh → 0 limit of (3.13). For α non-integer, one
only needs ϕ±

0 in (3.13) to completely determine C±. Let us show this explicitly in our case.
The equation determining ϕ±

0 is simply given by

r2
d2ϕ±

0
dr2

+ r ((d − n + 1) rh + (1 + d) r)
r + rh

dϕ±
0

dr
−
(

k2

(r + rh)2
+ m0

2
)

ϕ±
0 = 0 (3.17)

This equation has an exact solution given by

ϕ±
0 = C±r(±α+n−d

2 )(r + rh)−(β+n
2 )F

(
±α − β − ν,±α − β + ν; 1± 2α;− r

rh

)
(3.18)

where parameters α, β and ν are given by (3.7). In the limit r/rh → 0, this expression
simply becomes

ϕ±
0 = C±r(±α+n−d

2 )r−(β+n
2 )

h (3.19)

Now if we had a situation with strictly ω = 0, then (3.18) is really the whole solution and
the regularity condition at r = 0 simply sets C− = 0. For non-zero ω, we match (3.19)
with (3.16) which then gives

C± = B2±α−1r
(β+n

2 )
h Γ(±α)ω∓α (3.20)

This then completes our matching with the solution now explicitly given by

ϕ=2α−1Γ(α)ω−α

[
(r+rh)−(β+ n

2 )r(α+ n−d
2 )F

(
α−β−ν,α−β+ν;1+2α;− r

rh

)
+O

(
ω2)]

+2−α−1Γ(−α)ωα

[
(r+rh)−(β+ n

2 )r(−α+ n−d
2 )F

(
−α−β−ν,−α−β+ν;1−2α;− r

rh

)
+O

(
ω2)]

(3.21)

where we have set Br
(β+n

2 )
h = 1.
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Now to derive an expression for the Green’s function we need the asymptotic form of
the solution as r → ∞. To this end, we make use of the relation

F (a, b; c; z) = Γ(b − a)Γ(c)
Γ(b)Γ(c − a)(−z)−aF

(
a, a − c + 1; a − b + 1; 1

z

)
+ Γ(a − b)Γ(c)

Γ(a)Γ(c − b)(−z)−bF

(
b, b − c + 1;−a + b + 1; 1

z

)
(3.22)

Which is valid as long as the condition a − b /∈ Z
∧

z /∈ (0, 1) is met. Using this we can
write the solution as

ϕ = 2α−1Γ(α)ω−α

[{ Γ(−2ν)Γ(1 + 2α)
Γ(α − β − ν)Γ(1 + α + β − ν)(r + rh)−β−n

2 rα+n−d
2

(
r

rh

)−α+β−ν

F
(
α − β + ν,−α − β + ν; 1 + 2ν;−rh

r

)
+ (ν ↔ −ν)

}
+O(ω2)

]

+ 2−α−1Γ(−α)ωα

[{ Γ(−2ν)Γ(1− 2α)
Γ(−α − β − ν)Γ(1− α + β − ν)(r + rh)−β−n

2 r−α+n−d
2

(
r

rh

)α+β−ν

F
(
− α − β + ν, α − β + ν; 1 + 2ν;−rh

r

)
+ (ν ↔ −ν)

}
+O(ω2)

]

This has an asymptotic expansion as r → ∞ given by

ϕ=
[{

2α−1Γ(α)ω−α Γ(1+2α)Γ(2ν)rα−β−ν
h

Γ(α−β+ν)Γ(1+α+β+ν)+(α↔−α)
}(

1+O(ω2)
)]

r−
d
2+ν [1+. . .]

+
[{

2α−1Γ(α)ω−α Γ(1+2α)Γ(−2ν)rα−β+ν
h

Γ(α−β−ν)Γ(1+α+β−ν)+(α↔−α)
}(

1+O(ω2)
)]

r−
d
2−ν [1+. . .]

(3.23)

Then the Euclidean propagator of the boundary theory is simply given as the ratio of coefficient
of the normalizable mode with that of the non-normalizable mode up to a normalization
constant K. If we drop the higher order corrections in ω2 then the Euclidean propagator
can be written as

G(ω,k)=K
(
2νr2ν

h

)Γ(−2ν)
Γ(2ν)

 Γ(α)Γ(1+2α)
Γ(α−β−ν)Γ(1+α+β−ν)+

(
ω
2rh

)2α Γ(−α)Γ(1−2α)
Γ(−α−β−ν)Γ(1−α+β−ν)

Γ(α)Γ(1+2α)
Γ(α−β+ν)Γ(1+α+β+ν)+

(
ω
2rh

)2α Γ(−α)Γ(1−2α)
Γ(−α−β+ν)Γ(1−α+β+ν)

 (3.24)

This result agrees with result given by the prescription in [35]. Since we have ω ≪ rh, we
can expand this expression as

G(ω, k) = K
(
2νr2ν

h

)Γ(−2ν)
Γ(2ν)

Γ(α − β + ν)
Γ(α − β − ν)

Γ(1 + α + β + ν)
Γ(1 + α + β − ν)

[
1 + b(α, β, ν)

(
ω

2rh

)2α

+ . . .

]
,

(3.25)
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where the coefficient b(α, β, ν) is

b(α, β, ν) = Γ(−α)Γ(1− 2α)
Γ(α)Γ(1 + 2α)

{
Γ(α − β − ν)

Γ(−α + β + 1− ν)
Γ(α + β + 1− ν)
Γ(−α − β − ν)

− Γ(α − β + ν)
Γ(−α + β + 1 + ν)

Γ(α + β + 1 + ν)
Γ(−α − β + ν)

}
. (3.26)

Here, the term containing O(ω2α) is the leading non-analytic piece, as the first term in the
expansion (3.25) contributes delta function in x⃗ when integrated over ω⃗.

4 Lessons for entropies in internal spaces

Our considerations were motivated by an attempt to understand entropies associated with
subregions of internal spaces in product space geometries. In situations where such product
spaces appear as IR geometries of higher dimensional asymptotically AdS spaces, we argued
in [24] that such entropies are associated with subalgebras formed by sums and products of
operators of the form (1.1). This led us to investigate if the same continues to be the case for
purely product spaces even if they do not have such UV completions. This would make sense
if these operators have clustering properties in the internal directions. We found that these
operators indeed cluster at a distance of the order of the AdS scale. For compact internal
spaces this implies that when the size of the internal space, Rn is much larger than the AdS
scale we can consider these operators to be approximately local.

Such a separation of scales is present when the product space has an UV completion as
an asymptotically higher dimensional AdS space, as in the interpolating geometry (3.1). In
more realistic geometries like extremal AdS-RN black holes the internal space is the horizon,
and the size of the horizon is set by the charge and can be much larger than the AdS scale
(the IR AdS scale is related to the higher dimensional AdS scale by a factor of order unity),
and these operators cluster in a meaningful sense. Indeed this is what we expect from the
corresponding RG flow in the dual field theory. If we consider the entropy of a subregion
of the UV boundary theory which covers some part of the internal space and is smeared
along the other spatial directions, the operators which are associated with this entropy are
precisely of the form (1.1). An appropriate part of this entropy can be then associated with
the putative dual of the IR product space geometry.

For realizations of holography in String/M-theory, e.g. AdS5 × S5 and AdS4 × S7, there
is no such separation of scales since the size of the AdS and internal spaces are both set
by the scale of the flux which supports these solutions. The operators like (1.1) cannot be
considered to be local in any useful sense. In these cases, it is possible that the non-locality
is related to the volume law for small subregions.3 Indeed such a relationship is known
for a class of non-local theories [43].

The relationship between the relative size of the internal space Rn to the AdS scale and
the appearance of clustering behavior can also be probed using RT surfaces. From this point
of view, this clustering behavior can manifest itself as a phase transition in the form of the

3This possibility has been suggested by T. Takayanagi (private communication).

– 15 –



J
H
E
P
0
8
(
2
0
2
4
)
0
1
4

dependence of the area of the RT surface on the size of the region it is anchored on. For
example, as we argued in [24], the area of an RT surface associated with an infinite strip
anchored on the internal space of a product space geometry of the form AdSd+1−n × Rn

(with d − n > 1) can only depend on the width of the strip up to a maximum width
lmax ∼ 1/(d − n − 1).4 Whether strips of widths larger than lmax then exist or not now
depends on whether the internal space size is large enough to incorporate them. Once again,
we see that this clustering behavior can only be seen in cases where the size of the internal
space Rn is larger than the AdS scale.

5 Role of color degrees of freedom

From the point of view of the large-N CFT, the way internal spaces arise appears to be quite
different from the way the radial direction of the AdS arises. The latter is thought to come
from a scale in the field theory, while the former is a geometrization of an internal symmetry
of the theory. In fact, the construction of the operators Õ(x⃗, y⃗) in (2.8) does not appear to
involve any of the color degrees of freedom. In a similar vein, the interpretation of RT surfaces
anchored on a region of the internal space in terms of entanglement of a subset of the color
degrees of freedom [17] appears to be very different from the interpretation of [19] in terms of
operators like (2.8). On the other hand one might expect that the color degrees of freedom do
play a key role. For example, we certainly do not expect that construction of these operators
make any sense when the number of colors is small. In this section we comment on this issue
and argue that in fact the two proposals [17] and [19] should be the same in spirit.

Let us first see why a large number of colors are essential in constructing operators
like Õ(x⃗, y⃗). The expansion which defines these operators involve a sum over the quantum
numbers of the internal space and assumes that in the dual field theory operators with
different quantum numbers are independent of each other. This is false at any finite N . To
see this, consider the specific case of a product space of the form AdS5 × S5. In the dual
field theory the corresponding R symmetry of the dual theory is SO(6). This R symmetry
acts linearly on six scalars ΦI , I = 1 · · · 6 each of which is a N × N matrix. The primary
operators Ol,m⃗(x⃗) are traces of symmetric traceless products of ΦI , e.g.

Ol,m⃗(x⃗) ∼ Tr(Φ(I(x⃗)ΦJ(x⃗)ΦK)(x⃗) · · · − trace) (5.1)

The number of Φ’s which appear is l. However the trace of a product of more than N

matrices is not independent of the traces of products of smaller number of matrices — rather
they are related by trace relations. In fact the correct combination of traces are given by
Schur Polynomials which are in one-to-one correspondence with Young diagrams, and the
maximum number of rows of a Young diagram is N . Thus the maximum value of l which
can appear in the sum (2.8) is of order N . The emergent internal space y⃗ is fundamentally
“grainy” and can be sometimes thought of as a noncommutative space. This fact is well
known in matrix models [45] and plays a key role in the physics of giant gravitons and related
states [46–49] and is often called the “Stringy Exclusion Principle” [50]. A smooth internal
space can possibly arise at N = ∞ when the trace relations can be ignored. This fact is also
essential in the finiteness of target space entanglement [51–58].

4For magnetic branes this is a reflection of a gap produced by the external magnetic field [25, 26, 44].
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The fact that entanglement of regions of the internal space associated with operators
like Õ(x⃗, y⃗) should involve entanglement of color degrees of freedom in fact follows from a
count of the degrees of freedom required by the holographic principle following [37]. Consider
e.g. AdS5 × S5 with the metric

ds2 = R2
[ 1

z2
[−dt2 + dx⃗2] + dΩ2

5

]
(5.2)

where R = RAdS = R5 is the common radius of AdS5 and S5. Consider a cutoff boundary
at z = z0. The total area A of this R3,1 × S5 cutoff boundary is

A = R8L3

z30
(5.3)

where L is the extent of each of the spatial directions along x⃗. The holographic principle
then requires that the associated entropy

S = A

G10
(5.4)

where G10 is the ten dimensional Newton’s constant, provides a count of the number of
degrees of freedom of the field theory. Using the relationships

G10 ∼ g2s l8s (R/ls)4 ∼ gsN (5.5)

(where ls is the string length) this leads to the prediction for the number of degrees of
freedom Ndof

Ndof ∼ N2L3

z30
(5.6)

which is the correct count once z0 is identified with the UV (position space) cutoff of the
dual field theory. This is simply the fact that there are N2 degrees of freedom at every
lattice site of the field theory on R3,1.

In the above relations, the factor R8 came from the eight spatial directions of the ten
dimensional metric composed of x⃗ and the angles in S5. Now suppose we want to obtain
the number of degrees of freedom associated with a fraction f of the S5, keeping the entire
R3. This count will be

N ′
dof ∼ fN2L3

z30
(5.7)

This relationship is naturally interpreted as the contribution of fN2 degrees of freedom at
each lattice site. This is in the same spirit of [17]. Note that we are dealing with gauge
invariant degrees of freedom. It will be interesting to find a precise gauge invariant meaning
of such a decomposition of the color degrees of freedom.

There are other ways of thinking of entanglement of color degrees of freedom. Target space
entanglement is a gauge invariant way of formulating entanglement in color space [51, 52].
The idea here is to consider a single hermitian combination of the matrix fields of the field
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theory and define a matrix valued projector which projects onto the subspace defined by
restricting the eigenvalue of this hermitian matrix to be in a certain range. The projected
operators and their products and sums define a subalgebra with an associated reduced density
matrix. These ideas can be applied to e.g. subregions of a S5 which emerges out of the six
scalar fields ΦI in the 3 + 1 dimensional N = 4 field theory. Consider for example a projector
associated with the constraint that the eigenvalues of Φ1 are greater than some real number a.
This may be thought about a restriction to a polar cap of a S5 and the resulting target space
entanglement may be thought of an entanglement in internal space. One situation where this
kind of matrix entanglement can be made precise appears in [59] and [60]. They consider e.g.
a fuzzy sphere state of a three matrix problem. In such a state a projector associated with
ϕ1 > a leads to a target space entanglement which is proportial to the length of the boundary
of the cap in units of the coupling constant of the emergent noncommutative U(1) theory on
the fuzzy 2-sphere. In [60] it was found that this result is in fact quite general and applies to
general regions in other non-commutative backgrounds generated in quantum mechanics of
arbitrary number of matrices. It is as yet unclear if this is related to a RT surface. It will be
interesting if this has a gravity dual description when embedded in e.g. BFSS model. Other
notions of matrix entanglement can be defined in e.g. partially deconfined states [61].
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A Correlator for AdSd+1−n × Rn

In this section we give an explicit expression for the correlator in AdSd+1−n × Rn following
the subsection 2.1.

When the internal space is Rm the eigenfunctions of the Laplacian on the internal
space are plane waves

Y
k⃗
= 1

(2π)n/2 eiRnk⃗·y⃗ (A.1)

Then the function D(u, y⃗, y⃗′) is given by

D(Rn)(u, y⃗, y⃗′) =
∫

dnk

(2π)n

∫
dω

2π

1
ω2 + k⃗2 + M2

e−iωu+iRnk⃗·(y⃗−y⃗′)

=
(

M√
u2 + R2

n(∆y⃗)2

)n−1
2

K n−1
2

(
M
√

u2 + R2
n(∆y⃗)2

)
(A.2)
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where we have denoted ∆y⃗ ≡ y⃗− y⃗′ and K denotes the modified Bessel function. The quantity√
u2 + R2

n(∆y⃗)2 is the invariant distance on ((time)× Rn. The large argument limit of the
modified Bessel function is of course an exponential, leading to

D(Rn)(u, y⃗, y⃗′) ∼ M (n−2)/2

(u2 + R2
n(∆y⃗)2)n/2 exp

(
−M

√
u2 + R2

n(∆y⃗)2
)

(A.3)

B Other examples of “target space locality”

It is interesting to speculate whether the notion of target space locality considered in the text
appears in other contexts. In this appendix, we will give one more example of this phenomenon.

Consider a 2D CFT with d massless scalar fields (i.e. a CFT with a target space Rd).
We have the well-known primary fields

Ok(z, z̄) = eik.X(z,z̄), ⟨Ok(z, z̄)O∗
k(w, w̄)⟩ =

( |z − w|
ϵ

)−k2

= exp[−k2g(z, w)]

g(z, w) = log
( |z − w|

ϵ

)
, k ∈ Rd (B.1)

Let us define a “local” operator in target space:

O(y, z, z̄) =
∫

ddk

(2π)d
e−ik.yOk(z, z̄) = δd(y − X(z, z̄)),

⟨O(y, z, z̄)O(y′, w, w̄)⟩ = g(z, w)−d/2 exp[−|y − y′|2

g(z, w) ] (B.2)

For fixed (z, z̄), (w, w̄), the operators O(y, z, z̄) satisfy “cluster decomposition property”,
in target space Rd, i.e. the connected correlator ⟨O(y, z, z̄)O(y′, w, z̄)⟩ falls off for y and y′

sufficiently far apart (for fixed (z, z̄), (w, w̄)). The behaviour (B.2) is reminscent of (A.3)
or (2.19), except that at large distances the fall-off in (B.2) is more like in case of diffusion
or a non-relativistic field theory.

The example above is closely related to the world sheet conformal theory of a string in Rd.
It is worthwhile remembering that in the context of a string the “target space” is the space time
(with d = 26 for bosonic string).5 A more familiar manifestation of target space locality in the
string context is the fact that vertex operator correlators, when integrated over the worldsheet,
can be represented by an effective action (see, e.g. [62]) which is local in target space.6

Similar remarks can also be made for D-branes moving in a target space. The case of D1
branes may be regarded as the closest to that of the fundamental string because of S-duality.
However, it is true of more general D branes too; after all, the coupling of D branes to target
space is given by a local (DBI) action. E.g. the target space of D3 branes is M = R6(× time,
described by a DBI action local in M . Of course, locality in R6 does not imply locality in S5

which is part of the R6; here, input from the Maldacena limit plays a crucial role.
5In the static gauge, the target space becomes the d − 2 dimensional space orthogonal to the world sheet.
6In the examples considered in the main body of the paper, there is no counterpart of the notion of

integrating over the “world sheet”, though.
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