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Abstract—This paper presents an approach to model driver
lane change behavior using maximum entropy inverse rein-
forcement learning (MaxEnt IRL). The proposed method aims
to generate personalized lane change trajectories that reflect
individual driving preferences while ensuring user privacy. To
achieve this, driving data are collected from individual driver
and used to train the model, while scale-based transformation
is utilized to encrypt the data during cloud-based training.
Bezier curves are employed to parameterize the lane change
trajectories due to their ability to produce smooth, continuous
paths. The MaxEnt IRL algorithm is then used to infer a reward
function that represents each driver’s preferences by learning
optimal weights for a cost function that describes the lane
change behavior. The proposed approach is tested over several
real-world data to demonstrate its effectiveness in capturing
personal driving styles under various conditions. The proposed
trajectory encryption approach is compared to a benchmark
differential privacy mechanism, and the results clearly show
that the proposed method outperforms. Experimental results
demonstrate that the proposed method can generate lane change
paths that closely align with the behavior exhibited by individual
driver, offering an approach for personalization in autonomous
driving.

Index Terms—Autonomous vehicles, inverse reinforcement
learning, automated lane change systems, personalized motion
control, privacy preservation.
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The lane changing modeling have been presented in 2024 IEEE Inter-
national Conference on Computing and Machine Intelligence [1], validated
using simulated data. This paper enhances the feature design used in [1]. In
addition, to address the user privacy during cloud-based training, this paper
proposes a privacy-preserving training framework. Moreover, the experimental
section has been significantly expanded by incorporating a driver-in-the-loop
simulator and real-world tests using a golf cart platform.

D Dataset

F Feature vector for dataset

f Feature vector for each trajectory
Variables

w Weight

I. INTRODUCTION

ANE change is a critical aspect of driving that can
significantly impact traffic flow, safety, and driver com-
fort [2]-[5]. As autonomous driving technologies have made
significant advancements in recent years, the ability to model
and replicate human-like lane change behaviors has become
increasingly important. Traditional approaches to lane change
modeling often rely on predefined rules or paths, which may
not adequately capture the preference and decision-making
process of individual drivers [6], [7]. Moreover, with the
development of sensor and communication technologies, a
large amount of vehicle trajectory data has been collected.
Consequently, many researchers have adopted data-driven
models to study lane change. For example, various machine
learning techniques, such as neural networks [8]-[11] and
reinforcement learning [12], [13], have been used to capture
the complexities of driving maneuvers. Despite their promising
results, neural networks and reinforcement learning have no-
table drawbacks. First, neural networks can suffer from limited
interpretability, making it challenging to understand the reason
behind their predictions [14]. Second, reinforcement learning
is highly sensitive to the design of reward functions [15], [16].
To overcome these limitations, this paper employs inverse rein-
forcement learning (IRL) to infer underlying reward functions
from expert demonstrations, offering a more interpretable and
robust framework for modeling complex driving behaviors.
IRL is a powerful approach for capturing the underlying
reward functions that imply human driving behaviors [17].
Unlike traditional reinforcement learning, which optimizes a
policy based on a predefined reward function, IRL works in
reverse by inferring the reward structure directly from expert
demonstrations [18]—[20]. In particular, the Maximum Entropy
(MaxEnt) IRL has shown significant promise in learning
complex behaviors while offering enhanced interpretability
[21], [22]. MaxEnt IRL introduces a probabilistic framework
that accounts for the uncertainty in human decision-making
process. By maximizing the entropy of the policy, this ap-
proach ensures that among all policies that could explain
the observed behavior, the one chosen is the most unbiased



and generalizable [23], [24]. This not only helps in capturing
representative driving styles but also provides insights into
the decision-making process, which is crucial for verifying
and validating autonomous driving systems. After learning
from expert demonstrations, the identified reward function
can then be used to generate personalized trajectories that
mirror individual preferences. For instance, in [25], the authors
propose a personalized adaptive cruise control framework
that employs IRL to extract individual driving preferences
from expert demonstrations, i.e., longitudinal speed profiles.
In [26], IRL is used to derive a cost function from continuous
driving trajectories, capturing key features of overall driving
behavior such as acceleration, deceleration, and lane changes
to improve autonomous driving comfort and adaptability. Most
of these studies focus primarily on longitudinal control. In
contrast, [22] addressed lateral behavior by customizing auto-
mated lane change systems, where naturalistic driving data are
clustered into three styles (aggressive, neutral, conservative)
and reward functions are learned for each style. While this
demonstrates style-level customization. However, our work
focuses on driver-level personalization, where each individ-
ual driver’s lane-change preferences are modeled separately.
Moreover, all the aforementioned studies have not addressed
the aspect of user privacy protection when utilizing IRL-based
personalization techniques, a gap our research aims to bridge.

To realize personalized lane change path, our study lever-
ages Bezier curves for trajectory planning. Bezier curves are
widely used in path planning due to their ability to generate
smooth and continuous trajectories. By parameterizing lane
change paths with Bezier curves, we can effectively model
both curvature and smoothness for ensuring driver comfort and
safety [27], [28]. Defined by control points, Bezier curves offer
significant flexibility, making them adaptable to various driv-
ing styles and conditions [29]. Note that for different drivers,
the Bezier curves (and the corresponding control points) are
different. Given user demonstrated path, the proposed IRL then
optimize the control points to align with individual preference.
Furthermore, Bezier curves allow for the incorporation of
constraints, such as ensuring zero curvature at the start and
end of a lane change. This ensures that the generated paths are
physically feasible and align with real-world driving behaviors.

However, since personalized path planning relies on user-
provided driving trajectory data, it raises critical concerns
about data privacy [30]. More specifically, IRL uses driver
demonstration data to extract features, which can potentially
reveal user privacy. To address these privacy concerns, several
privacy-preserving methods have emerged in recent years,
such as differential privacy (DP) [31] and homomorphic en-
cryption (HE) [32]. However, DP is highly sensitive to the
amount of noise added. On one hand, excessive noise can
affect model accuracy, while on the other hand insufficient
noise fails to provide effective encryption [33], [34]. Mean-
while, HE imposes high computational demands, rendering
it unsuitable for real time processing [35]. To address these
limitations, transformation-based approaches, such as scale-
based transformation, have been proposed as more efficient
alternatives. By applying invertible scale-based transformation
to trajectory data, users’ information is effectively encrypted
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Fig. 1. Diagram of the proposed privacy-preserving personalized lane change
framework.

[36]. It is worth noting that scale-based transformation, which
has been explored in various cloud-based control contexts,
provides a lightweight alternative to traditional cryptographic
schemes by minimizing computational and maintaining real
time performance [37]. To reduce encryption computation and
its impact on training, this paper uses scale-based transfor-
mation to protect privacy, as shown in Fig. 1. Specifically,
before uploading data to the cloud, user-provided lane change
trajectories are locally scaled along the longitudinal axis, and
features are then extracted from these transformed trajectories.
These transformed (encrypted) features are used to train the
MaxEnt IRL model on the cloud, ensuring that the cloud
never accesses the original trajectory or raw behavior features.
Benchmark comparison with DP-based data transformation is
also conducted in this paper.

The primary contributions of this paper are summarized as
follows.

1) We develop a personalized lane change framework that
combines MaxEnt IRL with the Bezier curve. The pro-
posed model is trained on expert driving data, with the
output being a learned reward function, optimizing of
which generates personalized lane change trajectory.

2) We develop a privacy-preserving framework using ran-
dom scaling to encrypt user lane change features, and
hence ensure user privacy during cloud-based training.

3) The framework is then tested on various human driv-
ing datasets, generated by both driver simulator based
on CARLA [38], [39] and real-world experiment, to
demonstrate its ability to capture personalized driving
styles under different conditions. Experimental results
show that the proposed method can generate lane change
trajectories that closely align with the behaviors exhibited
by different drivers. Furthermore, the privacy-preserving
mechanism introduces negligible performance degrada-
tion, validating its effectiveness in protecting user pri-
vacy without sacrificing model accuracy. These findings
highlight the potential of the proposed framework to ad-
vance personalized autonomous driving systems without
concerns about user privacy.

The lane changing modeling have been presented in 2024
IEEE International Conference on Computing and Machine
Intelligence [1], validated using simulated data. This paper
enhances the feature design used in [1]. In addition, to
address the user privacy during cloud-based training, this paper
proposes a privacy-preserving training framework. Moreover,
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Tllustration of a Sth order Bezier curve for modeling lane change

the experimental section has been significantly expanded by
incorporating a driver-in-the-loop simulator and real-world
tests using a golf cart platform. The remainder of this paper
is structured as follows. Section II describes Bezier curve and
its application to model lane change path. Section III reviews
the preliminary of MaxEnt IRL, while Section IV presents
our main contribution on the privacy-preserving lane changing
personalization algorithm. Section V outlines the experimental
setup, presents the results, and discusses the main findings.
Finally, Section VI concludes the paper with future work.

II. LANE CHANGE PATH MODELING

A Bezier curve is a parametric curve commonly used in path
planning [6], [29], defined by control points that determine its
shape and smoothness. The formula for an nth order Bezier
curve is expressed as:

B(t) =Y Pbin(t)=>_ P (’;) (L=t (1)
=0 =0

Here, P; denotes the ith control point, b; , = (7)(1 —t)" ¢!
refers to the Bernstein polynomial associated with the curve,
and ¢ represents the parameter that varies from O to 1.

As shown in Fig. 2, for this study, the lane change trajectory
is modeled using a 5th order Bezier curve, which is defined
by six control points and whose equation can be simplified as:

B(t) = co + c1t + cot? + c3t® + cat* + c5t°.

Here each coefficient c; is a function of control points P;, as
follows.

co =Py

c1 =—5FP+ 5P

cog = 10Py) — 20P; + 10P,

c3 = —10Fy +30P;, — 30P; + 10P;

cs =5FP) —20P, + 30P; — 20P; + 5Py

cs =—FPy+5P —10P, + 10P; — 5P, + Fs.

The curvature « at any point along the Bezier curve can be
computed using the following expression:

B(t) x B(t)

=" Bwp

; 2

where B(t) and B(t) represent the first and second order
derivatives of B(t) with respect to t, respectively, given by:

B(t) = (1 + 262t + 363t2 + 4C4t3 + 5C5t4 (3)
B(t) = 2¢o + 6est + 12¢4t + 20e5t>. (4)
In this paper, a smooth lane change model is needed to learn
driver behaviors, which requires the curvature at both ends of
the path to be zero. Therefore, it is necessary that

B(0) x B(0) =0 (5)
B(1) x B(1) =O0. (6)

By substituting ¢ = 0 into (3), (4) and (5), we obtain the
following:

5(Py — Po) x 20((Py — P) — (P, — Py)) =0.  (7)

Let vg; be the vector connecting Py to P;, and vy2 be the
vector from P; to P, which are shown in Fig. 2. Then, vg; =
P, — Py and v19 = P, — Py, and (7) can then be simplified
as:

51)01 X 20(1}12 — U01) =0. (8)

For (8) to hold true, vg; and vi2 must be parallel, implying
that Py, P;, and P, must be colinear. This ensures that the
curve starts in a straight line, guaranteeing zero curvature at
the beginning of the lane change maneuver. Therefore, the
constraint about zero curvature at the beginning of the curve
is,
Vo1 X V12 = 0. (9)
Similarly, to ensure zero curvature at the end of the lane
change (¢ = 1). Substituting ¢ = 1 into (3), (4) and (6) yields:

v34 X vg5 = 0. (10)

III. MAXIMUM ENTROPY IRL

In this paper, the MaxEnt IRL, first introduced in [19], is
used to learn the reward function from expert trajectories. With
this method, each expert trajectory is considered as an actions,
with the aim of inferring a reward function which can represent
the driver’s behavior. To achieve this, features that describe
expert trajectories are extracted. These features are defined
as functions that map specific aspects of a trajectory to real
values, thereby creating a feature vector f that characterizes
each trajectory. For each expert trajectory (;, the corresponding
feature vector is represented as f((;). To summarize the
attributes of all expert trajectories, an average feature vector
F representation is computed as follows:

1 N
F:N;ﬂm

which represents a generalized feature vector capturing the
observed expert behaviors. The main objective of MaxEnt IRL
is to ensure that the model generates feature expectations that
align with those extracted from expert trajectories, i.e.,

Epcw[f] = F.

Instead of directly defining an optimal policy, MaxEnt IRL
employs a reward function to quantify the drivers preference.

(1)

12)



The reward function J is modeled as a weighted sum of
features, represented by:

J=WTf(G), (13)

where W is the weight vector to be learned and f is the feature
vector defined earlier.

To determine the probabilities of different trajectories while
introducing minimal bias and adequately representing expert
trajectories, the maximum entropy principle is applied [19].
This yields the following form for the distribution over trajec-
tories:

L

(14)

where the partition function Z(W) = S e=W" /() serves
to normalize the distribution, ensuring that the sum of the
probabilities over all possible trajectories is equal to one.
Note that distribution (14) in the MaxEnt IRL formulation
is proposed by Ziebart et al. in [19]. As a normalized ex-
ponential family distribution, it assigns nonzero probability
to all feasible trajectories. When multiple trajectories yield
comparable rewards, each receives probability mass propor-
tionally, naturally capturing multi-modal driving behaviors in
this framework. Using the probability distribution (14) along
with the set of expert trajectories Ci, the weight vector W
is inferred by maximizing the log-likelihood of the observed
trajectories, i.e., W = arg max L(W) where

N
L(W) = log P((;|W).
=1

(15)

However, analytical solution of this optimization problem is
generally unavailable. Therefore, the gradient-based optimiza-
tion is adopted, where the gradient of the log-likelihood can
be expressed as:

Note that the log-likelihood L(TV) reaches its maximum when
the gradient becomes zero, implying that the expected feature
values match those derived from expert data. This condition
aligns with the objective described in (12). The weight vector
W can then be updated iteratively in the direction of the
gradient as follows:

VL(W)
[vLW)|”
where 1 denotes the learning rate.

During the calculation of the gradient VL(W) in (16), eval-
uating the expected feature value E, ¢y [f] over all possible
trajectories is very complicated. Following literature [26], we
therefore adopt the maximum likelihood approximation, in
which the expectation is approximated using the feature values
of the most likely trajectory under the current model:

Epciw)lf] = f(arg max p(C|W)).

This approximation allows for a more practical estimation of
the gradient VL(WW) during optimization, helping the model
to adjust its weights efficiently and eventually reach a solution
that can generate behavior similar to that of the provided

W=W+n (17)

(18)

expert data. As demonstrated in [26], such an approximation
provides an efficient alternative to expensive sampling-based
estimation, and is particularly suitable for modeling individual
driving styles.

IV. DRIVER LANE CHANGE BEHAVIOR LEARNING

This section presents the proposed approach for learning
driver lane change behaviors using the MaxEnt IRL. We start
with defining specific trajectory features for characterizing
individual lane change trajectory, such as comfort, efficiency,
and accuracy, followed by a comprehensive optimal control
problem (OCP) formulation for determining the optimal con-
trol points of the Bezier curve. Finally, the complete privacy-
preserving learning algorithm will be described towards the
end of this section.

A. Feature Design

The learning algorithm presented in Section III is used to
learn key features from expert lane change trajectories. In the
following, the features f are defined, which are real-valued
functions that characterize the specific aspects of lane change
trajectories. These features are designed to effectively capture
the preferences and decision-making criteria underlying lane
change behaviors.

Comfort: Comfort is an important aspect of assessing
driving quality, especially during lateral motion. To quantify
comfort, a feature f. is introduced that integrates the square
of the curvature along the entire lane change path, indicating
the sharpness of vehicle turns, defined as

fo= / ((8))2dt,

where k(t) is defined in (2). Note that a smaller value of f.
signifies a smoother and more comfortable trajectory.

Traffic Efficiency: Traffic efficiency is a key feature that
measures how effectively the vehicle completes a lane change
in terms of both distance and timing. This feature helps un-
derstand how well the vehicle manages longitudinal movement
during a lane change. The traffic efficiency is divided into two
parts: the length of the lane change path (fr,) and the point
at which the vehicle crosses the lane marking (fr,):

le :PS,I_PO,I
ngZch_POr'

In these equations, P;, denotes the z-coordinate of the control
point P;, P, is the x-coordinate of the vehicle crossing the
lane marking.

Lateral Offset: Lateral offset is another important feature
for understanding lane change behavior, as it measures how
well the vehicle ends up in the correct lateral position after a
lane change. This feature provides insight into how precisely
the vehicle aligns with the target lane. The lateral offset
feature, represented by f,, is defined as the square of the
difference between the vehicle’s final lateral position and the
center of the target lane:

fy = (PS,y - yc)Qa

19)

(20)
2

(22)



where the y. is the y-coordinate for the center of the target
lane. This feature helps quantify the final positioning of the
vehicle, contributing to an understanding of how well the
vehicle completes the lane change.

These features (19)-(22) on comfort, longitudinal efficiency,
and lateral accuracy collectively provide a comprehensive rep-
resentation of lane change maneuvers. See Fig. 2 for examples

of le , sz, and fy.

B. Complete Lane Change Model for IRL

A Bezier curve is fully determined once the coordinates
of its control points are known. In the context of lane
change modeling, the state space is represented by the co-
ordinates of these control points. Therefore, in this study,
the task of the lane change model is to solve an optimal
control problem (OCP), where the goal is to find a set of
control points that generate a Bezier curve minimizing a
specific cost function. The initial control point Fy, which
corresponds to the start of the lane change, is input of the
this OCP. The decision variables of this OCP is denoted as
X = [Pia, Piy, P Pays P,y Py Pag, Pay, Poa, Py ]
where P; ; and P;, are the coordinates of the control points
P;, respectively. The following optimization problem is set up
to compute the desired Bezier curve:

n};n J(X) =Wife+Wafr +Wsfr, + Waf, (23a)
5
st. B(t)=>_ Pb;s(t) (23b)
=0

P11, <P, i=1,...5 (23¢)

iy < Ps g — Po gz < Twp (23d)

Yo < Psy < Yup (23¢)

Zero curvature constraints (9) and (10). (23f)

In the objective function (23a), each term is defined in Section
IV-A. The weights W;, ¢« = 1,...,4 correspond to each
of these components, respectively, and are determined using
the MaxEnt IRL approach which is described in Section
III. Consequently, this cost function aligns with the reward
function used in IRL. The constraint (23b) defines the Bezier
curve as a Sth-order polynomial. Constraint (23c) ensures that
the x-coordinates of the control points are strictly increasing,
which maintains the correct direction for the lane change
maneuver. Constraint (23d) limits the horizontal displacement,
ensuring that the lane change occurs within an acceptable
range. In this paper, the x;, and x,, are set to 15 m and
50 m, respectively. Constraint (23e) restricts the y-coordinate
of control point Ps to ensure that the vehicle completes the
lane change maneuver within the target lane, where ¥, and
Yub representing the lower and upper boundaries of the target
lane, respectively, which are the 3.6 m and 7.2 m in this paper.
Constraints (23f) enforce zero curvature at the beginning and
end of the trajectory, as discussed in Section II.

Remark 1: Remark 1: This paper focuses on lane change
when surrounding vehicles are further away from the ego vehi-
cle. Under this setting, safety-related metrics such as collision
risk are not applicable, and they are not included as features

for IRL training nor incorporated in the optimization problem
(23). Such metrics can be incorporated in future extensions
that address multi-vehicle traffic environments, where safety-
related constraints will also be added to (23)

C. Privacy-preserving IRL for Lane Change

In this section, the proposed privacy-preserving MaxEnt IRL
algorithm is presented, which learns driver lane change be-
havior from encrypted expert features. As illustrated in Fig. 3,
before sending the expert features to the IRL module (assumed
to be executed in cloud), the real user lane change trajectory
is masked by a random scaling factor a. More specifically,
the trajectory is elongated in the longitudinal direction by a
factor of a. This scaling alters key trajectory characteristics
such as curvature and path length, thereby encrypting the
true feature values that represent user preferences. The scaled
trajectories are then used to extract encrypted feature vectors,
which are uploaded to the cloud for MaxEnt IRL training.
After processing through IRL, a set of masked weights is
obtained, which is then passed to the local onboard Bezier
lane change model that solves (23) based on the current
vehicle position. The resulted lane change trajectory mimic
the behavior based on the encrypt expert features, and hence
possesses different path than the original expert trajectory.
Therefore, this trajectory obtained by solving (23) using the
masked weight then needs to be descaled back by the same
factor a to return to its original property.

The proposed privacy-preserving mechanism is illustrated
in Fig. 4, where a = 1 corresponds to the original user
lane change trajectory. Specifically, the x-axis is scaled using
the scaling factor a, which means that as a increases, the
original path is elongated in the x-direction. As demonstrated
in Fig. 4, with increasing scaling factors, trajectories extend
correspondingly, impacting trajectory features such as comfort,
and path length. Table I quantifies these changes in detail. For
instance, the feature fr,, representing the length of the lane-
changing path, increases with the scaling factor a. Similarly,
the feature about the length cross the lane marking fr,
also increases. Conversely, the feature f., associated with
curvature, decreases because the elongation results in a flatter
trajectory. It is worth noting that when the scaling factor a = 1,
the encrypted trajectories (¢) are identical to the original expert
trajectories (), meaning the scaling does not alter any features
of the original data.

Definition 1 (co-Feature-Diversity): An encrypted feature
vector f is said to satisfy oco-Feature-Diversity if, for any
observed encrypted feature vector f, there exists an infinite
set of trajectory and scale factor pairs (a;, Ci)fil , such that:

f=fla, &), Vi

In other words, infinitely many possible original trajectories,
when scaled by their corresponding factors, produce the same
encrypted feature vector. This implies that the true identity of
the original driving behavior cannot be uniquely determined
from f .

Theorem 1: The proposed longitudinal scaling-based fea-
ture encryption mechanism guarantees oo-Feature-Diversity.

(24)
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There the cloud-based model cannot uniquely infer the original
trajectory or behavior preference from the encrypted feature
vector alone. ~ o

Proof: Given an encrypted trajectory ( = ((z, (), the
encryption mechanism applies a positive scaling factor a €
R* along the longitudinal (z) axis on the original trajectory
¢ = (¢z,Cy), such that:

EZE:a"C(E? é:y:(:y

To recover a candidate original path, for any arbitrary a; €
R, we define:

(25)

1 - -
Ci,m = Ci,m; Ci,y = Cv,y (26)
a;
which means that the same encrypted trajectory ¢ can be
generated by infinitely many trajectory—scaling factor pairs
(ai, Gi)-
Furthermore, since the feature is deterministic and depends
solely on the geometry of the trajectory, the same encrypted
feature vector is obtained:

f(g) = f(a”b . Ci,xaci,y) = f7

Therefore, the encrypted feature vector f can also be produced
by infinitely many candidate pairs (a;, (;), each consistent with
the same encrypted path C~ .

This indicates that the encrypted feature f does not uniquely
determine the original trajectory and original behavior pref-
erence, and hence, the proposed encryption method satisfies
oo-Feature-Diversity. [ |

Remark 2: According to Theorem 1, the proposed privacy
protection mechanism ensures oo-Feature-Diversity: an en-
crypted feature vector f can correspond to infinitely many
factor and trajectory pairs (a;,(;), all consistent with the
same encrypted feature. Since the scaling factor « is retained
locally and never shared with the cloud, it is computationally
infeasible for the cloud or an attacker to infer the original
trajectory ¢ or the true behavioral features f({). It is clear
from Table I that, without the knowledge of a, one can never
infer the true value of f., fr,, and fr,. Furthermore, if an
attacker gains knowledge of the weight W and OCP (23),

Ya; € RT. (27)
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Diagram of the proposed privacy-preserving MaxEnt IRL framework for personalizing lane change behavior.
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protection.

TABLE 1
FEATURES WITH DIFFERENT SCALING FACTORS FOR THE EXAMPLE IN
F1G. 4.
Scaling factor a L fe l fry L fy l frs
0.6 1.02 x 1073 | 23.26 | 0.0209 | 11.43
1.0 1.39 x 10~* | 38.76 | 0.0209 | 19.05
1.4 3.66 x 1075 | 54.27 | 0.0209 | 26.68
1.8 1.35 x 107° | 69.77 | 0.0209 | 34.29

Ilustration of the proposed privacy-preserving mechanism. Note
that @ = 1 corresponds to the original expert trajectory without any privacy

they can only reconstruct a trajectory aligned with f , but this
does not reveal the unique original behavior.

Remark 3: It is also worth noting that the lateral offset
feature f, is not encrypted. This feature measures the geo-
metric distance between the vehicle and the center line of the
target lane. Though each driver may prefer to deviate from the
center line due to different personal preference, such deviation
usually is minimum due to safety reasons. Therefore, its value
may not carry much private information as they are very close
to zero. Consequently, while f,, is treated as one of the features
during IRL training, it is left unencrypted to avoid unnecessary
processing without affecting privacy.

The complete privacy-preserving IRL algorithm is outlined
in Algorithm 1. Specifically, the inputs are the encrypted
feature vector and all the initial points in the dataset. Here,
it is worth to mention that to reduce the influence of large
numerical differences among features, since features with large



Algorithm 1 MaxEnt IRL Driver Behavior Learning Algo-
rithm

Input: Encrypted expert feature vector: F', Beginning points
in dataset: P,
QOutput: W

1: Initialize ¢ <— 0, W < all-ones vector, 77 <— 0.1;

2: while W not converge do

3: for all Py in D do

4 Copt,i < solving OCP (23) with aligned Py;
5 fopt,i — f((opt,i)?

6: end for

7 Epgwlf] ¢ & T foptas
8 VL« Eyqw)f] - F;

90 WW+ ﬁ%:

10 i it

11: if i =200 then

12: n<n/2;

13: 1+ 0;

14: end if

15: end while

values dominate the cost function, each feature is normalized
to the range [0, 1] based on masked expert feature distribution.
Line 1 initializes the weight (W), iteration counter (i) and
learning rate (n). In Lines 3-6, the OCP (23) with current
weight is solved to get the optimal path (¢,,¢) and its normal-
ized features (f,p:). Line 7 calculates the expected features
(Ep(ciw)[f]) by averaging f,,:. The weight vector (W) is
then updated via gradient ascent in Lines 8-10. The learning
rate (n) is gradually reduced over iterations to ensure stable
convergence in Lines 12-14.

V. EXPERIMENTS AND RESULTS

This section presents the numerical evaluation of the
privacy-preserving lane change framework. The results test
the model’s performance in various test scenarios, using
both driver simulator and real-world experiments. This paper
focuses on personalized lane change modeling, where each
driver’s preferences are learned individually.

A. Experiment Setup

In this study, we use a driver-in-the-loop driving simulator
integrated with CARLA [38], as shown in Fig. 5, to collect
realistic lane change driving data. The steering wheel, gear
shift, and pedals are Logitech G923 TRUEFORCE Racing
compatible for XBox, Playstation, and PC. Three monitors are
aligned horizontally to provide a wide angle of view to mimic
a realistic ride experience. An Alienware Aurora R15 gaming
desktop is used to provide the necessary computing power
for running CARLA. The driver simulator runs at around 20
frames per second, providing sufficient smoothness for human
drivers. Coupled with Roadrunner [40], the driver simulator
can be customized with urban, suburban, and rural driving
scenarios, allowing realistic evaluations to be conducted. In
this experiment, two driving datasets are collected at constant
speeds of 10 m/s and 15 m/s, respectively, to capture a range

Fig. 5.
Driver 2.

The driver-in-the-loop simulator with CARLA used by Driver 1 &

of driving behaviors and lane change maneuvers under various
conditions.

In addition to the driver simulator described above, real-
world experiments are also conducted using a Polaris Gem e2
to create a more realistic dataset. As shown is Fig. 6, the golf
cart is equipped with a high-precision GPS system to record
the path during the lane change. Due to the small size of the
test area (Fig. 7), the golf cart is driven at a low speed of 4.5
m/s.

A total of three datasets are then obtained: two using the
driver-in-the-loop driving simulator (speeds of 10 m/s and 15
m/s), referred to as Driver 1 and Driver 2, and one from real-
world driving tests using the Gem e2, referred to as Driver 3.
For each dataset, 40 lane change trajectories are collected, with
35 paths randomly selected for training, while the remaining 5
paths are used for testing. A separate IRL model is trained for
each driver (Driver 1-3) and data is not pooled across drivers.
In this paper, the initial learning rate is set to n = 0.1, and
the IRL is terminated after a maximum of 2000 iterations or
earlier if convergence is reached.

B. Test Results without Privacy Protection

For the case without privacy protection (a = 1), the training
results across different datasets are presented in Fig. 8, where
the expert lane change trajectories (¢) are depicted as gray
lines and the unmasked trajectories ({) are shown as red lines.
The results indicate a strong alignment between the unmasked
trajectories and expert demonstrations, confirming the IRL
model’s capability to accurately replicate personalized driving
behaviors. As shown in Table II, both absolute and relative
errors between ¢ and ( are low across all features. While
fr, and fr, are highly accurate, the larger relative errors in
fc and f, are due to the small magnitude of their feature
values. Specifically, in Table II, the maximum absolute error
in path length (fr,) is only 3.53 m, corresponding to a relative
error below 10%. The maximum absolute error in lane mark
crossing point (fz,) is 1.78 m, also under 10% relative error.
Although the relative errors for curvature (f.) and lateral offset
(fy) can reach up to 58%, their absolute deviations remain
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Fig. 6. The Polaris Gem e2, with highly automated driving systems, used
by Driver 3.

TABLE II
ABSOLUTE ERRORS (eq) AND RELATIVE ERRORS (e;) OF FEATURES
BETWEEN ¢ AND (.

Dataset l L fe L Im l fy L fr
Driver 1 [ 8.45x 1075 | 3.17 | 3.4x1072 | 050
er (%) 39.93 8.63 29.11 2.64
Driver 2 €a 7.16 x 1075 | 3.53 | 9.26 x 1073 | 1.78
er (%) 55.96 9.25 9.63 9.26
Driver 3 e 220 x 1073 | 053 | 7.14 x 1072 | 0.51
er (%) 57.89 2.81 59.21 533

within 107° to 1073 and 1072 to 1072, respectively, which is
negligible in practice. These results confirm that, without any
privacy transformation, our IRL model reproduces both the
longitudinal and lateral characteristics of individual drivers’
lane changes across all datasets.

C. Test Results with Privacy Protection

This section presents test results of the proposed privacy-
preserving IRL personalization algorithm with different scale
factors. Figs. 9, 10, and 11 show the results over test tra-
jectories for different datasets. In these figures, The blue bars
represent the average masked features of the five planned paths
for each dataset. Since the masked planned path (gt ) are learned
from encrypted expert features ( f), the resulting masked
features varies with a, consistent with our earlier discussion.
Therefore, if an attacker gains access to the privacy-preserving
weights (and so the masked prediction), he/she has no clue
what the unmasked trajectory and unmasked features looks
like. On the other hand, the goal of the proposed learning
algorithm is to make the unmasked trajectories (¢) closely
matches the expert paths (¢). Therefore, the average features
of the unmasked trajectories under each condition are recorded
as the orange bar in Figs. 9, 10 and 11. As can be seen,
after scaling back, the features under every scaling factor
maintain similar values. The solid horizon line in each subplot
presents the average features for the training expert paths

in each dataset. It can be observed that the average feature
values for the unmasked paths ({) are similar to those of
the corresponding training expert paths ((), indicating that
the proposed privacy-preserving mechanism does not sacrifice
learning accuracy.

Table III presents the absolute errors (e,) and relative errors
(e,) between the average features of the test paths and the
average features of the unmasked trajectories across three
datasets (Driver 1, Driver 2, and Driver 3). The evaluation
is conducted under varying scale factors from 0.4 to 2.0. It
can be observed that the relative errors for features fr, and
fr, consistently remain below 10% across all scale factors
and datasets. For instance, in the case of Driver 1, the relative
error for fr, varies from 7.51% to 8.63%, while for fr, it
ranges from 1.90% to 2.64%. The corresponding absolute
errors are also low, with fr, showing values varies from
2.76m and 3.17m, and fr, ranging from 0.36m to 0.5m.
These small differences indicate that the IRL learned policy
accurately reproduces the trajectory features observed in expert
demonstrations.

In contrast, the features f. and f, show higher relative
errors, reaching approximately 58 to 60% in certain instances,
particularly in the Driver 2 and Driver 3 dataset. However,
these features have much smaller absolute magnitudes. For
example, the absolute error of f. for Driver 2 remains as low
as 7.14 x 1075 at scale factor 2.0. Similarly, for Driver 3,
the absolute error of f, is approximately 7.25 x 10~2. These
results indicate that even though the relative percentage error
appears high, the actual deviation is actually minimal.

Furthermore, the last column in Table III shows the standard
deviation (o) of the e, and e, across all scale factors. The
small values of o, consistent across all datasets and features,
demonstrate that the encryption process does not degrade
the learning performance of the IRL model. These findings
confirm that the proposed framework is capable of accurately
capturing the essential features of driver lane change behavior,
while also exhibiting robustness to data scaling and privacy-
preserving transformations.

Moreover, to evaluate the computation requirement for real-
time deployment, the runtime of the proposed framework is
measured. The simulation is conducted on a standard desktop
computer equipped with an AMD Ryzen 9 3.5 GHz CPU and
32 GB RAM. The computation time required to generate one
lane change trajectory is around 140 ms, which is efficient for
real-time operation

D. Comparison with Differential Privacy

To further examine the performance of the proposed scaling-
based privacy protection, the differential privacy (DP) method
proposed in [41] is considered as the baseline. In order to apply
DP in IRL, we add Gaussian noises to encrypt the features for
every expert trajectories. To satisfy (e, d) differential privacy,
the standard deviation is defined as follows:

o _ AfV2In(125/)

where Af is the sensitivity of the feature, € is the privacy
budget, and § is the probability of exceeding the privacy loss

(28)
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Fig. 7. The lane change test environment for Driver 3.

TABLE III
ABSOLUTE ERROR (ea), RELATIVE ERROR (e,,«) BETWEEN UNMASKED PATH FEATURE AND EXPERT FEATURE, AND THE STANDARD DEVIATION

Scale factor
Dataset | Feature 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0 o
eq 9.87e-5 | 9.60e-5 | 9.54e-5 | 8.45e-5 | 8.49e-5 | 8.50e-5 | 8.50e-5 | 8.51e-5 | 8.51e-5 5.61e-6
fe er (%) 46.67 45.37 45.13 39.93 40.07 40.12 40.17 40.22 40.22 2.67
€q 2.76 2.96 3.05 3.17 3.16 3.15 3.14 3.13 3.13 0.13
Driver 1 fry er (%) 7.51 8.06 8.17 8.63 8.61 8.58 8.55 8.52 8.52 0.35
eq 2.88¢e-2 | 3.16e-2 | 3.25e-2 | 3.39¢-2 | 3.40e-2 | 3.40e-2 | 3.40e-2 | 3.40e-2 | 3.4le-2 1.7e-3
fy er (%) 24.62 27.01 27.78 29.11 29.13 29.14 29.14 29.14 29.15 1.48
€q 0.36 0.46 0.47 0.50 0.49 0.48 0.48 0.48 0.47 3.89%-2
fr er (%) 1.90 243 2.48 2.64 2.58 2.53 2.53 2.51 2.48 0.21
€a 7.43e-5 | 7.43e-5 | 7.16e-5 | 7.16e-5 | 7.16e-5 | 7.15e-5 | 7.15e-5 | 7.14e-5 | 7.14e-5 1.16e-6
fe er (%) 58.12 58.10 55.99 55.95 55.94 55.92 55.92 5591 5591 0.91
€q 3.80 3.77 3.53 3.53 3.53 3.53 3.53 3.53 3.53 0.11
Driver 2 fry er (%) 9.96 9.88 9.25 9.25 9.25 9.25 9.25 9.25 9.25 0.28
€q 1.72e-3 | 4.87e-3 | 9.66e-3 | 9.26e-3 | 9.06e-3 | 8.86e-3 | 8.76e-3 | 8.76e-3 | 8.66e-3 2.5e-3
fy er (%) 1.79 5.05 10.06 9.63 9.42 9.21 9.11 9.11 9.00 2.61
eq 1.95 1.91 1.78 1.78 1.78 1.77 1.77 1.77 1.77 6.56e-2
fr er (%) 10.15 9.94 9.26 9.26 9.26 9.21 9.21 9.21 9.21 0.34
eq 1.83¢-3 | 2.14e-3 | 2.19¢-3 | 2.20e-3 | 2.20e-3 | 2.21e-3 | 2.22¢-3 | 2.21e-3 | 2.21e-3 1.18e-4
fe er (%) 48.21 56.53 57.58 57.89 58.00 58.05 58.50 57.05 57.05 3
€q 0.16 0.42 0.51 0.53 0.54 0.54 0.67 0.55 0.55 0.13
Driver 3 fry er (%) 0.87 2.23 2.71 2.81 2.87 2.87 3.56 2.92 2.92 0.70
eq 7.16e-2 | 7.56e-2 | 7.25e-2 | 7.14e-2 | 7.15e-2 | 7.11e-2 | 7.19¢e-2 | 7.09e-2 | 7.09e-2 1.38¢-3
fy er (%) 59.34 62.69 60.06 59.21 59.23 58.95 59.59 58.80 58.73 1.15
[ 0.92 0.60 0.54 0.51 0.50 0.49 0.49 0.48 0.48 0.13
fr, er (%) 9.14 5.91 5.33 5.07 4.94 4.85 4.86 4.80 4.79 1.32

threshold [42], [43]. In this paper, A f represents the maximum
feature difference between each expert trajectory. To ensure
strong privacy protection, € and ¢ are set to 0.5 and 1 x 1075,
respectively. The corresponding IRL training results are shown
in Fig. 12, where the gray lines represent expert trajectories
and red lines represent the planned path under DP method.
The red dashed lines indicate the planned trajectories using
our proposed scale-based transformation method, which is
reproduced from Fig. 8. It can be observed that the DP-based
planned paths deviate significantly from the expert demon-
strations, indicating that IRL fails to learn the personal reward
function due to DP-based privacy-preserving transformation.
Table IV compares the relative errors between the proposed
privacy-preserving mechanism and DP, which clearly shows
that the proposed method generally achieves lower relative
errors across most datasets and features, indicating more
stable performance. In contrast, DP is unstable and produces
inconsistent results. In the case of Driver 2, the relative errors
of f. and f. and f, can exceed 500%.

Remark 4: Differential privacy (DP) is selected as the
baseline since it is the most widely adopted and represen-
tative method in privacy-preserving machine learning. Other
approaches such as federated learning (FL), partial feature
masking (PFM), and homomorphic encryption (HE) operate
under different assumptions than the one we consider in this
paper. FL is designed for multi-client settings where raw data
remain on local devices and only model updates are shared.
PFM discards part of the feature set and may significantly
reduce the information available for IRL, while HE enables
secure computation but usually requires very high computa-
tional cost, which limits its use in real-time applications. In
contrast, scaling-based encryption preserves all features while
protecting their values with low complexity, making DP the
most meaningful baseline for comparison.

Overall, the experimental results demonstrate that the pro-
posed method not only generates lane change trajectories
that are highly consistent with expert demonstrations but also
maintains robust performance across different driving behavior
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TABLE IV
RELATIVE ERRORS UNDER DIFFERENT PREVENTING-PRIVACY METHODS
[%]

Dataset l Method l fe L fry l fy L fry
Driver 1 Proposed | 41.98 8.35 28.24 2.45

river DP 427 | 1975 | 76.19 | 16.39
Driver 2 Proposed 56.42 9.39 8.03 9.41
A DP 514.67 | 4936 | 55147 | 41.94
Driver 3 Proposed | 56.77 2.63 59.62 5.52
river DP 19548 | 4022 | 20.74 | 43.24

and under scale-based transformation.

VI. CONCLUSIONS

This paper introduces a privacy-preserving IRL-based
framework for learning and generating personalized lane
change trajectories, leveraging Bezier curves to model vehicle
paths and MaxEnt IRL to infer a reward function from expert
trajectories. The use of Bezier curves provides flexible and
smooth lane change path, making them well-suited for person-
alized driving applications. To address user privacy concerns
during cloud-based training, the scale-based transformation
is applied to the user provided lane change trajectories, en-
suring that user-specific information is anonymized without
degrading model performance. Experiments are conducted
using both driver simulator and real world test platform, in
which the proposed model successfully learns individualized
lane change behaviors from different driving data. The results

indicate that the planned trajectories remain similar with the
original expert paths with and without privacy-preserving
scaling, demonstrating the efficacy of the encryption method
for protecting user data. In future work, further investigation
of additional initial conditions that may influence lane change
behavior will be a significant step forward. While Bezier
curves are efficient, they may be less suitable for highly
dynamic lane change scenarios which need to respond to
surrounding vehicles or sudden events. Further extension will
explore more adaptive trajectories such as splines to improve
flexibility in such settings. Moreover, integration with model
predictive control for lateral motion control [44]-[46] deserves
further investigation.
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